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Abstract— This paper explores the use of deep learning for
leak localization in Water Distribution Networks (WDNs) using
pressure measurements. By using a training data set including
enough samples of all possible leak localizations, a Convolu-
tional Neural Network(CNN) can be used to learn the different
pressure maps that carachterized each leak localization. The
generalization accuracy has validated and evaluated by means
of a testing data set. All of considered training, validation,
and also testing data include leak size uncertainty, nodal water
demand uncertainty and sensor noise. An innovative approach
is proposed to convert every pressure residuals map to an image
in order to apply a CNN. In addition with the purpose of
filtering the effects of uncertainty and noise a time horizon
Bayesian reasoning approach is used over each time instant
classification output by the CNN. The Hanoi District Metered
Area (DMA) is considered as a case study to illustrate the
performance of the proposed leak localization method.

Keywords: Water distribution networks, leak localization,
Deep Learning, fault diagnosis, Bayesian technique.

I. INTRODUCTION

Water leaks are present to some extent in all Water

Distribution Networks (WDNs) and are estimated to account

up to 30 % of the total amount of extracted water [1]. This is

a very significant amount since water is a precious resource

in many parts of world that try to satisfy water demands of a

growing population and sometimes in drought periods which

are increased by the climate change.

Leak detection and localization in WDNs is a very active

area of research, see [2] for a recent and extensive review.

Some of the recent proposed leak localization methods use

pressure sensors inside the WDN and the inlet flow sensor of

the WDN. Usually, WDNs are divided into different sectors

also known as District Metered Areas (DMAs). The water

companies consider as a feasible approach the possibility

of installing only a few pressure sensors inside the DMAs,

which are cheaper and easier to install and maintain than

flow sensors. On the other hand, flow sensors at DMAs

inlets are usually installed for control and billing purposes.

In [3], a model-based method that relies on the pressure

measurements and leak sensitivity analysis was proposed.

In this methodology, pressure residuals, i.e. differences be-

tween pressure measurements provided by sensors and the

corresponding estimations obtained by using the hydraulic

network model, are used. These residuals are computed on-

line and compared against associated thresholds that take into
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account the effects of modeling uncertainty and noise. When

some of the residuals exceed their thresholds, the residuals

are matched against the leak sensitivity matrix in order to

discover which of the possible leaks is present. Although

this approach has good efficiency under ideal conditions, its

performance decreases due to the nodal demand uncertainty

and noise in the measurements [4], [5].

In the last years artificial intelligence methods have been

applied for leak localization purposes as in [6] where it

was proposed a method to localize leaks using Support

Vector Machines (SVM) that analyzes data obtained by a

set of pressure sensors of a pipeline network to localize and

estimate the size of the leak. In a similar way, more recently,

the use of k-Nearest Neighbors, neuro-fuzzy and Bayesian

classifiers for leak localization has been also proposed in [7],

[8] and [9] respectively. The performance in leak localization

of some of these methods has been assessed in [10].

On the other hand, nowadays there is an emerging research

about the use of Deep Learning (DL) methods in fault diag-

nosis of complex systems (see [11] for a recent overview).

This work is a first attempt to deal with the leak localization

problem (particular case of fault diagnosis) in WDNs using

DL methods.

The paper is organized as follows. Section II presents in

detail the proposed method. Section III details the application

of the method to a simplified WDN of the real WDN of

Hanoi (Vietnam). Finally, the main conclusions of the work

are presented in Section IV.

II. METHODOLOGY

This paper proposes a leak localization method in WDNs

that tries to exploit Deep Learning potentials for analysis

and exploration through the map representation of pressure

residuals of the WDN. The leak detection is out of the

scope of this work since it will be assumed that the leak

detection is performed by an efficient method (as the night

flow analysis [1]). So the proposed leak localization method

will be triggered when a leak has been detected in the WDN.

A. Architecture

The proposed method follows the general scheme for on-

line model-based Fault Detection and Isolation (FDI) strate-

gies, where residuals are generated as the difference of actual

sensor measurements (in this case pressure measurements in

np inner nodes of the network S1, ..., Snp
) and the estimation

of these values provided by a model of the WDN that

considers no-leak conditions. When a leak is detected in the

network, the pressure residuals are evaluated to determine
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what is the most probable node in the WDN where the leak

has been occurred.

The particular scheme of the proposed method is depicted

in Fig. 1. As it can be seen in this figure, pressure estimations

in inner nodes are computed by an hydraulic simulator

of the network. The hydraulic simulator should include

the information of all the components of the WDN: pipes

(graph, distances, coefficients), nodes (x, y and z positions),

valves, etc. In addition, estimated node demands d̂1, . . . , d̂nn
,

where nn is the total number of inner nodes, from the

measured total inlet flow Fin and consumers historical billing

information are provided to the hydraulic simulator as well

as other measured boundary conditions.

Once np residuals r1, . . . , rnp
associated to the pressure

sensors installed in np inner nodes, an estimation of the all

possible nn residuals associated to all the nodes of the net-

work r̂1, . . . , r̂nn
is computed using an interpolation method.

This task is carried out by means of the Kriging method

that is a well-known interpolation approach in the area of

geostatistics [12] and that has recently applied to WDNs with

successful results [13]. This interpolation method uses the

topological and hydraulic information between all the nodes

of the WDN to compute the estimation of the residuals in

all the nodes of the network (nn) with the np generated

residuals associated to the np pressure residuals installed

in the network. The on-line residual estimation in all inner

nodes of the network and the topological coordinates of all

the nodes are used to generate a residual map of the network.

Converting these map to 2-D pictures allows to create an

image data associate to each leak location. Then, using a

Deep Learning Convolutional Neural Network (CNN) for

image classification allows us to determine what is the most

probable node where the leak is present.
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Fig. 1: Leak localization scheme using Deep Learning.

B. Data generation

The main problem of model-based FDI methods is that

residuals are not only affected by faults but also by mod-

elling errors. So, the accuracy of fault diagnosis using

these methods depends on the quality of the model. In the

proposed method, the main source of error in model-based

pressure residuals is the difference of actual nodal demands

(d1, . . . , dnn
) and its estimations provided to the hydraulic

simulator due to demand uncertainty in predictions. Another

source of error in pressure residuals is additive noise in

sensor measurements. Moreover, the interpolation errors of

the Kriging method also affect the accuracy in the leak

localization task.

Machine learning techniques, and in particular CNNs need

to use some off-line data for training a model to predict

further data. The data store set is split into training, validation

and testing subsets. The training subset is used for adjusting

the weights and biases that compound the different layers

of the CNN. Simultaneously selecting some random data

as a validation subset avoids over-fitting during the training

process, and the purpose of testing subset is the evaluation

of prediction accuracy. The proposed method based on DL

CNN should be able to localize any leak at any node despite

of all possible sources of errors (such as demand estimation

uncertainty, sensor noises and interpolation errors). The off-

line data subsets should include all possible leaks but also

all possible errors. As in WDNs is not feasible to obtain

real data for all the possible leak locations and it is not

possible to manipulate the model (set of non-linear implicit

equations) to have an analytical expression that allows to

consider the effect of leaks and errors in pressure residuals,

off-line synthetic data is generated as proposed in [9]. The

scheme of the data generation method deployed in this

paper is presented in Fig. 2 that is similar to the fault

diagnosis scheme of Fig. 1 but substituting the real WDN

by its hydraulic simulator. In this way, all the possible leak

scenarios can be simulated considering demand uncertainties

and other sources of errors in the generated images.

The images obtained in the off-line data generation method

can be split into nn folders with respect to the number of

associated inner node where the leak has been generated. In

this way, every folder has a set of images that correspond to

residual surfaces related to various operating conditions for

the same leak location. Each pixel of the pictures represents

a point of the network and its color is related to the residual

magnitude. It is important to make all pictures in a same

range by performing a global normalization as a prepos-

sessing stage. Among all the folders, and all the pictures

inside, the maximum and minimum values of the pixels of

the raw pictures, denoted as a and b respectively, have been

computed. This action followed by a multiplication bound

to set the range of values between 0 and 255, outcomes

achieving a standard format of picture desired for the image

classification processing. In black and white, image data

stores values between 0 and 255, where the extreme values

represent pure white and black, respectively. Mathematically,

the normalization of a generic raw pixel xp
i,j to x̄p

i,j (where p
denotes the picture number and i and j the row and column

position of the pixel in the picture) is computed by means

x̄p
i,j = 255

xp
i,j − a

b− a
(1)

where a is computed as

a = max
i∈{1,...,NI}

j∈{1,...,NJ}
p∈{1,...,NP }

xp
ij (2)



with NI and NJ the number of rows and columns of the

pictures respectively, and NP the number of pictures.

b is computed as in (2) but replacing ”max” by ”min”.
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Fig. 2: Data generation scheme.

Accordingly, the off-line picture generation is proposed for

the purpose of providing a comprehensive data set containing

leaks in all the nodes of the network and considering different

leak magnitudes, operating conditions, demand uncertainties,

measurement noises in pressure sensors and interpolation

errors. The obtained picture set should be suitable to train,

validate and test the DL CNN image classifier.

C. Deep Learning leak localization

The task of the DL classifier in the leak localization

scheme presented in Fig. 1 is given a picture that represents

the on-line residual distribution in the network determine

what is the most probable leak location. DL CNNs [14] is

an emerging form of machine learning outstanding in image

processing and voice recognition tasks. A deep learner is ex-

pert to find the unique characteristics of the images belonging

to the same labeled class using a pre-designed structures

composed by layers with distinct function. The objective

is to attain the corresponding weights and biases in order

to calibrate the relevant deep model to make relationship

between batches of mixed input images to their respective

label (leak location). This type of machine learning classifier

needs a lot of data to archive the desired performance.

Given a picture at instant time k denoted as xk that

represents the residual distribution in the network at this

time instant, the CNN will provide the probabilities that this

picture has been produced at each inner node

P (xk|li) i = 1, ...nn (3)

where i denotes the leak location candidate. Then, the most

probable leak location î can be computed as

ĵ = max
i∈{1,...,nn}

P (xk|li) (4)

To achieve a precise classification, an appropriate frame-

work model should be developed with suitable adjustment

settings.

1) Framework architecture: In order to design an ap-

propriate CNN architecture (Fig. 3), several sorts of layers

should be set consecutively either in serial or parallel for

more complex missions. Selection of configuration, numbers,

type and internal setting options are highly dependent on

size, complexity, and volume of labels and data [15]
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Fig. 3: Deep Learning Convolutional Neural Network archi-

tecture.

• Image input layer specifies the image pixel sizes con-

struction derived by width, height, and the channel size

1 for grayscales, 3 for color images(RGB).

• Convolution2dlayer generally placed after Input layer.

This layer consists of several square filters with the

same size to detect features of pictures such as edge,

spots, blur. These filters normally are specified with

the same depth as input images. Each filter or kernel

act such a neuron in a layer. By slipping the filters

longitudinally and transversely over the input image

by pixel jump step named ”stride” and performing

convolution by moving step, layer output could retained.

In order to perfectly fitting, a zero padding strip is

usually added to the input image.

• Batch normalization layer is used between convolutional

layers and every term containing non-linearities. This

layer increases training speed and decreases initializa-

tion sensitivity.

• Rectified Linear Unit (ReLU) layer retains the positive

values, and converts the negative values to zero.

• Fully Connected (FC) layer combines all the features

learned in the preceding layers by connecting all the

neurons, the last FC layer has the same number of

outputs as the number of trained classes..

• The softmax layer is an activation function to normalize

the FC layer output sum to one to utilize as a classifi-

cation probability.

• Classification layer is the final layer to assign the

softmax layer probabilities to each corresponding label.

2) Training option: The training data set should be split

into batches data store containing data from different classes.

DL CNN will train up through data batches in every epoch

proceeding by shuffling the data to avoid over-fitting. Op-

tionally, in the meanwhile, the classification accuracy could

be validated via random input data.

D. Bayesian Recursively enhancement

In order to enhance the accuracy of the DL leak lo-

calization computed by means of Eq. (4) where only the

current picture of pressure residuals xk is taken into account,

previous classifications of pressure residual images can be

considered applying recursively the Bayesian Theorem as

was proposed in [9]. The Bayes Theorem

P (li | x
k) =

P (xk | li)P (li)

P (xk)
, i = 1, ..., nn (5)



where P (li | xk) is the posterior probability, P (li) is the

prior probability and P (xk) is a normalization given by the

total probability law

P (xk) =

nn∑

i=1

P (xk | li)P (li) (6)

allows the introduction of previous classification results by

means the prior probability term P (li) that can be considered

as the posterior probability of previous time instant k − 1.

i.e. consider P (li) = P (li | xk−1) in Eq. (5). If (5) is

computed recursively with this assumption in a time horizon

of H samples we obtain

P (li | x
k−H+n) =

P (xk−H+n | li)P (li | P (xk−H+n−1)

P (xk−H+n)
,

i = 1, ..., nn, n = 1, ..., H

(7)

Then, the most probable leak localization ı̂ can be com-

puted as

ı̂ = max
i∈{1,...,nn}

P (li | x
k) (8)

where P (li | x
k) is computed recursively from Eq. (7), and

considering equalt probabilities for the posterior probabilities

at time instant H=0.

The advantage of using (8) instead of (4) is that the

information of pictures xk−H+1, ..., xk is considered at time

instant k and some possible instantaneous classification er-

rors due to uncertainties can be filtered.

III. CASE STUDY

The proposed leak localization approach has been applied

to a simplified model of the WDN of Hanoi (Vietnam’s capi-

tal) that has been studied in several previous leak localization

works ( [16], [17], [7], [9], [5], [10]). This simplified model

consists of one reservoir that supplies the inlet flow, 34 pipes

and 31 inner nodes and its network graph is depicted in

Fig. 4. It has been considered that sensor measurements are

available every ten minutes but leak localization defined in

(8) is computed every hour.

Fig. 4: Hanoi WDN.

Configuration No. SN Installed sensors

1 4 [2, 20, 25, 29]
2 5 [1, 3, 26, 28, 31]
3 6 [1, 3, 12, 26, 28, 29]
4 7 [1, 3, 12, 16, 26, 28, 29]
5 8 [1, 3, 12, 15, 16, 26, 28, 29]
6 10 [1, 3, 12, 16, 20, 21, 26, 28, 29, 31]
7 12 [1, 3, 6, 12, 16, 20, 21, 25, 26, 28, 29, 31]

TABLE I: Sensor selection collaboration types

Seven different sensor configurations that consider a range

from 4 to 12 pressure sensors installed in inner nodes of

the network have been taken into account. The list of the

seven sensor configurations and installed sensors is detailed

in Table I.

It has been assumed that the inlet flow is also measured

every 10 minutes and different daily patterns that range from

1100 to 4800 [l/s] have been considered. The demand pattern

in all demand nodes has been considered known but with an

uncertainty of ±5% of the estimated nodal demand value.

Additive sensor noises in pressure measurements of ±5%
have been also considered. Finally, a leak with unknown

magnitude but within 25 and 75 [l/s], i.e. between 0.52%
and 6.81% of total flow demand, has been considered.

In the next subsections the data generation process , the

CNN training process and the leak localization performance

assessment will be detailed.

A. Data generation

Data has been generated following the data generation

scheme proposed in Section II-B. EPANET software [18]

has been chosen to implement the hydraulic simulator of

the network. Inlet flow patterns have been introduced to

the simulator as well as actual and estimated user demands

considering demand uncertainties described in the previous

section. In particular, 30 daily flow patterns with a sample

time of 10 minutes have been generated: 20 days for training

data and 10 for testing data. The profile of the 30 daily flow

patterns is shown in Fig. 5.
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Fig. 5: Training and testing flow patterns.

According to data generation method presented in Fig. 2,

additive noise of ±5% has been added to pressure values

computed by the hydraulic simulator that emulates the real

WDN in the leak localization scheme depicted in Fig. 1.



On the other hand, the 31 possible leak scenarios have

considered in this simulator for the 30 daily flow patterns.

As leak localization will be computed every hour and

pressure values are computed every ten minutes, the average

value of residuals obtained in data generation method pre-

sented in Fig. 2 are computed and provided to the Kriging

and picture generation process. In the Kriging and picture

generation process, the seven different sensor configurations

considered in the case study have been taken into account to

generate seven different picture sets of training and validation

data. The selected image resolution of generated images has

been 100 × 100 i.e. NI = NJ = 100 in (2) for all sensor

configurations.

As an example of the data obtained in the Kriging in-

terpolation process, Fig. 6 depicts residual surface for leak

16, and training flow corresponded to hour 10A.M. in day

4 computed by the Kriging interpolation considering sensor

configuration 7.

Fig. 6: A sample of pressure residual map.

On the other hand, as an example of the pictures obtained

in the picture generation process several pictures are included

in Table II computed for different inlet flow scenarios and

for different leak scenarios.
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TABLE II: Residual Pressure pictures

As it can be noticed from the figures of Table II, there are

several remarkable feature that are unique for the pictures

that belong to a same leak scenario.

B. Training process

In this first attempt of applying DL for leak localization

in WDNs the Deep Learning ToolboxTM of MATLABr has

been used to train the CNN that performs the classification

(leak localization). The prepared image data store containing

20 days of samples for each class (leak scenario) is used to

train the designed structure of a deep CNN with suitable

training settings. During the training process the CNN oper-

ation is validated using 15% of random data. The selected

network architecture is composed of 21 layers that consists in

5 ”Convolution” layers, 5 ”batchNormalizationLayer” layers,

5 ”ReLu” layers, 2 ”maxpooling” layers, 1 ”ImageInput”

layer, 1 ”fullyConnected” layer, 1 ”SoftMax” layer and

1 ”Classification” layer. The process of training has been

repeated for the seven sensor configurations considered in the

case study. Fig. 7 illustrates the training progress considering

the data from sensor configuration 7 (12 sensors) detailed in

Table I.

Fig. 7: CNN training process for the sensor configuration

7 (12 sensors) using the Deep Learning ToolboxTM of

MATLABr.

C. Testing results

Once the CNN model is calibrated, it can be evaluated

by means of applying the pictures of the training set to the

CNN classifier. In order to improve the performance in the

leak localization task, the leak localization task has been

computed by means of (8) with different time horizons H =
1, ..., 24.

To assess the performance of the leak localization ap-

proach, the confusion matrix Γ (nn×nn matrix) is used. The

rows of this matrix correspond to the leak scenario and the

columns to which leak is located (l̂) by the leak localization

method.

Given a particular confusion matrix Γ, the overall accuracy

is defined as

Ac =

∑nn

i=1
Γi,i∑nn

i=1

∑nn

j=1
Γi,j

(9)

The Average Topological Distance (ATD) proposed in [7]

as a suitable indicator used to assess the leak localization

performance in WDNs. The ATD is the average value of the

minimum distance in nodes between the node with the leak



(a) H = 1. (b) H = 24.

Fig. 8: Confusion matrix for sensor configuration 7 (12

sensors).

and the node candidate proposed by the leak localization

method. The ATD is computed as follows

ATD =

∑nn

i=1

∑nn

j=1
Γi,jAi,j∑nn

i=1

∑nn

j=1
Γi,j

(10)

where A is a symmetric square matrix with size nn such that

each element Ai,j contains the minimum topological distance

in nodes between the nodes referred by indices i and j.

The Accuracy and the ATD indicators obtained with the

leak localization method considering H = 1 and H = 24
(one day of data) is summarized in Table for the seven

different sensor configurations.

ACC. ATD

H=1 H=24 H=1 H=24

N
u

m
b

er
o

f
se

n
so

rs 4 47.27 56.14 1.487 0.9969

5 56.09 66.26 0.8625 0.5269

6 74.33 81.41 0.3297 0.1994

7 75.59 81.05 0.2823 0.1465

8 77.91 89.2 0.2751 0.1080

10 82.21 91.58 0.2168 0.0842

12 87.81 94.13 0.1438 0.0586

In addition, the confusion matrices obtained for the sensor

configuration 7 (12 sensors) considering H = 1 and H = 24
are depicted in Fig. 8.

As it can be noticed from the results, as the number of

sensors and the time horizon H increase the performance

indicators improve (AC increases and ATD decreases).

IV. CONCLUSION

In this paper, a leak localization methodology in WDN

based on Deep Learning CNN has been presented. Pressure

residuals in some points of the network and interpolation

using topological information of the network are used to

generate pictures that can be evaluated by DL CNN image

classification. Training and validation data is obtained in

a off-line stage using a hydraulic simulators of the WDN

where realistic errors as demand uncertainties and sensor

noises are introduced. In this first attempt, the performance

of the proposed method has been tested in to a simplified

model of the WDN of Hanoi (Vietnam’s capital). The Deep

Learning ToolboxTM of MATLABr has been used to train

the CNN and the results obtained have been promising. These

results encourage us to plan the improvement of the proposed

method to deal with the problem of leak localization in real

WDNs where the high number of nodes and uncertainties

make a challenging problem. For this purpose more powerful

Deep learning tools [19] will be necessary and picture

generation and CNN architecture should be improved.
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