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Abstract

Researchers from a number of disciplines have long sought the ability to estimate the functional attributes of plant

canopies, such as photosynthetic capacity, using remotely sensed data. To date, however, this goal has not been

fully realized. In this study, fresh-leaf reflectance spectroscopy (l¼450–2500 nm) and a partial least-squares

regression (PLSR) analysis were used to estimate key determinants of photosynthetic capacity—namely the
maximum rates of RuBP carboxylation (Vcmax) and regeneration (Jmax)—measured with standard gas exchange

techniques on leaves of trembling aspen and eastern cottonwood trees. The trees were grown across an array of

glasshouse temperature regimes. The PLSR models yielded accurate and precise estimates of Vcmax and Jmax within

and across species and glasshouse temperatures. These predictions were developed using unique contributions

from different spectral regions. Most of the wavelengths selected were correlated with known absorption features

related to leaf water content, nitrogen concentration, internal structure, and/or photosynthetic enzymes. In a field

application of our PLSR models, spectral reflectance data effectively captured the short-term temperature

sensitivities of Vcmax and Jmax in aspen foliage. These findings highlight a promising strategy for developing remote
sensing methods to characterize dynamic, environmentally sensitive aspects of canopy photosynthetic metabolism

at broad scales.
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Introduction

Using an array of technologies, researchers from a number

of disciplines continue to pursue methods for remotely

estimating the biochemical, structural, and physiological

traits of plant leaves and canopies based on their optical

properties (Wessman et al., 1988b; Martin and Aber, 1997;

Smith et al., 2002; Biewer et al., 2009). Thus far, target

foliar traits have included concentrations of nitrogen (Nmass,

Bolster et al., 1996; Gillon et al., 1999), lignin, cellulose
(Wessman et al., 1988a; Martin and Aber, 1997; Kokaly

and Clark, 1999; Petisco et al., 2006), and photosynthetic

pigments (Richardson et al., 2002; Gitelson et al., 2003;

Moorthy et al., 2008) as well as water content (Sims and

Gamon, 2003; Stimson et al., 2005; Cheng et al., 2008). In

addition, leaf isotopic ratios (d13C and d 15N; Richardson

and Reeves, 2005; Wang et al., 2007; Kleinebecker et al.,

2009), specific leaf area (SLA; Asner and Martin, 2008), and

leaf mass per area (LMA; Asner et al., 2011; Doughty et al.,

2011) have been successfully estimated using leaf optical

properties. To date, however, remote sensing of leaf

functional attributes, such as photosynthetic metabolism,

has not progressed as rapidly (Grace et al., 2007).

Much of the effort to relate optical remote sensing data
to photosynthetic status and ecosystem function has fo-

cused on the use of the photochemical reflectance index

(PRI, Gamon et al., 1992, 1997). The PRI, which provides

a linkage with photosystem II (PSII) efficiency by tracking

the variation in xanthophyll cycle pigments, has been

successfully used to assess photosynthetic functioning
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across a range of vegetation types (Peñuelas et al., 1995,

1998; Gamon et al., 1997; Nichol et al., 2000; Stylinski

et al., 2000; Guo and Trotter, 2004; Fuentes et al., 2006;

Drolet et al., 2008; Hilker et al., 2008; Middleton et al.,

2009) and responses of plants to environmental stress

(Dobrowski et al., 2005; Suarez et al., 2008; Gray et al.,

2010).

A parallel avenue of research has focused on the de-
tection of vegetation chlorophyll fluorescence (CF) to

exploit its relationship with photosynthetic functioning

(Freedman et al., 2002; Louis et al., 2005; van der Tol

et al., 2009; Damm et al., 2010). CF has been detected

through passive monitoring of solar-induced steady-state

fluorescence (Zarco-Tejada et al., 2003; Dobrowski et al.,

2005; Grace et al., 2007; Campbell et al., 2008) and active

laser-induced methods (Ananyev et al., 2005). Although
remote sensing of CF remains experimental owing to

a variety of technical issues (Grace et al., 2007; Coops et al.,

2010), the recent creation of regional and global CF maps

using space-borne observations (Guanter et al., 2007; Joiner

et al., 2011) highlights the technique’s potential.

The results of an effort to further explore the links

between the photosynthetic and optical properties of tree

leaves are summarized here. Specifically, in a glasshouse
study of trembling aspen (Populus tremuloides) and eastern

cottonwood (Populus deltoides) trees grown under different

temperature regimes, it was assessed whether climate-

mediated variation in leaf photosynthetic metabolism could

be effectively estimated using data from visible and near-

infrared reflectance spectroscopy (VIS/NIRS). With respect

to photosynthetic metabolism, the focus was on two

important parameters, the maximum rate at which ribulose
bisphosphate (RuBP) is carboxylated (Vcmax) and regener-

ated (Jmax). With robust estimates of these two traits, the

photosynthetic performance of a given leaf can be predicted

using a widely adopted biochemical model (Farquhar et al.,

1980; Farquhar and von Caemmerer, 1982). This model has

been effectively scaled to the canopy level (Medlyn et al.,

2005; Thum et al., 2007), and its use in canopy and

ecosystem process models is increasingly common.
Vcmax and Jmax vary substantially across plant species,

functional groups, and growth environments (Wullschleger,

1993; Kattge et al., 2009). Moreover, both parameters are

very sensitive to short-term (i.e. seconds to hours) dynamics

in leaf temperature (Medlyn et al., 2002; Kattge and Knorr,

2007). The accuracy and credibility of outputs from process

models would increase considerably if a feasible methodol-

ogy were developed for remotely sensing canopy photosyn-
thetic capacity and its temperature sensitivity across broad

scales.

The principal objectives of our study were (i) to develop

spectroscopic models for estimating Vcmax and Jmax based

on leaf data collected across a wide range of growth

temperature regimes; and (ii) to assess the effectiveness of

those models in estimating the short-term temperature

sensitivity of Vcmax and Jmax in the field. The second
objective was addressed with measurements of leaf traits in

field-grown aspen trees.

Materials and methods

Glasshouse treatments and experimental design

The relationships were tested between leaf photosynthetic and
optical properties in climate-controlled glasshouses at the Univer-
sity of Wisconsin–Madison Biotron. Aspen and cottonwood
germinants were reared in flats until they reached a height of
about 20 cm. Seedlings were then transplanted into 4-litre pots and
transferred to the Biotron glasshouses, where they were grown for
8 weeks under one of three different temperature regimes, with
fixed day/night air temperatures of 30/23, 25/18, and 20/13 �C.
These thermal regimes were chosen to span ranges in air
temperature observed during the growing season along a latitudinal
transect for a study that examined the physiological factors
limiting geographic distributions of temperate and boreal tree
species (Dillaway and Kruger, 2010). Each regime was replicated
in two glasshouses.

Measurements of leaf gas exchange

During the fourth and eighth weeks of growth in the Biotron
glasshouses, leaf gas exchange was measured on a total of 8–10
trees per species in each treatment (4–5 per species and glasshouse,
n¼78) using a LI-6400 portable photosynthesis system (Li-Cor
Biosciences, Lincoln, NE, USA). All measurements were con-
ducted on the youngest, fully expanded leaf of each tree. Leaves
were measured under high light intensities (photosynthetic photon
flux¼1800 lmol m�2 s�1, provided by a red-blue LED array) at
several CO2 partial pressures (pCO2) ranging from 7.5 to 120 Pa.
Photosynthesis (A) was assessed first at a cuvette reference pCO2 of
40 Pa, and then again after each of three step-wise decreases in
pCO2 (i.e. at 25, 15, and 7.5 Pa). Photosynthesis was then
measured at 60, 90, and 120 Pa CO2, respectively. Cuvette
reference pCO2 was controlled using the LI-6400 CO2 injector
system. The potentially confounding influences of diffusion leaks
across the cuvette gasket on gas exchange calculations were taken
into account by applying the manufacturer’s equation to determine
the gasket diffusion coefficient (Anonymous, 2005).
At a given pCO2, leaves were allowed to acclimate to cuvette

conditions for 2–5 min, depending on when photosynthetic rate
stabilized. Vapour pressure deficit between leaf and air in the
cuvette ranged from 0.95–2.01 kPa. For each leaf, the photosyn-
thetic response to pCO2 was assessed at the daytime air tempera-
ture of each treatment (20, 25, and 30 �C), which, owing to
concerns about IRGA signal stability, was maintained through the
manipulation of cuvette rather than leaf temperature. Thus,
because leaf temperature was not directly controlled, it ranged
from 20.40–21.80, 25.06–26.14, and 30.05–30.40 �C at the target
temperatures of 20, 25, and 30 �C, respectively. Measurements
were conducted throughout the day, as long as stomatal conduc-
tance remained comparatively high (within 25% of the daily
maximum).

Measurement of leaf optical properties

Reflectance was measured for both species on the same leaves
assessed for gas exchange using a high-spectral-resolution ASD
FieldSpec� 3 Full-Range (350–2500 nm) spectroradiometer (Ana-
lytical Spectral Devices, Boulder, CO, USA). All measurements
occurred on the leaf adaxial surface using a leaf-clip assembly
attached to a plant probe with an internal, calibrated light source.
The relative reflectance of each leaf was determined from the
measurement of leaf radiance divided by the radiance of a 99.9%
reflective white standard (Spectralon, Labsphere Inc., North
Dutton, NH, USA). Reflectance was measured on ten different
areas of each leaf lamina, and the resulting ten spectra were
averaged to determine mean optical properties for each leaf. Each
measurement required less than 5 s. Measures of leaf optical
properties and gas exchange occurred within 24 h of one another.
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Leaf nitrogen and leaf mass per area

Immediately following gas exchange and optical assessments,
leaves were harvested and measured for projected area using a LI-
3100 leaf area meter (Li-Cor Biosciences, Lincoln, NE, USA),
oven-dried to a constant mass at 70 �C, and weighed. These data
were combined to calculate leaf mass per area (Marea, g m�2).
Dried leaves were then finely ground and analysed for nitrogen
concentration using an Elementar Vario Macro CHN analyser
(Elementar Analysensyteme GmbH, Hanau, Germany).

Estimation of leaf photosynthetic traits

Relationships between photosynthesis (A) and intercellular pCO2

(Ci) were used to estimate maximum rates of RuBP carboxylation
(Vcmax) and regeneration (Jmax) at a given leaf temperature with
a curve-fitting method that minimized the sums of squares for
error resulting from comparisons of observed versus estimated A
(Long and Bernacchi, 2003). Michaelis–Menten constants for CO2

(Kc) and oxygen (Ko), and photosynthetic (CO2) compensation
point (C*) were calculated with formulae from Long and
Bernacchi (2003). Vcmax was estimated from the lower portion of
the A–Ci curve (where Ci <30 Pa), and Jmax was estimated from
the upper portion of the curve (Ci >60 Pa). It was noted that this
approach does not account for the influence of mesophyll
conductance on estimates of Vcmax and Jmax (Dillaway and
Kruger, 2010), and thus our reported values are based on
intercellular as opposed to chloroplastic pCO2.
It was assumed that leaf temperature closely tracked air

temperature in the glasshouses, and thus, because the two differed
somewhat during gas exchange measurements, temperature-re-
sponse models were used to estimate Vcmax and Jmax for each leaf
at its respective glasshouse daytime temperature (i.e. 20, 25, or
30 �C). Temperature-response models were generated for each
species based on Vcmax and Jmax data pooled across the three
temperature treatments (data not shown). Owing to its exponential
form, the temperature sensitivity of Vcmax was modelled using an
Arrhenius equation (Hikosaka et al., 2006), whereas the asymp-
totic temperature response of Jmax was characterized with a ‘peak’
model (Kattge and Knorr, 2007). The resulting models produced
unbiased estimates of Vcmax and Jmax in the cases of both species
and all measurement treatments. Specifically, the slopes and
intercepts of relationships between observed and predicted Vcmax

and Jmax did not differ significantly from 1 and 0, respectively
(data not shown). Implicit in this approach was the assumption
that photosynthetic metabolism of glasshouse tree foliage did not,
to any appreciable extent, acclimate to the different thermal
regimes, which would be consistent with our observations in the
field (Dillaway and Kruger, 2010).

Generation of predictive models from leaf reflectance spectra

Predictive models of metabolic, biochemical, and morphological
traits based on leaf optical properties were examined using partial
least-squares regression (PLSR) analysis (Wold et al., 1984; Geladi
and Kowalski, 1986; Wolter et al., 2008). While PLSR has not
been widely embraced in ecology (Carrascal et al., 2009), its use in
remote sensing research has increased in recent years (Smith et al.,
2002; Townsend et al., 2003; Ollinger and Smith, 2005; Martin
et al., 2008; Wolter et al., 2008). This is because PLSR is useful in
situations of high predictor collinearity and/or the predictor
variables are equal to or higher than the number of observations,
which is often the case in spectroscopic and/or remote sensing
research. In addition, models developed using PLSR are much
more robust than classical regression in that the calibrated model
parameters do not vary greatly given different calibration subsets
from a population of observations (i.e. high parameter stability;
Geladi and Kowalski, 1986).
A standard PLSR approach for spectral-chemical analysis

utilizes the continuous, full-spectrum data (Asner and Martin,

2008; Doughty et al., 2011) or a pre-determined spectral subset
(Bolster et al., 1996; Richardson and Reeves, 2005). The spectral
loadings (or regression coefficients), which directly relate the target
leaf attributes to corresponding spectral features, are generated
through the development of a smaller set of orthogonal linear
latent components which are obtained through the decomposition
of the model variables and the optimization of the covariance
structure in the data (Wold et al., 1984; Geladi and Kowalski,
1986; Wolter et al., 2008). In this study, the choice was made to
incorporate an automatic variable selection method similar to

Fig. 1. Variation in nutritional, morphological, and metabolic leaf

traits for trembling aspen (white boxes) and eastern cottonwood

(grey boxes) measured in the Biotron facility, summarized by night-

time/daytime glasshouse temperatures. Traits are nitrogen con-

centration (Nmass, %), leaf mass per area (Marea, g m�2), and

maximum rates of RuBP carboxylation (Vcmax, lmol m�2 s�1) and

regeneration (Jmax, lmol m�2 s�1). The box plots display the

median for each trait by group (dark horizontal line), the

interquartile range (IRQ, boxes), the range (whiskers), and the

extreme observations (black dots).
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Wolter et al. (2008) for predictor dimensionality reduction and
model optimization. This allowed us to build more parsimonious
models and investigate regions of the spectrum that were
important for the prediction of each target variable.
The dimensionality reduction involved a two-stage selection of

predictor variables (i.e. spectral wavelengths) whereby the varia-
bles and number of latent components chosen are those which
minimized the model PRESS statistic (Wolter et al., 2008),
followed by a second selection technique minimizing the Root
Mean Square Error (RMSE), once the model PRESS is minimized.
This enabled the continued elimination of redundancy in the
spectral data until the model RMSE reached a minimum. In this
second step, the iterative-cross validation PRESS statistic (Asner
and Martin, 2008; Wolter et al., 2008) was used to select the
optimal number of components for each variable subset. The
remaining variables and components with the RMSE and PRESS
minimized are chosen for the final model. This was done
independently for each variable of interest (i.e. Vcmax, Jmax, Nmass,
and Marea). This resulted in PLSR models with only salient
variables and components for dependent variable prediction.
The PLSR analysis and variable selection was carried out using

the PLSREGRESS function in Matlab (Mathworks, Natick, MA,
USA) and a set of custom functions for the variable selection. The
entire spectrum from 450–2500 nm was sub-sampled by retaining
every fifth wavelength prior to running the analyses to decrease the
computation time for variable and component selection. Once the
optimal models were chosen, a final PLS-PRESS analysis was

carried out to calculate the spectral loadings and model diagnos-
tics.
As additional model verification, a 1003 cross-validation of our

Jmax and Vcmax models was performed using a random 70/30%
split of the data for model calibration and testing. This was done
by using the final set of wavelengths and components selected for
each variable during the two-stage PLSR modelling to generate
new PLSR estimations of the observations left out of each
iteration (i.e. 30% validation), based on the remaining data left for
calibration (i.e. 70% calibration). The results from this analysis
were used to examine model and data stability. From this, the
distribution of error resulting from the multiple permutations of
the data is reported.

Estimating Vcmax and Jmax with leaf optical data from field-grown

aspen

To determine whether the results from our glasshouse PLSR
analysis captured short-term (seconds to hours) temperature-
dependent variation in leaf metabolic traits rather than–or in
addition to–longer-term (days to weeks) photosynthetic acclima-
tion of foliage to variation in growth conditions, leaf properties
were examined on five field-grown trembling aspen trees. Measure-
ments were made during an 8 h period on two different days across
a range of ambient air temperatures. On 15 July 2009, under clear
skies, gas exchange and temperature were measured (on the
adaxial and abaxial surface using an Agri-Therm III infrared
thermometer, Everest Interscience, Tucson, AZ, USA) on one
sunlit leaf per tree in the morning and again in the afternoon. This
protocol allowed us to obtain a 5–13 �C span in the temperatures
at which a particular leaf was measured.
On a different set of aspen trees, gas exchange and temperature

were again measured on one sunlit leaf per tree in the morning and
afternoon of 16 June 2010. Here, in addition to measuring leaf
temperature just prior to spectral measurements, it was monitored
inside the spectroradiometer leaf-clip assembly using a fine-wire
thermocouple. This allowed us to test the assumption that spectral
measurements did not cause large perturbations of leaf tempera-
ture. On average, leaf temperature in the leaf-clip assembly was
0.15 �C (60.55 �C) higher than the corresponding ambient value.
For these experiments, leaf gas exchange and spectral reflectance

were measured in the same fashion as in the glasshouse study, with
two exceptions: (i) owing to time constraints, gas exchange
measures in July 2009 were confined to the initial portion of the
A–Ci curve (cuvette pCO2 <40 Pa), affording only the estimation
of Vcmax, while those in June 2010 were confined to cuvette pCO2

Fig. 2. (a) Mean, 61 standard deviation, and minimum and maximum leaf reflectance for the pooled aspen and cottonwood seedlings

grown in the Biotron facility. Correlation coefficients showing the strength of relationships between spectral wavelengths and each of the

four target leaf traits across the full spectrum (b) and for only the visible spectrum (c) Traits are nitrogen concentration (Nmass, %), leaf

mass per area (Marea, g m�2), and maximum rates of RuBP carboxylation (Vcmax, lmol m�2 s�1) and regeneration (Jmax, lmol m�2 s�1).

Table 1. Summary of two-stage PLSR modelling results for target

leaf traits, including nitrogen concentration (Nmass, %), leaf mass

per area (Marea, g m�2), and maximum rates of RuBP carboxylation

(Vcmax, lmol m�2 s�1) and regeneration (Jmax, lmol m�2 s�1).

Variable Number of
wavelengthsa

Number of
componentsb

R2 RMSE

Nmass 13 11 0.89 0.31

Marea 11 8 0.95 3.69

Vcmax 13 10 0.89 15.4

Jmax 44 13 0.93 18.67

a Number of wavelengths selected in the final PLS models.
b Number of PLSR components used to generate the wavelength

coefficients in the final models.
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values >60 Pa, affording only the estimation of Jmax, and (ii) the
spectroradiometer was used in its backpack configuration in order
to collect leaf spectral data in situ. Using these data, the accuracy
and precision with which the glasshouse-based PLSR models
predicted short-term, temperature-mediated variation in Vcmax

and Jmax were examined on an independent set of data under
different conditions.

Results

Variation in target leaf traits among glasshouse
temperature treatments

In the glasshouses, leaf nitrogen concentration (Nmass), leaf
mass per area (Marea), and maximum rates of RuBP

carboxylation (Vcmax) and regeneration (Jmax) varied con-

siderably across temperature regimes and/or species (Fig. 1).

Trait responses to growth temperature were fairly consistent

across species, except that, as temperature rose, Nmass

increased in aspen and decreased in cottonwood. Nmass and

Marea were generally higher in cottonwood than in aspen,

and for both species Marea decreased in the warmest
glasshouses. Vcmax increased exponentially with tempera-

ture, while Jmax exhibited a less pronounced, asymptotic

response. At a given temperature, averages for Vcmax and

Jmax were higher in cottonwood than in aspen.

Relationships between target leaf traits and optical
properties in the glasshouse

Leaf reflectance varied substantially within and across

temperature treatments (Fig. 2a), with a 45%, 20%, and

37% range in reflectance in the visible (450–700 nm), near-
infrared (NIR, 700–1300 nm) and shortwave infrared

(SWIR, 1500–2500 nm) regions, respectively. The relative

range in reflectance for individual wavelengths was at

a minimum in the NIR (15% at 772 nm) and peaked in the

SWIR (59% at 2494 nm). Target leaf traits were variably

correlated (r, 0.25–0.75) with leaf reflectance at wavelengths

broadly distributed across the full spectrum (i.e. 450—2500

nm; Fig. 2b). In general, positive correlations were observed
in the blue (450–495 nm) and red-edge (650–680 nm)

regions, whereas moderate to strong negative correlations

occurred in the green (505–570 nm) and red (620–650 nm)

regions, and across the NIR and SWIR (Fig. 2b, 2c).

Fig. 3. The observed versus predicted values from the final PLS leave-one-out (LOO) cross-validation procedure for glasshouse leaf

nitrogen concentration (Nmass, %), leaf mass per area (Marea, g m�2), maximum rates of RuBP carboxylation (Vcmax, lmol m�2 s�1) and

regeneration (Jmax, lmol m�2 s�1). Note that the colour scale for Nmass (a) depicts corresponding variation in Marea, while those for Marea

(b), Vcmax (c), and Jmax (d) depict variation in Nmass. Each plot has a total of 53 observations and the symbols correspond to the three

temperate regimes.
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PLSR models based on glasshouse data

PLSR analysis yielded accurate and precise empirical

predictions of target leaf traits based on leaf reflectance

spectra (Table 1; Fig. 3). All models possessed a high

coefficient of determination (r2), while their root mean

square error (RMSE) values averaged 8% of the mean.

Through automated variable selection, a set of 13 wave-
lengths was found that described nearly 90% of the

variation in Vcmax across leaves and temperature treatments,

while 44 wavelengths provided an effective model of Jmax

(Table 1). Both the Vcmax and Jmax models involved broadly

similar portions within the visible and short-wave spectral

regions, although the loadings were generally larger in the

Vcmax model (Fig. 4; see Supplementary data and Tables

S1–S4 at JXB online). In contrast to that for Vcmax, the
model for Jmax included wavelengths in the NIR related to

leaf water content and the green reflectance peak. All

models incorporated wavelengths in the visible spectrum

(i.e. 450–700 nm), with all but Marea including the chloro-

phyll absorption regions (i.e. ;430–460 nm and 640–670

nm). In addition, wavelength regions included in the Jmax

and Vcmax models overlapped somewhat with those selected

for the Nmass model, while Jmax further displayed some
similarities with Marea in the NIR and SWIR (Fig. 4).

As an additional test of the model stability and robust-

ness for the metabolic parameters (i.e. Vcmax and Jmax),

a jackknife test of the glasshouse calibrated PLSR models

was performed. The 1003 cross-validation analysis showed

that the models performed consistently across multiple

permutations of the data, with both Vcmax (median

R2¼0.78, median RMSE¼16.2) and Jmax (median R2¼0.77,

median RMSE¼20.1) having prediction errors that did not
significantly change from the original leave-one-out cross-

validation (Fig. 5 shows the R2 and RMSE histograms for

the 1003 resampling of the glasshouse models).

Relationships among target leaf traits in the glasshouse

The relationships among target leaf traits, within and across

temperature regimes, were examined in an effort to clarify

the nature of our PLSR models. In particular, an attempt

was made to determine whether predictive models of Vcmax

and Jmax might have arisen primarily as a result of the

commonly observed dependence of photosynthetic capacity

on leaf N status (Field, 1983). To round out this assessment,

leaf nitrogen content (Narea, the product of Marea and Nmass)
was included in the correlation matrix. Traits were posi-

tively correlated with one another in at least one—and often

all three—temperature regimes (Fig. 6). In several relation-

ships, however, growth temperature significantly affected

the slope and/or intercept. For example, photosynthetic

traits were positively correlated with leaf N status (either

Nmass or Narea) within a given temperature regime (r >0.45,

P <0.027), but, especially in the case of Vcmax, the
correlations deteriorated when data were pooled across

temperatures (Fig. 6). Particularly in relationships among

Vcmax, Jmax, and Narea, this deterioration resulted from

a marked separation of the trend at 30 �C from those at 25

�C and 20 �C (Fig. 4), brought about by the differential

temperature responses of each leaf trait (or, in the case of

Narea, its components Nmass and Marea) illustrated in Fig. 1.

Predicting the temperature dependence of Vcmax and
Jmax in field-grown aspen

In July 2009, averages for leaf temperature and Vcmax

increased by 7.6 �C (63.3 �C) and 59.5 lmol m�2 s�1

(630.4 lmol m�2 s�1), respectively, between morning and
afternoon on foliage from the five field-grown aspen trees

(Fig. 7a). Using the spectral Vcmax model developed with

the glasshouse data, it was found that the observed Vcmax

variation across leaves and temperatures could be predicted

with reasonable accuracy and precision (r2¼0.86,

RMSE¼10.2 lmol m�2 s�1) based solely on the correspond-

ing leaf spectral data (Fig. 7c).

In June 2010, on a different set of field-grown aspen, leaf
temperature increased by an average of 3.5 �C (61.3 �C)
from morning to afternoon (Fig. 7b), and corresponding

Jmax responses to temperature were variable, showing no

clear temperature sensitivity overall. Nevertheless, the

spectral Jmax model yielded precise estimates (r2¼0.93,

Fig. 4. Final distribution of the wavelengths selected in each two-

stage PLSR model for leaf nitrogen concentration (Nmass, %), leaf

mass per area (Marea, g m�2), and maximum rates of RuBP

carboxylation (Vcmax, lmol m�2 s�1) and regeneration (Jmax, lmol

m�2 s�1). The colour of each vertical bar represents the magnitude

of the standardized variable loading (see colour map). Note that

each vertical bar represents only one wavelength and the bar

width is exaggerated for display purposes only. The final number of

wavelengths selected is 13 for Nmass, 11 for Marea, 13 for Vcmax,

and 44 for Jmax (see Table 1; see Supplementary data and Tables

S1–S4 at JXB online).
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RMSE¼8.2 lmol m�2 s�1) based solely the corresponding

leaf spectral data (Fig. 7d).

Discussion

Our success in estimating leaf morphology and nitrogen

status with spectroscopic models is consistent with previous
studies using PLSR approaches (Bolster et al., 1996; Asner

and Martin, 2008; Doughty et al., 2011) and other methods

(Wessman et al., 1988a; McLellan et al., 1991; Kokaly and

Clark, 1999). Recently, spectroscopic data combined with

PLSR modelling has been used to estimate levels of various

other leaf biochemical and nutritional constituents (Gillon

et al., 1999; Richardson and Reeves, 2005; Petisco et al.,

2006). For example, Asner and Martin (2008) found that
spectroscopy could be used to estimate leaf concentrations

of chlorophylls (i.e. Chl a and Chl b), water, carotenoids,

and phosphorus. Other studies have provided empirical

evidence that concentrations of structural compounds such

as lignin and cellulose, as well as tissue 13C and 15N

isotopes, can be predicted effectively using the combined

spectroscopic PLSR approach (Bolster et al., 1996; Brink-

mann et al., 2002; Richardson and Reeves, 2005; Petisco
et al., 2006; Kleinebecker et al., 2009).

At present, there is only one other study in the literature

(Doughty et al., 2011) that relates the photosynthetic

parameters Jmax and Vcmax to full-spectrum leaf optical

properties (within a 5 �C temperature range). The authors

found weak to moderate predictive power for the Vcmax

(r2¼0.39, RMSE¼36 lmol m�2 s�1) and Jmax models

(r2¼0.52, RMSE¼39 lmol m�2 s�1), in contrast to models
of the other variables of interest (e.g. Amax, LMA, leaf N).

This was attributed to error propagation in the estimation

of Vcmax and Jmax (Doughty et al., 2011). On the other

hand, Stylinski et al. (2000) found a close relationship

between Jmax and the narrow-band photochemical reflec-

tance index (PRI), an optical indicator of the xanthophyll

cycle pigments (Gamon et al., 1992; 1997), in foliage of

pubescent oak (Quercus pubescens) trees. They related this
correlation to the down-regulation of electron transport

capacity associated with an increase in non-photochemical

quenching (NPQ, Demmig-Adams and Adams, 1996, 2006)

provided by the xanthophyll cycle pigments.

In addition, Wang et al. (2008) observed that an in situ

broadband simple ratio (SR), based on infrared and photo-

synthetically active radiation (PAR) reflectance (i.e. 400–700

nm), was a good predictor of the Vcmax in Japanese beech
(Fagus crenata) forests. However, the relationship varied

significantly among the three study sites along an elevation

gradient, limiting the generality of the results (Wang et al.,

2008). As such, a logical continuation of our research effort

is an assessment of the utility of our PLSR models across

other plant species, regions, and growth environments.

Perhaps the most novel outcome of this study is the

apparent ability of spectral reflectance data to capture the
short-term temperature sensitivity of Vcmax and Jmax. In

particular, our predictive algorithms based on leaf optical

Fig. 5. Results of the 100X jackknife resampling of the PLSR glasshouse models (Fig. 3) for Vcmax (a, b) and Jmax (c, d). The Vcmax and

Jmax models had a median R2 of 0.78 and 0.77, respectively, while the median model RMSE was 16.2 for Vcmax and 20.1 for Jmax.
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properties (Fig. 3) collapsed substantial species- and tempera-

ture-mediated variation in Vcmax and Jmax (Fig. 1) into a single

trend (Fig. 3c, d). This finding, along with the pronounced

temperature-mediated variation observed in certain leaf-trait
relationships (Fig. 6), indicate that the derived Vcmax and Jmax

PLSR models are not simply scalars of other leaf traits, or of

one another. The fact that our glasshouse-based PLSR models

for Vcmax and Jmax also performed fairly well when applied to

an independent data set of leaves from field-grown trees (Fig.

7c, d) underscores the considerable potential for remote

sensing of environmentally sensitive traits governing photo-

synthetic metabolism in forest canopies.
An examination of the relationship between reflectance

and other leaf traits (Fig. 2) highlighted that (i) leaf

physiological traits are correlated with leaf optical proper-

ties, but the strength of these correlations varies across the

VIS/NIR/SWIR regions; and (ii) there are regions of highly

collinear wavelengths that allow for reduction of dimen-
sionality in the predictors, potentially without penalty to

overall model performance. Although PLSR can handle

datasets with high data dimensionality, such as spectral

data, appropriate variable selection techniques can enhance

the results of PLSR and provide more parsimonious models

(Martens and Martens, 2000; Lestander et al., 2003;

Schmidtlein et al., 2007; Li et al., 2008; Wolter et al., 2008;

Chun and Keles, 2010; Feilhauer et al., 2011).
Use of full-spectrum data can often result in PLSR

models with spectral loadings that do not contribute

Fig. 6. Relationships among nutritional, morphological, and metabolic leaf traits, including nitrogen concentration (Nmass, %), leaf mass

per area (Marea, g m�2), and maximum rates of RuBP carboxylation (Vcmax, lmol m�2 s�1) and regeneration (Jmax, lmol m�2 s�1). Note

that leaf nitrogen content (Narea, g m�2) —the product of Marea and Nmass—is also included in this analysis. Pearson correlation

coefficients (r) are presented by temperature treatment and across all data pooled.
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significantly to the prediction (i.e. are near 0) and may

negatively affect results (Martens and Martens, 2000; Chun

and Keles, 2010). This is important for issues in scaling

from the field to broad-scale remote sensing applications
where the number of available wavelengths is limited and

knowledge of the key spectral regions in predicting the

component of interest is important for sensor design. The

full-spectrum data was simplified by iteratively removing

wavelengths with low predictive power and producing a set

of final models with the most significant predictors for each

leaf trait (Fig. 4). While there are a variety of PLSR

variable selection techniques including genetic algorithm
PLS (GA-PLS; Leardi, 2000), interval PLS (iPLS; Norgaard,

et al., 2000), sparse PLS (SPLS; Chun and Keles, 2010), and

backward selection techniques based on coefficient stability

(Martens and Martens, 2000; Feilhauer et al., 2011) the

method presented here significantly reduced the spectrum

(Table 2; Fig. 4) and provided consistent results for each

variable (Fig. 3).

Reviewing the location of selected wavelegnths in our
PLSR models (Fig. 4), it was found that many fell within

spectral regions associated with leaf characteristics such as

internal structure, water content, and chlorophylls. For

example, the NIR spectrum of a leaf varies in concert with

leaf water content and structure (e.g. thickness and or

density), which are related to Marea (Jacquemoud and Baret,

1990; Fourty and Baret, 1997; Ceccato et al., 2001).

Specifically, leaves require more dry material, structurally,
in order to hold higher water content. Related to this, there

are two well-known water absorption features centred at

around 970 nm and 1200 nm (Elvidge, 1990; Penuelas et al.,

1993; Sims and Gamon, 2003; Kokaly et al., 2009), where

both the Jmax and Marea models contain selected wave-

lengths (Fig. 4). With the exception of the model for Marea,

all PLSR models contained wavelengths with relatively high

spectral loadings in regions with known sensitivities to

variations in leaf nitrogen, which occurs primarily in
mesophyll proteins and chlorophylls. Nitrogen typically

comprises 6.5% (by weight) of the primary light-harvesting

molecules and 30–50% of green leaf N is allocated to the

protein ribulose-1,5 bisphosphate carboxylase-oxygenase

(Rubisco; Elvidge, 1990). In total, roughly 70% of leaf N is

invested in compounds that support carbon fixation (Field,

1983; Evans, 1989) and leaf N status is often strongly

associated with net photosynthetic capacity (Amax; Field
and Mooney, 1986; Evans, 1989; Reich et al., 1997).

Notably, Rubisco has several relatively broad spectral

absorption features in the NIR and SWIR centred at 1.5,

1.68, 1.74, 1.94, 2.05, 2.17, 2.29, and 2.47 lm (Elvidge,

1990) that are located in close proximity to several of the

wavelength regions selected for leaf Nmass, Vcmax, and Jmax

(Fig. 4). For example, the Vcmax model had wavelengths

selected at 1.51, 1.68, 1.76, 1.94, 2.21, and 2.49 lm (Fig. 4:
see Supplementary data and Tables S1–S4 at JXB online).

These considerations further highlight and reinforce plausi-

ble linkages between leaf photosynthetic metabolism and

spectral reflectance data.

Remote-sensing approaches offer the potential to esti-

mate the landscape- to regional-scale carbon, water, and

energy fluxes, as well as other aspects of terrestrial

ecosystem function (Carter, 1998; Rahman et al., 2001;
Townsend et al., 2003; Fuentes et al., 2006; Asner and

Martin, 2008; Hashimoto et al., 2008). As a consequence,

there has been much research focused on the development

of methods to relate remotely sensed observations, from the

shortwave (i.e. 0.3–3 lm) through the mid-infrared and

thermal (i.e. 8–15 lm) wavelengths, to the photosynthetic

functioning of vegetation (Sellers et al., 1992; Gamon et al.,

1997; Carter, 1998; Zarco-Tejada et al., 2003; Grace et al.,
2007; Anderson et al., 2008; Hilker et al., 2008; Sims et al.,

2008). The spectroscopic technique presented in this study

complements previous remote sensing methods that utilize

vegetation indices (Gamon et al., 1997; Fuentes et al., 2006;

Sims et al., 2008), fluorescence observations (Louis et al.,

Fig. 7. Relationships between observed Vcmax or Jmax and leaf

temperature (a, b), and observed versus PLSR-predicted Vcmax or

Jmax (c, d), for field-grown aspen trees. Predicted values are

derived using only spectral reflectance data in conjunction with the

glasshouse PLSR models (see Supplementary Tables S3 and S4

at JXB online), while the observed Vcmax and Jmax data are derived

from gas exchange (A–Ci) analyses.

Table 2. The number of wavebands selected for each variable

during the two-stage PLSR modelling within the visible (VIS),

near-infrared (NIR), short-wave 1 (SWIR1), and short-wave 2

(SWIR2) spectral regions

Variable VIS
400–700 nm

NIR
700–1300 nm

SWIR1
1300–1900 nm

SWIR2
1900–2500 nm

Nmass 4 1 3 5

Marea 2 8 6 7

Vcmax 4 1 4 4

Jmax 7 3 14 20
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2005; Damm et al., 2010; Joiner et al., 2011) or light-use

efficiency (LUE; Monteith, 1972, 1977) approaches (Rah-

man et al., 2001; Asner et al., 2004; Hilker et al., 2008) to

estimate vegetation carbon fluxes. In this study, hyper-

spectral data were used to empirically estimate parameters

that provide a mechanistic link to the biochemistry of

carbon assimilation (Farquhar et al., 1980; Sellers et al.,

1992). The method described here can potentially provide
rapid and accurate assessments of key metabolic properties

at the leaf level. In addition, this approach offers the

opportunity to enhance or validate other methods through

the integration with long-term monitoring networks such as

FLUXNET (Baldocchi et al., 2001) and SpecNet (Gamon

et al., 2006). SpecNet, in particular, is designed to explore

the linkages between optical remote-sensing data and key

parameters governing the exchange of CO2 and water
between vegetation and the atmosphere.

The methods presented here and by others (Doughty

et al., 2011) may also provide the basis for regional

estimation of photosynthetic metabolism using imaging

spectrometers such as the Airborne Visible/Infrared Imag-

ing Spectrometer (AVIRIS; Green et al., 1998) as well as

future instruments such as the Hyperspectral Infrared

Imager [HyspIRI, a two sensor platform having a spectrom-
eter (400–2500 nm) and an 8-band multi-spectral thermal

instrument]. Utilizing such instruments, the potential exists

to map parameters such as Vcmax and Jmax while providing

empirical and broad-scale observations that can be used to

test for photosynthetic thermal acclimation in plants across

large climatic gradients (Dillaway and Kruger, 2010;

Gunderson et al., 2010). These observations could further

be used to improve the parameterization of regional as well
as dynamic global vegetation models (DGVMs; Kucharik

et al., 2000; Sitch et al., 2003; Krinner et al., 2005; Alton

et al., 2007) that rely on the Farquhar–von Caemmerer–

Berry model of photosynthesis (Farquhar et al., 1980;

Farquhar and Sharkey, 1982).

Supplementary data

Supplementary data can be found at JXB online.

Further details of the four PLSR models, including the

wavelengths selected and corresponding regression coeffi-

cients, are provided. This information can be used to derive
estimates of the four traits based on the linear summation

of the reflectance values at each wavelength, multiplied by

the corresponding regression coefficients, and the intercept

value.

Supplementary Table S1. Summary of the leaf nitrogen

PLSR model wavelengths, regression coefficients, and

jackknife statistics.

Supplementary Table S2. Summary of the leaf mass per
area PLSR model wavelengths, regression coefficients, and

jackknife statistics.

Supplementary Table S3. Summary of the Vcmax PLSR

model wavelengths, regression coefficients, and jackknife

statistics.

Supplementary Table S4. Summary of the Jmax PLSR

model wavelengths, regression coefficients, and jackknife

statistics.
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