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Abstract

Starting from deep submicron technologies (< 0.13µm), and even stronger in

nanometer technologies, static power consumption, due to leaky “off” transistors,

is becoming a non-negligible contributor to the total power dissipation. Under this

condition, the total power optimization problem changes considerably. The high par-

allelization approach commonly used today to increase performances, will soon result

in power inefficient designs. Indeed, the static power consumption of the large number

of rarely used transistors will highly penalize the total power consumption.

The purpose of this thesis is to investigate the influence of static power on the

design methodologies for low power. In particular, the effects of architectural as well

as technology modifications are explored. The use of technology as an optimization

parameter has become possible in recent technologies. In fact, they offer different

threshold voltages, each one showing a different trade-off between speed and leakage

current.

In this work, two different frameworks are considered. In the first one, both the

supply voltage and the transistor threshold voltage are freely tunable parameters.

This is the most general case and corresponds to the situation where the designer

has the largest freedom. In the latter framework, we assume that the designer cannot

change the supply voltage nor the transistor threshold voltage and they are hence con-

sidered constants. This case corresponds to the most common one, where the designer

has a supply voltage and a technology type (and hence a threshold voltage) fixed by

the application and by the devices the circuit has to interface. In both cases, lot of

efforts have been put to the development of a handy way to rapidly estimate the total

power consumption and consequently easily compare different architectural/technol-

ogy variants at the early stages of development.

Examples, based on multipliers, are used extensively in the whole thesis and, at

the end, the presented theory is applied to a real circuit implemented in a 90nm

technology by ST Microelectronics. Measurements show a very large variability of

the static power over 16 dies manufactured on the same wafer. For instance, the

highest static power consumption at nominal condition (Vdd=1V, f=62.5MHz) over

the lowest one corresponds to more than a factor of 2.5. Measured data also report

multipliers able to work at 210mV for a frequency of 1MHz!
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Chapter 1

Introduction

1.1 Motivations

Digital integrated circuits are found everywhere in modern life and many of them are

embedded in mobile devices where limited power resource is available (e.g. mobile

phones, watches, mobile computers, personal assistants, ...). To permit an usable bat-

tery runtime, such devices must be designed to consume the lowest possible power.

Furthermore, low power is also very important for non-portable devices, too. Indeed,

a reduced power consumption can highly decrease the packaging costs and highly

increase the circuit reliability, which is tightly related to the circuit working temper-

ature. For these reasons, low power design is now mandatory for all types of digital

circuits.

2006 2007 2008 2009 2010 2011 2012 2013 2014

Technology node [nm] 90 65 65 65 45 45 45 32 32

Printed gate length [nm] 48 42 38 34 30 27 24 21 19

Transistors Number [M ] 193 386 386 386 773 773 773 1546 1546

Chip size [mm2] 88 140 111 88 140 111 88 140 111

Voltage supply [V] 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6

Internal frequency [GHz] 6.7 9.2 10.9 12.3 15 17 20 22 28

Total power [W] 98 104 111 116 119 119 125 137 137

Table 1.1: The International Technology Roadmap for Semiconductors [1] (ITRS),

update 2006 for low operating power, cost effective high volume MPU.

As shown in Table 1.1, the number of transistors per circuit will continue to

increase as predicted by Moore’s law [2], whereas the transistor sizes will continue to

shrink. Despite a decreased supply voltage, the total power will continue to increase.

The reduction of the supply voltage is dictated by the need to maintain the electric

field constant on the ever shrinking gate oxide. Unfortunately, to keep transistor speed

1
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(proportional to the transistor “on” current) acceptable, the threshold voltage must be

reduced too, which results in an exponential increase of the “off” transistor current,

i.e. the current constantly flowing through the transistor even when it should be

“non-conducting”.

Figure 1.1: The left graph shows the transistor off-state current versus the gate length,

squares indicate pre-production transistors and diamonds indicate research devices.

The histogram on the right shows the total power as a function of technology node,

for a fixed (30m) total transistor width. Source: Intel [3].

The left part of Fig. 1.1 shows the exponential increase of static power for real

transistors of various sizes. By looking at the right part of Fig. 1.1, we can observe

that this exponential increase of the static power can reach a point (starting on the

90nm node on the histogram) where it completely cancels the benefit of a reduced

dynamic power (due to reduced capacitances and supply voltage).

Static consumption being now an important contributor to the total power, the

design methodologies used in the past, based on dynamic power considerations only,

are not effective any more and need to be reconsidered.

In the recent past years, static power was only relevant when the circuit was idle.

This explains why many of static power reduction techniques are only applicable

when blocks are unused. A typical example can be the Gated-Vdd approach [4] [5]

[6], where a transistor is put between the real supply voltage and a virtual supply

voltage, allowing to power off the unused blocks. However, Fig. 1.1 clearly shows that

static power reduction should now be tackled in running mode, too.

Moreover, the large majority of the existing leakage reduction techniques apply at

circuit and transistor level. Examples are:

• Multi V th technology, with fast low V th transistors on critical paths and slow

high V th transistors outside critical paths (MTCMOS) [7] [8] [9] [10]

• Electrical regulation of V th (VTCMOS, SATS) [11] [12] [13]
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• DTCMOS (Dynamic V th) with transistor bodies connected to MOS gates [4]

[14]

This thesis considers the reduction of the total power, i.e. dynamic plus static con-

tributions, at a high level and during runtime. Basically, the low power consumption

is searched through architectural and technology modifications in modern nanometer

CMOS processes.

1.2 Thesis outline

In Chapter 2, the main sources of power consumption in CMOS technologies are re-

viewed, with an emphasis on the static ones. This permits to define the delay and

power models in Chapter 3. These models are extensively used in the entire thesis

and are hence considered as the foundation of this work. In Chapter 4, the 90nm

CMOS technology from ST Microelectronics is described in details and the required

model parameters are derived from SPICE-like simulations. Chapter 5 illustrates and

describes the different multiplier architectures used in the various examples and case

studies. In Chapter 6, the models for a total power consumption comparison in the

case where the supply voltage and the threshold voltage are freely modifiable is de-

rived. In particular, this chapter shows that, under such conditions, the total power

consumption (for a given delay) presents a minimum. Its application to architectural

modifications is reported in Chapter 7, followed by a similar analysis for technology

modifications in Chapter 8. A different situation is considered in Chapter 9, where

total power comparison models and charts are obtained for the case where the supply

and threshold voltages are fixed. Finally, Chapter 10 reports the power consumptions

of a circuit manufactured in a 90nm technology. This circuit is composed by 4 multi-

pliers presenting different combinations of architecture and technology modifications.

The thesis is closed by the conclusions in Chapter 11.

1.3 Contributions

The main contributions provided by this thesis are:

• Chapter 2-3: Collection and description of existing models for static power,

dynamic power, total power and delay.

• Chapter 4: Complete characterization of the ST Microelectronics 90nm general

purpose technology for all three available transistor types (LVT, SVT, HVT).
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• Chapter 5: Detailed description and classification of thirteen multiplier archi-

tectures.

• Chapter 6: Development and analysis of closed-form equations for optimal total

power, optimal supply voltage and optimal threshold voltage in a scenario where

supply and threshold voltages are freely tunable.

• Chapter 7: Applications of the theory exposed in Chapter 6 to architecture

modifications.

• Chapter 8: Applications of the theory exposed in Chapter 6 to technology mod-

ifications.

• Chapter 9: Development and application of easy-to-use equations and graphical

tools for architectures comparison under fixed supply and threshold voltages

condition.

• Chapter 10: Implementation, testing and analysis of a physical realisation of 4

multipliers representing different combinations of technology flavors and archi-

tectures.



Chapter 2

Sources of dissipation in CMOS

transistors

Circuits designed before 1980 were mainly implemented in NMOS technology. Such

devices presented the major inconvenient of a large current constantly flowing through

the circuit even when no transitions occurred. To solve this issue, CMOS (Comple-

mentary Metal Oxide Semiconductor) technology was introduced. This seemed to be

an ultimate solution for avoiding static power consumption. Thus, the only remaining

sources of dissipation were the switched capacitance power (due to the charging/dis-

charging of capacitance nodes) and the shortcut power (due to the current flowing

from supply voltage (V dd) to the ground (V ss) when switching), both only present

during node transitions.

Unfortunately, the constant dimension reduction driven by Moore’s law and the

corresponding reduction of the supply voltage (needed to maintain the electric field on

the transistor gates constant) yielded a huge increase of the static power consumption,

taking it back to a non negligible source of consumption. The reasons why this

occurred are mainly two. The former is the reduction of the threshold voltage imposed

by the V dd reduction in order to maintain the speed acceptable, and the latter is

the new electrical effects originated by the reduction of the transistors geometrical

dimensions, known under the name of short channel effects.

Starting from 0.13µm technology node (i.e. a technology with a minimal transistor

size of 0.13µm), the static power consumption cannot be neglected anymore and must

be added to the dynamic power to correctly estimate the total power consumption.

In this chapter, the sources of dissipation in CMOS transistors are discussed in

details, with a special focus on those contributing to the static consumption.

5
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2.1 Dynamic consumption

Dynamic consumption is considered as the dissipation that occurs only when the

circuit is active (i.e. internal circuit nodes are switching).

Two distinct contributions exist. The first is the so called switching energy and

corresponds to the energy required to charge (and discharge) the node capacitances

during transitions. The second is the energy dissipated during transitions due to the

conductive path existing, for a short period of time, between the supply voltage and

the ground. This effect is known as shortcut or short-circuit.

2.1.1 Switching energy

The energy consumed to charge (and then discharge) a capacitance C to a voltage V

is given byI [7]:

Capacitance switching energy = CV 2 (2.1)

This type of consumption can easily be reduced from a technology node to the other

by reducing capacitance C and supply voltage V . Both reductions are effectively

obtained in a new scaled technology; in fact, the supply voltage has to be reduced

in order to avoid high electric fields on the transistor gates and the reduction of the

transistor physical dimensions automatically results in reduced capacitances. This

type of dissipation was the primary source of consumption in active mode for circuit

implemented in technology larger than 0.13µm [15].

2.1.2 Shortcut energy

The second source of dynamic consumption arises from shortcut paths. Consider a

CMOS inverter (Fig. 2.1) with the input node at zero. In this condition the NMOS

transistor is off and the PMOS transistor is conducting. Now, if the input node po-

tential increases from 0 to V dd, the NMOS will start to conduct for V in > V th nmos

while the PMOS is still on, which result in a current flowing from V dd to V ss. Then,

when V in acquires the potential V dd− V th pmos, the PMOS stops to conduct and

the shortcut current vanishes too.

Clearly, this type of conduction only exists if the supply voltage V dd is greater

than the sum of the NMOS/PMOS sub-threshold voltages (V th nmos+ V th pmos).

IThis equation refers to the energy required to charge and discharge the capacitance, both pro-
cesses contributing as 1/2CV 2
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Vdd
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current

switching

current

Figure 2.1: CMOS inverter

The energy dissipated during one transition can be expressed as [16]:

Shortcut energy per transition ∝ (V dd− V th nmos− V th pmos)3 · τ (2.2)

With V dd the supply voltage, V th nmos and V th pmos the threshold voltages for

NMOS and PMOS, respectively and τ is the transition time, i.e. the period of time

needed to sweep the input voltage from 0 to V dd. More accurate models can be found

in [17] [18] [19].

For well designed cells (i.e. with balanced rising and falling edges), the shortcut

energy is in general much smaller than the switching energy. Moreover, for very low

supply voltage designs, the value V dd − V th nmos − V th pmos can be very small.

Additionally, the case where V dd < V th nmos+ V th pmos will not present shortcut

dissipation at all. For these reasons, in modern designs, shortcut power is often

not considered or is simply included in the switching consumption by increasing the

switching capacitance to an equivalent capacitance which incorporates the shortcut

effect.
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2.2 Static consumption

Contrary to the dynamic consumption, static power is defined as the consumption

originated from currents constantly flowing from V dd to ground. This means that

even when the circuit is in idle mode (no transition occurs), power continues to be

dissipated. For long channel transistors with high threshold voltage, this type of

dissipation was completely negligible. Unfortunately, present and future technologies

will suffer from high static power, which could even exceed the dynamic contribution in

active mode. Hence, it is of uttermost importance to consider this type of dissipation

in present and future design methodologies.

To understand the main sources of static dissipation, let us look at the structure

of a transistor in CMOS technology. Fig. 2.2 shows 5 different leakage mechanisms

that can be observed in a CMOS transistor (only the NMOS transistor is illustrated,

as PMOS behaves exactly in the same way).

These mechanisms are:

(a) Sub-threshold current;

(b) Gate leakage current;

(c) Reverse-bias p-n junction current and band to band tunneling;

(d) Gate-Induced Drain Leakage (GIDL) current;

(e) Punchthrough current.

n+n+p+

Gate

p-well

substrate

Drain

sub-threshold

(a)

punchthrough

(e)

gate leakage (b) GIDL leakage (d)

p-n junction

(c)

p-n junction

(c)

SourceBody

Figure 2.2: Sources of static power consumption in a NMOS transistor
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2.2.1 Sub-threshold current

The most important leakage current is the sub-threshold one originated by the dif-

fusion of minority carriers in a non conducting transistor (Vgate − Vsource < V th).

Under this condition, the transistor is operating in weak inversion. The potential ap-

plied between drain and source creates a flow of the minority carriers on the surface

of the channel. The equation describing this mechanism is [20] [21]:

Isub-threshold = Io · e−
V th
nUt

(

1 − e−
V ds
Ut

)

≈ Io · e−
V th
nUt (2.3)

With Io the reference static current, V th the threshold voltage, n the sub-threshold

slope, Ut(≡ kbT/q) the thermal potential and V ds the Drain-Source voltage.

Eq. (2.3) shows an exponential dependency of the sub-threshold current on the

threshold voltage V th. This is the reason why the low V th characterizing recent

technologies leads to large sub-threshold currents. Moreover, in typical digital designs,

V ds is much larger than nUt, which leads to the approximation 1 − e−
V ds
Ut ≈ 1.

The value of V th is not fixed for a given technology; in fact, it can be modulated

through different effects like:

• Drain Induced Barrier Lowering (DIBL) effect: In short channel transistors,

the potential on the drain contact modulates the threshold voltage by lowering

the energy barrier at the surface of the channel. A schematic representation of

this effect is illustrated in Fig. 2.3. For long channel transistors (L1), the po-

tential in the channel is independent on the drain voltage (V d1 and V d2 show

the same potential profile), whereas for short channels (L2), an increase of the

drain voltage also reduces the barrier energy level in the channel, which can

be modeled by a reduction of the threshold voltage. Ideally, the DIBL effect

doesn’t change the sub-threshold slope n. DIBL can be reduced by using high

surface and channel doping and shallow source/drain junction depths.

• Body effect: The body effect appears when a potential difference is present be-

tween body (bulk) and source. This happens because bulk and source operate

as a reverse biased p-n junction. By increasing the body potential in a NMOS

or by decreasing it in a PMOS (forward biasing), the junction depletion reduces

the channel potential and the sub-threshold leakage current increases. Similarly,

a reduction of the body potential (lower than V ss for NMOS and higher than

V dd for PMOS, called reverse biasing) increases the channel potential, leading

to a reduced sub-threshold leakage. It should be noted that for body-source po-

tentials (V bs) higher than 0.5 V the p-n junction starts to conduct as forward
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biased diode, drawing very large current, which has to be avoided at all costs.

Body effect is more pronounced for high bulk doping levels and decreases as

substrate reverse bias increases. At V bs = 0, the body effect sensitivity is equal

to (n− 1), with n the sub-threshold slope. The body effect can be modeled as

a modification of the threshold voltage V th.

Channel position
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Vd1

Vs1

Vd2>Vds1

Vd1

Vd2>Vd1

DIBL

L2 L1

Figure 2.3: Effect of Drain Induced Barrier Lowering (DIBL) on short channel tran-

sistors

By considering the effects of DIBL and body bias, the threshold voltage can be

expressed by [22] [23] [24]:

V th = V th0 − ηV ds− γV bs (2.4)

With V th0 the reference threshold voltage for V ds = V bs = 0, η (eta) the DIBL

effect coefficient and γ (gamma, equal to n-1 for V bs = 0) the linearized body effect

coefficient.

By considering the described effects, the sub-threshold current can be expressed

as:

Isub-threshold = Io · e−
V th0−ηV ds−γV bs

nUt (2.5)
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2.2.2 Gate leakage current

The transistor gate potential influences the charges in the channel by electrostatic

effect: an accumulation of holes in the gate produces an accumulation of electrons at

the surface of the channel, obtaining exactly the behavior of a capacitance with gate

and channel as poles and the silicon oxide as dielectric. Ideally, no current should

occur across the gate oxide, but practically some electrons are able to pass through the

oxide, generating a gate current. The mechanisms behind this effect can be divided

into two categories: oxide tunneling and hot carrier injection.

Oxide tunneling current

Tunneling through the gate oxide is primarily due to direct tunneling across very thin

oxide layers (less than 3-4 nm). A model for this effect has been reported in [25] [26]:

Igate = Kg ·W
(
V

tox

)2

e−αgtox/V (2.6)

With Kg and αg
II (alpha gate) experimentally derived constants, W the width of the

transistor, tox the gate oxide thickness and V the potential across the gate oxide. The

previous equation clearly shows how the reduction of the oxide thickness exponentially

increases the tunneling effect. An efficient way to reduce this source of leakage in

future technologies is to use other insulators with a higher dielectric constant, resulting

in a higher effective oxide thickness (i.e. the thickness of the silicon oxide that would

show the same behavior as this high dielectric insulator). In this way, it should be

possible to maintain the gate tunneling current to acceptable (i.e. negligible) levels.

The main candidates to substitute the silicon oxide (κ = 3.9) are the hafnium oxide

(HfO2, κ = 25) and Hafnium silicate (HfSiO4, κ = 11) [27].

Hot carrier injection

Due to the high electric field in the interface Si−SiO2 (channel-oxide), electrons and

holes can gain sufficient energy to enter into the gate oxide. Because the effective

mass of the electrons, as well as their barrier height, is lower than the corresponding

ones for holes, electrons injection is much more probable [28]. A reduction of the

supply voltage will reduce the electric field on the gate, also reducing in this way the

hot carrier injection.

IIThis αg parameter has nothing to do with the α parameter used in the alpha power law model
of the transistor on current, which is extensively used in this thesis
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2.2.3 Reverse bias p-n junction leakage and band to band

tunneling

In the normal transistor operation mode, the drain/source to well junctions are re-

verse biased. Under this condition, a small current exists due to the drift of carriers

originated by the thermal electron-hole generation. Nevertheless, in advanced short

channel MOS (where heavily doped and shallow junctions are used), such effects are

masked by the dominating band-to-band tunneling.

Band to band tunneling happens on junctions with high electric field (> 106V/cm)

and is due to the direct tunneling of electrons from the band of valence of the p region

to the band of conduction in the n region. Closed form equations describing this type

of leakage exist [25] [29].

2.2.4 Gate-Induced Drain Leakage (GIDL)

In the overlapping zone between gate and drain, a high electric field can exist, leading

to the generation of currents from drain to substrate. Consider a NMOS transistor;

when a low gate potential is applied (V g near zero volts or below), holes accumulate

at the surface and create a region which is more heavily p doped than the substrate.

If this happens while the drain is connected to a high potential (let say V dd), the

depletion layer near the drain becomes narrower. If this is important enough to invert

the polarity of the n+ drain region under the gate, high field effects like band-to-band

tunneling, avalanche multiplication and traps-assisted tunneling take place. As a

consequence minority carriers are emitted in the drain region underneath the gate

and pushed to the substrate due to the vertical electric field. All these effects are

increased by a reduction of the gate oxide thickness.

This type of leakage is especially important for “relatively high” supply voltage

circuits (V dd > 1.1 V). Low power digital designs, with very low supply voltage (i.e.

V dd around 0.5V), are not heavily concerned by this type of leakage. More detail on

GIDL effect can be found in [30] [28] [25].

The equivalent of the GIDL effect for a “high” source potential is called GISL

(Gate-Induced Source Leakage). This effect is generally not considered because, in

normal transistor operations, the source will show a low or zero potential compared

to the bulk.



2.3. Summary 13

2.2.5 Punchthrough

With the physical dimensions reduction, the depletion layers of source and drain

become nearer and nearer until they touch each other, originating punchthourgh cur-

rents. In submicron MOS transistors, implants at the substrate surface aiming V th

adjustment are used, forcing the punchthrough to occur deeper in the substrate. The

size of the depletions directly depends on the V ds potential. Hence, low voltage design

can prevent the generation of punchthrough currents [31] [25].

2.3 Summary

In deep sub-micron and nanometer technologies, the dynamic power consumption is

no longer the only relevant source of power dissipation. In fact, present and future

technologies will be characterized by large static power consumption coming from

different leakage sources. In this chapter, the principal ones have been explained.

However, it is important to observe that, depending on the transistor polarization,

only a part of the described mechanisms occur. All realistic combinations of polar-

ization are shown in Table 2.1 for a NMOS transistor.

Vg Vd Vs Sub-threshold Gate leakage p-n junction GID/SL Punchtrough

0 0 0 NO NO NO NO NO

0 0 1 YES NO YES GISL YES

0 1 0 YES NO YES GIDL YES

0 1 1 NO NO YES BOTH NO

1 0 0 NO YES NO NO NO

1 1 1 NO YES YES NO NO

Table 2.1: Manifestation of specific leakage mechanism in a NMOS transistor depend-

ing on polarization

In a typical CMOS digital design, the NMOS transistor will have two modes of

operation: Vg/Vd/Vs = 0/1/0 for the off transistor and Vg/Vd/Vs = 1/0/0 for a con-

ducting transistor. When the transistor is on (conducting), the only mechanism that

occurs is the gate leakage, whereas for an off transistor, sub-threshold, p-n junction,

GIDL and punchthrough could be present. Nevertheless, the use of very low supply

voltage (less than 1V) maintains the p-n junction and the punchthrough effects much

lower compared to the sub-threshold one. Moreover, for gate potentials no lower than

Vss for NMOS and not higher than Vdd for PMOS, the GIDL mechanism can also

be neglected.
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To summarize, the main sources of static power are the sub-threshold current for

off transistors and gate leakage for conducting transistors.

CLN90G CL013GHP CL013LVHP

Transistor size [nm] 90 130 130

Vdd [V] 1.0 1.2 1.0

INVD1
Sub-treshold current [nW] 5.14 0.56 6.93

Gate leakage current [nW] 0.82 0.10 0.34

NAND2D1
Sub-treshold current [nW] 4.91 0.61 6.63

Gate leakage current [nW] 1.40 0.15 0.56

Table 2.2: Gate and sub-threshold leakage current for three different TSMC technolo-

gies

Table 2.2 reports the sub-threshold and gate leakage power dissipation in 3 recent

technologies. Values are reported for an inverter (INVD1) and a 2 input NAND gate

(NAND2D1)[32]. We can observe that sub-threshold current remains the principal

source of static power dissipation in deep sub-micron and nanometer technologies.

The next generations could see an exponential increase in the gate leakage if silicon

oxide is still used as insulator. Luckily, referring to [33], high dielectric constant

oxide should be used starting from 2007. Intel also announced at the end of January

2007 [34] that high-k gate oxide will be used in their 45nm technology for the new

generation of the Intel Core 2 Duo, Intel Core 2 Quad and Xeon families of multi-core

processors.
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Delay and power models

3.1 Current models

As stated in Chapter 2, the main contribution to static power comes from sub-

threshold currents flowing from drain to source in off transistors. In short channel

transistors (L < 1µm), the voltage applied between drain an source also influences

the channel conduction by a mechanism known as Drain Induced Barrier Lowering

(DIBL).

Ioff = Ioe
−V th0−ηV dd−γV bs

nUt = Ioe
−V th

nUt (3.1)

With Io the reference static current, V th0 the reference threshold voltage, V th the

modulated threshold voltage, η the DIBL effect coefficient, V dd the supply voltage,

γ the body effect coefficient, V bs the body-source voltage, n the sub-threshold slope

and Ut the thermal potential (≡ kT/q).

The ”on” current, i.e. the current flowing in a conducting transistor can be ap-

proximated by the following formula [35] [36] [37] [38]:

Ion = Io

(
e

αnUt

)α

(Vdd − Vth)
α (3.2)

With Io the reference static current, e the euler number, α the alpha power law

coefficient, n the sub-threshold slope, Ut the thermal potential, V dd the supply voltage

and V th(≡ V th0 − ηV − γVbs) the effective threshold voltage.

This model is an empirical fitting equation that accounts for the carriers mobility

reduction. According to [39], the parameter α can be related to mobility by:

α = 1 +
µeff
µ0

(3.3)

15
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With µeff the effective carriers mobility and µ0 the low field mobility. Being 0 <

µeff ≤ µ0, the parameter α will always be included in the range [1;2]; with α = 2 for

long channel transistors.

Based on these equations, it is now possible to define the dynamic and static power

consumption as well as delay models.

3.2 Power models

As illustrated in the previous chapter, the total power can be divided into two cate-

gories: dynamic and static power.

3.2.1 Dynamic power

Dynamic power is due to the dissipation during the capacitances charge/discharge

process. The well known equation describing it is:

Pdyn =

(
N∑

i

aiCi

)

f · V 2
dd = aCNfV 2

dd (3.4)

With ai the switching probability per clock period of the node i, Ci is the capacitance

of node i plus the internal cell capacitance driven by node i, f is the circuit frequency,

V dd the supply voltage, N the number of cells, a the average activity per cell better

understood as the average number of switching cells over the number of total cells dur-

ing a clock cycle and C is the equivalent capacitance defined as (
∑

i aiCi) /aN . Using

the proposed definition of activity, only the transitions from 0 to 1 are considered.

The expression of aCN using average parameters must be treated carefully. First,

the average activity on the net is considered the same as the average activity in

the cells, moreover the equivalent capacitance C is only equal to the average cell

capacitance (net + internal cell) when all cells present the same activity, which is

practically never the case. Therefore, C depends on activity distribution. For this

reason, every time the parameters aCN are used together in equations, they must be

considered as
∑

i aiCi, rather than average activity times average capacitance times

number of cells.

A second contribution to dynamic power comes from the shortcut dissipation due

to current flowing from V dd to V ss during node transition. As seen in Chapter 2,

this contribution is inexistent for supply voltage V dd smaller than NMOS plus PMOS

threshold voltages, and is very small for V dd near V thn+V thp. Moreover, the quick
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transition time, typically present in current technologies, further reduces the shortcut

dissipation. Thus, this source of dynamic power can simply be accounted by lumping

this effect into the cell capacitance, which will increase slightly.

3.2.2 Static power

This new source of dissipation coming from non-ideal transistor behavior is particu-

larly important in deep submicron technologies and can become the main contributor

even in running mode. Moreover, this type of consumption is always present as long

as the circuit is supplied. Hence, even when the circuit does nothing (idle mode),

static power continues to be dissipated. For simplicity of the model, only the main

contributor (i.e. sub-threshold current) is considered. For a detailed discussion on

the others existing sources of static power consumption, please refer to Chapter 2.

Static power model is given by:

Pstat = Vdd ·
N∑

i

Ioff(i) = N · Vdd · Ioe−
V th
nUt = N · Vdd · Ioe−

V th0−ηV dd−γVbs
nUt (3.5)

With N the number of cells, V dd the supply voltage, Io the cell reference current,

n the sub-threshold slope, Ut the thermal potential, V th the modulated threshold

voltage, V th0 the reference threshold voltage, η the DIBL coefficient and γ the body

bias coefficient.

It is important to note that Io in Eq. (3.5) is the average reference off-current per

cell. This factor is different from the single transistor reference off-current, because

complex cells present a modified Io due to stack effect, different transistor sizing,

etc. According to [40], the ratio kdesign = (Iocell)/(Iotransistor)/(# of transistors)

is about 1.4 for flip-flops, 2.0 for latches, 1.2 for 6T RAM cells and 11 for static

logic. We carried out the same calculation for few cells with a driving force of 2

in the STM 90nm SVT technology and our results show a kdesign spanning over a

slightly narrower range; in fact, we obtain a kdesignof 7.3 for a NAND gate, 6.5 for

AND gate, 2.5 for a flip-flop and 3.7 for a full adder. Nevertheless, this shows that

the static power consumption per cell can vary from cell to cell. For this reason,

power comparison using Eq. (3.5) requires that both circuits present the same type

of cells (i.e. static logic) or a similar distribution of different cell types. Otherwise, a

compensation factor should be used depending on the type of cells used.
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3.2.3 Total power

Total power is defined as the sum of dynamic plus static consumption. Referring to

the previous sub-chapters, the total power model is given by:

Ptot = Pdyn + Pstat

= aCNfV 2
dd +N · Vdd · Ioe−

V th
nUt

= N · Vdd

(

aCfVdd + Ioe
−V th

nUt

)

(3.6)

With N the number of cells, V dd the supply voltage, a the circuit activity, C the

equivalent capacitance, f the frequency, Io the average off-current per cell, V th the

modulated threshold voltage, n the sub-threshold slope and Ut the thermal potential.

3.3 Delay models

All power related discussions are worthless if the circuit delay (related to performance)

is not considered. The model retained here is the very common one, that considers

the delay of a cell as the time needed to charge the load capacitance by a driving

current. So, to charge a capacitance C to the potential V the number of electric

charges needed is Q = CV . Considering that these charges are coming at the speed

of Ion [A=C/s], it is easy to find that:

tgate = kt
CV

Ion
(3.7)

With kt a constant accounting for the fact that the driving current is not constant

during the capacitance charge (the values of this constant for the technology flavors

used in this thesis are 15.1 for LVT, 24.7 for SVT and 30.1 for HVT. These values were

obtained by multiplying the delay of a NAND2x2 cell with Ion and then by dividing it

by the driven capacitance and by the supply voltage). Ion is the on transistor current

and its formulation is given by Eq. (3.2).

In a digital design, the maximal achievable frequency is the inverse of the sum of

delays on the critical path. In a mathematical form it appears as:

(fmax)−1 = tcritical path = kt

LD∑

i

Ci · Vdd

Ion
= ktC

LD · Vdd

Ion
(3.8)
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With Ci the load capacitance i on the critical path, LD the logical depth defined as

the number of cells forming the critical path, C the average critical path capacitance

defined as
∑

iCi/LD.

Combining Eq. (3.8) with Eq. (3.2) yields:

fmax =
Io · eα

kt · C · LD · (αnUt)α

(Vdd − Vth)
α

Vdd

(3.9)

In the previous equation, it is interesting to observe that a high Io correspond-

ing to a high leaky technology also corresponds to a high maximal frequency, thus

underlining the tight relation between high performance and static dissipation.

3.4 Summary

In this chapter, equations for the dynamic and static power consumption as well

as the circuit delay (corresponding to the maximal frequency) have been obtained

starting from simple and well known expressions of the on and off currents of a CMOS

transistor. These equations are the foundation for the theory presented in this thesis.

The use of very simplified equations, as well as the exclusion of secondary effects

like gate leakage, are voluntary. This is necessary in order to be able to work with

analytical expressions or simple closed form approximations, which makes it possible

to understand the influence of each single parameter on the lowest achievable total

power consumption.
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Chapter 4

Technology characterization

The equations in the Chapter 3 depend on a certain number of technology parame-

ters that must be characterized for a given technology before the equations can be

exploited. To be sure that they really match the models used in this work, every

parameter have been estimated by fitting SPICE simulations curves to our models

with the program Graphical Analysis v3.2. The obtained values can vary compared

to the original SPICE parameters, because used models are different. Actually, our

models (explained in previous chapters) are much simpler than the BSIM3.3 ones,

which are what the provided SPICE libraries use. In this thesis, the technology of

ST Microelectronics with a minimal size of 90nm has been chosen as reference. The

advantage of this technology is that it is available for 3 different transistor types,

corresponding to 3 different threshold voltages.

4.1 Parameters extraction methodology

The technology parameters required in this work are:

• n : the sub-threshold slope;

• η : the DIBL effect coefficient;

• α : the alpha power law coefficient;

• V th0 : the reference transistor threshold;

• γ : the body effect coefficient.

Each one of these parameters will be discussed in details in the following sections.

21
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4.1.1 The sub-threshold slope n

The sub-threshold slope n is extracted from the simulation of Ids(V gs). The schematic

used to measure the Ids current is reported in Fig. 4.1.

D

B
G

S
VbsVgs

S

B
G

D

VbsVgs

Vss

Vdd

Vss

Vdd

NMOS PMOS

Figure 4.1: Schematic of the NMOS (left) and PMOS (right) transistors used for

the extraction of the sub-threshold slope n . Transistor sizes are: Wnmos = 0.51µm,

Wpmos = 0.88µm and Lnmos = Lpmos = 0.1µm

The equation of the drain current in weak inversion is given by:

Ids(V gs) = Ioe
V gs−V th

nUt (4.1)

Consequently, by considering the natural logarithm of the previous equation, the

simulated curve should match the corresponding linear function:

ln (Ids(V gs)) =
1

nUt
· V gs+

[

ln(Io) −
Vth

nUt

]

≡ m · V gs+ b (4.2)

Through a linear fitting, it is possible to extract the slope m of Eq. (4.2) to obtain

1/nUt. Knowing the temperature used during the simulation, Ut(≡ kbT/q) is also

known (kb = 1.38E-23, q = 1.6E-19).

As the values of n for the NMOS and the PMOS transistors can be different, the

retained value will be their average.

The size of both NMOS and PMOS used in the SPICE simulations are the same

than the corresponding ones in an inverter cell with a driving force of one.
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4.1.2 The DIBL effect factor η

The extraction of the DIBL effect factor η is very similar to how n is obtained. The

difference comes from the swept variable during simulation, which is now V dd, while

V gs is set to 0V , thus resulting in an off transistor. The corresponding equations are:

Ioff (Vdd) = Ioe
−

Vth0−ηVdd
nUt (4.3)

ln (Ioff (Vdd)) =
η

nUt
· Vdd +

[

ln(Io) −
Vth0

nUt

]

≡ m · Vdd + b (4.4)

Once the slope η/nUt has been extracted, η is easily obtained, since 1/nUt was

estimated in the previous section 4.1.1.

The static current Ioff is measured as the supply current on a closed chain com-

posed by an even number of inverters (10 in our case). In such a configuration, the

circuit is in a stable condition and no node transitions occur. All inverters present a

driving force of one.

4.1.3 The α factor and the reference threshold voltage V th0

The parameter α (discussed in Chapter 3) and the reference threshold voltage V th0

can both be estimated by fitting the delay equation (from Eq. (3.9)):

Delay(Vdd) ∝
Vdd

(Vdd − Vth)
α =

Vdd

(Vdd(1 + η) − Vth0)
α (4.5)

As η is a known parameter, a non-linear curve fitting on a circuit delay plotted

in function of V dd permits to determine the values of α and V th0. Because both

parameters are referred to the circuit delay (and this is the way the parameters will

be used later), their values can be quite different from the single NMOS or PMOS

ones defined by the manufacturer.

The delays are obtained by measuring the oscillating frequencies of a ring oscillator

formed by 9 inverters with a driving force of one.

4.1.4 The body effect coefficient γ

The body effect coefficient γ models the first order influence of the body potential to

the reference threshold voltage V th0:

V th(V bs) = V th0 − γV bs (4.6)
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The extracting methodology for this parameter is the same as for the DIBL effect

coefficient η, but the measured parameter is Ioff (V bs):

Ioff (V bs) = Ioe
−

Vth0−ηVdd−γV bs

nUt (4.7)

ln (Ioff (V bs)) =
γ

nUt
· V bs+

[

ln(Io) −
Vth0 − ηVdd

nUt

]

≡ m · V bs+ b (4.8)

A simple linear curve fitting on ln(Ioff (V bs)) is enough to determine m = γ/nUT .

It is then easy to multiply the previous value by nUt to obtain γ.

Here too, the static current Ioff is obtained by simulating a looped chain composed

by an even number (10) of inverter with a driving force of one.

It is important to note that the body bias potential must be kept below 0.5V in

the forward bias condition (V bs > 0). Otherwise, the p-n junction between the body

and the source will start to conduct as a forward-biased diode, creating an extremely

large leakage current.

4.1.5 Remark on Io

The parameter Io representing the reference static current is also a technology related

parameter, but its value cannot be extracted and used in a universal way as it is

done for the other technology parameters. In fact, in this work, Io is considered as

the reference static power per cell. This means that the specific value is dependent

on the cells used (as discussed in Chapter 3.2.2) and cannot simply be represented

with an unique value. Except when stated differently, the average Io of a circuit is

estimated from cell nominal values of the static power in the following way:

Io =
Total Nominal Static Power

V dd nom ·N e
V th
nUt (4.9)

With V dd nom the nominal supply voltage and N the number of cells.

4.2 STM 90nm technology

The STM 90nm is the most recent technology available at our laboratory and it

presents the following main features:

• Designed for 1.0V ± 10% applications, with 1.8V/2.5V/3.3V IO’s

• Shallow trench isolation, isolated P-Well (DNW) twin-tub, single poly CMOS

process using a type <100> P-substrate
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• 16Å gate oxide

• Cobalt silicide on junctions, polysilicon gates, lines, resistors on active and in-

terconnect poly (N+ or P+)

• Dual Vth transistors

• IOs using 2.8nm or 5.0nm or 6.5nm gate oxide for 1.8V or 2.5V or 3.3V respec-

tively

• 6 to 9 metal levels

• Damascene Copper for all metals

• Thick metal layer for power, clock, busses and major interconnect signal distri-

bution, as well as for inductors in Analog/RF applications

• Tight pitch levels for routing on thin copper for lower metal layers

• Low K (< 3.0) inter-metal dielectric for thin metal layers

To extract the required parameters for each one of the 3 transistor flavors, the

program ELDO version 6.1 1.1 from Mentor Graphics (SPICE-like simulator) has

been used.

4.2.1 Low Vth Transistors (lvt)

The “Low Vth” transistor type is the fastest available flavor in the STM 90nm general

purpose technology, and is used for applications where the speed is of primary impor-

tance. The disadvantage of this type of transistors is that, due to the low threshold

voltage (Vth), the static power is very high.

The sub-threshold slope n

It is important to note that the linear fitting on Eq. (4.2) must be estimated on a

region where the transistor is in the weak inversion mode (i.e. V dd < V th). Otherwise

Eq. (4.2) is no longer valid and the alpha power law should be used instead to describe

the transistor current. In our case the fitting range apply to V dd ∈ [0V ; 0.2V ].

Moreover, the temperature was set to 27◦C, corresponding to an Ut = 0.02588V .

The following table summarizes the parameters extraction:
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0.0 0.2 0.4 0.6

-18

-16

-14

-12

Vgs [V]

     Linear Fit For:  VDD=1:LN(IDS_P)
     y = mX+b
     m(Slope): 22.386
     b(Y-Intercept): -17.527
     Correlation:0.99882

     Linear Fit For:  VDD=1:LN(IDS_N)
     y = mX+b
     m(Slope): 23.052
     b(Y-Intercept): -17.648
     Correlation:0.99936

Figure 4.2: Linear fitting of ln(Ids(V gs)) for STM 90nm lvt

m = 1/nUt[V −1] unified 1/nUT [V −1] Ut[V ] n unified n

NMOS 23.05
22.72 0.02588

1.68
1.70

PMOS 22.39 1.73

Table 4.1: Results of the sub-threshold slope extraction for STM 90nm lvt

The DIBL effect factor η

The DIBL effect factor η is extracted from the curve ln(Ioff (V dd)). The static power

is measured on a chain of 10 inverters, all with a driving force of one.

The results of the curve fitting in Fig. 4.3 are summarized in Table 4.2.

m = η/nUt unified 1/nUt (from table 4.1) η

1.98 22.72 0.087

Table 4.2: Results of the DIBL effect coefficient extraction for STM 90nm lvt

The α factor and the reference threshold voltage V th0

The extraction of the α factor and of the reference threshold voltage V th0 is done

conjointly by fitting the non-linear equation (4.5) with a known value for η. The

delays are obtained by measuring the oscillating frequency of a ring oscillator formed

by 9 inverters with a driving force of one.
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0.3 0.5 0.7 0.9

-18.5

-18.0

Vdd [V]

     Linear Fit For:  Data Set:LN(IOFF 1INV)
     y = mX+b
     m(Slope): 1.9827
     b(Y-Intercept): -19.608
     Correlation:0.99966

Figure 4.3: Linear fitting of ln(Ioff (V dd)) for 1 inverter (averaged over 10 inverters)

0.4 0.6 0.8 1.0

0.5

1.0

1.5

Vdd [V]

     Auto Fit For:  Data Set:Delay
     y = KX/(X*1.087-VTH)^alpha
     K: 0.16933 +/- 0.00089123
     VTH: 0.34208 +/- 0.0050786
     alpha: 1.5670 +/- 0.024541
     RMSE: 0.0030049

Figure 4.4: Fitting of delay vs. Vdd for STM 90nm lvt

Results, based on the fitting in figure 4.4, are presented in Table 4.3.

α Vth0

1.56 0.342

Table 4.3: Results for the α factor and V th0 for STM 90nm lvt
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The body effect coefficient γ

The extraction of the body effect factor is achieved with a linear fitting on the curve

ln(Ioff (V bs)). The static current is measured over 10 inverters connected in chain

and the result has been divided by 10 to average the static current to one inverter.

-0.4 -0.2 0.0 0.2 0.4

-19

-18

-17

Vbs [V]

     Auto Fit For:  Data Set:LN(IOFF 1INV)
     y = mX+b
     m: 2.7199 +/- 0.046844
     RMSE: 0.047310

Figure 4.5: Linear fitting of ln(Ioff (V bs)) for 1 inverter (averaged over 10 inverters)

It should be noted that the γ is only a first order approximation of the body bias

effect, because, as shown in Fig. 4.5, the curve is more like a square root function

than a linear one.

Results are summarized by Table 4.4.

m = γ/nUt unified 1/nUt (from table 4.1) γ

2.72 22.72 0.12

Table 4.4: Results for the body effect coefficient for STM 90nm lvt

Io for a 2 inputs NAND gate

Even if it is not possible to give here a unique Io value for the technology, the value

Io for a 2 inputs NAND gate with a driving force of 2 is given as a reference.
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Io [µA] 30.9

Table 4.5: Io for a NAND2x2 gate from the STM 90nm lvt technology

Summary of the lvt technology parameters

All the technology parameters for the lvt flavor are summarized by Table 4.6.

V th0 [V] α n η γ Io(NAND2x2) [µA]

0.342 1.56 1.70 0.087 0.12 30.9

Table 4.6: Technology parameters summary for the STM 90nm lvt

4.2.2 Standard Vth Transistors (svt)

The “Standard Vth” transistor type is an all-purpose flavor where delay and static

power has been traded-off to match typical design requirements. The procedure used

to characterize this technology variation is exactly the same as the one used for lvt.

For the sake of simplicity, only the summary table is reported.

V th0 [V] α 1/nUt[V −1] n η γ Io(NAND2x2) [µA]

0.353 1.65 26.30 1.47 0.060 0.14 26.0

Table 4.7: Technology parameters summary for the STM 90nm svt

4.2.3 High Vth Transistors (hvt)

The “High Vth” transistor type is a flavor especially optimized for extremely low static

power consumption. Typical applications for this technology variation are circuit idle

most of the time and/or where speed/performance are not of utmost importance. The

procedure used to characterize this technology variation is exactly the same as the

one used for lvt. For the sake of simplicity, only the summary table is reported.

V th0 [V] α 1/nUt[V −1] n η γ Io(NAND2x2) [µA]

0.425 1.84 26.16 1.48 0.062 0.19 17.7

Table 4.8: Technology parameters summary for the STM 90nm hvt
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4.3 Summary

In this chapter, the methodology used to extract the technology parameters has

been presented. After an introduction of the general procedure, the parameters

V th0, α, n, η, γ and Io(NAND2x2) have been evaluated for all 3 transistor flavors

available in the STM 90nm general purpose technology. In order to have an easy

access to the extracted data, values are summarized in Table 4.9.

V th0 [V] α 1/nUt[V −1] n η γ Io(NAND2x2) [µA]

lvt 0.342 1.56 22.72 1.70 0.087 0.12 30.9

svt 0.353 1.65 26.30 1.47 0.060 0.14 26.0

hvt 0.425 1.84 26.16 1.48 0.062 0.19 17.7

Table 4.9: Technology parameters summary for the STM 90nm - Vdd = 1V
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Reference multiplier architectures

This chapter presents a set of 13 reference multipliers widely used in this thesis. The

reason why we choose multipliers as reference comes from the fact that many possible

implementations exist, each one with very different characteristics. The architectures

proposed in this chapter can be divided into 3 families, each one containing more

variations of the basic implementation.

The 3 families are:

1. Ripple Carry Array (RCA): This structure is based on a regular matrix of

full adders; considered versions are:

• basic;

• 2 and 4 times parallel;

• 2 and 4 times horizontal pipeline;

• 2 and 4 times diagonal pipeline.

2. Wallace: This type of multiplier is based on a tree of full adder used as 3-to-2

compressors, considered versions are:

• basic;

• 2 and 4 times parallel.

3. Sequential: Here the multiplication is obtained by a sequential add and shift

implementation, considered versions are:

• basic;

• sequential-wallace;

• 2 times parallel.
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5.1 Ripple Carry Array

The Ripple Carry Array multiplier (or RCA) is the most intuitive implementation

for a multiplier. Its structure derives from the way we usually do multiplications by

hand. That is, a sum of shifted partial products. A partial product (Pi) is the result

of the multiplication of the multiplicand (A, first number to multiply) with one bit

of the multiplier (B, second number to multiply). Practically, the multiplication by

a bit is obtained by AND gates. The number of partial products will be equal to the

size of B in bits. Mathematically, this can by written as (2i represents the bits shift):

M = A ∗B =
size(B)−1
∑

i=0

Pi · 2i =
size(B)−1
∑

i=0

(A and Bi) · 2i (5.1)

In a physical implementation, the summation showed in Eq. (5.1) will be obtained by

a series of full adder (FA), i.e. a 1 bit adder defined as:

S = a xor b xor cin

Cout = (a and b) or (a and cin) or (b and cin)

A graphical representation of a FA is provided in Fig. 5.1.

FA

a b

S

cout cin

Figure 5.1: Full adder symbol

By implementing Eq. (5.1) directly, a multiplier known with the name of Rip-

ple Carry Array multiplier (or RCA) can be constructed. Fig. 5.2 represents such

implementation for N=8.

The first line of full adders in a RCA doesn’t have to sum the partial products

with the result of the precedent line because no precedent result exists. Hence, only

partial products (AND gates) are generated by the synthesis tools. Moreover, the

most right cell of each line has a fixed carry in of zero. Those cells can be simplified

to an Half Adder (HA) i.e. an adder without carry in. The logical expressions of an

HA are:

S = a xor b

Cout = a and b
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Figure 5.2: 8bit RCA multiplier

The FA has two characteristic delays. The first is the time that a signal needs to

propagate from the inputs (a and b and cin) to the sum port (S). The second is the

propagation delay for a signal going from the inputs (a and b and cin) to the carry

out port (Cout). Fig. 5.3 shows one of the possible critical path that exists in such a

multiplier.

M15 M14 M13 M12 M11 M10 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0

0

0

0

0

0

0

0

0

B0

B1

B2

B3

B4

B5

B6

B7

A0A1A2A3A4A5A6A7
0 0 0 0 0 0 00

FA

a b

S

cinco
u

t

Refence cell

carry delay

sum delay

Figure 5.3: Critical path in a 8bit RCA multiplier

It is not surprising why, in Fig. 5.3, the critical path doesn’t include the first line of

full adders; indeed, it corresponds to simple AND gates for the generation of partial
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products (because a and cin are zero), and they are executed in parallel with the

partial products of the second line (corresponding to the bit B1).

The total delay for a RCA is given by :

t(Basic RCA) = (2 ·N − 2) · tcout + (N − 2) · tsum (5.2)

With N the size of the multiplier, tcout the carry out delay, tsum the sum delay.

The structure presented in Fig. 5.2 and Fig. 5.3 are what we will call the “basic

RCA” implementation. Others RCA implementations are explained hereafter.

5.1.1 RCA parallel variations

The first transformation of the RCA multiplier is the parallelization: the RCA mul-

tiplier is implemented twice (or more in general) and the data is multiplexed to a

different multiplier at each clock period. The advantage of this architecture is that

each multiplier has two (or as many as the number of instantiated blocks in general)

clock periods to terminate the computation. So, the throughput is the same than for

the non parallelized version, but the latency is bigger (corresponding to the number

of blocks). Fig. 5.4 shows the structure of a 2 times parallelized multiplier.

MULTIPLIER_0

QD A

B

EN

QD

EN

MULTIPLIER_1

QD A

B

EN

QD

EN

A

OUT

B

clk

sel

QD

M
U

LT
IP

L
E

X
E

R

Figure 5.4: 2 times parallelized multiplier
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The sel signal is used to select which multiplier will calculate the multiplication

for the incoming data and it typically switches each clock cycles. The use of the input

registers is required in order to latch the data at the input of the multipliers. In

fact, each multiplier has now more than 1 clock cycle (corresponding to the degree

of parallelization) to compute one multiplication, and the incoming data need to be

stable over those clock cycles. Considering the throughput frequency as the reference

clock, the effective logical depth, defined as the real logical depth divided by the

number of clock cycles the signals have for propagating through it, is now reduced by

the number of parallelizations.

The major drawback of the parallelization process is that the hardware is more

than doubled (or N times for an N times parallel implementation). This also means

that the static power is also more than doubled, while the dynamic power is only

slightly increased due to the added registers and multiplexer.

5.1.2 RCA horizontal pipeline variations

The goal of pipelining is to reduce the critical path (logical depth) by inserting regis-

ter banks in the design. This can be done in several ways with considerably different

results. The more intuitive and easy manner to realize it is to “cut” the RCA horizon-

tally in the middle of the structure. This can be imagined as two NxN/2 multipliers

divided by a register bank as showed in Fig. 5.5.
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Figure 5.5: 2 stages horizontally pipelined 8 bit RCA

The number of registers needed to divide the multiplier in this way is easily ob-
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tained from Fig. 5.5. Actually, all bits of A (N registers) plus all the result bits of

the previous stage (N+N/2 registers) must be latched. Moreover, in order to main-

tain data synchronization, the most significant bits of B must be latched too (N/2

registers). Hence, the total overhead corresponds to 3N registers.

The critical path after such an architectural transformation is:

t(Horizontal Pipeline) = (3/2N − 1) · tcout + (1/2N − 1) · tsum + tdff (5.3)

With N the size of the multiplier, tcout the carry out delay, tsum the sum delay and

tdff the registers delay.

The “vertical delay” (corresponding to the tsum) is effectively reduced by two, but

the “horizontal delay” (related to tcout) is just reduced by about 4/3. Additionally,

the “clk to Q” delay of a register must be added. Hence, the global delay reduction

compared to the non pipelined version is far from the expected (or hoped) value of 2.

A similar calculation can be done for a 4 stages pipeline, in this case the critical

path delay will be of (5/4N − 1)tcout + (1/4N − 1)tsum + tdff + tdff setup.

It is important to remark that pipelining remains interesting only for a small

number of stages (2 - 4); in fact, the quantity of needed registers rapidly grows for

a large number of stages and the overhead is quickly non-negligible. In the case of a

RCA multiplier with width N and S stages of pipeline, we have a register overhead

of 3*N*(S-1). Just as an example, a 32 bit / 4 stages horizontal pipeline multiplier

needs 288 extra flip-flops!

5.1.3 RCA diagonal pipeline variations

From a delay point of view, a better way to pipeline an RCA multiplier is to divide it in

diagonal. This approach is less easy to code in a high level language compared to the

horizontal split. In fact, the split parts cannot be considered anymore as multipliers of

reduced size. An example on how to diagonally pipeline a RCA multiplier is illustrated

in Fig. 5.6.

The critical path for a 2 stages diagonal pipeline is obtained by:

t(Diagonal Pipeline) = 3/4N · tcout + (3/4N − 1) · tsum + tdff (5.4)

With the diagonal pipeline implementation, the register overhead is slightly greater

than the horizontal pipeline. In fact, for two stages pipeline, we can count N latches for

the A bits, 3/4N latches for the B bits, 5/4N registers for the internal sum propagation
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Figure 5.6: 2 stages diagonally pipelined 8bit RCA

and 1/2N registers for the carry propagation. All these contributions account for 3.5N

registers. This value can be compared to the one for horizontal pipeline case where

3N registers were needed.

In a 4 stages diagonal pipeline version, the register overhead for each of the two

new added banks is: 3/4N registers for the A bits, 3/8N registers for the B bits,

13/8N registers for internal sum propagation and 3/8N for the carry propagation.

The total number of registers per stage is hence 25/8N. Summing all extra registers,

the total overhead for a 4 stages diagonal pipeline is: 3.5N+2*(25/8N)=39/4N and

the corresponding delay would be of (3/4N−1)tsum +tdff +tdff setup. Just to compare

with the horizontal pipeline version, a 32bit / 4 stages diagonal pipeline multiplier

has 312 extra registers.

5.2 Wallace

The Wallace multiplier [41] [42] [43] is a very rapid and well balanced architecture.

To achieve this efficiency, the partial products (i.e. A · Bi, called P0-P7 in Fig. 5.8)

are summed in parallel by using Carry Save Adders (CSA) [44]. A CSA (Fig. 5.7) is

nothing else than a series of full adders disposed in a 3-2 compressor way. In a CSA,

there exists no propagation delay between the full adders, consequently the total delay

corresponds to the worst case delay of one FA. The main drawback of a CSA is that

it doesn’t return a unique sum but two vectors with a sum (S plus shifted C) equal

to the sum of the three input vectors (x+y+z = S+2C).
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Figure 5.7: Internal implementation of a Carry Save Adder (CSA)

The structure of a Wallace multiplier is shown in Fig. 5.8 for a 8 bit version. The

partial products P0-P7 are added 3 by 3 with CSAs until only two bit vectors remain

(Sum and Carry). At this point, a fast final adder will sum them to obtain the result

of the multiplication. The kind of final adder can vary from one implementation to the

other. In the Wallace tree implementations presented in this thesis, a Brent-Kung [45]

adder is used. The advantage of the Brent-Kung (bk) implementation is that it is

very fast.
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Figure 5.8: Wallace 8bit structure

The worst case delay for the multiplier tree (without the final adder) is equal to

the number of levels times the worst case delay of a FA.

To calculate the total delay of the Wallace tree multiplier, the delay of the final

adder (Brent-Kung type in this case) needs to be added.

t(Basic Wallace) ≈ log1.5(N) · tFA + tbk adder (5.5)

With N the bit width of the multiplier, tFA the worst delay for a full adder and

tbk adder the delay of the final bk adder, which is also dependent on the size of the

multiplier.
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Data width Number of levels

8 4

16 6

32 8

64 10

128 12

N ≈ log1.5(N)

Table 5.1: Number of CSA levels for some typical multiplier width

5.2.1 Wallace parallel versions

The parallelized versions of the Wallace multiplier are obtained exactly in the same

way as for the RCA (Fig. 5.4). The description in Section 5.1.1 remains valid for the

Wallace multiplier, too.

5.3 Sequential

The Sequential multiplier takes its name from the fact that this implementation uses

several clock cycles to compute one multiplication by sequentially “adding and shift-

ing” the previous partial result. The structure of such multiplier is illustrated in

Fig. 5.9. The main advantage of this implementation is the compactness of the cir-

cuit. In fact, to calculate a 16 bit multiplication, only a 17 bit adder with some

registers and a bit of control logic are required. On the other hand, the result will

not be available until 16 clock cycles have taken place.

Mult_reg(32) A_reg(16)

AB00...000

16

16+1

16

Figure 5.9: Sequential multiplier structure (16bit)

In the case of the present thesis, the adder used in the “add and shift” structure

is a Brent-Kung type (bk), which is known for being a very rapid adder. Considering
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the best case where the adder uses exactly all the clock cycle period, the total delay

of a Sequential multiplier is given by:

t(Sequential) = N · (tbk adder + tAND + tdff + tdff setup) (5.6)

With N the multiplier bit width, tbk adder the Brent-Kung adder delay, tAND the delay

of the AND gate used to generate the partial products, tdff the registers clock-to-Q

delay and tdff setup the registers setup time.

In the case where the clock frequency is smaller than the maximal allowed one,

the total delay will correspond to N · tclock.

5.3.1 Sequential-wallace

A special modification of the Sequential multiplier is what we call the Sequential-

wallace (Fig. 5.10). The idea is to reduce the number of clock cycles required to com-

pute one multiplication by adding partial multiplications rather than partial products.

In the case of a 16 bit implementation (as reported in Fig. 5.10), a 4x16 bit Wallace

multiplier is used to compute partial multiplications and then the results are summed

sequentially. In this way we obtain a version between the Wallace (large area, small

delay) and the Sequential (small area, large delay). Actually, for the proposed ex-

ample, only 4 clock cycles are required per multiplication compared to the 16 cycles

necessary for the basic Sequential implementation.

Mult_reg(32) A_reg(16)

AB00...000

16x4

20

16

20

4

Wallace tree

4x16 mult

Figure 5.10: Sequential multiplier (16bit) with a 4x16 Wallace implementation

The delay of a Sequential-wallace multiplier is obtained by:

t(Sequential-wallace) = M · (tbk adder + tN/MxN Wallace + tdff + tdff setup) (5.7)
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With M(< N) the number of required cycles, N the bit width of the multiplier,

tbk adder the Brent-Kung adder delay and tN/MxN Wallace the delay of the N/MxN

Wallace multiplier.

5.3.2 Sequential parallel

The parallelized version of the Sequential multiplier is obtained exactly the same way

as for the RCA and the Wallace (Fig. 5.4). The only difference is the sel pin that

only switches once every N clock cycles, where N is the size of the multiplier.

5.4 Summary

In this chapter, 13 multiplier architectures have been discussed. These circuits are

divided in 3 families (namely RCA, Wallace and Sequential) and they cover a large

combination of delay, area and complexity. For this reason, they are well suited as

reference circuits for the discussions presented further in this thesis. For commodity,

the periods of the maximal throughput frequency as well as the cell count for each

design are summarized in Table 5.2. The equations of the cell count for the Wallace

implementations are obtained from [46] [47].
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Chapter 6

Total power comparison for free

Vdd and free Vth

A very effective way to reduce the total power consumption in digital circuits is the

reduction of the supply voltage V dd. This approach is simple and easy to implement

and it will simultaneously reduce dynamic power in a square way and static power

linearly. Unfortunately, in this way, the performances or speed rapidly decrease. In

order to avoid this, it is possible to re-establish the original performances by reducing

the transistors threshold voltage V th. The price for this is an exponential increase

of the static power. For this reason, counterbalancing the reduction of the dynamic

power with the increase of static power leads to a point in the (V dd, V th) space where,

for a given delay, the total power presents a minimum. This chapter will discuss this

minimum of the total power consumption and will derive an approximated formula

for the total power at the optimal (V dd, V th) point.

6.1 Existence of a total power consumption opti-

mum

To convince the reader of the existence of the minimum of the total power consump-

tion, it is important to recall the power and delay equations reported in Chapter 3:

Ptot = Pdyn+ Pstat = aCNfV 2
dd +NVddI0e

−V th
nUt (6.1)

fmax =
Ion

kt · C · LD · Vdd

=
I0 · eα

kt · C · LD · (αnUt)α

(Vdd − Vth)
α

Vdd

(6.2)

43
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With a the activity factor, C the equivalent capacitance per cell, N the number of

cells, f the working frequency, V dd the supply voltage, I0 the reference transistor cur-

rent, V th the transistor threshold current, n the sub-threshold slope, Ut the thermal

potential, kt the delay proportional constant, LD the logical depth and α the alpha

power law coefficient.

If now we consider that the frequency fmax (called f from now on) is fixed and

defined by the application, it is possible to rewrite Eq. (6.2) to obtain the formula

tying V dd and V th together:

Vth = Vdd − χ · V 1/α
dd with: χα =

kt · C · f · LD
I0
(

e
αnUt

)α (6.3)

The parameter χ in Eq. (6.3) is a very important one. This parameter ties together

the supply voltage and the threshold voltage. Its value represents a kind of “global

rapidness” accounting for both technology and architectural impacts. Actually, a

large χ means a “slow” design, which can be due to a large logical depth or a slow

technology or a combination of architectural and technology parameters. The presence

of the working frequency in the equation of χ shows that the concept of slow or

quick design is dependent on the desired working frequency. For instance, a design

considered rapid for a working frequency of 1MHz, could be considered slow for a

working frequency of 100MHz.

A graphical representation of Eq. (6.3) is given in Fig. 6.1. There, we can see that

the reduction of the supply voltage requires a reduction of the threshold voltage too in

order to maintain speed. Even if there exists an infinite number of couples (V dd,V th)

showing the same performance, they don’t present the same power consumption. In

fact, while the reduction of the supply voltage V dd reduces the dynamic power in

a square way and reduces the static power linearly, the reduction of the threshold

voltage V th shows an exponential increase of the static power. Due to the exponen-

tial nature of this last dependency, the static power increase can rapidly cancel the

benefit of the reduced supply voltage V dd. Therefore, between all the combinations

of (V dd,V th) guaranteeing the desired speed, only one couple will result in the lowest

power consumption for a given architecture (Fig. 6.2). From now on, this working

condition will be called optimal working point or ideal working point.

The location of this optimal working point and its associated total power con-

sumption are tightly related to architectural and technology parameters. For instance,

Fig. 6.2 illustrates the fact that reducing the activity factor allows a reduction of Ptot,

whereas it tends to increase the optimal V dd and V th. As architectural modifications
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Figure 6.1: Relationship between Vdd and Vth for α = 1.65 and χ = 0.3

will change simultaneously several factors (not just the activity), it is necessary to

develop a methodology to evaluate the influence of such transformations on the total

power consumption (Ptot).

In related contributions ([48], [49], [50], [51], [52], [53], [54]), the authors preferred

to seek for the minimum of the energy rather than the minimum of the total power

as done in this work. From a mathematical point of view, looking for the minimum

of the energy is slightly easier and the results are different from what we derive here.

Indeed, they found that the minimum of total energy is most of the time located in

the weak-inversion transistor region (optimal V dd < optimal V th), which corresponds

to very low performances logic.

6.2 Pdyn over Pstat ratio

Looking at the ratio Pdyn over Pstat at the optimal working point in Fig. 6.2, it is

possible to observe that dynamic contribution still remain greater than the static one.

k1 =
Pdyn

Pstat

∣
∣
∣
∣
∣
optimum

(6.4)

This ratio (k1) is a measurement of the circuit usefulness. In fact, rarely used
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Figure 6.2: Total power consumption of a 16 bit Wallace multiplier in a STM 90nm

technology (CMOS090-SVT, 100MHz) with freely modifiable Vdd and Vth. Three

different circuit activities (a) are reported. The optimal working points are marked

by a cross mark.

transistors will provide low k1 due to the high static consumption compared to the

dynamic one. For this reason, it is better to have fewer transistors (less static power)

working more actively (more dynamic power) than having lots of idle transistors that

just increase the static power. In related works [55] [56], authors stated that this ratio

should be equal to 1, whereas our experiences, based on many designs (like multipliers,

FIR, shift registers, micro-processors, counters, ...) in deep sub-micron technologies

(0.18µm, 0.13µm and 90nm), suggest that typical values of k1 are between 3 and 7.
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6.2.1 k1 derivation

A precise calculation of k1 is possible and easy to obtain. In fact, k1 can be derived

by searching the minimum of Ptot(Vdd) as:

∂Ptot(Vdd)

∂Vdd

=
∂Pdyn(Vdd)

∂Vdd

+
∂Pstat(Vdd)

∂Vdd

= 0 (6.5)

The combination of Eq. (6.5) with Eq. (6.1) and Eq. (6.3) leads to:

k1 =
(α− 1)V opt

dd + V opt
th

2nUtα
− 1

2
(6.6)

With α the alpha power law coefficient, n the sub-threshold slope and Ut the thermal

potential.

Table 6.1 shows the equivalent of Eq. (6.6) in the case of the STM 90nm technology

(used values are obtained from Chapter 4).

LVT k1 ≈ 4.0V opt
dd + 7.3V opt

th − 0.5

SVT k1 ≈ 5.2V opt
dd + 8.0V opt

th − 0.5

HVT k1 ≈ 5.9V opt
dd + 7.1V opt

th − 0.5

Table 6.1: Approximation of k1 for STM 90nm technology

From the equations in Table 6.1 is possible to see how the case k1=1 is very

difficult to reach and it would correspond to extremely low optimal V dd and V th.

In Eq. (6.6), k1 was expressed in term of optimal V dd and optimal V th, but it

can also be related to the on current (Ion) and the off current (Ioff), or better to the

ratio of these two. In fact, using Eq. (6.1) and Eq. (6.2):

Pdyn = k1 · Pstat (6.7)

a · C ·N · V 2
dd

Iopt
on

kt · C · LD · Vdd

= k1 ·N · Vdd · Iopt

off (6.8)

k1 =
a

LD

1

kt

Ion
Ioff

∣
∣
∣
∣
∣

opt
(6.9)

If now we remember that kt is just a constant, k1 can easily be expressed by:

k1 ∝ a

LD

Ion
Ioff

∣
∣
∣
∣
∣

opt
(6.10)
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It is important to note that in Eq. (6.10) the Ion/Ioff also depends on activity (a)

and logical depth (LD).

Based on SIA International Technology Roadmap for Semiconductors 2004 [33],

the expected ratios of Ion over Ioff for present and future technologies are:

Year 2006 2009 2012 2015 2018

HP 23400 22714 17900 7000 4380

LOP 203333 154000 118571 90000 31667

LSTP 25.5E6 17.5E6 13.2E6 10.9E6 9.9E6

Table 6.2: SIA ITRS 2004 expected transistors Ion/Ioff for High Performance (HP),

Low Operating Power (LOP) and Low Standby Power (LSTP) circuits.

Looking at Table 6.2, we see how the ratio Ion over Ioff will decrease with time

due to the large increase of the static power consumption. On the other hand, we

have previously seen that the variable k1 doesn’t change so much. Hence, we can

conclude that an architecture with activity a and logical depth LD working at its

optimal condition in a present technology will require a higher ratio a/LD in a future

technology. This can be achieved by reducing the logical depth LD, but also by

increasing the activity a, which correspond to having a better use of the implemented

hardware. This reasoning, for instance, will tend to favor pipeline over parallelization.

Indeed, the ratio a/LD is increased in a pipelined design due to the reduction of

LD, whereas the same ratio will remain almost unchanged during parallelization (cf

Table 6.5 and Table 6.6).

By using Eq. (6.22) (derived later in this chapter), it is possible to express k1 in

a much simpler expression.

k1 =
Pdyn

Pstat

∣
∣
∣
∣
∣

opt

=
aCNfV 2

dd

I0NVdde−V th/nUT
∼=

aCfVdd

2nUtaCf/(1 − χA)
=

Vdd

2nUt
(1 − χA) (6.11)

In a similar way, Eq. (6.11) can also be expressed by the optimal V th by applying

Eq. (6.15).

k1 =
Vth + χB

2nUt
(6.12)

6.3 Optimal Vdd and Vth formulas

In this section the complete derivation of the optimal threshold voltage and supply

voltage is presented. The difficulty of the derivation is to express V thopt without
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the use of V ddopt and vice-versa, i.e. we need to decouple these two variables. To

achieve this, we need to linearize the expression V dd1/α (with α the alpha power law

coefficient, its value spanning from 1 to 2), which is the origin of the transcendental

nature of Eq. (6.3).

Fig. 6.3 shows the expression V dd1/α and its linear approximation for V dd from

0.3V to 1V for α = 1.65.
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Figure 6.3: V dd1/α [solid line] and its linear approximation [dashed line]

From this figure, we see how well V dd1/α can be linearized over a relative large

interval, leading to the follow approximation:

V
1/α
dd ≈ A(α) · Vdd +B(α) (6.13)

With A and B depending on α but also on the interval of V dd where the ap-

proximation is done. A and B can be determined numerically (easy) and analytically

(more complex, but feasible). For V dd in the interval [0.3V;1V], the graph in Fig. 6.4

can be used to estimate A and B.

The lower graph in Fig. 6.4 shows the maximal error in percent obtained with

the proposed linear approximation. For the range of V dd restricted to the interval

[0.3V;1V] the error always remain lower than 5%. It is important to note that newer

technology will tend to have even smaller values of α which results in an even better
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Figure 6.4: Linearization coefficients for Vdd in [0.3V;1V]

approximation of Eq. (6.13). Moreover, in the case where a better approximation is

needed, the error can be further reduced by limiting the range of V dd.

In Fig. 6.5, the parameters A and B are calculated for V dd between 0.3V and 0.6V

and they report a maximal error lower than 1.4%. The values of A and B for the α

corresponding to the three different variations of the STM 90nm CMOS technology

are reported in Table 6.3.

Using the approximation in Eq. (6.13) is now possible to rewrite Eq. (6.3) in a

simpler way:

V opt
th (V opt

dd ) ∼= V opt
dd − χ(A · V opt

dd +B) = V opt
dd (1 − χ · A) − χ ·B (6.14)
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Figure 6.5: Linearization coefficients for Vdd in [0.3V;0.6V]

V dd ∈ [0.3V ; 1V ] V dd ∈ [0.3V ; 0.6V ]

LVT SVT HVT LVT SVT HVT

α 1.56 1.65 1.84 1.56 1.65 1.84

A(α) 0.760 0.731 0.676 0.859 0.835 0.788

B(α) 0.260 0.286 0.342 0.210 0.238 0.290

Table 6.3: Values of A and B for the three types of STM090 transistors

Such an approximation is now invertible and permits to estimate the optimal V dd:

V opt
dd (V opt

th ) ∼=
V opt

th + χ ·B
1 − χ · A =

︸︷︷︸

V th=V th0−ηV dd

V opt
th0 + χ ·B

1 − χ · A+ η
(6.15)
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Another useful expression is the first derivative of V th with respect to V dd. This

expression will be used in the next sections, but for the sake of simplicity, it will be

presented here. From Eq. (6.14) the partial derivative becomes:

∂V opt
th

∂V opt
dd

∼= (1 − χ · A) (6.16)

6.3.1 Optimal threshold voltage derivation

The expression of the optimal threshold voltage can be derived by searching for the

V th that would minimize the total power consumption. Hence:

∂Ptot(Vth)

∂Vth

=
∂Pdyn(Vth)

∂Vth

+
∂Pstat(Vth)

∂Vth

= 0 (6.17)

Or, better:

∂Pdyn(Vth)

∂Vth

= −∂Pstat(Vth)

∂Vth

(6.18)

It is now possible to substitute Eq. (6.1) in Eq. (6.18) to obtain:

2aCNfVdd
∂Vdd

∂Vth

= −I0Ne−V th/nUt

(

∂Vdd

∂Vth

− Vdd

nUt

)

(6.19)

eV th/nUt =
I0

2nUtaCf

(

∂Vth

∂Vdd

− nUt

Vdd

)

(6.20)

eV th/nUt ∼=
︸︷︷︸

Eq. (6.16)

I0
2nUtaCf

(

1 − χA− nUt

Vdd

)

(6.21)

At room temperature, nUt is about 0.04V (refer to Table 4.9 for the exact value in

the case of STM090 technology). So, even if for instance the optimal supply voltage

will be as low as 0.4V, the ratio nUt/Vdd will be as low as 0.1 or even lower for higher

optimal V dd. For this reason, we consider this term negligible compared to 1 − χA.

This is a mandatory approximation in order to be able to decouple V th and V dd.

The optimal V th can finally be calculated:

eV th/nUt ∼=
I0

2nUtaCf
(1 − χA) (6.22)

V opt
th

∼= nUt ln

(

I0
2nUtaCf

(1 − χA)

)

with: χα =
kt · C · f · LD
I0
(

e
αnUt

)α (6.23)
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Eq. (6.23) shows the influence of architectural parameters (like a, LD [included

in χ], f) and technology parameters (like I0, n, C, α, kt) to the optimal threshold

voltage V th.

Consider a 16 bit Wallace multiplier with the following properties:

Technology STM090 SVT

Nominal Dynamic Power 693.28 µW

Nominal Static Power 9.90 µW

Nominal Activity 0.267

Nominal Frequency 100 MHz

Nominal Max Delay 2.38 ns

Nominal Supply voltage 1 V

Nominal Threshold voltage 0.353 V

Table 6.4: Parameters of a 16 bit Wallace multiplier

Fig. 6.6 shows the optimal V th vs. activity for the multiplier described in Ta-

ble 6.4, while maintaining the other architectural parameters constant.
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Figure 6.6: Optimal V th vs. activity

The optimal V th has been calculated in two separated ways. The former, called

analytical approximation on the plot, is the direct use of Eq. (6.23) with V dd1/α lin-



54 Chapter 6. Total power comparison for free Vdd and free Vth

earized over the interval [0.3V;1V], whereas the second, called numerical computation

on the plot, is obtained with a high resolution numerical computation based on the

non-approximated Eq. (6.1) and Eq. (6.3).

The first remark on Fig. 6.6 is that the error of the approximation remains lower

than 5% for the proposed range of activities.

Another interesting point is the shape of the curve optimal V th vs. a. In fact, we

can observe how V thopt increases for low activity, while it decreases for high activities,

as already noted on Fig. 6.2. Moreover, it is visible that for high activities, V thopt

becomes almost constant or varies only very slightly.

A similar graph is found in Fig. 6.7, but this time with the frequency as a variable

parameter, while the other parameters are kept constant.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

frequency [MHz]

O
p

ti
m

a
l V

th
[V

]

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

frequency [MHz]

E
rr

o
r 

in
 p

e
rc

e
n

t

Analytical approximation

Numerical computation

Figure 6.7: Optimal V th vs. frequency

As expected, the increase of the working frequency results in a reduction of the

optimal V th. In fact, in order to achieve the higher frequency, V th is reduced to

obtain a larger (V dd− V th).

The last optimal V th graph is Fig. 6.8 and it shows the optimal V th vs. the logical

depth (LD).

It is important to note that the optimal V th is almost insensitive to the logical

depth. This can be quite surprising, but it is explained by the important change in
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Figure 6.8: Optimal V th vs. logical depth

the optimal V dd (refer to the next section), which “absorbs” almost completely the

changes in the logical depth.

In the case where the nominal technology values of V dd, V th, Pdyn and Pstat

are known, Eq. (6.23) can be also written as:

V opt
th

∼= nUt ln

(

Pstatnom

Pdynnom

V nom
dd e(V th0nom−ηV ddnom)/nUt

2nUt
(1 − χA)

)

(6.24)

6.3.2 Optimal supply voltage derivation

Once the optimal V th has been calculated, the derivation of the optimal V dd is very

simple thanks to Eq. (6.15). In fact, by simply replacing the expression of V thopt,

Eq. (6.25) and Eq. (6.26) can be obtained.

V opt
dd

∼=
nUt ln

(
I0

2nUtaCf
(1 − χA)

)

+ χB

1 − χA
with: χα =

kt · C · f · LD
I0
(

e
αnUt

)α (6.25)

V opt
dd

∼=
nUt ln

(

Pstatnom

Pdynnom

V nom
dd e(V th0nom

−ηV ddnom)/nUt

2nUt
(1 − χA)

)

+ χB

1 − χA
(6.26)
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To discuss the validity of this approximation, we can reconsider the circuit de-

scribed in Table 6.4. Fig. 6.9 shows the optimal V dd for different activities. The

values of V ddopt are calculated in two ways. The analytical approximation is based

on Eq. (6.25), whereas the numerical computation is based on the non-approximated

equations (6.1) and (6.3).
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Figure 6.9: Optimal V dd vs. activity

From Fig. 6.9, we can see that, for the chosen range of activity, the error remains

smaller than 5%. Moreover, by looking at the shape of the V ddopt curve, we observe a

trend very similar to the one for V th. Actually, the increase of activity reduces both

V thopt and V ddopt in a similar way. This can be explained by the fact that a change

in activity doesn’t modify the timing constraints, and hence the difference V dd−V th
(cf. Eq. (6.2)) remains almost unchanged.

A similar graph can be plotted for the frequency as the free variable. This situation

is represented by Figure 6.10.

It is interesting to note the shape of the V ddopt(f) curve. For the high frequencies

the behavior corresponds to what we would expect, in fact the reduction of the working

frequency allows a reduction of the optimal supply voltage (which correspond to an

increase of the optimal threshold voltage), but for low frequencies the optimal V dd

starts to increase again. This behavior comes from the high increase of the optimal
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Figure 6.10: Optimal V dd vs. frequency
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Figure 6.11: Optimal V dd vs. logical depth

V th in this zone. In fact, to avoid a weak inversion regime (V dd < V th), V ddopt
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needs to increase in order to maintain the difference V dd− V th positive.

The last graph of the optimal V dd is reported in Fig. 6.11. There, V ddopt is

plotted versus the logical depth. This curve shows an almost linear behavior. In fact,

as stated before, the change in the timing requirements resulting from the change in

the logical depth affects almost exclusively the optimal V dd whereas the optimal V th

remains quite constant (cf. Fig. 6.8).

Finally, we can say that frequency mainly affects the optimal V th, logical depth

mainly affects the optimal V dd, and activity affects both of them.

6.4 Optimal total power

From what has been developed in the previous pages, it is now possible to obtain

some approximations of the optimal total power consumption. Unfortunately, due

to the transcendental nature of the involved equations, no exact formula exists to

determine the optimal Ptot. Nevertheless, with the help of a few basic assumptions,

approximated equations can be found. In the next sections, two different approaches

are proposed. The former develops a rough way to compare architectures that present

similar values of k1 (≡ optimal Pdyn/Pstat), whereas the latter is a much more precise

approximation for an absolute optimal total power estimation.

6.4.1 Optimal power comparison with k1 constant

For this first derivation, the assumption is done that k1 is constant or at least varies

very few. This rough approach can be used as a quick way to compare the optimal

total power consumption of two (or more) circuits having very similar characteristics

in the sense of a similar k1 (≡ optimal Pdyn/Pstat).

The optimal total power can be expressed with k1 as:

Ptotopt = Pdynopt
(

1 +
1

k1

)

(6.27)

From our experience, typical values of k1 span from 3 to 7 considering very different

architectural blocks like multipliers, adders, counters, shift registers, FIR, micropro-

cessors, etc. In the case of circuits with similar functions and working conditions,

k1 can be considered constant, at least for a first rough approximation. Just as an

example, ten different 16bit multipliers (7 RCA variations and 3 Wallace variations)

implemented in a STM 90nm technology and with a working frequency of 33 MHz

have a k1 included in the range between 4.22 and 4.69.
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To fix the ideas, the error introduced by a ∆k1 6= 0 can be calculated:

∆Ptot =
∂

∂k1
Pdyn

(

1 +
1

k1

)

∆k1 = −Pdyn∆k1

k12
= −Ptot ∆k1

k1(k1 + 1)
(6.28)

Or:

∆Ptot

P tot
= −∆k1/k1

k1 + 1
(6.29)

Practically, Eq. (6.29) means that the relative error (∆k1/k1) introduced by a non

constant k1 has an effect divided by k1 + 1 on the optimal total power Ptot. Hence

the worst case ∆Ptot/P tot in our example of the ten 16 bit multipliers presents an

error of about 2.1%.

Thanks to the constant k1 hypothesis, the optimal total power consumption com-

parison is now reduced to the comparison of the optimal dynamic power (Pdyn).

Ptot′
?
< Ptot (6.30)

Pdyn′
(

1 +
1

k1

)
?
< Pdyn

(

1 +
1

k1

)

(6.31)

Pdyn′ ?
< Pdyn (6.32)

a′C ′N ′f ′V ′2
dd

?
< aCNfV 2

dd (6.33)

V ′
dd

?
< Vdd

√

aCNf

a′C ′N ′f ′
(6.34)

The parameters with an apostrophe (’) correspond to the new architecture which

is compared to a reference design (no apostrophe).

Parallelization example

To better understand the usefulness of Eq. (6.34), let us apply it to the case of a circuit

parallelization. Table 6.5 reports the typical architectural parameter variations in the

case of a P times parallelization.

In a parallelization process, the number of cells is more than P times the original

one due to the overhead introduced mainly by the multiplexer and the additional

registers required to maintain a valid data on both blocks. We can define the Dynamic

OverHead (DOH) as the relative increment of the dynamic power due to this overhead

at nominal conditions (i.e. Pdyn′
nom = (1 +DOH)Pdynnom).
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Symbol Name Effect of parallelization

a activity ≈ /P

N number of cells ≈ *P+ overhead

LDeff effective logical depth /P

f frequency unchanged

Table 6.5: Effect of parallelization on architectural parameters

From Eq. (6.34) we now know that in order to reduce the optimal power consump-

tion through parallelization, the following expression must be respected:

V ′
dd

!
< Vdd/

√
1 +DOH (6.35)

With V ′
dd the optimal supply voltage after the parallelization and Vdd the optimal

supply voltage before parallelization.

On the other hand, the optimal V th, which depends mainly on activity, can be

approximated as (from Eq. (6.23)):

V th′ ∼= V th+ nUt lnP (6.36)

With V th′ the optimal threshold voltage after parallelization and V th the optimal

threshold voltage before parallelization.

Moreover, from Eq. (6.3) we can write:

V ′
dd − V ′

th

V
′1/α
dd

= χ′ = χ/P 1/α =
Vdd − Vth

P 1/αV
1/α
dd

(6.37)

The combination of Eq. (6.35), Eq. (6.36) and Eq. (6.37) yields:

χ
!
>

(

P
√

1 +DOH

Vdd

)1/α (
Vdd√

1 +DOH
− Vth − nUt lnP

)

(6.38)

All parameters in Eq. (6.38) refer to the design before parallelization. Hence, to

know if a circuit can reach a lower optimal total power through parallelization it is

sufficient to check that the previous inequality is respected.

In the same way, it is possible to determine the maximal value of DOH that still

allow power savings when parallelization is performed.
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Pipelining example

The same approach can be carried out in the case of a pipelining transformation. The

effect of a typical pipelining transformation to the architectural parameters is shown

in Table 6.6.

Symbol Name Effect of parallelization

a activity ≈ unchanged

N number of cells + registers overhead

LDeff effective logical depth /pf

f frequency unchanged

Table 6.6: Effect of pipelining on architectural parameters

Ideally, the critical path would be divided by two (or by the number of pipelining

stages in general) through a register bank insertion. Unfortunately, this ideal factor

is practically never achieved because it is rare to be able to split the path exactly in

the middle. For the sake of generality, the factor pf (pipeline factor) is introduced.

Its value represents the achieved ratio between the logical depth before and after the

pipeline transformation.

Unlike the parallelization, the activity on a pipeline transformation remains almost

unchanged, even if a small reduction could be observed due to less glitches. This will

also mean that the optimal threshold voltage after the transformation is practically

the same as before:

V th′ ≈ V th (6.39)

With V th and V th′ the optimal threshold voltage before and after the transfor-

mation respectively.

The overhead in a pipeline structure comes from the registers banks inserted in

the data path to cut it in different segments. Like before, this overhead is considered

as a dynamic power overhead and will be represented by the variable DOH (defined

before). So, the condition on the optimal supply voltage remains the same as for the

parallelization, i.e.:

V ′
dd

!
< Vdd/

√
1 +DOH (6.40)

Once more, a third condition can be obtained from Eq. (6.3):

V ′
dd − V ′

th

V
′1/α
dd

= χ′ = χ/p
1/α
f =

Vdd − Vth

p
1/α
f V

1/α
dd

(6.41)
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The combination of Eq. (6.39), Eq. (6.40) and Eq. (6.41) gives:

pf

!
>

1√
1 +DOH

(

Vdd − Vth

Vdd/
√

1 +DOH − Vth

)α

(6.42)

Or:

χ
!
>

(

pf

√
1 +DOH

Vdd

)1/α

(Vdd/
√

1 +DOH − Vth) (6.43)

Or even:

χ
!
>

(

pf

√
1 +DOH

Vdd

)1/α
Vdd − Vdd/

√
1 +DOH

(pf

√
1 +DOH)1/α − 1

(6.44)

If one of the conditions in Eq. (6.42) or Eq. (6.43) or Eq. (6.44) is respected,

pipelining the design is worthwhile from a optimal total power point of view.

Considering both the results for parallelization and pipelining, we can say that

these transformations are more effective for large logical depths or high frequencies.

Moreover, new technologies will tend to reduce the value of χ, making pipelining and

parallelization less interesting techniques.

If we want to compare parallelization against pipelining, we can use Eq. (6.38)

and Eq. (6.43). The two equations are very similar. If we consider that nUt lnP is

much smaller than Vdd/
√

1 +DOH − Vth, which is in general the case, and we also

assume that both transformations have the same DOH, we can compare paralleliza-

tion against pipelining by simply comparing the parameter P against pf . As we have

seen before, pf is always smaller than the ideal factor which would correspond to the

number of stages. So, for the same degree of pipelining and parallelization, pf will

always be smaller than the factor P . For this reason we can conclude that the condi-

tion in Eq. (6.43) will be easier to fulfill compared to Eq. (6.38), making pipelining a

preferred transformation against parallelization.

6.4.2 Absolute optimal total power

The previous section illustrates a rough approximation to quickly compare architec-

tures with a similar k1. Even if this approach can be useful, we would sometimes

prefer to be able to estimate the absolute value of the optimal total power, rather

than by comparison with other architectures.

With Eq. (6.23) and Eq. (6.25), we are able to calculate the optimal total power,

but it could be useful to be able to express the optimal total power directly from the
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architectural and technology parameters. This would avoid the need to pre-calculate

the optimal threshold and supply voltage and would permit to better understand the

influence of the architectural and technology parameters on the optimal total power.

Let us start by including Eq. (6.23) in the total power equation:

Ptot = aCNfV 2
dd +NVddI0e

−V th
nUt (6.45)

= aCNfV 2
dd + 2Vdd

nUtaCNf

1 − χA
(6.46)

= aCNf

(

V 2
dd + 2Vdd

nUt

1 − χA

)

(6.47)

Eq. (6.47) shows a term in V 2
dd and a term in 2Vdd. This means that two of the three

terms of the square development of (a + b)2 = a2 + 2ab + b2 are present. Supposing

that the missing term (b2) is very small compared to the sum of the other two, then

the development can be reversed.

Ptot = aCNf

(

V 2
dd + 2Vdd

nUt

1 − χA

)

(6.48)

≈ aCNf



V 2
dd + 2Vdd

nUt

1 − χA
+

(

nUt

1 − χA

)2


 (6.49)

= aCNf

(

Vdd +
nUt

1 − χA

)2

(6.50)

The approximation that has just been used is the same as the one used to obtain

Eq. (6.23), namely that nUt/Vdd ≪ (1−χA). The validity of this approximation can

be verified in the practical cases reported in the next chapters.

Finally, the expression of the optimal supply voltage (Eq. (6.25)) can be inserted

in Eq. (6.50) to obtain the optimal total power formula.

Ptotopt ∼=
aCNf

(1 − χA)2

[

nUt

(

ln

(

I0
2nUtaCf

(1 − χA)

)

+ 1

)

+ χB

]2

(6.51)

Eq. (6.51) is a fundamental equation, in fact it permits to analytically estimate an

approximation of the optimal total power directly from architectural parameters like

activity (a), number of cells (N), frequency (f), logical depth (LD, included in χ) and

technology parameters like transistor reference current (I0), sub-threshold slope (n),

alpha power law coefficient (α, include in A and B), delay coefficient (kt, included in
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χ) and average capacitance C. The detailed discussion of the influence of these two

families of parameters on the optimal total power consumption will be carried out in

the next two chapters.

An alternative expression for the optimal total power can also be obtained by com-

bining Eq. (6.50) with Eq. (6.11). The resulting formula illustrates the relationship

between the optimal total power and k1:

Ptotopt ∼= aCNf

(

nUt

1 − χA

)2

(2k1 + 1)2 (6.52)

6.5 Summary

In this chapter, we have discussed the existence of a total power consumption optimum

characterized by a trade-off between dynamic and static power contributions. We have

also seen that typical values of k1 (optimal Pdyn over optimal Pstat ratio) are between

3 and 7.

After that, we have developed models for the optimal supply voltage and optimal

threshold voltage, showing that frequency modifications mainly influence V th, logical

depth modifications mainly affect V dd, whereas activity modifications have impacts

on both of them. Then, a total power comparison based on the rough assumption of

a quasi-constant k1 revealed that pipelining and parallelization are more effective for

large logical depths and high frequencies and that new technologies (which will tend

to have lower χ) will make these two transformations less interesting. Finally, we

observed that the condition for achieving a power saving through pipelining is more

easily fulfilled than the one for parallelization.

In the case where an absolute estimation of the optimal total power is required,

the expression of an approximated closed-form equation has been given.

The most important equations provided in this chapter are summarized below to

permit a quick access.

Starting from:

Ptot = Pdyn+ Pstat = aCNfV 2
dd +NVddI0e

−V th
nUt

V opt
th = V opt

dd − χ · (V opt
dd )1/α with: χα =

kt · C · f · LD
I0
(

e
αnUt

)α
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we obtained:

V opt
th

∼= nUt ln

(

I0
2nUtaCf

(1 − χA)

)

∼= nUt ln

(

Pstatnom

Pdynnom

V nom
dd e(V th0nom−ηV ddnom)/nUt

2nUt
(1 − χA)

)

V opt
dd

∼=
nUt ln

(
I0

2nUtaCf
(1 − χA)

)

+ χB

1 − χA

∼=
nUt ln

(

Pstatnom

Pdynnom

V nom
dd e(V th0nom

−ηV ddnom)/nUt

2nUt
(1 − χA)

)

+ χB

1 − χA

Ptotopt ∼=
aCNf

(1 − χA)2

[

nUt

(

ln

(

I0
2nUtaCf

(1 − χA)

)

+ 1

)

+ χB

]2
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Chapter 7

Architectural impact on total

power

Many architectural parameters, e.g. activity a, number of cells N , logical depth LD

(contained in χ), influence the optimal total power consumption (Eq. (6.51)). Know-

ing the effect of an architecture transformation (e.g. pipelining or parallelization) on

such parameters allows to directly determine if a power saving can be obtained, just

by using Eq. (6.51).

To discuss the impact of architectural modification on the optimal total power

consumption, a set of thirteen 16 bit multipliers (described in details in Chapter 5)

was designed in VHDL and synthesized using Synopsys Design Compiler (V2004.06).

The library used for the synthesis was the 90nm CMOS090GPSVT from ST Micro-

electronics.

The data characterizing these thirteen multipliers at their nominal values (the ones

provided by Synopsys DC) are reported in Table 7.1. Every multiplier works with a

frequency able to generate one completed multiplication every 16ns. This means, for

instance, that the 16 bit sequential architecture requires a local clock period of 1ns,

whereas the 2 times parallelized implementation has 32ns of time per block.

The definitions of the parameters reported in Table 7.1 are:

• Cells: the number of design cells. One cell can be a very simple one (like an

inverter) or a complex one (like a full adder);

• Nets: the number of inter-cells nets in the design;

• Area: the area of the design core; pads and routing spaces are not included;

• Activity: the average number of switching nets over the total number of nets per

clock period. These values are obtained by an event-driven simulation under

67
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ModelSIM (from MentorGraphics). The results are based on the multiplica-

tion of uniformly distributed pseudo-random data during 2µs; Standard library

delays are used so that glitches can be accounted;

• Delay: the typical combinatorial delay from register output to register input on

the critical path;

• LD eff: the effective logical depth in equivalent NAND2 gates. The term “ef-

fective” is related to the fact that the length of the logical depth is considered

against the throughput frequency or one-complete-multiplication frequency. In

the case of a parallelization, for instance, LD eff corresponds to half of the real

LD because each block has two clock periods to compute one multiplication.

Similarly, in the case of the sequential implementation, the LD eff represents 16

times the real LD because to complete one multiplication, 16 1ns clock periods

are required. The delay of the reference NAND2 gate has been estimated by

building a 1000 NAND2 inverter chain. The inversion effect has been obtained

by tying the two inputs together. The resulting delay per gate is 33.5ps for the

SVT transistor type;

• χ and χα: these two parameters are obtained by using Eq. (6.3) from the nominal

V dd, V th and delay. These parameters are reported there to be easily accessible

during the following discussions;

• Nominal Vdd: the nominal technology supply voltage;

• Nominal Vth0: the nominal technology threshold voltage;

• Nominal Pdyn: the nominal dynamic power consumption as reported by Syn-

opsys DC;

• Nominal Pstat: the nominal static power consumption as reported by Synopsys

DC;

• Nominal Ptot: the nominal total power consumption obtained by summing the

nominal Pdyn and the nominal Pstat.

With the data reported in Table 7.1, the optimal supply voltage V dd and the

optimal threshold voltage V th can now be calculated. The values of V dd and V th

in Table 7.2 are obtained in two different ways. In the first case, called numerical

computation, a high resolution numerical search of the optimal supply and threshold

voltage is used. This approach is very time consuming and requires the calculation of
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a high number of total power consumption for a large amount of couple (V dd, V th)

(100’000 in our case) using the non approximated equations described in Chapter 3.

Moreover, such type of calculation doesn’t permit to understand the real effect of

each parameter on the final result. However, results calculated in this way are precise

(up to the precision of models used) and for this reason they will be considered as

a reference to be compared to the other approach which is based on Eq. (6.23) and

Eq. (6.25) and is called analytical approximation. In this latter case, the optimal V dd

and the optimal V th can easily be calculated from the values reported in Table 7.1.

The error between the reference data (numerical computation) and the analytical

approximation is also reported in the same table. All the errors remains bounded to

a few percent.

In Fig. 7.1 and Fig. 7.2, the same results are reported in a graphical manner,

making it easier to read.
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Figure 7.1: Optimal Vdd calculated with numerical computation (STM 90nm,

62.5MHz) using Eq. (6.25)
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Figure 7.2: Optimal Vth calculated with numerical computation (STM 90nm,

62.5MHz) using Eq. (6.23)

What we can observe from the values of V ddopt and V thopt is, for instance, the

effect of parallelization. In such a transformation, V dd is reduced and V th is increased.

Both trends will favor a lower total power by reducing dynamic and static power at

the same time. It is also interesting to note that the reduction of the supply voltage

is less important for Wallace than for RCA. This can be easily explained by the

lower χ factor of the Wallace implementation. In fact, being the Wallace already a

quick architecture compared to the required frequency (62.5 MHz), the gain from the

reduction of the effective logical depth (LD eff) is only marginal, whereas it is much

more consequent for the RCA multiplier.

It is also possible to observe that V th is almost constant for the pipeline trans-

formation as it was deduced in Chapter 6. Finally, the large delay involved in the

sequential architectures (corresponding to a high χ) clearly shows a high V dd and a

low V th, both negatively impacting the total power.
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Nevertheless, optimal V dd and V th are not mandatory to compute the optimal

total power consumption, thanks to Eq. (6.51). In fact, all required parameters can be

obtained from Table 7.1 without needing intermediate steps. Once more, the results of

our analytical approximation are compared to the numerical computation, where no

approximations are applied. Results are reported in Table 7.2 with the corresponding

errors. The same results are also provided in a graphical way in Fig. 7.3.
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Figure 7.3: Optimal total power calculated with numerical computation (STM 90nm,

62.5MHz) using Eq. (6.51)

It is interesting to see that the errors for Eq. (6.51) over a set of so different

implementations is always less than 3.5%. The second quite evident thing is the
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huge optimal total consumption of the three sequential implementations compared to

non-sequential ones. The explanation for this effect can be found by looking at the

χ factor (Eq. (6.3)). This parameter, which establishes the relationship between the

optimal V dd and the optimal V th, directly depends on the effective logical depth,

which is very large for these three architectures. A large logical depth (i.e. a large χ)

results in a high optimal V dd (which increases the dynamic power in a square way

and the static power linearly), and in a low optimal V th (which increase the static

power exponentially!). Moreover, sequential structures also present large activities.

Because their activity is defined over a period of the throughput clock, it is not

uncommon to observe activities higher than 1. Unfortunately, this high activity (a)

is not counterbalanced by a small enough number of cells (N), which results in a

much higher number of transitions (a · N) compared to the others implementations.

As stated in Eq. (6.51) a large number of transitions also penalize the optimal total

power consumption.

The RCA architecture is based on a very regular structure that permits many

variations to be implemented. Both parallelization and pipelining transformations

shorten the effective logical depth (which correspond to a reduction of χ, although

not proportionally). In this case, the benefit of the relaxed timing constraints permits

to further reduce V dd and increase V th, reducing this way the optimal total power

consumption.

The diagonal pipelined versions present a lower χ and a lower activity compared

to the classical horizontal pipeline versions, and hence they feature a lower optimal

total power consumption. Nevertheless, the gain in power between the two ways

of pipelining is small, and the time spent by the designer to correctly implement a

diagonal pipeline may not be worth the resulting gain in power.

Finally, the Wallace family presents the fastest circuits of our set. By applying a

parallelization to the basic version, we observe that, similar to the RCA family, the

logical depth is reduced and hence χ is also reduced. Once more, this results in a lower

V dd and higher V th, which should be synonymous of power saving. However, if we

look at the resulting optimal power we see that the Wallace basic version has a lower

optimal total power compared to the two parallelized versions. The explanation comes

from the fact that, the Wallace architecture being already a fast circuit (compared

to the desired clock frequency), the reduction of χ obtained by parallelization is only

marginal and its benefit is canceled by the increase of the static power due to the

doubling in hardware and the overhead introduced to multiplex data. This is not the

case for the RCA because its χ is higher. This example illustrates very well how the
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same architectural transformation can yield completely different results. Fortunately,

all these cases are well modeled by Eq. (6.51).

7.1 Summary

In this chapter we have shown how the architectural parameters like activity a, log-

ical depth LD and frequency f can modify the optimal supply voltage V dd, the

optimal threshold voltage V th and finally the optimal total power Ptot of a design.

In particular, we have pointed out how sequential circuits, characterized by very slow

architectures (large LD), really present a huge power consumption compared to the

other designs. Hence, unless a circuit working at extremely low frequency is needed,

sequential implementations are not well suited for low power when working at the

optimal point.

On the other hand, fast circuits (showing a short LD) like Wallace are not inter-

esting for parallelization because the large increase of static consumption, caused by

the hardware replication, easily cancels the poor benefit obtained from the reduced

critical path.

For an architecture with an average logical depth like the RCA, we can observe

that a moderate power gain can be obtained through parallelization, but even in this

case, pipeline transformation reports better results with a much smaller area, which

also correspond to lower production costs.

This leads us to the conclusion that, in designs where the static power consumption

in not negligible, parallelization is rarely a good choice and most of the time pipelining

should be preferred.
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Chapter 8

Technology impact on total power

As explained in Chapter 6, the optimal total power not only depends on architectural

parameters, but it also depends on technology parameters. In the past, it was in

general not possible to change these parameters, because the designer had a given

technology to use and was not able to modify them. This may change in the future.

Until now, new technology nodes always presented better performances and a better

power characteristics compared to the precedent ones, but nowadays, with the high

increase in leakage current, performance gain can correspond to a power lost. For

this reason, the technologies start now to exist under different “flavors”, which are in

general characterized by their V th. For instance, the technology used in this thesis

presents three different types of transistors, namely Low Vth (LVT), Standard Vth

(SVT) and High Vth (HVT). Moreover, two of these three kinds can be implemented

together on the same chip. Under such conditions, it is interesting to determine,

between the proposed flavors, the best suited for a required work. Before that, we will

consider the virtual case where the technology parameters could be freely modified in

an independent way. This will permit us to understand the influence of each parameter

to the optimal total power.

8.1 Technology as a free parameter

In general, technology parameters (I0, n, α, kt, C) are not independent and the

variation of one of them results in a variation of others. Nevertheless, to understand

the importance and the effective influence of a specific parameter, it is useful to

observe how the total power is modified by single parameter variations. This is shown

in Fig. 8.1 for a RCA 16 bit multiplier. The nominal case (no technology parameters

variations) corresponds to the RCA basic structure reported in Table 7.1.
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The abscissa represents the ratio of the new (modified) parameter over the original

one, while the ordinate represents the optimal total power consumption.

The most sensitive parameter is α. This parameter comes from the alpha power law

fitting formula and it represents the velocity saturation of electrons/holes. Typically,

switching to a newer (finer) technology corresponds to a lower α. From Fig. 8.1,

we can see how this is penalizing for the optimal total power. Actually, a low α

will correspond to a reduced Ion current, which also means a slower technology. In

practice, the speed reduction caused by α is largely counterbalanced by the reduced

capacitances and kt.

Moreover, it is interesting to observe that an increase of I0, results in a very

moderate power saving. The explanation comes from the fact that a bigger I0 not

only increases the static power, but also increases the on current by the same amount.

Hence, it results that the speed related parameter χ is reduced, achieving a moderate

gain. Conversely, the reduction of I0 can highly penalize the total power. Once again,

the delay increase easily explains this behavior.

The behavior of the capacitance C or delay parameter kt is not really surprising.

In fact, an increase of C means an augmentation of the delay (like for kt) and so a

worst optimal total power.

Finally, the curve of n shows a important increase of the optimal total power for

an increase of the parameter and vice-versa. In fact, an increase in the factor n is

equivalent to a reduction of V th, i.e. an increase of the leakage current.

To summarize, the ideal technology would be characterized by a low C, kt and n,

whereas I0 and α should be as high as possible. This may not be the trend in coming

technologies, for instance in the case of α.

8.2 Application to technology selection

The 90nm technology from ST Microelectronics is available with 3 different transistor

types (LVT; SVT; HVT). The optimal total power consumption for the 13 multipliers

of Chapter 5 has been calculated for all existing flavors. Table 8.1 shows the results.

By looking at the bold values, which represent the best technology choices for a given

architecture, we can see that the best transistor type is not always the same. In

particular, the HVT is the best for 6 cases, the SVT the best for 5 cases and the LVT

is the best for 2 cases.

To better illustrate these results, they have been plotted in Fig. 8.2. Data cor-

responding to the sequential versions are omitted to permit a better reading of the



80 Chapter 8. Technology impact on total power

Optimal Ptot [µW ]

Design Name LVT SVT HVT

RCA basic 197.43 181.70 182.11

RCA parallel 179.39 148.27 152.53

RCA parallel 4 176.46 137.84 135.16

RCA horiz. Pipeline 2 151.93 132.25 128.06

RCA horiz. Pipeline 4 142.77 120.23 113.34

RCA diag. Pipeline 2 143.44 128.81 129.81

RCA diag. Pipeline 4 136.82 111.82 112.03

Wallace basic 80.26 83.11 96.95

Wallace parallel 104.17 87.56 81.13

Wallace parallel 4 121.57 95.53 85.98

Sequential basic 1547.98 1015.17 1007.49

Sequential-wallace 358.37 495.88 483.10

Sequential parallel 2 620.49 434.92 486.46

Table 8.1: Optimal total power consumption of thirteen 16 bit multipliers in all STM

90nm technology flavors. The bold values represent the best technology choice for the

given architecture.

other cases.

Looking at the data for the three Wallace implementations, we can observe the

effect of parallelization in different technology conditions. If we consider the HVT

type (high Vth, hence low static power), we see that the parallelization of the basic

implementation is interesting from a power point of view because doubling the hard-

ware (so doubling the static power) is not so negative compared to reduction of the

supply voltage and the increase of the threshold voltage coming from the relaxed tim-

ing constraints. Nevertheless, if the transformation is iterated one more time, leading

to the Wallace parallel 4, the power figure is now starting to degrade, because V dd

and V th are now only slightly modified, whereas the static power is doubled compared

to Wallace parallel 2.

In the case of the SVT (standard Vth) the 2 times parallelization is already a bad

transformation for low power, getting even worst in the 4 times parallelized version.

This can be explained by a greater static power compared to the HVT, which penalize

all types of parallelization for the Wallace structure.

Finally, the results for LVT (low Vth, hence high static power) clearly show an

important increase of the optimal total power for each parallelized version. Once more,

it is the doubling (or multiplying by 4) of the hardware that cannot be tolerated in a
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Figure 8.2: Optimal total power consumption of ten 16 bit multipliers in all STM

90nm technology flavors

flavor with so much leakage.

On the other hand, the parallelization of the RCA family remains interesting for all

the three transistors types. This can be explained by the fact that the RCA multiplier

has a longer logical depth and hence a higher χ compared to the Wallace. For this

reason, the parallelization has a much important effect on the reduction of V dd and

the increase of V th which can overcome the increase of hardware and hence of static

power.

From Fig. 8.2, it is also possible to note that the pipeline transformations on the

RCA multipliers present a better power consumption compared to the parallelized

versions. This comes from the fact that pipelining can reduce the timing constraints

without the need of doubling the static power due to hardware replication. It is hence

possible to conclude that for technologies characterized by important leakage power,

this situation being probably representative of all future technologies, pipelining needs

to be preferred over parallelization. This also needs to be understood by the CAD

programmers in order to include powerful automated pipelining tools that will replace

the present massively parallelization-based algorithms.

Considering all the architectures and transistors types, the best choice for a fre-

quency of 62.5MHz is the Wallace basic implemented with a LVT transistor flavor.
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8.3 Discussion on the modifiability of Vth

All the theory developed in the last chapters considers V th as a freely modifiable

parameter. This is not the way people normally think about the threshold voltage,

probably because the modification of V th is not an easy task. In the precedent section,

we discussed the possibility to select the best technology flavor from a set of given

ones. This does not allow a continuous modification of the V th, but still permits

to modify it in a discrete way. An important drawback of such an approach is that

the V th cannot be dynamically modified to follow the various runtime needs. In this

section, two other possible ways to interact with the threshold voltage are presented.

8.3.1 Body biasing

In Chapter 2, we discussed the body effect showing how a voltage between the body

and the source of a transistor (V bs) can modify the threshold voltage. The body

biasing equation is replicated there:

V th = V th0 − ηV ds− γV bs (8.1)

With η the DIBL effect coefficient and γ the body bias coefficient.

This is clearly a simplification of the relationship between V th and V bs, but it

is useful to understand the principle. In a more precise way, the body bias can be

modeled by [57]:

V th(V bs) = V th(V bs = 0) −
√

2qǫSNA

C0

(√

2ψB + V bs−
√

2ψB

)

(8.2)

With q the elementary charge, ǫS the silicon permittivity, NA the acceptor impurity

density in the channel, C0 the gate oxide capacitance per unit area, ψB the Fermi

potential and V bs the voltage between body and source.

From Eq. (8.2), we observe that the ability to modify V th is more efficient for V bs

near zero, whereas it decreases in a typical square root way for larger values of V bs.

Moreover, the pre-factor
√

2qǫSNA/C0 tends to be smaller with newer technologies

due to the reduction of the oxide thickness and hence the range where V th can be

modified will tend to be reduced on all new technology nodes.

Another important point is the sign of V bs. In fact, the body can have a potential

higher or lower than the source. When the body potential is higher than the source for

the NMOS and lower than the source for the PMOS, the polarization is called forward
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body biasing (FBB) and it corresponds to a reduction of the threshold voltage. The

contrary, i.e. the body potential lower than the source for the NMOS and higher than

the source for the PMOS, is called reverse body bias (RBB) and results in an increase

of V th.

If the RBB have no limit on the maximal V bs other than the maximum reverse-

bias junction potential, this is not the case for FBB. In FBB, if the potential goes

over 0.5V the p-n junction between body and source will start to conduct, creating a

very high current flow. For this reason, FBB always needs to be lower than 0.5V.

Just as an example, a FBB of 0.5V (the maximum applicable) on the 90nm STM

SVT technology shows a V th reduction of only 40 mV, whereas the same FBB corre-

spond to a V th variation of 60mV for the 130nm STM technology.

H. Ananthan & al. showed in [58] [59] that the FBB has the advantage to reduce

the sensitivity of V th to variations in gate length, oxide thickness and channel doping

and it is hence preferable to RBB.

The principles of body bias has been successfully applied in circuits like the

150MHz discrete cosine transformation core processor of Kuroda et al. [60], the

200MHz processor of Mizuno et al. [13] and the 1Ghz router of Narendra et al. [61]

8.3.2 Transistor size modification

Another way to modify the threshold voltage of a transistor is by modifying its physical

dimensions. The important dimensions of the transistor are the width (W) and the

length (L) of its channel.

Fig. 8.3 (NMOS) and Fig. 8.4 (PMOS) show the plots of V th versus W for the

130nm STM (HCMOS9GP LL) technology. These graphs are part of the STM docu-

mentation and the details on how to generate them are not known. Nevertheless, these

plots are very useful to understand the behavior of V th under a transistor resizing.

From these graphs, we can remark that the influence of W to the V th presents a

huge asymmetry between the NMOS and the PMOS transistors. In fact, for instance,

the maximal change of V th due to a modification of W from 0.3 µm to 10 µm (which

is a very large modification) corresponds to about 60 mV for the NMOS, whereas

it is of only 6-7 mV for the PMOS. This means that any scaling of the device will

create a completely unbalanced charging/discharging delays that will result in high

shortcut currents, not mentioning the capacitances increase due to bigger channel

area. Although the modification of channel width is probably not the best technique

to modify the V th, it is reported here for completeness.

The other modifiable size of the transistor is the channel length. In Fig. 8.5
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Figure 8.3: Vth vs. W for a NMOS transistor. Curves correspond to Slow-Slow(SSA),

Typical-Typical(TT) and Fast-Fast(FFA) corners

Figure 8.4: Vth vs. W for a PMOS transistor. Curves correspond to Slow-Slow(SSA),

Typical-Typical(TT) and Fast-Fast(FFA) corners

(NMOS) and Fig. 8.6 (PMOS) the curves of Vth versus L are plotted for the

HCMOS9GP LL 130 nm STM technology. There, we can see that for small increases

of the channel length, both NMOS and PMOS behave in a similar way with a relative

steep slope. This is exactly the idea exploited by Gupta et al. [62]. What they
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propose is to slightly increase (less than 10%) the transistors length L of devices that

are not on the critical path, achieving a static power reduction of about 30% and

delay penalty smaller than 10% in a 130nm technology.

Figure 8.5: Vth vs. L for a NMOS transistor. Curves correspond to Slow-Slow(SSA),

Typical-Typical(TT) and Fast-Fast(FFA) corners

Figure 8.6: Vth vs. L for a PMOS transistor. Curves correspond to Slow-Slow(SSA),

Typical-Typical(TT) and Fast-Fast(FFA) corners
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It is also important to note that transistor size modifications influence more pa-

rameters than simply the threshold voltage V th and the obtained V th modifications

are very moderate. For these reasons, technology flavor selection and body bias are

preferable techniques to use for modifying the sub-threshold voltage V th.

8.4 Summary

In this chapter we have discussed the influence of the principle technology parameters

on the optimal total power. In particular, we have observed that an ideal technology

would be characterized by low C, kt and n, whereas I0 and α should be as high as

possible. Unfortunately, this will probably not be the trend of the future technologies.

Then we have analyzed thirteen different 16 bit multipliers synthesized in the

three different technology flavors proposed by the STM 90nm technology. This il-

lustrates very well how the technology can be used as a design parameter to achieve

the lowest possible total power consumption. In the examples proposed, the best

architecture/technology flavor is the Wallace basic in a LVT transistor type.

Finally, other two methods for modifying the sub-threshold voltage are proposed;

namely body bias and transistor resizing. For both techniques, advantages and limi-

tations have been discussed.



Chapter 9

Total power comparison for fixed

Vdd and fixed Vth

This chapter presents a new methodology allowing to compare several architectures

performing the same function and to select, among them, the one presenting the lowest

total power consumption under fixed supply voltage (V dd), threshold voltage (V th)

and frequency (f) constraints. This situation is much more common to designers

than the one proposed in Chapter 6, because most of the time they cannot choose the

technology to use. Moreover, this approach could be applied in parallel to the free

V dd/V th one. Actually, the best V th and V dd could be chosen for the main block of

the design and all the others will need to adapt. Thanks to the theory of this chapter

secondary blocks can be optimized, too.

The lowest total power consumption, which is closely related to the architecture,

results clearly from a trade-off between static and dynamic power. Static power

reduction leads to the selection of architectures with a small number of cells and not

with a small number of transitions, as it was the case when only dynamic power

reduction was targeted. As an example, this methodology is applied to the selection

of the lowest power consuming architecture among a set of thirteen 16 bit multipliers

(described in Chapter 5). Moreover, by understanding the mechanism behind this

selection, it is possible to propose and implement new architectures that will consume

even less power as reported in Section 9.4.

9.1 Total power comparison

To be able to compare the consumption of two architectures under the same supply

voltage V dd, threshold voltage V th and frequency f , we need a definition of the total

87
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power. Once more, the used equation is the one described in Chapter 3.

Ptot = Pdyn+ Pstat = aCNfV 2
dd +NVddI0e

−V th
nUt (9.1)

The equivalent capacity is roughly related to the average cell capacitance and

could be obtained by dividing the dynamic power consumption by the number of

transitions (a ·N), the squared supply voltage and the working frequency. Therefore

C is not exactly the same for two circuits implementing the same function because it

varies with their respective distribution of activity and capacitance products over the

nodes. The same observation holds for the leakage current I0, which represents an

average static consumption per cell over the entire circuit, although some cells clearly

involve more leakage than others. Considering that the methodology presented here is

applied to the comparison of architectures performing the same task, we assume that

the equivalent capacitance C and the average leakage current I0 remain sufficiently

similar across the set of architectures.

All the architectures in the implementation set share the same V dd, V th and f ,

but present different values for a (activity) and N (number of cells). Two architectures

are characterized by a1 and N1, and a2 and N2 respectively, and their total power

consumption can be compared as follows:

a1N1CfV
2
dd +N1VddI0e

−V th
nUt

?
< a2N2CfV

2
dd +N2VddI0e

−V th
nUt (9.2)

The inequality (9.2) is true if the first architecture consumes less power than the

second one. This equation can be rewritten in the form:

(N1 −N2)
?
< −(a1N1 − a2N2)

CVddf

I0e
−V th

nUt

(9.3)

Then, by defining the difference between the number of cells as ∆N = (N1 −N2)

and the difference between the number of transitions as ∆Tr = (a1N1 − a2N2), we

can finally express this comparison as:

∆N
?
< −∆Tr

CVddf

I0e
−V th

nUt

(9.4)

∆N
?
< −∆Tr ·R(Vdd, Vth, f) (9.5)

The expression R(Vdd, Vth, f) in Eq. (9.5) depends on V dd, V th, f and some tech-

nology parameters, which are imposed to the designer and are hence constant. More-

over, the value of R is always positive.
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Eq. (9.4) shows that the comparison of the total power consumption between two

architectures depends on the difference between the number of cells (∆N) and on

the difference between the number of transitions (∆Tr). This is quite different from

the conventional approach where only the number of transitions is relevant as only

dynamic power consumption is taken into account.

9.2 Comparison of two architectures

A logical function can be implemented in several ways, using different topologies,

for instance by parallelizing, pipelining or performing algorithmic improvements. All

these various structures can be categorized based on their characteristics: number of

cells, logical depth, number of transitions and activity (Table 7.1 is an example of

such a classification). Two architectures can lead to positive or negative ∆N and

∆Tr values while the value of R (Eq. (9.5)) is always positive. If both designs present

the same amount of cells and transitions (i.e. ∆N = 0 and ∆Tr = 0), the power

consumption will clearly be the same. An architecture with more cells and more

transitions will always consume more power, because inequality (9.5) becomes trivial,

i.e. independent of R. Conversely, if one design has more cells but less transitions

compared to the other (i.e. ∆N > 0 and ∆Tr < 0 or vice versa), the choice of the

architecture consuming less power is more complex and depends on R. This means

that the selection will depend on the working conditions too, i.e. on V dd, V th, f and

the technology parameters. All possible cases are summarized in Table 9.1 .

∆Tr > 0 ∆Tr = 0 ∆Tr < 0

∆N > 0 Circuit 2 Circuit 2 Depends on Eq. (9.5)

∆N = 0 Circuit 2 Same consumption Circuit 1

∆N < 0 Depends on Eq. (9.5) Circuit 1 Circuit 1

Table 9.1: Comparison table between two circuits having a difference of ∆N = (N1 −
N2) cells and ∆Tr = (a1N1 − a2N2) transitions. The circuit indicated is the one

presenting the lowest total power consumption

Plotting the lines of equal-consumption (i.e. R(V dd, V th, f) = −∆N/∆Tr) on

the space (V dd, V th) allows a better understanding of the role of R in the architec-

ture selection (Fig. 9.1). These equal-consumption lines delimit the points where two

designs having the corresponding ratio −∆N/∆Tr will present the same power con-

sumption, despite the fact that the absolute value will vary with V dd and V th. For

instance, if two architectures operating at V dd=1 V and V th=0.33 have −∆N/∆Tr



90 Chapter 9. Total power comparison for fixed Vdd and fixed Vth

0
.1

0.1 0.1

0.1

0
.2

7

0.27 0.27

0.27

0
.7

0.7 0.7

0.7

2

2
2

2

5

5
5

5

1
0

10
10

10

2
0

20
20

20

1
0

0

100
100

100

 -(∆N)/(∆Transitions)

Vdd [V]

V
th

0
 [

V
]

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Less transitions is better

Less cells is better

Figure 9.1: Lines of equal-consumption with f = 62.5MHz in a STM 90nm SVT

technology. The Vdd and Vth constraints can be represented with a point on this

plot. A pair of architectures to be compared corresponds to one −∆N/∆Tr line

in this space. If the working point is located above the −∆N/∆Tr line, then the

architecture with less transitions is better in term of power consumption, otherwise

the design with less cells is preferred

= 100, they will present the same total power consumption. Otherwise, when the

design constraints represented by V dd and V th correspond to a point that is above

the equal-consumption line (which would be the case for V dd=1V and V th=0.4V in

our example), the circuit with less transitions will dissipate less power. Conversely,

if the working point is located below the equal-consumption line (which would be

the case for V dd=1V and V th=0.2V), the design with less cells will consume less

power. Actually, increasing V th results in a large decrease in static power, which in

turn leads to a consumption dominated by the dynamic contribution. The architec-

ture with fewer transitions is then naturally preferred. It is important to remember

that the plot of Fig. 9.1 depends on the technology used. Here, the STM 90nm SVT

technology was chosen, which corresponds to an average C/I0 of 1.36E-9 [s/V] and a

working frequency of 62.5MHz.
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9.3 Selection of the best architecture

The methodology illustrated in the precedent section to compare two architectures can

be iterated over a large number of implementations of the same logical function. In this

way, by repeating the comparisons on couples of structures, it is possible to eliminate

the worst architectures and quickly converge to the best design for the specified V dd,

V th and f constraints. It is important to note that the selected architecture is not

always the same, but depends on the values of V dd, V th and f . This methodology

can be used to easily select the better architecture under new constraints without

re-synthesis. Generally speaking, the approach can be summarized as follows:

1. Delay constraints: Given V dd, V th, f , architectures that are too slow to meet

the timing constraints are eliminated. A slow architecture can be parallelized

or pipelined to meet the constraints, but this represents a new architecture to

be added to the set of structures to compare.

2. Compare a couple of architectures: The comparison of two architectures

is achieved using the parameter −∆N/∆Tr. If this value is negative the archi-

tecture with fewer cells and less transitions is chosen (circuit 1 or 2 in Table 9.1

when −∆N/∆Tr is negative). On the other hand, when −∆N/∆Tr > 0, the

choice depends on Eq. (9.5) and therefore on the position of the working point

with respect to the line of equal consumption.

3. Repeat step 2 for all remaining architectures: It can be a good idea to

start eliminating trivial cases (−∆N/∆Tr < 0) in order to reduce the number

of non-trivial comparisons performed by using Fig. 9.1. Elimination of architec-

tures will rapidly converge to a design presenting the overall lower total power

consumption for the given working conditions (V dd, V th, f).

9.4 Designing new circuits

In addition to the above considerations, the same graphical tool can be used to define

guidelines for the design of new architectures (i.e. not yet present in the set of avail-

able architectures) presenting an even smaller total power consumption. First, the

−∆N/∆Tr line that crosses the (V dd, V th) constraint point can be determined from

Fig. 9.1. As a reminder, two architectures having this −∆N/∆Tr share the same

power consumption under these constraints, whereas the architecture with fewer cells

should be favored when this −∆N/∆Tr ratio is higher.
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Starting from an existing design with N1 cells and Tr1 transitions, a new archi-

tecture with less cells (N2 < N1) can be searched for, which will usually present

also more transitions (the trivial case where N2 < N1 and Tr2 < Tr1 would be in

fact always better but rarely realizable). This new version with N2 < N1 cells and

Tr2 > Tr1 transitions will consume less power, if and only if the ratio −∆N/∆Tr

is higher than the one extracted from the line crossing the (V dd, V th) constraints.

Indeed, in this case this line will actually pass above the working point in Fig. 9.1

and the new design with fewer cells will consume less power. Conversely, an architec-

ture presenting a reduced number of transitions (which in general will present more

cells) can be searched for. In this case, the new structure should present a ratio

−∆N/∆Tr smaller than the one that can be read from the line crossing the (V dd,

V th) constraints in Fig. 9.1.

As an example, an existing circuit with 10’000 cells and 100 transitions is work-

ing at V dd=1V, V th=0.24V and f=62.5MHz and a new architecture consuming less

power is sought. Fig. 9.1 specifies that in order to consume less power a new architec-

ture must have a −∆N/∆Tr greater than 10 when reducing the number of cells, or

smaller than 10 when reducing the number of transitions. Supposing that the designer

can achieve a reduction of 1000 cells (N2 = 9000) by an architectural transformation,

he should verify that the number of transitions of this new design is no more than

200 (∆Tr < 100), which is necessary in order to have −∆N/∆Tr greater than 10.

When performing a parallelization, the number of cells is more than doubled (due

to the multiplexer overhead) and the activity is reduced by slightly less than two. In

general, this results in a small increase of the number of transitions and in a large in-

crease in the number of cells. For this reason, parallelized versions will always present

more power consumption than the original design at the same working conditions.

However, when the original architecture does not meet the speed requirements, the

parallelization can relax the timing constraints to achieve the required performances.

This is the only case where a parallelized architecture may be useful when V dd and

V th are fixed.

The same situation arises with pipelining where the overhead due to the extra

registers often largely cancels the activity reduction achieved by suppressing glitches.

At the same time, the number of cells increases due to the same overhead and, as a

result, pipelining a circuit at the same working conditions is in general not interesting.

Nevertheless, the pipelining technique can be used to reduce the logical depth and

hence relax the timing constraints of circuits that do not meet the speed constraints

at the required V dd and V th.
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9.5 Case study: 16bit multipliers

To show how to apply the ideas of this chapter to a practical case, we will, one more

time, refer to the thirteen 16 multiplier described in Chapter 5. The data of the

architectural parameters for all the structures is available in Table 7.1.

Knowing that the key parameters for power discrimination are the number of cells

(N) and the number of transitions (Tr), all architectures can be represented as points

on a plot of N versus Tr (Fig. 9.2). The label on the arcs connecting points stands

for the value of −∆N/∆Tr for the corresponding couple of architectures. Fig. 9.2

allows a very easy detection of trivial cases characterized by −∆N/∆Tr < 0, as the

slope of their arc is positive. Conversely, non-trivial cases present a negative slope.

In Fig. 9.2, only non-trivial arcs are shown.

A. Example 1: Vdd = 1V, Vth = 0.4V, f = 62.5MHz

Applying the methodology described in section 9.3, we have:

1. Delay constraints: All design can work at these conditions.

2. Compare a couple of architectures: Architectures connected by a positive

slope arc in Fig. 9.2, i.e. trivial cases such as RCA parallel 4 against Wallace

parallel 2, are first considered. As RCA parallel 4 presents more cells and more

transitions than Wallace parallel 2, it is eliminated.

3. Repeat step 2 for all remaining architectures:

• By comparing other trivial cases, we can easily eliminate RCA horizontal

pipeline 4, RCA diagonal pipeline 4, RCA parallel 2, Wallace parallel 2 and

Wallace parallel 4 in favor of Wallace. Moreover the RCA diagonal pipeline

2 is eliminated in favor of RCA horizontal pipeline 2 and Sequential parallel

in favor of the basic Sequential.

• The remaining cases are then considered. Looking at RCA and Sequential

in Fig. 9.2, it can be seen that the arc connecting the two structures is

characterized by −∆N/∆Tr = 0.7. On Fig. 9.1, the equal-consumption

line corresponding to this value splits the space in two regions with the label

“less transition is better” on the upper part and “less cells is better” in the

lower part, meaning that at V dd=1V and V th=0.14V the two designs will

consume the same amount of power. However, in our example the working

point corresponding to V th=0.4V lies in the upper part of the plot where
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the better structure is characterized by less transitions. Consequently,

the RCA design is selected. The same reasoning can be applied to the

Sequential-wallace 4 16 architectures which is eliminated in favor of the

RCA. In fact, if the equal-consumption line is located in the lower part of

Fig. 9.1, i.e. at low V th, a working point above this line is dominated by

dynamic consumption rather than static power. For this reason, designs

with fewer transitions will present also less total power dissipation. The

remaining architectures are RCA, RCA horizontal pipeline 2 and Wallace,

but having all low values of −∆N/∆Tr compared to Wallace (1.59 and

10.03 respectively) only the Wallace structure remains.

For V dd=1V, V th=0.4V and f=62.5MHz, the better architecture from a power

point of view is the Wallace. In order to validate the methodology, the total power

consumption of all designs was calculated for the given operating conditions and is

shown in Table 9.2.

RCA RCA par2 RCA par4 RCA horiz.pipe2 RCA horiz.pipe4

735.4 839.5 905.4 681.5 738.3

RCA diag.pipe2 RCA diag.pipe4 Wallace Wallace par2 Wallace par4

724.9 790.1 545.2 650.2 728.1

Sequential Sequential-wallace 4 16 Sequential parallel

2457.2 1094.4 2232.5

Table 9.2: Consumption of the thirteen multipliers in µW for Vdd=1V, Vth=0.4V

and f=62.5MHz.

These values are first obtained at the nominal conditions (V dd=1V, V th0 =

0.353V) and then dynamic and static powers are separately recalculated based on

Eq. (9.1) for the proposed working condition (i.e. V dd=1V, V th=0.4V).

B. Example 2: Vdd = 1V, Vth = 0.12V, f = 62.5MHz

As a second example, we choose a working condition with a very low threshold voltage

(V th=0.12V) and the same supply voltage and frequency as in the previous example.

1. Delay constraints: In this case too, all designs meet the timing constraints.

2. Compare a couple of architectures: As in the previous example, trivial

cases are detected first. Hence, the RCA parallel 4 is eliminated in favor of the

Wallace parallel 2.
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3. Repeat step 2 for all remaining architectures:

• By comparing other trivial cases, we can easily eliminate RCA horizontal

pipeline 4, RCA diagonal pipeline 4, RCA parallel 2, Wallace parallel 2

and Wallace parallel 4 in favor of Wallace. Moreover, the RCA diagonal

pipeline 2 is eliminated in favor of the RCA horizontal pipeline 2 and the

Sequential parallel in favor of the basic Sequential.

• The remaining architectures are: RCA, RCA horizontal pipeline 2, Se-

quential, Sequential-wallace 4 16 and Wallace. As before, the couple RCA

and Sequential is characterized by −∆N/∆Tr = 0.7, which corresponds

to an equal-consumption line on Fig. 9.1. For V dd=1V these architectures

will have the same power consumption if the threshold voltage is equal to

0.14V. As the imposed V th is a little lower (0.12V), it is located in the

region where less cells are preferred. Hence, the Sequential architecture

will be selected. Similar is the comparison between the RCA horizontal

pipeline 2 and the Wallace. With a −∆N/∆Tr of 10.03, we know that the

architecture with less cells is preferred (i.e. the RCA horizontal pipeline 2).

For the same reason, the Sequential-wallace 4 16 will be preferred over the

RCA horizontal pipeline 2. Finally, the comparison between the Sequential

and the Sequential-wallace 4 16 is characterized by a −∆N/∆Tr = 0.27.

From Fig. 9.1 we can see that the equal-consumption line passes under the

working conditions couple (V dd,V th), meaning that the circuit with less

transitions will present the best power figure. Hence, the only remaining

architecture is the Sequential-wallace 4 16.

The results of the methodology indicate that the Sequential-wallace 4 16 is the

circuit presenting the lowest total power consumption for V dd=1V, V th=0.12V and

f=62.5MHz.

RCA RCA par2 RCA par4 RCA horiz.pipe2 RCA horiz.pipe4

4618.5 8571.8 16342.5 4987.5 5898.4

RCA diag.pipe2 RCA diag.pipe4 Wallace Wallace par2 Wallace par4

5070.3 6072.1 4788.5 9082.5 17537.0

Sequential Sequential-wallace 4 16 Sequential parallel

3939.4 3245.1 4857.9

Table 9.3: Consumption of the thirteen multipliers in µW for Vdd=1V, Vth=0.12V

and f=62.5MHz.
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The actual power consumption in these conditions is shown (after calculation) in

Table 9.3, confirming that the Sequential-wallace 4 16 presents actually the lowest

total power consumption.

9.6 Summary

This chapter presented a new design methodology allowing the selection of the ar-

chitecture presenting the lowest total power consumption within a set of equivalent

designs working at the same (fixed) V dd, V th and f . This methodology considers

dynamic power consumption (proportional to the number of transitions), as well as

static power consumption (directly related to the number of cells). An example of

application was reported for thirteen 16 bit multipliers, showing that, depending on

the working condition (i.e. V dd, V th and f), the architecture with the lowest to-

tal power dissipation is not always the same. Moreover, this technique allows the

determination of the architecture presenting the lowest total power consumption for

conditions which are different from the one used during synthesis, without the need

of re-synthesizing all the circuits.
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Chapter 10

Physical implementation of four 32

bit multipliers

In the previous chapters, the models for the optimal total power consumption have

been proposed. In order to validate the reported equations and to reinforce the

drawn conclusions, a physical ASIC implementation has been done. The circuit was

designed to demonstrate both architectural and technology influences to the optimal

total power consumption in the case where the static power consumption also largely

contribute to the total power. This has been achieved with a state-of-the-art 90nm

technology from ST Microelectronics. The main advantage of this technology is the

possibility to integrate, on the same die, 2 different kinds of transistor out of the 3

available. In this way, it is possible to “emulate” the effects of a technology change

on the total power consumption with a single chip.

The implemented design is composed by two 32 bit multipliers (RCA basic and

RCA parallel 4, these structures being described in details in Chapter 5) implemented

once with the Standard Vth (SVT) transistors and once with the Low Vth (LVT)

transistors, giving a total of 4 multipliers.

After a detailed description of the ASIC structure and functionality, this chapter

will present the tools and resources used for the measurements. Then, measured

data will be reported and commented. Finally, a discussion on technology parameter

variations closes the chapter.

10.1 Circuit description

The test ASIC is mainly formed by 4 multipliers corresponding to all possible combina-

tions of two technology flavors (SVT/LVT) with two architectures (RCA basic/RCA

99
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parallel 4). The combinations are:

• mult 0: RCA basic with SVT transistor type;

• mult 1: RCA parallel 4 with SVT transistor type;

• mult 2: RCA basic with LVT transistor type;

• mult 3: RCA parallel 4 with LVT transistor type.

The choice of the RCA as the block to be implemented comes from the need to

have an architecture “slow enough” (in fact, the RCA has a logical depth larger than

the Wallace) to have the expected total power crosses (reported at the end of this

chapter) at relatively low frequency (under 20MHz in this case). This permitted us to

reduce the requirements for the testing tools. Fig. 10.1 illustrates the block diagram

of the test circuit. All multipliers have a data size of 32 bit, which corresponds to 64

output bits. Each multiplier also has a separated power supply in order to be able

to measure its power consumption without including the rest of the circuit. For the

same reason, the clock signal was multiplexed to each block. In fact, in this way, only

the clock tree corresponding to the desired multiplier is accounted during the power

measurements. This clock multiplexing, as well as the multiplier register enables and

the output demultiplexer are controlled by the external signal sel, which is the binary

representation of the number corresponding to the multiplier under test.

To be able to verify the correct functioning of the multipliers over many multipli-

cations, the results are added with the precedents and only the final sum is verified.

Mathematically, the content of the shift register after n multiplications can be ex-

pressed by:

Sum =

[
n∑

i=0

multiplication(i)

]

mod 264 (10.1)

This sum is stored in a 64 bit shift register which permits to serially output the

result externally in order to be checked after the test.

10.1.1 Pseudo-random code generator

The circuit being designed to work at a maximal frequency of 62.5MHz (corresponding

to 16ns of clock period) at nominal conditions (i.e. V dd=1V), it was not possible to

externally generate the input data for the multipliers due to the high throughput

required. Hence, a pseudo-random data generator has been implemented internally.

This generator is based on a linear feedback shift register [63] [64] and is constructed
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as a shift register with some bits logically “xnored” and seeded to the shift register

input. The schematic of the data generator is depicted in Fig. 10.2.

QD QD QD QD QD QD QD QD QD

63 62 61 60 59  3  2  1  0

clk

Figure 10.2: Schematic of the 64 bit linear feedback shift register

The data is 64 bit wide and provides the two 32 bit vectors used as the two inputs

of the multiplier under test.

The particularity of a linear feedback shift register (lfsr) is that all possible codes

are generated in a equally distributed way, without repetitions, until all codes have

passed. The only code never generated , and also the one to be avoided, is the “all-

ones” code, which is a stable code and always generates itself. Another advantage

of this implementation is the fact that the generated sequence is always the same

given the same starting code. In the case of our circuit, the shift register will be reset

prior to every multiplication so that knowing the number of executed multiplications

n permits us to pre-calculate the result of the cyclic adder expressed in Eq. (10.1) and

in this way being able to verify that all the multiplications were executed correctly.

Fig. 10.3 shows the distribution of the generated numbers after 500 and after

10000 clock cycles. In the case of 500 generated numbers, it is possible to observe

a slightly non uniform distribution due to the small number of generated data. If

the amount of generated numbers increases, the distribution of probabilities becomes

more uniform, as shown in Fig. 10.3. It is also interesting to note that, due to the

shift nature of generated data, splitting the 64 bit code in two 32 bit vectors doesn’t

change the probability distribution, actually the new derivated vectors will present

the same probability distribution as the original one. Moreover, the multiplication of

two uniform distribution results in a distribution proportional to ln(1/x) as shown by

the last two graphs of Fig. 10.3.
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Figure 10.3: Probability distribution of the pseudo-random generated data for 500

and 10000 generated data

10.1.2 Ring oscillators

Besides the design described in the Fig. 10.1, two small ring oscillators have been

added to the implemented circuit. One is implemented with inverters based on SVT

transistors, whereas the other is implemented with inverters based on LVT transis-

tors. Both ring oscillators were designed to have an oscillation frequency of 62.5MHz

at nominal conditions, which corresponds to the expected working frequency of the

multipliers under the same conditions. This means:

• ring lvt: 533 inverters (IVLVTX1)

• ring svt: 437 inverters (IVSVTX1)
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10.2 Circuit design and implementation

The design has been written in the VHDL language and the source code can be found

in Appendix A. The synthesis of this code has been done using Synopsys Design

Compiler V2004.06-SP1 and the activity annotation for accurate power estimation has

been obtained with ModelSIM from MentorGraphics version 5.6f. All the Synopsys

scripts can be found in Appendix B.

The technology used for the synthesis is the 90nm from ST Microelectronics. This

technology has been fully described in Chapter 4.

The results of the synthesis are stored in a verilog netlist ready to be used for the

Place&Route (P&R) software. In our case, we used SoC Encounter version 4.10 from

Cadence. The scripts used for P&R are reported in Appendix C.

Finally, the design passed the DRC (Design Rule Check) done using Calibre DRC

from MentorGraphics. The final layout of the circuit is shown in Fig. 10.4.
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Figure 10.4: Final layout of the demonstrator circuit

In Fig. 10.4 we can recognize the two RCA parallel 4 multipliers in the upper part,

the two RCA basic multipliers in the lower left part, whereas the control logic and

the data generator are located in the middle left part. The square block located in
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the bottom right angle is a compensation circuit required to stabilize the IO cells. A

block view of the design in reported in Fig. 10.5.

1

24

23

22

2

3

7654 8 9

1
8

1
9

2
0

2
1

1
7

1
6

12

13

14

15

11

10

Vss_2

Shift_n

Z_svt

Z_lvt

S_out

S_in

Rst_n

Sel_reg

Sel1

Sel0

Vss_g

Vdd_g

V
d

d
_

0

cl
k

V
d

d
_

2

lo
a

d
_

n

V
ss

_
1

V
ss

_
re

f

V
d

d
_

1

V
S

S
_

IO

V
d

d
_

co

V
d

d
_

IO

V
S

S
_

3

V
d

d
_

3

Mult_0

Mult_1 Mult_3

IO_REF_

COMPENSATION

random generator

+ serial interface 

Mult_2

Figure 10.5: Block view of the demonstrator circuit

The pin names and their functions are:

1. Z lvt: Output of the ring oscillator formed by 533 LVT type inverters;

2. S out: Serial output of the shift registers. This output is used to read the

content of the shift registers. From the read value the correct multiplier behavior

can be verified;

3. S in: Serial input of the shift registers. This pin can be used to enter a value

to be multiplied or to verify the correct functioning of the shift registers;

4. Vdd 0: Supply voltage for the multiplier 0 (RCA basic with SVT transistors);

5. Clk: Clock of the system;

6. Vdd 2: Supply voltage for the multiplier 2 (RCA basic with LVT transistors);
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7. Load n: When low, data is loaded in parallel from the p in input into the

shift registers (see Fig. 10.1). This is the typical behavior during the sum and

accumulation process;

8. Vss 1: System ground;

9. Vss ref: System ground;

10. Vdd g: Supply voltage for the IO REF COMPENSATION block (1.0V);

11. Vss g: System ground;

12. Sel0: Bit zero of the sel signal. This signal select which multiplier is under test;

13. Sel1: Bit one of the sel signal. Sel coding is binary;

14. Sel reg: Selector for routing data from the pseudo-random number generator

and to/from the shift registers;

15. Rst n: System asynchronous reset signal, active low;

16. Vdd 3: Supply voltage for the multiplier 3 (RCA parallel 4 with LVT transis-

tors);

17. Vss 3: System ground;

18. Vdd IO: I/O supply voltage (3.3V);

19. Vdd co: Supply voltage for the pseudo-random generator and serial interface

block;

20. Vss IO: IO ground;

21. Vdd 1: Supply voltage for the multiplier 1 (RCA parallel 4 with SVT transis-

tors);

22. Vss 2: System ground;

23. shift n: When low (and load n is high), data in the shift register shifts one bit

on each clock rising edge;

24. Z svt: Output of the ring oscillator formed by 437 SVT type inverters;
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Figure 10.6: Output pad level converter for different core supply voltages. The linear

ramp represents the core supply voltage, the line marked with triangles and constantly

bound to zero is the logical level from the core and the line marked by wide rectangles

is the corresponding IO output.

This circuit being destined to work at very low supply voltage (<0.5V), the level

converter included in the standard output cells is not suited for granting a good level

conversion under this condition as reported by Fig. 10.6.

Actually, in Fig. 10.6 we can observe that, for a core powered with a tension lower

than about 0.45V, the output value jumps to 3.3V whereas 0V should be reported

instead. For this reason the output ports (luckily only 3 ports of the design are

outputs) have been assigned as analog pads and the level conversion has been left to

an external circuit. This problem doesn’t exist for the input ports, in fact, signals

coming with a higher voltage than the core supply are never confused with the “0”

logic level.

10.2.1 Nominal values

The nominal synthesis values, as well as the architectural parameters, for the four

implemented multipliers are reported in Table 10.1.

The definitions of the parameters reported in Table 10.1 are:

• Cells: the number of design cells. Note however that cell can be a very simple
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one (like an inverter) or a complex one (like a full adder);

• Nets: the number of inter-cells nets in the design;

• Area: the area of the design core; pads and routing spaces are not included;

• Activity: the average number of switching nets over the total number of nets

per clock period. These values are obtained by an event-driven simulation under

ModelSIM (from MentorGraphics). The results are based on the multiplication

of pseudo-random data over 500 multiplications; Standard library delays are

used so that glitches can be accounted;

• Delay: the typical combinatorial delay from register output to register input on

the critical path;

• LD eff: the effective logical depth in equivalent NAND2 gates. The term “ef-

fective” is used to emphasize the fact that the length of the logical depth is

considered against the throughput frequency or one-complete-multiplication fre-

quency. In the case of a 4 times parallelization, for instance, LD eff corresponds

to a forth of the real LD because each block has four clock periods to compute

one multiplication. The delay of the reference NAND2 gate has been estimated

by putting 1000 NAND2 as in a chain of inverters. The inversion effect has

been obtained by tying the two inputs together. The resulting delay per gate is

33.5ps for the SVT transistor type and 27.4ps for the LVT;

• χ and χα: these two parameters are obtained by using Eq. (6.3) from the nominal

V dd, V th and delay;

• Nominal Vdd: the nominal technology supply voltage;

• Nominal Vth0: the nominal technology threshold voltage;

• Nominal Pdyn: the nominal dynamic power consumption as reported by Syn-

opsys DC;

• Nominal Pstat: the nominal static power consumption as reported by Synopsys

DC;

• Nominal Ptot: the nominal total power consumption obtained by summing the

nominal Pdyn and the nominal Pstat.
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10.3 Measurements setup

For measuring the power consumption of each multiplier at their limit of function-

ality (i.e. the lowest possible supply voltage guaranteeing correct results for a given

frequency) the following things are required:

• Generate the supply voltages: The circuit requires many different supply

voltages in order to work. The multiplier under test needs a separate supply

voltage. Then, the core logic, containing the pseudo-random data generator and

the cyclic adder, requires a supply voltage at the same potential in order to in-

ternally interface the multipliers without problems. Moreover, the IO controller

IO REF COMPENSATION should always be maintained to 1.0V and finally

the IO pads must be powered with 3.3V.

• Generate the control signals: The circuit requires a clock and a reset signal.

Besides, other signals must be generated in order to select the multiplier under

test and to read/write the shift registers for checking the correct functioning of

the multiplier. All these signals are generated by an Altera FPGA based board.

• Convert output pins to 3.3V logic level: As reported previously, the circuit

outputs (namely Z lvt, Z svt and S out) are implemented as analog signals and

they hence need to be converted to a 3.3V logical level in order to be interfaced

by the FPGA. This is obtained by putting discrete comparator devices on the

output signals.

• Measure the consumed multiplier current independently: Finally, once

the circuit can run, we must be able to measure the consumed current of the

specific multiplier under test. This is accomplished by multiplexing the multi-

plier power supply to the correct multiplier power pins through reed relays. The

advantage of using reed relays is that, the contact being mechanical, virtually

no extra consumption is added to the measure, which would not be the case if

a CMOS multiplexer circuit would be used instead.

10.3.1 PCB design

Fig. 10.7 shows the schematic of the PCB (Printed Circuit Board, designed with

Altium Designer 2004 SP3, formerly Protel) used to interface the demonstrator circuit.

The three connectors J5, J7, J9 are the “bridges” between the PCB and the FPGA

board. On the right of the schematic, we can see the 4 reed relays (K1-K4) used to
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supply the multiplier under test and the corresponding LEDs which provide a visual

feedback on which multiplier is currently selected. On the left bottom corner there

is a small user interface with 4 buttons and 4 LEDs. Two of these LEDs (OK, KO)

are used to show if the content of the shift register was the expected one, i.e. if the

multiplier worked correctly or not. The other buttons/LEDs are there to expand

the functionalities if needed. The comparators (U2, U4, U5), required to convert

the output level of the three output pins Z lvt, Z svt and S out to 3.3V, are visible

on the left part of the schematic with extra connectors (P1-P3, on top) designed

for debugging purpose. The reference voltage defining the separation between the

logical level 0 and the logical level 1 has been obtained with a potentiometer from

the VCORE pin. In this way, the reference voltage will always be proportional to

the supply voltage used for the core. All the chip input signals are connected directly

to the FPGA through J9. The 3.3V is generated from the 5V on the card with a

voltage regulator shown in the top right edge. A stabilized 1.0V source was difficult

to obtain from the 5V as no voltage regulator was found that can provide tensions

so low. For this reason, this supply voltage has be generated using an operational

amplifier used as a voltage follower. In this configuration, the tension set at the input

through a resistor divider is replicated at the output (almost) independently from the

drawn current. This block is shown in the bottom-centered part of Fig. 10.7. Finally,

the multipliers power source is obtained externally by the connector VDDM and the

current drawn is measured by applying a ammeter to the AMP connector. The tension

for the core (which is all the design but the multipliers) can be obtained from VDDM

with the jumper JP1 set or supplied separately by the VCORE connector.

10.3.2 FPGA based signal generation

The FPGA development card used in this work was a Nova Constellation 20 KE

card [65], which is based on a Altera APEX EP20K600EFC672 FPGA. This card has

150 user programmable IOs working at 3.3V. It can be programmed through USB

and JTAG interfaces. A serial programmer is also present, which permits automated

FPGA reconfiguration on power-ups. Moreover, this card supports the SignalTrap II

technology from Altera, allowing registers read back through JTAG during runtime.

This feature is very practical for debugging. The card is powered by 5.0V and an

internal 40MHz clock frequency is present. In our case, an external oscillator will be

used in order to be able to measure the power consumption for different frequencies.

The FPGA code has been written in VHDL and compiled with Altera Quartus II

v6.0 SP1. The source code is reported in Appendix D.
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The FPGA pin assignments are reported in Table 10.2.

Name PIN Name PIN

OK led PIN E13 CHIP rst n PIN N19

KO led PIN H15 CHIP sel[0] PIN T22

Power mult0 PIN F12 CHIP sel[1] PIN M17

Power mult1 PIN H13 CHIP sel reg PIN L20

Power mult2 PIN J16 CHIP shift n PIN T23

Power mult3 PIN K15 CHIP sin PIN R23

Switch1 PIN E16 CHIP sout PIN M21

Switch2 PIN G16 ext clock PIN G15

Switch3 PIN H16 mult num[0] PIN E14

Switch4 PIN E15 mult num[1] PIN F15

CHIP clock PIN N22 LED2 PIN G18

CHIP load n PIN M18 LED3 PIN F18

Z svt PIN U21 Z lvt PIN U22

Table 10.2: Pin assignments for the APEX EP20K600EFC672 FPGA

The FPGA code does:

• Select the desired multiplier;

• Reset internal registers;

• Execute 10’000’000 multiplications and accumulate the results on the 64 bit

register;

• Read back the content of the accumulator register;

• Verify the read data with the expected value and output the decision on the

pass/fail pins;

• At the end of this sequence, the chip clock is stopped to allow static power

measurements.

A particularity of this code is the use of two clock frequencies for the circuit under

test, depending on the executed task. In fact, while the chip clock runs at full speed

(the same of the FPGA) during the execution of the 10’000’000 multiplications, a clock

divided by 4 is used during the data read-back phase. This was required in order to

execute tests with frequencies bigger than 35MHz (like the nominal circuit frequency
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of 62.5MHz). The limiting factor was the propagation delay of the comparator used

to convert the low voltage level of the s out pin to the 3.3V level of the FPGA. In

fact, if the frequency was too high, the read value was latched before it was ready.

10.3.3 MATLAB based measurements automation

To test the manufactured circuits, lots of current measurements were required at

difference frequencies, supply voltages and this for every multiplier. Moreover, the

measurement of the power consumption during runtime needed to be synchronized

with the design under test. For these reasons, an automated way to set the parameters

(frequency, supply voltage) and to check the results was required.

To perform an automated measurement the following devices have been used:

• Agilent 33250A: Frequency generator, this device can generate a square wave

frequency up to 80MHz;

• Keithley 213: Power supply and control signal generator, this device is a Quad

Voltage Source (QVS) and includes 8 digital inputs and 8 digital outputs.

• Keithley Sourcemeter 2400: Power supply and ammeter with a precision

up to 10 pA.

All this devices support the GPIB (General Purpose Interface Bus) protocol. This

protocol is a standard for controlling devices remotely. The described tools were

connected with a cable to a computer provided with a National Instrument acquisition

card and controlled by MATLAB. In order to be able to use the GPIB protocol, the

Instrument Control Toolbox for MATLAB was required. The MATLAB source code

used for the measurements is reported Appendix E.

To determine if a multiplier was able to work at the given frequency and supply

voltage the test was performed 10 times in a row with the same frequency and supply

voltage. If at least one of these 10 tries was successful, the multiplier was considered

capable to work at this condition (even if not all the times).

The frequency range for most of the tests span from 1 to 20MHz, whereas the

supply voltage accuracy chosen was of 10mV.

Finally, the core (i.e. all the design but the multipliers) was supplied with 100mV

more than the multiplier under test, and this to avoid as much as possible to be

limited by the working supply voltage of the data generator block.



10.4. Measurements 115

10.4 Measurements

Two chips (No.2 and No.3) have been chosen (without any particular reason) for a

complete power consumption analysis and discussion. First, the power measurements

at nominal conditions (V dd=1V and f=62.5MHz) and their comparison with values

reported by Synopsys DC will be considered. Later, the detailed power measurements

for each multiplier of both chips will be carried out for frequencies ranging from 1 to

20MHz. Finally, a discussion on the power and delay variability with data measured

over 16 dies manufactured on the same wafer will be presented.

10.4.1 Nominal values

The nominal power consumptions and the critical path delay for chip No.2 and No.3

are reported in Table 10.3.

Chip No.2 Chip No.3

Mult 0 Mult 1 Mult 2 Mult 3 Mult 0 Mult 1 Mult 2 Mult 3

Pstat [µW ] 132 501 1152 4515 169 631 1571 5931

Pdyn [µW ] 3080 3312 2957 3395 3103 3350 2978 3385

Ptot [µW ] 3212 3813 4109 7910 3272 3981 4549 9316

fmax [MHz] 74.5 - - - 75.4 - - -

Delay [ns] 13.42 - - - 13.26 - - -

Table 10.3: Measured nominal (1V@62.5MHz) power consumption and maximal work-

ing frequency

These values can be compared with the ones provided by Synopsys and reported in

Table 10.1. The most remarkable difference comes from the static power consumption.

Indeed, real measurements of static power report values around 4-5 times bigger than

the expected ones. This clearly point out a big problem related to the nanometer

CMOS technologies: the parameters variability. As explained more in details on the

coming subsections, this extreme increase of the static power should mainly be due to

a threshold voltage much lower than the expected one, probably coming from a not

so well mastered effective transistor dimensions and doping profiles. Nevertheless, the

ratios of the static power between the 4 multipliers in the same chip remain almost

correct, like the parallel 4 version which shows 4 times the static power of the basic

version.

Regarding the dynamic power, the measurements are less astonishing, but still

the results show a dynamic consumption lower than the expected one. The reasons
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could be lower capacitances, due to variable transistor effective dimension, and/or an

activity slightly different (as a reminder, activity of all nodes, including internal cell

nodes, was estimated based on the activity on the nets connecting cells).

The delay of the critical path was measured by increasing the frequency at the

nominal supply voltage of 1V until the multiplier stop working. The measurement

was only possible for the Multiplier 0 (RCA basic SVT) because the frequency gen-

erator available at our laboratory only reach the 80MHz, and this was not enough

for measuring the other three multipliers. The measured delay is very near to the

expected one of 13.28ns.

10.4.2 Lowest working supply voltage

The expected lowest working supply voltage for a given frequency is reported in

Fig. 10.8 and is based on Eq. (6.15).
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Figure 10.8: Expected optimal supply voltage

As we can observe, the supply voltages are reduced until they reach the correspond-

ing threshold voltage at 0MHz. The non parallel versions have a slightly steeper slope

compared to the parallelized versions. This is due to the larger LD eff for the basic

version, making it “harder” to reduce the supply voltage unless it reaches very low

frequencies. Mathematically, the larger LD eff is observed as a bigger χ.
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A similar plot has been obtained, by measurement, for chip No.2 and No.3. Results

are reported in Fig. 10.9 and Fig. 10.10 respectively.
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Figure 10.9: Measured optimal supply voltage for chip No.2

At a first look, Fig. 10.9 and Fig. 10.10 show the same shape of Fig. 10.8, but in

reality they present lower values compared to the theoretical case. In particular, it is

interesting to note the converging values for very low frequencies (the missing values

are due to non working conditions resulting from a too low supply voltage). As seen

before, this converging values correspond to the threshold voltage of the technology.

From these plots, it is possible to imagine that the threshold voltages for the measured

circuits should be around 0.2V or even lower. This is quite different from the one

around 0.33V reported in Fig. 10.8 (Remember that V th = V th0 − ηV dd). With

a lower V th is now understandable why optimal V dd are lower than the theoretical

ones, while the shape of the plot is maintained.

This much lower threshold voltage can now also easily explain the large factor of 4-

5 between the measured static power and the expected one at the nominal conditions.

In fact, the static power depends exponentially on the threshold voltage, as reported

in Eq. (3.5).

It is also worth to note that all multipliers of chip No.2 and No.3 worked at 250mV

and that two multipliers (mult 1 and mult 2) of chip No.3 worked at a supply voltage

as slow as 210mV with a frequency of 1MHz!
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Figure 10.10: Measured optimal supply voltage for chip No.3

10.4.3 Optimal total power

The total power consumption can now be calculated for the lowest working supply

voltage (optimal V dd) thanks to Eq. (3.6). Fig. 10.11 illustrates it for the theoretical

case.

The measured optimal total power for the chip No.2 and No.3 are reported in

Fig. 10.12 and Fig. 10.13 respectively. The missing points correspond to values of the

optimal V dd too low to permit correct measurements.

As for the optimal supply voltage, we can observe that the shape of the plots

measured is very similar to the theoretical one, but the corresponding optimal power

is lower for the real circuits. This can, once more, be explained by the lower real

threshold voltage, which permits a lower optimal supply voltage and hence a lower

optimal total power.

The measured optimal supply voltages for mult 3 (RCA parallel 4 LVT) were very

low and for this reason, reported optimal total power should be taken with care.

In both chips, the measurements for the multipliers corresponding to the SVT

transistor type are very similar, whereas chip No.3 shows a slightly higher consumption

for the LVT type compared to No.2. This can be explained by the higher power static

consumption of chip No.3 as reported in Table 10.3, which manifests it mainly on
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Figure 10.11: Expected optimal total power consumption
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Figure 10.12: Measured optimal total power consumption for chip No.2

LVT multipliers where static power is predominant.

The large variations in the technology parameters, discussed further in the next
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Figure 10.13: Measured optimal total power consumption for chip No.3

section, makes it very difficult to accurately predict the optimal total power over a so

large range of frequencies. Nevertheless, the main shapes of the plots are maintained.

In particular, let consider the cross points between the RCA basic SVT curves and

both RCA parallel 4 SVT and RCA basic LVT. In the theoretical plot these crosses

occur at 7MHz and 17MHz respectively.

If we look to the same crosses on the measured data, we observe them at 5MHz and

13MHz for chip No.2 and at 6MHz and 17MHz for chip No.3. These results are very

similar to the expected ones, considering the high technology parameters variations

observed.

Practically, we can say that if a design is destined to work at 2MHz, the RCA

basic SVT is the best choice for low power, if it is designed for 10MHz RCA parallel 4

shows a better power profile and at 20MHz RCA basic SVT will consume more than

the RCA basic LVT which will consume more than the RCA parallel 4 SVT.

10.4.4 Power and delay variability

In the preceding discussions, it was pointed out many times that technology param-

eters are quite variable from die to die even when they come from the same wafer, as

it is the case for all the chips investigated in this thesis.

To explore a little deeper this aspect, the static power, dynamic power and critical
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path delay (obtained from the maximal working frequency) of the multiplier 0 (RCA

basic SVT) at nominal conditions (1V/62.5MHz) have been measured for 16 different

dies.
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Figure 10.14: Nominal static power distribution for 16 chips
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Figure 10.15: Nominal dynamic power distribution for 16 chips at 62.5MHz

The data corresponding to the nominal static power is reported in Fig. 10.14. Here,

we can see that the static power spans from a minimum of 75 µW to a maximum of

190 µW , which correspond to a factor larger than 2.5! Moreover, the average value

of 117 µW is more than 3.5 times larger the value estimated by Synopsys! This

variability makes very problematic the power estimation for circuits dominated by

static power.
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The nominal dynamic power consumption presents a much lower variability be-

tween dies, as illustrated in Fig. 10.15. In fact, all measured values are included in a

range from 3012 µW to 3121 µW , which correspond to a variation of ±2% around the

average value of 3062 µW . This is “only” 17% lower compared to the value provided

by Synopsys. Moreover, by comparing the static power distribution with the dynamic

one, we can observe a small correlation between the two. Actually, most of the time

a die with a higher static power consumption, also shows a relative high dynamic

power. A possible answer to this can come from the shortcut current (explained in

Chapter 2.1.2). In fact, a higher sub-threshold current (lower V th or higher I0 or

both) also means a higher “on” current, which increases the shortcut dissipation.

This could also explain why the variations of the dynamic power only account for a

few percents.
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Figure 10.16: Delay distribution of the RCA SVT multiplier for 16 chips

Fig. 10.16 reports the measured critical path variability over 16 different dies.

As for the dynamic power, the variation is quite limited and corresponds to ±3%

around the average value of 13.55 ns. Moreover, this delay is only 2 % larger than the

value reported by Synopsys. It is also worth noting that no correlation was observed

between the power consumption and delay distribution.

10.5 Summary

This chapter discussed the demonstrator circuit used to investigate the influence of

technology and architectural modifications to the optimal total power. The technol-

ogy used was the 90nm from ST Microelectronics, which permitted us to implement
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two different transistor types on the same chip. Moreover, two different 32 bit mul-

tipliers were implemented for each transistor type, yielding a total of 4 multipliers.

The first part of the chapter was dedicated to the circuit design and conception, then

the description of the measurements setup follows and, at the end, the measured data

were exposed and commented. In particular, we observed an average static power

3.5 times higher than the typical values estimated by Synopsys, whereas the dynamic

power was only 17% lower on average. The large difference between the simulation

and real measurements can be explained with the threshold voltage, which, in reality,

appeared to be much lower than the theoretical one. Besides these important differ-

ences observable at nominal conditions (V dd=1V and f=62.5MHz), the total power

for multipliers working at the lowest possible supply voltages was discussed. The

measured values showed a shape very similar to the expected one, but with different

absolute values. This can also be explained by the lower real V th. At the end of

the chapter, the variability of powers and delay were reported for the same multiplier

in 16 different chips. The results showed a static power varying as much as a factor

2.5 between the lowest and highest value for multipliers coming from the same wafer!

Without doubt, this large variability of static power will be a main issue in nanometer

CMOS technologies, especially for designs where static power is a large contributor.
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Chapter 11

Conclusions

With the introduction of nanometer CMOS technologies, new sources of power dissi-

pation appeared. The continue shrinking of the transistor sizes, dictated by Moore’s

law, reached a point where new physical phenomena need to be faced. One of the

most important problems related to these new phenomena is the huge increase of the

static power consumption, which can become even bigger than the dynamic power

for a running circuits. The static power consumption is the portion of the power

dissipation that is constantly flowing from V dd to V ss, even when the circuit is in

idle state. For nowadays technologies, the principal contributor to static power comes

from the sub-threshold current flowing through the transistors in off state. This type

of current arises from the diffusion of the minority carriers in the transistor channel.

The reason why this current is increasing so much in recent nanometer technologies

is that it has an exponential dependency on the transistor threshold voltage, which is

constantly reduced with new technologies to maintain the speed acceptable.

The goal of this thesis was to investigate the low power methodologies in technolo-

gies dominated by a large static power consumption. In particular, we were interested

in the architectural as well as in the technology influence on the total power consump-

tion.

The principal theoretical framework exposed in this thesis considers a scenario in

which both the supply voltage and the threshold voltage can be freely modified. Under

such assumption, the total power consumption clearly shows a minimum located at

very low supply voltages (examples showed optimal V dd lower than 0.4V even at

frequency as 62.5MHz). The derivation of the ratio k1 (i.e. optimal dynamic power

over optimal static power) showed that, this ratio being quite constant compared

to the variation of Ion/Ioff between technology nodes, nanometer technologies will

require a growing ratio a/LD (activity over logical depth) to reach this optimum.

125
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This, for instance, will make pipelining preferable over parallelization. After that,

we have seen the influence of a, LD and f to the optimal V dd and V th, showing

that frequency mainly influences the optimal V th, logical depth mainly influences

the optimal V dd, while activity influences both of them. By comparing architectures

under the rough approximation of a quasi-constant k1, we realized that pipelining

and parallelization are more effective for low power when they show high logical

depth and high frequency. We also observed that new technologies, characterized

by a lower χ factor compared to older ones, will tend to penalize pipelining and

parallelization, whereas the condition for a power saving by pipelining remains easier

to fulfill compared to the parallelization one.

Going behind the quasi-constant k1 approach, analytical closed-form equations

has been derived for the calculation of the optimal V dd, optimal V th and optimal

total power directly from the architectural and technology parameters. Thanks to

these equations, we observed that the optimal V th is quite unchanged by pipelining,

while the parallelization increases it by a precise amount, which only depends on the

degree of parallelization. Moreover, sequential multipliers were clearly shown to be

inadequate for low power at the optimal working condition due the large effective

logical depth and the high number of transitions (a ·N).

From a low power point of view, the best characteristics for an ideal technology

would be a capacitance C, delay constant kt and sub-threshold slope n as low as

possible, whereas the reference current I0 and alpha power law coefficient α should

be as high as possible.

After the technology influence discussion, a few possibilities for modifying the

threshold voltage (like body bias, transistor resizing, technology choice) were also

presented.

Under all the investigated architectural and technology modifications, the simple

approximated analytical equations developed in Chapter 6 for the optimal V dd, V th

and Ptot showed very good results, reporting errors always lower than a few percent

compared to numerical computation based on non-approximated equations.

In a second framework, the opposite case was considered, in which the threshold

voltage as well as the supply voltage were assumed constant. This particular case

was explored because it corresponds to the most typical case for industrial designers.

In fact, they often have a fixed supply voltage and threshold voltage imposed by

the technology and/or the devices the circuit has to interface. Under this condition,

graphical tools for total power comparison of different architectures were presented.

Examples of application of these tools to the same multipliers used in the precedent
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framework were reported. In particular, we showed that, depending on the constraints

used, the multiplier presenting the lowest total power is not always the same.

At the end of the thesis, a physical implementation of four different 32 bit mul-

tipliers was presented. These 4 multipliers represent all the possible combinations

between two transistor types (SVT and LVT) and two architectures (RCA basic and

RCA parallel 4). After an in-deep description of the circuit design flow and mea-

surement setup, the nominal power consumptions as well as the optimal ones (those

corresponding to the lowest working supply voltages) were compared to the theoretical

values. The measured data showed, in average, a static power 3.5 times larger than

expected. This was supposed to be due to real threshold voltages much lower than

the simulated ones. Nevertheless, the shapes of the plots remained very similar to the

expected ones. This means that, even if the absolute values were not well estimated

by the models (due to the large technology parameters variability), the relation be-

tween them was respected. This was essential to be able to predict which multiplier

presented the lowest total power for a given working frequency. It is also interesting

to note that a few multipliers were able to work at 210mV of supply voltage at a

frequency of 1MHz. Finally, the variability of powers and delay for 16 chips coming

from the same wafer were reported. In particular, the variations on the static power

at nominal condition (V dd=1V, f=62.5MHz) were strongly fluctuating, accounting

for a factor of more than 2.5 between the highest and the lowest measured values. On

the other hand, the variations on the dynamic power and delays were within ±3%.

From these observations, we can conclude that the major problem that the tech-

nologues will have to face in the future will be the difficulty to master the variations

of the technology parameters. The price to pay for not achieving it would be lots of

circuit instabilities and very low production yields, due to many dies unable to meet

the specifications.
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à Vdd et Vth imposés avec consommation totale minimale”. Journées Fran-

cophones sur l’Adéquation Algorithme Architecture, JFAAA’05, Dijon, France,

January 18-21, 2005.

• C. Schuster, J.-L. Nagel, C. Piguet, P.-A. Farine. “Leakage reduction at the

architectural level and its application to 16 bit multiplier architectures”. Proc.

Int’l Workshop on Power and Timing Modeling, Optimization and Simulation,

PATMOS’04, Santorini Island, Greece, September 15-17, 2004.

• C. Piguet, C. Schuster, J.-L. Nagel. “Optimizing architecture activity and logic

depth for static and dynamic power reduction”. Proc. of the 2nd Northeast

135



136 Bibliography

Workshop on Circuits and Systems, NewCAS’04, Montréal, Canada, June 20-
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Appendix A

VHDL source code

A.1 top.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : C i r cu i t top (32 b i t )

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : top . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−02−17

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : This i s the top o f the des ign .

14 −− I t i n c l ude s the f o l l ow b l o c k s :

15 −− − data gen

16 −− − 2 mult32

17 −− − 2 mult32 p a r a l l e l 4

18 −− − one−hot decoder and mux

19 −− − 2 r ing o s c i l l a t o r s

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 −− Copyright ( c ) 2006

22 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

23 −− Revis ions :

24 −− Date Version Author Descr ip t ion

25 −− 2006−02−17 1.0 s chus t e r Created

26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27

28 l ibrary i e e e ;

29 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

30

31 entity top i s

32

33 port (

34 c l k : in s t d l o g i c ; −− c l o c k

35 r s t n : in s t d l o g i c ; −− a c t i v e low async r e s e t

137
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36 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

37 s i n : in s t d l o g i c ; −− s e r i a l input

38 s out : out s t d l o g i c ; −− s e r i a l output

39 l oad n : in s t d l o g i c ; −− when low r e g i s t e r s are loaded in p a r a l l e l

40 s h i f t n : in s t d l o g i c ; −− when low data i s s h i f t e d

41 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

42 −− s e l e c t the source f o r da ta ou t as we l l as f o r the data saved in r e g i s t e r s

43 s e l r e g : in s t d l o g i c ;

44 s e l : in s t d l o g i c v e c t o r (1 downto 0) ; −− s e l e c t the working mu l t i p l i e r

45 Z svt : out s t d l o g i c ; −− out s v t r ing o s c i l l a t o r

46 Z lv t : out s t d l o g i c ) ; −− out l v t r ing o s c i l l a t o r

47

48 end top ;

49

50 architecture arch of top i s

51

52 component data gen

53 port (

54 c l k : in s t d l o g i c ;

55 r s t n : in s t d l o g i c ;

56 da ta in v : in s t d l o g i c v e c t o r (63 downto 0) ;

57 data out v : out s t d l o g i c v e c t o r (63 downto 0) ;

58 s i n : in s t d l o g i c ;

59 s out : out s t d l o g i c ;

60 l oad n : in s t d l o g i c ;

61 s h i f t n : in s t d l o g i c ;

62 s e l r e g : in s t d l o g i c ) ;

63 end component ;

64

65 component mult

66 port (

67 c l k : in s t d l o g i c ;

68 r s t n : in s t d l o g i c ;

69 en : in s t d l o g i c ;

70 a v : in s t d l o g i c v e c t o r (31 downto 0) ;

71 b v : in s t d l o g i c v e c t o r (31 downto 0) ;

72 m v : out s t d l o g i c v e c t o r (63 downto 0) ) ;

73 end component ;

74

75 component mult par4

76 port (

77 c l k : in s t d l o g i c ;

78 r s t n : in s t d l o g i c ;

79 en : in s t d l o g i c ;

80 a v : in s t d l o g i c v e c t o r (31 downto 0) ;

81 b v : in s t d l o g i c v e c t o r (31 downto 0) ;

82 m v : out s t d l o g i c v e c t o r (63 downto 0) ) ;

83 end component ;

84

85 component r i n g s v t

86 generic (

87 l ength : i n t e g e r ) ;

88 port (

89 Z : out s t d l o g i c ) ;

90 end component ;
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91

92 component r i n g l v t

93 generic (

94 l ength : i n t e g e r ) ;

95 port (

96 Z : out s t d l o g i c ) ;

97 end component ;

98

99 −− demu l t i p l e xed mu t l i p l i e r s output

100 signal general m : s t d l o g i c v e c t o r (63 downto 0) ;

101 −− mu l t i p l i e r s input data conta in ing both A and B

102 signal g ene r a l a b : s t d l o g i c v e c t o r (63 downto 0) ;

103 −− mu l t i p l i e r s input data separe ted as A and B

104 signal genera l a , g ene ra l b : s t d l o g i c v e c t o r (31 downto 0) ;

105

106

107 signal m0 v , m1 v , m2 v , m3 v : s t d l o g i c v e c t o r (63 downto 0) ; −− mu l t i p l i e r s

108 −− r e s u l t s

109 signal en0 , en1 , en2 , en3 : s t d l o g i c ; −− mu l t i p l i e r s r e g i s t e r s enab le

110 signal clk0 , c lk1 , c lk2 , c lk3 : s t d l o g i c ; −− mu l t i p l i e r s r e g i s t e r s c l o c k

111

112 begin −− arch

113 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

114 −− component mapping

115 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

116 data gen 1 : data gen

117 port map (

118 c l k => c lk ,

119 r s t n => r s t n ,

120 da ta in v => general m ,

121 data out v => gene ra l a b ,

122 s i n => s i n ,

123 s out => s out ,

124 l oad n => load n ,

125 s h i f t n => s h i f t n ,

126 s e l r e g => s e l r e g ) ;

127

128 mult 0 : mult

129 port map (

130 c l k => clk0 ,

131 r s t n => r s t n ,

132 en => en0 ,

133 a v => genera l a ,

134 b v => genera l b ,

135 m v => m0 v) ;

136 mult 1 : mult par4

137 port map (

138 c l k => clk1 ,

139 r s t n => r s t n ,

140 en => en1 ,

141 a v => genera l a ,

142 b v => genera l b ,

143 m v => m1 v) ;

144 mult 2 : mult

145 port map (



140 Appendix A. VHDL source code

146 c l k => clk2 ,

147 r s t n => r s t n ,

148 en => en2 ,

149 a v => genera l a ,

150 b v => genera l b ,

151 m v => m2 v) ;

152 mult 3 : mult par4

153 port map (

154 c l k => clk3 ,

155 r s t n => r s t n ,

156 en => en3 ,

157 a v => genera l a ,

158 b v => genera l b ,

159 m v => m3 v) ;

160

161 r i n g s v t 1 : r i n g s v t

162 generic map (

163 l ength => 437)

164 port map (

165 Z => Z svt ) ;

166 r i n g l v t 1 : r i n g l v t

167 generic map (

168 l ength => 533)

169 port map (

170 Z => Z lv t ) ;

171

172 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

173 −−combina tor ia l par t

174 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

175 g ene r a l a <= gene r a l a b (63 downto 32) ;

176 gene ra l b <= gene r a l a b (31 downto 0) ;

177

178

179 −− one−hot decoder

180 en0 <= ’1 ’ when s e l = ”00” else ’ 0 ’ ;

181 en1 <= ’1 ’ when s e l = ”01” else ’ 0 ’ ;

182 en2 <= ’1 ’ when s e l = ”10” else ’ 0 ’ ;

183 en3 <= ’1 ’ when s e l = ”11” else ’ 0 ’ ;

184

185 −− c l o c k demux

186 c lk0 <= c lk when s e l = ”00” else ’ 0 ’ ;

187 c lk1 <= c lk when s e l = ”01” else ’ 0 ’ ;

188 c lk2 <= c lk when s e l = ”10” else ’ 0 ’ ;

189 c lk3 <= c lk when s e l = ”11” else ’ 0 ’ ;

190

191 −− ouput mux

192 with s e l select

193 general m <=

194 m0 v when ”00” ,

195 m1 v when ”01” ,

196 m2 v when ”10” ,

197 m3 v when ”11” ,

198 m0 v when others ;

199

200 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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201 −−s e q u en t i a l par t

202 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

203

204 end arch ;

A.2 data gen.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : Data generator (32 b i t )

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : data gen . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−02−15

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : This b l o c k conta ins the pseudo−random data generator ,

14 −− as we l l as the c y c l i c adder and corresponding r e g i s t e r s .

15 −− Both generated random and input data can be outputed in

16 −− s e r i a l by the s h i f t r e g b l o c k .

17 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 −− Copyright ( c ) 2006

19 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

20 −− Revis ions :

21 −− Date Version Author Descr ip t ion

22 −− 2006−02−15 1.0 s chus t e r Created

23 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

24 l ibrary i e e e ;

25 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

26 use i e e e . s t d l o g i c un s i g n ed . a l l ; −− used to add s t d l o g i c v e c t o r s

27

28 −− designware implementation o f the

29 −− s h i f t r e g i s t e r

30 l ibrary DWARE, DW03;

31 use DWARE. DWpackages . a l l ;

32 use DW03. DW03 components . a l l ;

33

34 entity data gen i s

35 port (

36 c l k : in s t d l o g i c ; −− c l o c k

37 r s t n : in s t d l o g i c ; −− a c t i v e low async r e s e t

38 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

39 −− data coming from the mu l t i p l i e r s ( r e s u l t )

40 da ta in v : in s t d l o g i c v e c t o r (63 downto 0) ;

41 −− genera ted da ta ( ex tern or pseudo random)

42 data out v : out s t d l o g i c v e c t o r (63 downto 0) ;

43 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

44 s i n : in s t d l o g i c ; −− s e r i a l input

45 s out : out s t d l o g i c ; −− s e r i a l output

46 l oad n : in s t d l o g i c ; −− when low r e g i s t e r s are loaded in p a r a l l e l

47 s h i f t n : in s t d l o g i c ; −− when low data i s s h i f t e d
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48 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

49 −− s e l e c t the source f o r da ta ou t as we l l as f o r the data saved in r e g i s t e r s

50 s e l r e g : in s t d l o g i c

51 ) ;

52

53 end data gen ;

54

55 architecture arch of data gen i s

56 −− DesignWare s h i f t r e g i s t e r

57 component DW03 shfreg

58 generic (

59 i n s t l e n g t h : i n t e g e r ) ;

60 port (

61 i n s t c l k : in s t d l o g i c ;

62 i n s t s i n : in s t d l o g i c ;

63 i n s t p i n : in s t d l o g i c v e c t o r ( i n s t l e n g th −1 downto 0) ;

64 i n s t s h i f t n : in s t d l o g i c ;

65 i n s t l o a d n : in s t d l o g i c ;

66 p ou t i n s t : out s t d l o g i c v e c t o r ( i n s t l e n g th −1 downto 0) ) ;

67 end component ;

68

69 −− l o c a l s i g n a l s

70 signal sum v : s t d l o g i c v e c t o r (63 downto 0) ; −− r e s u l t o f the adder

71 signal p out v : s t d l o g i c v e c t o r (63 downto 0) ; −− output o f the r e g i s t e r bank

72 signal p in v : s t d l o g i c v e c t o r (63 downto 0) ; −− input o f the r e g i s t e r bank

73 signal rand data v : s t d l o g i c v e c t o r (63 downto 0) ; −− output o f the pseudo

74 −− random generator

75 signal next rand data v : s t d l o g i c v e c t o r (63 downto 0) ; −− next o f rand data

76

77 −− l o c a l cons tant s

78 constant i n s t l e n g t h : natura l := 64 ; −− s i z e o f the s h i f t r e g i s t e r bank

79

80 begin −− arch

81

82 −− r e cu r s i v e c y c l i c adder

83 adder :

84 sum v <= data in v + p out v ;

85

86 −− l i n k the h i g h e s t b i t o f p ou t v to s ou t

87 s out <= p out v (63) ;

88

89

90 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

91 −− in s tance o f the s h i f t r e g i s t e r

92 −− based on a DW model

93 s h i f t r e g i s t e r : DW03 shftreg

94 generic map ( l ength => i n s t l e n g t h )

95 port map ( c l k => c lk , s i n => s i n , p in => p in v ,

96 s h i f t n => s h i f t n , load n => load n ,

97 p out => p out v ) ;

98

99

100 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

101 −− purpose : i n s t an c i a t i on o f mux1 and mux2

102 −− type : combinat iona l
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103 −− inpu t s : s e l r e g , sum v , rand data v , p ou t v

104 −− outputs : p in v , da ta ou t v

105 muxes : process ( s e l r e g , sum v , rand data v , p out v )

106 begin −− process

107 case s e l r e g i s

108 when ’ 0 ’ =>

109 p in v <= sum v ;

110 data out v <= rand data v ;

111 when ’ 1 ’ =>

112 p in v <= rand data v ;

113 data out v <= p out v ;

114 when others => null ;

115 end case ;

116 end process ;

117

118

119 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

120 −− pseudo−random code generator

121 −− the next b i t i s based on the

122 −− taps 63 , 61 , 60 , 0

123 −− the s t a t e to avoid i s 1 . . . 1

124 pseudo rand l og i c :

125 next rand data v <= (( rand data v (63) xnor rand data v (61) ) xnor

126 ( rand data v (60) xnor rand data v (0 ) ) ) &

127 rand data v (63 downto 1) ;

128

129 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

130 −− purpose : i n s e r t s h i f t r e g i s t e r bank used fo r the pseudo code genera t ion

131 −− type : s e q u en t i a l

132 −− inpu t s : c l k , r s t n , nex t rand da ta v

133 −− outputs : rand data v

134 pseudo rand regs : process ( c lk , r s t n )

135 begin −− process

136 i f r s t n = ’0 ’ then −− asynchronous r e s e t ( a c t i v e low )

137 rand data v <= ( others => ’ 0 ’ ) ;

138 e l s i f c lk ’ event and c l k = ’1 ’ then −− r i s i n g c l o c k edge

139 rand data v <= next rand data v ;

140 end i f ;

141 end process ;

142

143

144 end arch ;

A.3 mult.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : Simple mu l t i p l i e r (32 b i t )

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : mult . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−02−16

9 −− Last update : 2006−09−22
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10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : s imple mu l t i p l i e r b l o c k with r e g i s t e r s

14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 −− Copyright ( c ) 2006

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 −− Revis ions :

18 −− Date Version Author Descr ip t ion

19 −− 2006−02−16 1.0 s chus t e r Created

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 l ibrary i e e e ;

22 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

23 use i e e e . s t d l o g i c un s i g n ed . a l l ;

24

25

26 entity mult i s

27 port (

28 c l k : in s t d l o g i c ; −− c l o c k

29 r s t n : in s t d l o g i c ; −− a c t i v e low async r e s e t

30 en : in s t d l o g i c ; −− r e g i s t e r s enab le

31 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

32 a v : in s t d l o g i c v e c t o r (31 downto 0) ; −− input A

33 b v : in s t d l o g i c v e c t o r (31 downto 0) ; −− input B

34 m v : out s t d l o g i c v e c t o r (63 downto 0) −− r e s u l t

35 ) ;

36 end mult ;

37

38 architecture arch of mult i s

39

40 −− gener i c RCA mu l t i p l i e r d e c l a ra t i on

41 component RCA

42 generic (

43 A width : i n t e g e r ; −− s i z e o f A

44 B width : i n t e g e r ) ; −− s i z e o f B

45 port (

46 S : out s t d l o g i c v e c t o r ( A width+B width−1 downto 0) ;

47 A : in s t d l o g i c v e c t o r ( A width−1 downto 0) ;

48 B : in s t d l o g i c v e c t o r ( B width−1 downto 0) ) ;

49 end component ;

50

51 −− l o c a l s i g n a l s

52 signal a i n t v : s t d l o g i c v e c t o r (31 downto 0) ;

53 signal b i n t v : s t d l o g i c v e c t o r (31 downto 0) ;

54 signal m int v : s t d l o g i c v e c t o r (63 downto 0) ;

55

56 begin −− arch

57

58 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

59 −−combina tor ia l par t

60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

61

62 −− i n f e r the 32 b i t mu l t i p l i e r

63 mult 1 : RCA

64 generic map (
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65 A width => 32 ,

66 B width => 32)

67 port map (

68 S => m int v ,

69 A => a in t v ,

70 B => b i n t v ) ;

71

72 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

73 −−s e q u en t i a l par t

74 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

75

76 −− purpose : input and output r e g i s t e r s

77 −− type : s e q u en t i a l

78 −− inpu t s : c l k , r s t n , a v , b v , m int v

79 −− outputs : a in t v , b i n t v , m v

80 mult1 regs : process ( c lk , r s t n )

81 begin −− process mul t1 regs

82 i f r s t n = ’0 ’ then −− asynchronous r e s e t ( a c t i v e low )

83 a i n t v <= ( others => ’ 0 ’ ) ;

84 b i n t v <= ( others => ’ 0 ’ ) ;

85 m v <= ( others => ’ 0 ’ ) ;

86 e l s i f c lk ’ event and c l k = ’1 ’ then −− r i s i n g c l o c k edge

87 i f en = ’1 ’ then

88 a i n t v <= a v ;

89 b i n t v <= b v ;

90 m v <= m int v ;

91 end i f ;

92 end i f ;

93 end process mult1 regs ;

94

95 end arch ;

A.4 mult par4.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : 4 t imes p a r a l l e l mu l t i p l i e r (32 b i t )

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : mult par4 . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−02−16

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : 4 t imes p a r a l l e l mu l t i p l i e r b l o c k with r e g i s t e r s

14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 −− Copyright ( c ) 2006

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 −− Revis ions :

18 −− Date Version Author Descr ip t ion

19 −− 2006−02−16 1.0 s chus t e r Created

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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21 l ibrary i e e e ;

22 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

23 use i e e e . s t d l o g i c un s i g n ed . a l l ;

24

25 entity mult par4 i s

26 port (

27 c l k : in s t d l o g i c ; −− c l o c k

28 r s t n : in s t d l o g i c ; −− a c t i v e low async

29 en : in s t d l o g i c ; −− r e g i s t e r s enab le

30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 a v : in s t d l o g i c v e c t o r (31 downto 0) ; −− input A

32 b v : in s t d l o g i c v e c t o r (31 downto 0) ; −− input B

33 m v : out s t d l o g i c v e c t o r (63 downto 0) −− r e s u l t

34 ) ;

35 end mult par4 ;

36

37

38 architecture arch of mult par4 i s

39

40 −− gener i c RCA mu l t i p l i e r d e c l a ra t i on

41 component RCA

42 generic (

43 A width : i n t e g e r ; −− s i z e o f A

44 B width : i n t e g e r ) ; −− s i z e o f B

45 port (

46 S : out s t d l o g i c v e c t o r ( A width+B width−1 downto 0) ;

47 A : in s t d l o g i c v e c t o r ( A width−1 downto 0) ;

48 B : in s t d l o g i c v e c t o r ( B width−1 downto 0) ) ;

49 end component ;

50

51 signal count , next count : s t d l o g i c v e c t o r (1 downto 0) ;

52 signal A0 , A1 , A2 , A3 , B0 , B1 , B2 , B3 : s t d l o g i c v e c t o r (31 downto 0) ;

53 signal S , S0 , S1 , S2 , S3 : s t d l o g i c v e c t o r (63 downto 0) ;

54

55 begin

56

57 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

58 −−combina tor ia l par t

59 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

60

61 −− output mu l t i p l e x e r

62 with count select

63 S <= S0 when ”00” ,

64 S1 when ”01” ,

65 S2 when ”11” ,

66 S3 when ”10” ,

67 S3 when others ;

68

69 −−mu l t i p l e x e r s counter incrementer 00 −> 01 −> 11 −> 10 −>

70 next count <= ”01” when count = ”00” else

71 ”11” when count = ”01” else

72 ”10” when count = ”11” else

73 ”00” ;

74

75 −−implementation o f the four 32 b i t mu l t i p l i e r s
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76 mult par4 0 : RCA

77 generic map (

78 A width => 32 ,

79 B width => 32)

80 port map (

81 S => S0 ,

82 A => A0 ,

83 B => B0) ;

84 mult par4 1 : RCA

85 generic map (

86 A width => 32 ,

87 B width => 32)

88 port map (

89 S => S1 ,

90 A => A1 ,

91 B => B1) ;

92 mult par4 2 : RCA

93 generic map (

94 A width => 32 ,

95 B width => 32)

96 port map (

97 S => S2 ,

98 A => A2 ,

99 B => B2) ;

100 mult par4 3 : RCA

101 generic map (

102 A width => 32 ,

103 B width => 32)

104 port map (

105 S => S3 ,

106 A => A3 ,

107 B => B3) ;

108

109 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

110 −−s e q u en t i a l par t

111 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

112 process ( c lk , r s t n )

113 begin

114 i f r s t n = ’0 ’ then

115 m v <= ( others => ’ 0 ’ ) ;

116 count <= ”00” ;

117 A0 <= ( others => ’ 0 ’ ) ;

118 A1 <= ( others => ’ 0 ’ ) ;

119 A2 <= ( others => ’ 0 ’ ) ;

120 A3 <= ( others => ’ 0 ’ ) ;

121 B0 <= ( others => ’ 0 ’ ) ;

122 B1 <= ( others => ’ 0 ’ ) ;

123 B2 <= ( others => ’ 0 ’ ) ;

124 B3 <= ( others => ’ 0 ’ ) ;

125 e l s i f c l k = ’1 ’ and c lk ’ event then

126 i f en = ’1 ’ then

127 −− output r e g i s t e r s

128 m v <= S ;

129 −− increment s t a t e machine counter

130 count <= next count ;
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131 −− input reg and demu l t i p l e x e r f o r A

132 i f count = ”00” then A0 <= a v ; end i f ;

133 i f count = ”01” then A1 <= a v ; end i f ;

134 i f count = ”11” then A2 <= a v ; end i f ;

135 i f count = ”10” then A3 <= a v ; end i f ;

136 −− input reg and demu l t i p l e x e r f o r B

137 i f count = ”00” then B0 <= b v ; end i f ;

138 i f count = ”01” then B1 <= b v ; end i f ;

139 i f count = ”11” then B2 <= b v ; end i f ;

140 i f count = ”10” then B3 <= b v ; end i f ;

141 end i f ;

142 end i f ;

143 end process ;

144

145 end arch ;

A.5 RCA generic arch.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : Genreric RCA Mu l i t p l i e r

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : RCA generic arch . vhd

6 −− Author : <mtschuster@WS−3439>

7 −− Company :

8 −− Created : 2006−04−27

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : Simple Ripp le Carry Array mu l t i p l i e r implementation

14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 −− Copyright ( c ) 2006

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 −− Revis ions :

18 −− Date Version Author Descr ip t ion

19 −− 2006−04−27 1.0 mtschuster Created

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21 l ibrary i e e e ;

22 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

23 use i e e e . s t d l o g i c un s i g n ed . a l l ;

24

25 entity RCA i s

26 generic (

27 A width : i n t e g e r := 32 ; −−s i z e o f A

28 B width : i n t e g e r := 32) ; −−s i z e o f B

29 port (

30 S : out s t d l o g i c v e c t o r ( A width+B width−1 downto 0) ; −−output

31 A : in s t d l o g i c v e c t o r ( A width−1 downto 0) ; −−input A

32 B : in s t d l o g i c v e c t o r ( B width−1 downto 0) ) ; −−input B

33 end RCA;

34

35 architecture arch of RCA i s

36
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37 type s t d l o g i c a r r a y i s −− array o f i n t e r na l nodes

38 array ( B width−1 downto 1) of s t d l o g i c v e c t o r ( A width−1 downto 0) ;

39 type e n l a r g e d s t d l o g i c a r r a y i s −− extended array o f i n t e r na l nodes

40 array ( B width−1 downto 0) of s t d l o g i c v e c t o r ( A width downto 0) ;

41

42 −− l o c a l s i g n a l s

43 signal AandB : s t d l o g i c a r r a y ; −−p a r t i a l products

44 signal S p a r t i a l : e n l a r g e d s t d l o g i c a r r a y ; −−i n t e r na l sums

45 signal I n i t v a l : s t d l o g i c v e c t o r ( A width−1 downto 0) ; −− f i r s t l i n e va lue s

46

47 begin

48

49 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 −−combina tor ia l par t

51 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

52

53 f i r s t c e l l : −−implemet f i r s t l i n e

54 I n i t v a l <= A when B(0) = ’1 ’ else ( others => ’ 0 ’ ) ;

55 S p a r t i a l ( 0 ) <= ’0 ’& I n i t v a l ;

56 S (0) <= S pa r t i a l ( 0 ) (0 ) ;

57

58 i n t c e l l : −−implement i n t e r na l l i n e s

59 for i in 1 to B width−1 generate

60 S( i ) <= S pa r t i a l ( i ) (0 ) ;

61 AandB( i ) <= A when B( i ) = ’1 ’ else ( others => ’ 0 ’ ) ;

62 S p a r t i a l ( i ) <= ( ’0 ’& S p a r t i a l ( i −1) ( A width downto 1) ) +( ’0 ’&AandB( i ) ) ;

63 end generate ;

64

65 l a s t c e l l : −−copy the r e s u l t to the output

66 S( A width+B width−1 downto B width ) <= S pa r t i a l ( B width−1) ( A width downto 1) ;

67

68 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

69 −−s e q u en t i a l par t

70 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

71 end arch ;

A.6 ring svt.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : Ring o s c i l l a t o r SVT

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : r i n g s v t . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−04−27

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : A simple r ing o s c i l l a t o r with d i r e c t i n s t a t i a t i o n o f the

14 −− STM 090 SVT techno logy i n v e r t e r s . In v e r t e r type i s IVSVTX1

15 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

16 −− Copyright ( c ) 2006
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17 −− Revis ions :

18 −− Date Version Author Descr ip t ion

19 −− 2006−04−27 1.0 s chus t e r Created

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21

22 l ibrary i e e e ;

23 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

24

25 entity r i n g s v t i s

26 generic (

27 l ength : i n t e g e r := 100) ; −− d e f a u l t i n v e r t e r chain l eng t h

28 port (

29 Z : out s t d l o g i c −− r ing o s c i l l a t o r output

30 ) ;

31 end r i n g s v t ;

32

33 architecture arch of r i n g s v t i s

34

35 −− l o c a l s i g n a l

36 signal i n t e r n a l n e t s : s t d l o g i c v e c t o r ( length−1 downto 0) ;

37

38 −−dec l a r e the techno logy i n v e r t e r

39 component IVSVTX1

40 port (

41 Z : out STD LOGIC ; −−in

42 A : in STD LOGIC −−out

43 ) ;

44 end component ;

45

46 begin −− arch

47

48 −−connect each i n v e r t e r with the f o l l ow

49 i nvs : for i in 0 to l ength−2 generate

50 IVSVTX1 gen : IVSVTX1

51 port map (

52 Z => i n t e r n a l n e t s ( i ) ,

53 A => i n t e r n a l n e t s ( i +1) ) ;

54 end generate i nvs ;

55

56 −−connect l a s t i n v e r t e r with the f i r s t

57 IVSVTX1 last : IVSVTX1

58 port map (

59 Z => i n t e r n a l n e t s ( length −1) ,

60 A => i n t e r n a l n e t s (0 ) ) ;

61

62 −−output the f i r s t node

63 Z <= i n t e r n a l n e t s (0 ) ;

64

65 end arch ;

A.7 top tb.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : Testbench fo r des ign ” top”
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3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : t o p t b . vhd

6 −− Author : <schuster@zebra>

7 −− Company :

8 −− Created : 2006−02−17

9 −− Last update : 2006−09−22

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : Testbench fo r des ign ” top”

14 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

15 −− Copyright ( c ) 2006

16 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

17 −− Revis ions :

18 −− Date Version Author Descr ip t ion

19 −− 2006−02−17 1.0 s chus t e r Created

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

21

22 l ibrary i e e e ;

23 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

24 use i e e e . s t d l o g i c t e x t i o . a l l ; −− wr i t e s t d l o g i c s i g n a l to l i n e

25 use i e e e . s t d l o g i c un s i g n ed . a l l ;

26 l ibrary std ;

27 use std . t e x t i o . a l l ; −− output data to s t d ou t pu t or t e x t f i l e

28

29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30

31 entity top tb i s

32

33 end top tb ;

34

35 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

36

37 architecture t o p f un c t e s t of top tb i s

38

39 −−component d e ca l r a t i on

40 component top

41 port (

42 c l k : in s t d l o g i c ; −−c l o c k

43 r s t n : in s t d l o g i c ; −−a c t i v e low async r e s e t

44 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

45 s i n : in s t d l o g i c ; −−s e r i a l data in

46 s out : out s t d l o g i c ; −−s e r i a l data out

47 l oad n : in s t d l o g i c ; −−r e g i s t e r s p a r a l l e l load when low

48 s h i f t n : in s t d l o g i c ; −−s h i f t data when low

49 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

50 −− s e l e c t the source f o r da ta ou t as we l l as f o r data saved in r e g i s t e r s

51 s e l r e g : in s t d l o g i c ;

52 s e l : in s t d l o g i c v e c t o r (1 downto 0) ; −−s e l e c t mu l t i p l i e r

53 Z svt : out s t d l o g i c ; −−SVT ring o s c i l l a t o r

54 Z lv t : out s t d l o g i c ) ; −−LVT ring o s c i l l a t o r

55 end component ;

56

57 −− component por t s
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58 signal r s t n : s t d l o g i c ; −−a c t i v e low async r e s e t

59 signal s i n : s t d l o g i c ; −−s e r i a l data in

60 signal s out : s t d l o g i c ; −−s e r i a l data out

61 signal l oad n : s t d l o g i c ; −−r e g i s t e r s p a r a l l e l load when low

62 signal s h i f t n : s t d l o g i c ; −−s h i f t data when low

63 signal s e l r e g : s t d l o g i c ; −−r e g i s t e r s s e l e c t

64 signal s e l : s t d l o g i c v e c t o r (1 downto 0) ; −−s e l e c t mu l t i p l i e r

65 signal Z svt : s t d l o g i c ; −−SVT ring o s c i l l a t o r

66 signal Z lv t : s t d l o g i c ; −−LVT ring o s c i l l a t o r

67 −− c l o c k

68 signal c l k : s t d l o g i c := ’ 1 ’ ; −−c l o c k

69

70 −− cons tan t s

71 constant HALFCLOCKPERIOD : time := 8 ns ;

72

73 begin −− t o p f u n c t e s t

74

75 −− component i n s t a n t i a t i o n

76 DUT : top

77 port map (

78 c l k => c lk ,

79 r s t n => r s t n ,

80 s i n => s i n ,

81 s out => s out ,

82 l oad n => load n ,

83 s h i f t n => s h i f t n ,

84 s e l r e g => s e l r e g ,

85 s e l => s e l ,

86 Z svt => Z svt ,

87 Z lv t => Z lv t ) ;

88

89 −− c l o c k genera t ion

90 c l k <= not c l k after HALFCLOCKPERIOD;

91

92 −−main t e s t b ench processor

93 main : process

94 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

95 variable match v : boolean ; −− check ou tpu t da ta

96 variable pass v : boolean ; −− de t e c t i f an error accured

97

98 variable g l ob a l p a s s v : boolean := true ; −− pass f l a g f o r a l l t e s t s

99

100 variable d l : l i n e ; −− output l i n e f o r debugging purpose

101

102 variable DEBUGMODE : boolean := f a l s e ; −− a c t i v a t e / d e s a c t i v a t e verbose mode

103

104 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

105

106 −− procedures

107 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

108 −−check i f s p e c i f i e d t e s t pass

109 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

110 procedure ch e ck e r r o r s ( test name : in s t r i n g ) i s

111 begin

112 i f pass v then
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113 report test name & ” ALL PASS ” ;

114 else

115 report test name & ” FAILED ” ;

116 end i f ;

117 g l oba l p a s s v := g l oba l p a s s v and pass v ;

118 end procedure ch e ck e r r o r s ;

119 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

120 −−check i f a l l t e s t s pass

121 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

122 procedure g l oba l ch e ck i s

123 begin

124 i f g l oba l p a s s v then

125 report ” ALL TESTS PASS −> OK! ” ;

126 else

127 report ” ONE OR MORE TEST FAILED ” ;

128 end i f ;

129 end procedure g l oba l ch e ck ;

130 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131 −−wr i t e and read s p e c i f i c pa t t e rns to /from the s h i f t r e g i s t e r

132 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

133 procedure s e r i a l r e a d w r i t e i s

134 −−four d i f f e r e n t pa t t e rn to t e s t

135 constant SERIAL DATA IN0 : s t d l o g i c v e c t o r (63 downto 0) := ( others => ’ 0 ’ ) ;

136 constant SERIAL DATA IN1 : s t d l o g i c v e c t o r (63 downto 0) := ( others => ’ 1 ’ ) ;

137 constant SERIAL DATA IN2 : s t d l o g i c v e c t o r (63 downto 0) :=

138 X”5555555555555555” ; −−”0101010101010.. .1010101010101010101”;

139 constant SERIAL DATA IN3 : s t d l o g i c v e c t o r (63 downto 0) :=

140 X”AAAAAAAAAAAAAAAA” ; −−”1010101010101.. .0101010101010101010”;

141

142 variable s e r i a l d a t a o u t : s t d l o g i c v e c t o r (63 downto 0) ; −− read data

143 −− from the r e g i s t e r s

144 begin

145 −− i n i t

146 r s t n <= ’0 ’ ;

147 l oad n <= ’1 ’ ;

148 s h i f t n <= ’1 ’ ;

149 s i n <= ’0 ’ ;

150 s e l r e g <= ’1 ’ ;

151 s e l <= ”00” ;

152

153 pass v := true ;

154 wait for 9∗HALFCLOCKPERIOD;

155 wait until c l k = ’0 ’ ;

156

157 −− wr i t e f i r s t pa t t e rn

158 s h i f t n <= ’0 ’ ;

159 for i in 63 downto 0 loop

160 s i n <= SERIAL DATA IN0( i ) ;

161 wait until c l k = ’ 0 ’ ;

162 end loop ; −− i

163

164 −−wr i t e second pa t t e rn and read f i r s t pa t t e rn

165 for i in 63 downto 0 loop

166 s i n <= SERIAL DATA IN1( i ) ;

167 s e r i a l d a t a o u t ( i ) := s out ;
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168 wait until c l k = ’ 0 ’ ;

169 end loop ; −− i

170

171 −−check f i r s t pa t t e rn

172 match v := s e r i a l d a t a o u t = SERIAL DATA IN0 ;

173 pass v := pass v and match v ;

174 assert s e r i a l d a t a o u t = SERIAL DATA IN0

175 report ”Error on SERIAL DATA IN0” severity e r r o r ;

176 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

177 i f DEBUGMODE then

178 report ”SERIAL DATA IN0 read ! ” severity note ;

179 end i f ;

180

181 −−wr i t e t h i r d pa t t e rn and read second pa t t e rn

182 for i in 63 downto 0 loop

183 s i n <= SERIAL DATA IN2( i ) ;

184 s e r i a l d a t a o u t ( i ) := s out ;

185 wait until c l k = ’ 0 ’ ;

186 end loop ; −− i

187

188 −−check second pa t t e rn

189 match v := s e r i a l d a t a o u t = SERIAL DATA IN1 ;

190 pass v := pass v and match v ;

191 assert s e r i a l d a t a o u t = SERIAL DATA IN1

192 report ”Error on SERIAL DATA IN1” severity e r r o r ;

193 i f DEBUGMODE then

194 report ”SERIAL DATA IN1 read ! ” severity note ;

195 end i f ;

196

197 −−wr i t e f our th pa t t e rn and read the t h i r d pa t t e rn

198 for i in 63 downto 0 loop

199 s i n <= SERIAL DATA IN3( i ) ;

200 s e r i a l d a t a o u t ( i ) := s out ;

201 wait until c l k = ’ 0 ’ ;

202 end loop ; −− i

203

204 −−check the t h i r d pa t t e rn

205 match v := s e r i a l d a t a o u t = SERIAL DATA IN2 ;

206 pass v := pass v and match v ;

207 assert s e r i a l d a t a o u t = SERIAL DATA IN2

208 report ”Error on SERIAL DATA IN2” severity e r r o r ;

209 i f DEBUGMODE then

210 report ”SERIAL DATA IN2 read ! ” severity note ;

211 end i f ;

212

213 −−read the f our th pa t t e rn

214 for i in 63 downto 0 loop

215 s e r i a l d a t a o u t ( i ) := s out ;

216 wait until c l k = ’ 0 ’ ;

217 end loop ; −− i

218

219 −−check the f our th pa t t e rn

220 match v := s e r i a l d a t a o u t = SERIAL DATA IN3 ;

221 pass v := pass v and match v ;

222 assert s e r i a l d a t a o u t = SERIAL DATA IN3
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223 report ”Error on SERIAL DATA IN3” severity e r r o r ;

224 i f DEBUGMODE then

225 report ”SERIAL DATA IN3 read ! ” severity note ;

226 end i f ;

227 end s e r i a l r e a d w r i t e ;

228 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

229 −− check t ha t the s h i f t r e g i s t e r can be r e s e t from the pseudo random generator

230 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

231 procedure c h e c k s h i f t r e g r s t i s

232 variable s e r i a l d a t a o u t : s t d l o g i c v e c t o r (63 downto 0) ;

233 begin −− c h e c k s h i f t r e g r s t

234 −− i n i t

235 r s t n <= ’0 ’ ;

236 l oad n <= ’1 ’ ;

237 s h i f t n <= ’1 ’ ;

238 s i n <= ’1 ’ ;

239 s e l r e g <= ’1 ’ ; −− from pseudo random generator

240 s e l <= ”00” ;

241

242 pass v := true ;

243 wait for 9∗HALFCLOCKPERIOD;

244 wait until c l k = ’0 ’ ;

245

246 −− l oad p a r a l l e l z e ros to s h i f t r e g i s t e r s

247 l oad n <= ’0 ’ ;

248 wait until c l k = ’ 1 ’ ;

249 wait until c l k = ’ 0 ’ ;

250

251 −− output s h i f t r e g i s t e r s data s e r i a l l y

252 for i in 63 downto 0 loop

253 s e r i a l d a t a o u t ( i ) := s out ;

254 wait until c l k = ’ 0 ’ ;

255 end loop ; −− i

256

257 −− check t ha t data i s zeroed

258 match v := s e r i a l d a t a o u t = X”0000000000000000” ;

259 pass v := pass v and match v ;

260 assert match v report ”Error on s h i f t r e g i s t e r r e s e t ” severity e r r o r ;

261 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

262

263 end c h e c k s h i f t r e g r s t ;

264 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

265 −− purpose : read the f i r s t 100 and 200 pseudo random generated data

266 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

267 procedure read rand i s

268 variable s e r i a l d a t a o u t : s t d l o g i c v e c t o r (63 downto 0) ;

269 begin −− read rand

270

271 −− i n i t

272 r s t n <= ’0 ’ ;

273 l oad n <= ’1 ’ ;

274 s h i f t n <= ’1 ’ ;

275 s i n <= ’1 ’ ;

276 s e l r e g <= ’1 ’ ; −− from pseudo random generator

277 s e l <= ”00” ;
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278

279 pass v := true ;

280 wait for 9∗HALFCLOCKPERIOD;

281 wait until c l k = ’0 ’ ;

282

283

284 s e l r e g <= ’1 ’ ; −− pseudo random data to s h i f t r e g

285 l oad n <= ’0 ’ ; −− ready to load the zeroed vec to r

286 wait until c l k = ’ 0 ’ ;

287

288 r s t n <= ’1 ’ ; −− c l e a r the r e s e t

289 wait until c l k = ’ 0 ’ ;

290 wait for 200∗HALFCLOCKPERIOD;

291

292 l oad n <= ’1 ’ ; −− swi t ch to s e r i a l mode to e x t r a c t data

293 s h i f t n <= ’0 ’ ;

294 −− output s h i f t r e g i s t e r s data s e r i a l l y

295 for i in 63 downto 0 loop

296 s e r i a l d a t a o u t ( i ) := s out ;

297 wait until c l k = ’ 0 ’ ;

298 end loop ; −− i

299

300 −− check data

301 match v := s e r i a l d a t a o u t = X”2F8D072F8D0BD0BD” ;

302 pass v := pass v and match v ;

303 assert match v report ”Error on read random data ” severity e r r o r ;

304 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

305

306 l oad n <= ’0 ’ ; −− r e s e l e c t p a r a l l e l input to s h i f t r e g s

307

308 wait for 72∗HALFCLOCKPERIOD;

309

310 l oad n <= ’1 ’ ; −− swi t ch to s e r i a l mode to e x t r a c t data

311 s h i f t n <= ’0 ’ ;

312 −− output s h i f t r e g i s t e r s data s e r i a l l y

313 for i in 63 downto 0 loop

314 s e r i a l d a t a o u t ( i ) := s out ;

315 wait until c l k = ’ 0 ’ ;

316 end loop ; −− i

317

318 −− check data

319 match v := s e r i a l d a t a o u t = X”7DF14972F14972F1” ;

320 pass v := pass v and match v ;

321 assert match v report ”Error on read random data ” severity e r r o r ;

322 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

323 end read rand ;

324

325 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

326 −− purpose : re se t , read e x t e rna l data , mu l t ip l y , output r e s u l t

327 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

328 procedure mult ext data (

329 −− the number corresponding to the t e s t e d mu l t i p l i e r

330 constant mult number : in i n t e g e r ) i s

331

332 variable s e r i a l d a t a o u t : s t d l o g i c v e c t o r (63 downto 0) ;
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333 −− input mu l t i p l i e r data

334 constant DATA IN : s t d l o g i c v e c t o r (63 downto 0) := X”AC0E5F8EAC0E5F8E” ;

335 −− expec ted r e s u l t = DATA IN+DATA IN(63 downto 32)∗DATA IN(31 downto 0)

336 constant EXPECTED DATA OUT : s t d l o g i c v e c t o r (63 downto 0) :=

337 DATA IN+(DATA IN(63 downto 32) ∗DATA IN(31 downto 0) ) ;

338

339 begin −− mul t e x t da ta

340

341 −− i n i t

342 r s t n <= ’0 ’ ;

343 l oad n <= ’1 ’ ;

344 s h i f t n <= ’1 ’ ;

345 s i n <= ’1 ’ ;

346 s e l r e g <= ’1 ’ ; −− from regs to mults

347 case mult number i s

348 when 0 => s e l <= ”00” ;

349 when 1 => s e l <= ”01” ;

350 when 2 => s e l <= ”10” ;

351 when 3 => s e l <= ”11” ;

352 when others => s e l <= ”XX” ;

353 end case ;

354

355 pass v := true ;

356 wait for 9∗HALFCLOCKPERIOD;

357 wait until c l k = ’0 ’ ;

358

359 s e l r e g <= ’1 ’ ; −− pseudo random data to s h i f t r e g

360 l oad n <= ’0 ’ ; −− ready to load the zeroed vec to r

361 wait until c l k = ’ 0 ’ ;

362

363 r s t n <= ’1 ’ ; −− c l e a r the r e s e t

364 wait until c l k = ’ 0 ’ ;

365

366 s h i f t n <= ’0 ’ ; −− enter s e r i a l data

367 l oad n <= ’1 ’ ;

368 for i in 63 downto 0 loop

369 s i n <= DATA IN( i ) ;

370 wait until c l k = ’ 0 ’ ;

371 end loop ; −− i

372 s h i f t n <= ’1 ’ ;

373 l oad n <= ’1 ’ ;

374

375 wait until c l k = ’ 0 ’ ;

376 s e l r e g <= ’0 ’ ;

377 wait until c l k = ’ 0 ’ ;

378

379 −− de lay i f p a r a l l e l 4 implementation i s used

380 i f mult number = 1 or mult number = 3 then

381 wait for 6∗HALFCLOCKPERIOD;

382 end i f ;

383

384 l oad n <= ’0 ’ ;

385 wait until c l k = ’ 0 ’ ;

386

387
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388 l oad n <= ’1 ’ ; −− swi t ch to s e r i a l mode to e x t r a c t data

389 s h i f t n <= ’0 ’ ;

390 −− output s h i f t r e g i s t e r s data s e r i a l l y

391 for i in 63 downto 0 loop

392 s e r i a l d a t a o u t ( i ) := s out ;

393 wait until c l k = ’ 0 ’ ;

394 end loop ; −− i

395

396 −− check data

397 match v := s e r i a l d a t a o u t = EXPECTED DATA OUT;

398 pass v := pass v and match v ;

399 assert match v report ”Error on mult ip ly ex t e rna l data ” severity e r r o r ;

400 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

401

402 end mult ext data ;

403 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

404 −− purpose : mu l t i p l y and add pseudo random generated data

405 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

406 procedure random mac (

407 −− the number corresponding to the t e s t e d mu l t i p l i e r

408 constant mult number : in i n t e g e r ) i s

409

410 variable s e r i a l d a t a o u t : s t d l o g i c v e c t o r (63 downto 0) ;

411

412 begin −− random mac

413

414 −− i n i t

415 r s t n <= ’0 ’ ;

416 l oad n <= ’0 ’ ; −− s t o r e incoming data

417 s h i f t n <= ’1 ’ ;

418 s i n <= ’0 ’ ;

419 s e l r e g <= ’1 ’ ; −− from rand to regs

420 case mult number i s

421 when 0 => s e l <= ”00” ;

422 when 1 => s e l <= ”01” ;

423 when 2 => s e l <= ”10” ;

424 when 3 => s e l <= ”11” ;

425 when others => s e l <= ”XX” ;

426 end case ;

427

428 pass v := true ;

429 wait for 9∗HALFCLOCKPERIOD;

430 wait until c l k = ’0 ’ ;

431

432 s e l r e g <= ’0 ’ ; −− pseudo random data to mult

433 l oad n <= ’0 ’ ; −− ready to load sum to regs

434 r s t n <= ’1 ’ ; −− c l e a r the r e s e t

435 wait until c l k = ’ 0 ’ ;

436

437 wait for 4∗HALFCLOCKPERIOD;

438 −− de lay i f p a r a l l e l 4 implementation i s used

439 i f mult number = 1 or mult number = 3 then

440 wait for 6∗HALFCLOCKPERIOD;

441 end i f ;

442 wait for 1000∗HALFCLOCKPERIOD;
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443

444

445 l oad n <= ’1 ’ ; −− swi t ch to s e r i a l mode to e x t r a c t data

446 s h i f t n <= ’0 ’ ;

447 −− output s h i f t r e g i s t e r s data s e r i a l l y

448 for i in 63 downto 0 loop

449 s e r i a l d a t a o u t ( i ) := s out ;

450 wait until c l k = ’ 0 ’ ;

451 end loop ; −− i

452

453 −− check data

454 match v := s e r i a l d a t a o u t = X”14C9836842DEF744” ;

455 pass v := pass v and match v ;

456 assert match v report ”Error on mult ip ly random data ” severity e r r o r ;

457 −−i e e e . s t d l o g i c t e x t i o . wr i t e ( d l , s e r i a l d a t a o u t ) ; w r i t e l i n e ( output , d l ) ;

458

459 end random mac ;

460 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

461 −−t e s t sequence

462 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

463 begin

464 c h e c k s h i f t r e g r s t ;

465 ch e ck e r r o r s ( ” Sh i f t Reg i s t e r s Reset : ” ) ;

466 s e r i a l r e a d w r i t e ;

467 ch e ck e r r o r s ( ” S e r i a l Read/Write : ” ) ;

468 read rand ;

469 ch e ck e r r o r s ( ”Read Rand : ” ) ;

470 mult ext data (0 ) ;

471 ch e ck e r r o r s ( ”Mult ip ly ex t e rna l data on mult0 : ” ) ;

472 mult ext data (1 ) ;

473 ch e ck e r r o r s ( ”Mult ip ly ex t e rna l data on mult1 : ” ) ;

474 mult ext data (2 ) ;

475 ch e ck e r r o r s ( ”Mult ip ly ex t e rna l data on mult2 : ” ) ;

476 mult ext data (3 ) ;

477 ch e ck e r r o r s ( ”Mult ip ly ex t e rna l data on mult3 : ” ) ;

478 random mac (0 ) ;

479 ch e ck e r r o r s ( ”Add random mu l t i p l i e d data f o r mult0 : ” ) ;

480 random mac (1 ) ;

481 ch e ck e r r o r s ( ”Add random mu l t i p l i e d data f o r mult1 : ” ) ;

482 random mac (2 ) ;

483 ch e ck e r r o r s ( ”Add random mu l t i p l i e d data f o r mult2 : ” ) ;

484 random mac (3 ) ;

485 ch e ck e r r o r s ( ”Add random mu l t i p l i e d data f o r mult3 : ” ) ;

486

487 g l oba l ch e ck ;

488 wait ;

489 end process ;

490

491 end t o p f un c t e s t ;

492

493 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

494

495 configuration t o p t b t o p f u n c t e s t c f g of top tb i s

496 for t o p f un c t e s t

497 end for ;
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498 end t o p t b t o p f u n c t e s t c f g ;

499

500 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Synopsys compilation scripts

B.1 compile top.tcl

1 #######################

2 ## Globa l v a r i a b l e s ##

3 #######################

4 set BIN . /bin /

5 set DB . /db/

6 set PAR . /par/ s r c /

7 set GATE . / gate /

8 set WORK . /work/

9 set SRC . /vhdl /

10 set r epo r t s pa th . / r epo r t s /

11

12 set design name top stm090

13

14 #ignore case to avoid problem on a c t i v i t y annotat ion

15 set f i n d i g n o r e c a s e t rue

16 set s upp r e s s e r r o r s ”VHDL−2285 OPT−150 TIM−111 TIM−112”

17 #remove the l im i t for high fanout ne t s

18 set h i gh f anou t n e t t h r e sho l d 0

19

20 #de f ine the working path

21 d e f i n e d e s i g n l i b work −path $WORK

22

23 ########################

24 ## Bus name v a r i a b l e s ##

25 ########################

26 set bus naming sty l e %s(%d)

27

28 ##############################

29 ## Remove prev ious des i gns ##

30 ##############################

31 #remove cons tra in t −all

32 #remove design −all

33

34 #######################

35 ## Read des ign ##

161
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36 #######################

37 source r e a d vhd l . t c l

38

39 #l i n k des ign with l ibrary ( i . e . load requ i r ed l i b r a r i e s )

40 l i n k

41

42 #Uniqui fy the mu l t i l p i e r s b l o c k s

43 set un iqu i f y naming s ty l e %s %d

44

45 #rename the 4 main mu l t i p l i e r s

46 un iqu i f y −ce l l {mult 0 mult 1 mult 2 mult 3} −base name multd

47

48 #rename the remaining des ign

49 un iqu i f y

50

51 ###############################

52 ## Create clock MHz 62.5MHz ##

53 ###############################

54

55 #main clock

56 c r e a t e c l o c k c l k −period 16

57

58 #generated clock

59 c r e a t e g en e r a t e d c l o c k −source c l k −name dclk0 −divide by 1 mult 0 / c l k

60 c r e a t e g en e r a t e d c l o c k −source c l k −name dclk1 −divide by 1 mult 1 / c l k

61 c r e a t e g en e r a t e d c l o c k −source c l k −name dclk2 −divide by 1 mult 2 / c l k

62 c r e a t e g en e r a t e d c l o c k −source c l k −name dclk3 −divide by 1 mult 3 / c l k

63

64 #al low maximum de lay at input and output

65 s e t i n pu t d e l a y 0 −clock c l k [ a l l i n p u t s ]

66 s e t ou tpu t de l ay 0 −clock c l k [ a l l o u t pu t s ]

67

68 #next l i n e s are there to avoid TIM−111 warning

69 s e t i n pu t d e l a y 0 −clock dc lk0 mult 0 / c l k

70 s e t i n pu t d e l a y 0 −clock dc lk1 mult 1 / c l k

71 s e t i n pu t d e l a y 0 −clock dc lk2 mult 2 / c l k

72 s e t i n pu t d e l a y 0 −clock dc lk3 mult 3 / c l k

73

74 #Se t p ropaga t ed c l o c k automat ica ly set the co r r ec t

75 #s e t c l o c k l a t e n c y va lue for the generated c l o c k s

76 s e t p r opaga t ed c l o ck [ a l l c l o c k s ]

77

78 #repo r t c l o c k −skew

79

80 #######################

81 ## Set Loads ##

82 #######################

83 s e t d r i v e [ d r i v e o f CORE90GPSVT NomLeak.db:CORE90GPSVT/IVSVTX1/Z ] [ a l l i n p u t s ]

84 #2.004893

85 s e t l o a d [ l o ad o f CORE90GPSVT NomLeak.db:CORE90GPSVT/IVSVTX1/A] [ a l l o u t pu t s ]

86 #0.002090

87

88 #put an high load on the s ou t because i t

89 #w i l l d r i v e a ana log i c pad

90 s e t l o a d 10 s out
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91

92 #######################

93 ## Design Constra in t s##

94 #######################

95 set max area 0

96

97 #######################

98 ## Compile Design ##

99 #######################

100

101 # Write unmapped top

102 cu r r en t d e s i gn top

103 wr i t e −hierarchy −output ${DB}unmapped top.db

104

105 # charac t e r i z e the 4 mu l t i p l i e r s

106 set t a r g e t l i b r a r y CORE90GPSVT NomLeak.db

107 c h a r a c t e r i z e −constra int {mult 0 mult 1 mult 2 mult 3}

108

109 # compile mult 0 and mult 1 with SVT

110 set t a r g e t l i b r a r y CORE90GPSVT NomLeak.db

111 cu r r en t d e s i gn multd 0

112 compi le

113 cu r r en t d e s i gn multd 1

114 compi le

115

116 # compile mult 2 and mult 3 with LVT

117 set t a r g e t l i b r a r y CORE90GPLVT NomLeak.db

118 cu r r en t d e s i gn multd 2

119 compi le

120 cu r r en t d e s i gn multd 3

121 compi le

122

123 #set dont touch to compile mu t l i p l i e r s

124 cu r r en t d e s i gn top

125 s e t dont touch {mult 0 mult 1 mult 2 mult 3 r i n g s v t 1 r i n g l v t 1 }

126

127 # the r e s t o f the des ign w i l l be compiled with

128 # the SVT techno logy

129 set t a r g e t l i b r a r y CORE90GPSVT NomLeak.db

130 compi le −map effort high

131

132 #show which DW implementation has been s e l e c t e d

133 r e p o r t r e s o u r c e s −hier > ${ r epo r t s pa th }${design name} . s yn rp rh

134

135 #remove unconnected por t s in DW des i gns

136 s e t dont touch {mult 0 mult 1 mult 2 mult 3} f a l s e

137 remove unconnected ports [ g e t c e l l s −hier ∗ ]

138 remove unconnected ports −blas t buses [ g e t c e l l s −hier ∗ ]

139 s e t dont touch {mult 0 mult 1 mult 2 mult 3} t rue

140

141 #########################

142 ## Fix ho ld v i o l a t i o n s ##

143 #########################

144 s e t f i x h o l d [ a l l c l o c k s ]

145
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146 #recompi le top only

147 compi le −inc

148

149 #######################

150 ##Write Mapped des ign##

151 #######################

152 change names −rules vhdl −hierarchy

153 wr i t e −hierarchy −format vhdl −output ${GATE} top.vhd

154 wr i t e s d f ${GATE} t o p . s d f

155

156 #######################

157 ## Annotate Ac t i v t i y ##

158 #######################

159 #sh cp msim/mode l s im. in i . /mode l s im. in i

160 sh cp ${SRC} top tb .vhd ${GATE} top tb .vhd

161 sh vsim −c −do ${BIN} power sd f .do

162 r e a d s a i f −unit ns −scale 1 − instance top tb /dut −input ${GATE} b a c k . s a i f

163

164 ###############################################

165 ## Save repor t s in the de f ined d i r e c t o r y ##

166 ###############################################

167 r epo r t a r e a > ${ r epo r t s pa th }${design name} . s yn rpa

168 check des i gn > ${ r epo r t s pa th }${design name} . s yn rpd

169 r epo r t t im ing > ${ r epo r t s pa th }${design name} . s y n r p t

170 r e po r t h i e r a r chy > ${ r epo r t s pa th }${design name} . s yn rph

171 r e p o r t r e s o u r c e s > ${ r epo r t s pa th }${design name} . s y n r p r

172 r e p o r t c e l l > ${ r epo r t s pa th }${design name} . s yn rp c

173 report power −net −ce l l − f l a t − i n c lude input ne t s > ${ r epo r t s pa th }${design name}

. s yn rpp

174 r e p o r t s a i f − f l a t > ${ r epo r t s pa th }${design name} . s y n r p s

175 r e p o r t c o n s t r a i n t > ${ r epo r t s pa th }${design name} . s yn rpn

176 r e p o r t r e f e r e n c e −nosp l i t > ${ r epo r t s pa th }${design name} . s y n r p f

177 r e p o r t c l o c k −skew > ${ r epo r t s pa th }${design name} . s yn rpk

178 report power − i n c lude input ne t s −hier −h i e r l e v e l 1 > ${ r epo r t s pa th }${design name}

. syn rpph

179

180 #######################

181 ## Save des ign ##

182 #######################

183 change names −rules v e r i l o g −hierarchy

184 set bus naming sty l e %s \[%d \ ]

185 wr i t e −hierarchy −output ${DB} top gate .db

186 wr i t e −hierarchy −format v e r i l o g −output ${PAR} t op ga t e . v

187 wr i t e s d f ${PAR} t o p g a t e . s d f

188 wr i t e sd c ${PAR} t op ga t e . s d c

189

190 qu i t

B.2 read vhdl.tcl

1 analyze −f vhdl vhdl / r i n g s v t . vhd

2 analyze −f vhdl vhdl / r i n g l v t . v hd

3 analyze −f vhdl vhdl /RCA generic arch.vhd

4 analyze −f vhdl vhdl /mult.vhd
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5 analyze −f vhdl vhdl /mult par4.vhd

6 analyze −f vhdl vhdl / data gen.vhd

7 analyze −f vhdl vhdl / top.vhd

8 e l abo ra t e top −update

B.3 power sdf.do

1 ############################################################

2 # Scr i p t to computate the sw i t ch ing a c t i v i t y with ModelSim #

3 # Schuster Chr i s t i an , June 2003 , IMT Neuchate l #

4 ############################################################

5 #execute t h i s script with vsim −c −do power sd f .do

6 #needed f i l e s a r e : t o p . s d f , t o p . v hd , t o p t b . v h d

7

8 # Testbench path and f i l e names

9 set work di r / s c ra t ch / s chus t e r / s tm090 sv t l v t

10 set te s tbench top tb

11 set bench path $tes tbench /dut

12 set d i r gate

13 set sdffname $d i r / t o p . s d f

14

15 # Time and s imu la t ion s e t t i n g s

16 set t ime s c a l e ps

17 set back sa i f ba s e t ime 1E−12

18

19 set i n i t t im e 19592000

20 #19592ns

21 set eva lua t i on t ime 36704000

22 #36704ns

23

24 #compile des ign+te s t b ench

25 vcom −93 $d i r / top.vhd −work $work dir

26 vcom −93 $d i r / top tb .vhd −work $work dir

27

28 # Use the same path separa tor as Synopsys SAIF f i l e

29 set PathSeparator /

30 set DatasetSeparator :

31

32 vsim +not imingchecks −sdftyp $bench path=$sdffname − fore ign ” d p f l i i n i t / synopsys /

v2004.06 /auxx/syn/power/ d p f l i / lib−sparcOS5/ d p f l i . s o ” − l ib $work dir −t

$ t ime s c a l e $tes tbench

33 #+notimingchecks i s used to avoid unrea l problems on sd f annotat ion and v e r i l o g model

34

35

36 #i n i t i a l i z e r ing o s c i l l a t o r s

37 f o r c e top tb /dut/ r i n g s v t 1 / z po r t 0 0 −c 16

38 f o r c e top tb /dut/ r i n g l v t 1 / z po r t 0 0 −c 16

39

40 # Se l e c t t o g g l e reg ion

41 s e t t o g g l e r e g i o n $bench path

42

43 # In i t the c i r c u i t

44 run $ i n i t t ime

45
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46 # Star t sw i t ch ing annotat ion

47 t o g g l e s t a r t

48

49 # Execute t e s t b ench

50 run $eva lua t i on t ime

51

52 # Stop sw i t ch ing annotat ion

53 t o g g l e s t op

54

55 # Write back annotat ion SAIF

56 t o g g l e r e p o r t $d i r / b a c k . s a i f $back sa i f ba s e t ime $bench path

57

58 qu i t
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SoC Encounter P&R scripts

C.1 main.tcl

1 ########################################

2 ## Main f i l e for ENCOUNTER SOC4.1 ##

3 ## CSch, Ju ly 2006 , ver s ion 1 .1 ##

4 ########################################

5 # Required F i l e s :

6 # Sc r i p t s :

7 # − t op . con f

8 # − I O F i l l e r . t c l

9 # − c r e a t e g l o b a l n e t . t c l

10 # − pwr . t c l

11 # − do power domains

12 # − f o l l o wP i n . t c l

13 # − t o p . c t s t c h

14 # − o u t p u t n e t s . t c l

15 # − p l a c e o u t p u t b u f s . t c l

16 # − f i x d r c e r r o r s . t c l

17 # Data:

18 # − i o p l a c e . i o

19 # − LEF/IO90GPHVT BASIC 50A 7M2T PGC.lef (ALL ex t e rna l l a y e r s o f COREVDD1V0 pin need

the l i n e ”CLASS CORE ; ” in order to be be routed by s r ou t e , d i f f f i l e present )

20 # − LEF/IO90GPHVT 3V3 50A 7M2T PGC.lef ( d i f f f i l e present )

21 # Src :

22 # − t o p i o . v ( from cat src / t o p g a t e . v data/ io wrapper . v > src / t o p i o . v )

23 # − t o p g a t e . s d c ( change g e t p i n s −> g e t p i n s −hierarchy )

24

25 Puts ”###############################”

26 Puts ”###”

27 Puts ”### Load Design ”

28 Puts ”###”

29 Puts ”###############################”

30

31 ### un i qu i f y the n e t l i s t ( s h e l l to execute be f o r e an encounter s e s s i on )

32 ### un i q u i f yN e t l i s t −top

33 #In my case n e t l i s t was a l ready unique !

34

167
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35 set CMOS090GP DIR / de s i gnk i t / cmos090 50a

36 set s cp t s s c r i p t s /

37 set data data/

38

39

40 setRCFactor −cap 1 . 1

41

42 #set the s ize o f the sma l l e s t d i s p l a y ed module −> d i s p l a y a l l

43 s e tP r e f e r en c e MinFPModuleSize 1

44

45 #load the des ign + io + corners

46 l oadConf ig ${ s cp t s } t op . c on f

47

48 #load f o o t p r i n t s used for t imin ing dr iven ana l y s i s

49 l o a d f o o t p r i n t − i n f i l e ${CMOS090GP DIR}/ SocEncounter cmos090gp 2.2 / cmos090gp 50a.c fp

50 se t InvFootPr int IVSVTX1

51 setBufFootPr int BFSVTX1

52 #setDe layFootPrint DLY1SVTX2

53

54 Puts ”#########################”

55 Puts ”###”

56 Puts ”### Create Floorp lan ”

57 Puts ”###”

58 Puts ”#########################”

59

60 ### de f ine f l o o r p l an

61 #f loorP lan −r 1 0 .7 40 40 40 40

62 #Fixed dimension a l l ow io co rne r s to be a l i gned with the 0.56um gr id

63 f l o o rP l an −s 800 .28 800 .28 50 .08 50 .08 50 .08 50 .08

64

65 ### Add IO f i l l e r

66 source ${ s cp t s } I O F i l l e r . t c l

67

68 Puts ”###############################”

69 Puts ”###”

70 Puts ”### Create PowerDomains and ”

71 Puts ”### Place Block ( s ) ”

72 Puts ”###”

73 Puts ”###############################”

74

75 #crea te the 5 separated power domains

76 source ${ s cp t s } do power domains . t c l

77

78 #place iore f comp ins tance needed for the 3V3 IOs

79 p l a c e In s t anc e io re f comp 732 .88 204 .04 R180

80 addHaloToBlock 31 . 5 20 20 30 −al lBlock

81

82 #connects a l l global nets

83 source ${ s cp t s } c r e a t e g l o b a l n e t . t c l

84

85 Puts ”###############################”

86 Puts ”###”

87 Puts ”### Create power s t r i p e s ”

88 Puts ”###”

89 Puts ”###############################”
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90

91 ### add power r ing + s t r i p e s

92 source ${ s cp t s } pwr . t c l

93

94 ### s td− c e l l f o l l ow pin

95 source ${ s cp t s } f o l l owP i n . t c l

96

97 # save f loor−p lan

98 saveFPlan . / f p l a n . f p

99

100 # check f loor−p lan

101 veri fyGeometry

102

103 saveDesign . / t o p . f p . e n c

104 #source . / t o p . f p . e n c

105

106 Puts ”####################”

107 Puts ”###”

108 Puts ”### Place Design . . . ”

109 Puts ”###”

110 Puts ”####################”

111

112 #exec mkdir Timing

113 source ${ s cp t s }/ p l a c e o u t p u t b u f s . t c l

114

115 amoebaPlace −t imingdriven \

116 −doCongOpt \

117 −highEf fort \

118 − ignoreScan \

119 − ignoreSpare \

120 −QA \

121 −slack i n i t v i r t u a l . s l k

122

123 saveDesign . / t o p . p l a c e . e n c

124 #source . / t o p . p l a c e . e n c

125

126 checkPlace

127

128 buildTimingGraph

129 t imeDesign −preCTS −outDir . /Timing/PLACE.timing

130

131 Puts ”###################”

132 Puts ”###”

133 Puts ”### Opt im i z a t i o n . . . ”

134 Puts ”###”

135 Puts ”###################”

136

137 setOptMode −highEf fort \

138 −fixFanoutLoad \

139 −maxDensity 0 . 8 \

140 −reclaimArea \

141 −setupTargetSlack 0 . 0 \

142 −holdTargetSlack 0 . 0

143

144 optDesign −preCTS −setup −drv
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145

146 saveDesign . / top.IPO.enc

147 # source . / top.IPO.enc

148

149 t imeDesign −preCTS −outDir . /Timing/ IPO.timing

150

151 Puts ”##############”

152 Puts ”###”

153 Puts ”### Run CTS.. . ”

154 Puts ”###”

155 Puts ”##############”

156

157 #clock with d i f f e r e n t l i b r a r i e s (SVT/LVT) depending on power domains

158 setCTSMode −fence −MSMV

159 #spe c i f y c l o c k t r e e f i l e

160 spec i fyClockTree − c l k f i l e ${ s cp t s } t o p . c t s t c h

161 #crea te repor t d i r e c t o r y

162 createSaveDir t op c t s

163

164 #do clock t r e e s yn t h e s i s

165 ckSynthes i s −rguide t op c t s / t o p c t s . g u i d e −report t op c t s / t o p c t s . c t s r p t

166 saveClockNets −output t op c t s / t o p c t s . c t s n t f

167 s a v eNe t l i s t t op c t s / t o p c t s . v

168 savePlace t op c t s / t o p c t s . p l a c e

169

170 saveDesign . /top.POST CTS.enc

171 #source . /top.POST CTS.enc

172

173 setAnalysisMode −clockTree

174 buildTimingGraph

175 t imeDesign −postCTS −outDir . /Timing/POST CTS.timing

176

177 Puts ”############################”

178 Puts ”###”

179 Puts ”### Optimizat ion post CTS. . . ”

180 Puts ”###”

181 Puts ”############################”

182

183 setOptMode −highEf fort \

184 −fixFanoutLoad \

185 −maxDensity 0 . 8 \

186 −reclaimArea \

187 −setupTargetSlack 0 . 0 \

188 −holdTargetSlack 0 . 0

189

190 optDesign −postCTS

191

192 saveDesign . /top.POST CTS IPO.enc

193 # source . /top.POST CTS IPO.enc

194

195 t imeDesign −postCTS −outDir . /Timing/POST CTS IPO.timing

196

197 Puts ”##################”

198 Puts ”###”

199 Puts ”### Nano r ou t e . . . . ”
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200 Puts ”###”

201 Puts ”##################”

202

203 # F i l l e r Ce l l between s t d− c e l l s

204 addF i l l e r −ce l l FILLERCELL64 FILLERCELL32 FILLERCELL16 FILLERCELL8 FILLERCELL4

FILLERCELL2 FILLERCELL1 −pre f ix FILLER −powerDomain PDCORE

205 addF i l l e r −ce l l FILLERCELL64 FILLERCELL32 FILLERCELL16 FILLERCELL8 FILLERCELL4

FILLERCELL2 FILLERCELL1 −pre f ix FILLER −powerDomain PD0

206 addF i l l e r −ce l l FILLERCELL64 FILLERCELL32 FILLERCELL16 FILLERCELL8 FILLERCELL4

FILLERCELL2 FILLERCELL1 −pre f ix FILLER −powerDomain PD1

207 addF i l l e r −ce l l FILLERCELL64 FILLERCELL32 FILLERCELL16 FILLERCELL8 FILLERCELL4

FILLERCELL2 FILLERCELL1 −pre f ix FILLER −powerDomain PD2

208 addF i l l e r −ce l l FILLERCELL64 FILLERCELL32 FILLERCELL16 FILLERCELL8 FILLERCELL4

FILLERCELL2 FILLERCELL1 −pre f ix FILLER −powerDomain PD3

209

210 # connect a l l new s t d− c e l l i n s t ance s to vdd/gnd

211 source ${ s cp t s } c r e a t e g l o b a l n e t . t c l

212

213

214 ########################

215 ## Route c l o c k s f i r s t ##

216 ########################

217

218 s e tAt t r i bu t e −net @clock −weight 5 −avoid detour t rue −bot tom pre f e r r ed rou t ing l aye r

4 −pr e f e r r ed ex t r a spac e 1

219 s e l e c tNe t −al lDefClock

220 setNanoRouteMode −quiet routeWithTimingDriven f a l s e

221 setNanoRouteMode −quiet envNumberProcessor 1

222 setNanoRouteMode −quiet r o u t e s e l e c t e d n e t o n l y t rue

223

224 g loba lDeta i lRoute

225

226 saveDesign . /top.POST CLK ROUTE.enc

227 #source . /top.POST CLK ROUTE.enc

228

229 #al low wide rou t ing for s ou t Z l v t Z sv t

230 convertNetToSNet −nets { s out Z lv t Z svt }

231 source ${ s cp t s }/ ou t pu t n e t s . t c l

232

233 ####################

234 ## Route A l l Nets ##

235 ####################

236

237 setNanoRouteMode −quiet routeFixPrewire t rue

238 setNanoRouteMode −quiet r o u t e s e l e c t e d n e t o n l y f a l s e

239 setNanoRouteMode −quiet routeWithTimingDriven f a l s e

240 setNanoRouteMode −quiet routeTdrEf fo r t 1

241 setNanoRouteMode −quiet drouteFixAntenna true

242 setNanoRouteMode −quiet routeWithSiDriven true

243 setNanoRouteMode −quiet routeSiLengthLimit 200

244 setNanoRouteMode −quiet r o u t e S iE f f o r t normal

245

246 g loba lDeta i lRoute

247

248 #f i x er ror s found with c a l i b r e DRC check
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249 source ${ s cp t s }/ f i x d r c e r r o r s . t c l

250

251 saveDesign . /top.POST ROUTE.enc

252 #source . /top.POST ROUTE.enc

253

254 ##########################

255 ## Check for v i o l a t i o n s ##

256 ##########################

257

258 c l ea rDrc

259 ver i fygeometry −a l l owDi f fCe l lV i o l s

260 ve r i f yConne c t i v i t y −type r e gu l a r −error 1000 −warning 50

261 ver i fyProcessAntenna

262

263 reportLeakagePower

264

265 Puts ”################################”

266 Puts ”###”

267 Puts ”### Create ab s t r a c t views : v e r i l o g / LEF / DEF / GDS /SDF . . . ”

268 Puts ”###”

269 Puts ”################################”

270

271 #exec mkdir RESULTS

272

273 ########

274 ### ve r i l o g

275 ########

276 s a v eNe t l i s t . /RESULTS/ top .v

277

278 ########

279 ### l e f

280 ########

281 l e fOut . /RESULTS/ t o p . l e f −str ipePin −PGpinLayers 6 7

282

283 #######

284 ### def

285 #######

286 defOut − f l oorp lan −routing . /RESULTS/ t op . d e f

287

288 #######

289 ### gds

290 #######

291 streamOut . /RESULTS/ t op w i t h i o . g d s \

292 −mapFile ${CMOS090GP DIR}/ SocEncounter cmos090gp 2.2 /gds2 cmos90.map \

293 −libName DesignLib \

294 −structureName top w i th i o \

295 − s t r ipe s 1 \

296 −units 2000 \

297 −mode ALL

298

299 #######

300 ### sd f

301 #######

302 setExtractRCMode −deta i l

303 extractRC
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304 delayCal −sdf . /RESULTS/ t op . s d f

C.2 top.conf

1 ################################################

2 # #

3 # Input con f i gu ra t i on f i l e #

4 # #

5 ################################################

6

7 #set d e s i g n k i t path

8 set CMOS090GP DIR / de s i gnk i t / cmos090 50a

9

10 global rda Input

11

12 #set cwd . /work

13

14 set rda Input ( import mode ) {−treatUndefinedCellAsBbox 0 −verticalRow 0

15 −keepEmptyModule 1 }

16 set rda Input ( u i n e t l i s t ) ” s r c / t o p i o . v ”

17

18 set rda Input ( u i n e t l i s t t y p e ) {Ver i l og }

19 set rda Input ( u i i l m l i s t ) {}

20 set rda Input ( u i s e t t o p ) {1}

21 set rda Input ( u i t o p c e l l ) { t op w i th i o }

22 set rda Input ( u i c e l l l i b ) {}

23 set rda Input ( u i i o l i b ) {}

24 set rda Input ( u i a r e a i o l i b ) {}

25 set rda Input ( u i b l k l i b ) {}

26 set rda Input ( u i kbox l i b ) {}

27 set rda Input ( u i g d s f i l e ) {}

28 set rda Input ( u i t ime l i b ,m in ) ”

29 ${CMOS090GP DIR}/CORE90GPLVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORE90GPLVT Best.lib

30 ${CMOS090GP DIR}/CORE90GPSVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORE90GPSVT Best.lib

31 ${CMOS090GP DIR}/CORX90GPLVT SNPS−AVT 4.2/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORX90GPLVT Best.lib

32 ${CMOS090GP DIR}/CORX90GPSVT SNPS−AVT 4.2/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORX90GPSVT Best.lib

33 ${CMOS090GP DIR}/CLOCK90GPLVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB

/CLOCK90GPLVT Best.lib

34 ${CMOS090GP DIR}/CLOCK90GPSVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB

/CLOCK90GPSVT Best.lib

35 ${CMOS090GP DIR}/PR90M7 SNPS−AVT 3.0/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

PR90M7 Best.l ib

36 ${CMOS090GP DIR}/IO90GPHVT 3V3 50A 7M2T SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT 3V3 50A 7M2T Best.lib

37 ${CMOS090GP DIR}/IO90GPHVT BASIC 50A 7M2T SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT BASIC 50A 7M2T Best.lib

38 ${CMOS090GP DIR}/IO90GPHVT REF COMPENSATION 3V3 50A SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT REF COMPENSATION 3V3 50A Best.lib”

39

40 set rda Input ( u i t ime l i b ,max ) ”



174 Appendix C. SoC Encounter P&R scripts

41 ${CMOS090GP DIR}/CORE90GPLVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORE90GPLVT Worst.lib

42 ${CMOS090GP DIR}/CORE90GPSVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORE90GPSVT Worst.lib

43 ${CMOS090GP DIR}/CORX90GPLVT SNPS−AVT 4.2/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORX90GPLVT Worst.lib

44 ${CMOS090GP DIR}/CORX90GPSVT SNPS−AVT 4.2/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

CORX90GPSVT Worst.lib

45 ${CMOS090GP DIR}/CLOCK90GPHVT SNPS−AVT 2.1.a/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/

PT LIB/CLOCK90GPHVT Worst.lib

46 ${CMOS090GP DIR}/CLOCK90GPLVT SNPS−AVT 2.1/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB

/CLOCK90GPLVT Worst.lib

47 ${CMOS090GP DIR}/PR90M7 SNPS−AVT 3.0/SIGNOFF/bc 1.10V m40C wc 0.90V 105C/PT LIB/

PR90M7 Worst.lib

48 ${CMOS090GP DIR}/IO90GPHVT 3V3 50A 7M2T SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT 3V3 50A 7M2T Worst.lib

49 ${CMOS090GP DIR}/IO90GPHVT BASIC 50A 7M2T SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT BASIC 50A 7M2T Worst.lib

50 ${CMOS090GP DIR}/IO90GPHVT REF COMPENSATION 3V3 50A SNPS−AVT 4.0/SIGNOFF/

bc 1.10V m40C wc 0.90V 125C/PT LIB/IO90GPHVT REF COMPENSATION 3V3 50A Worst.lib”

51

52 set rda Input ( u i t im e l i b ) {}

53 set rda Input ( ui smodDef ) {}

54 set rda Input ( ui smodData ) {}

55 set rda Input ( u i dpath ) {}

56 set rda Input ( u i t e c h f i l e ) {}

57 set rda Input ( u i i o f i l e ) {data/ i o p l a c e . i o }

58 set rda Input ( u i t im i n g c o n f i l e ) { s r c / t op ga t e . s d c }

59 set rda Input ( u i l a t e n c y f i l e ) {}

60 set rda Input ( u i s c h e d u l i n g f i l e ) {}

61 set rda Input ( u i b u f f o o t p r i n t ) {}

62 set rda Input ( u i d e l a y f o o t p r i n t ) {}

63 set rda Input ( u i i n v f o o t p r i n t ) {}

64 set rda Input ( u i l e f f i l e ) ”

65 ${CMOS090GP DIR}/ SocEncounter cmos090gp 2.2 / cmos090gp soc . l e f

66 ${CMOS090GP DIR}/CORE90GPLVT SNPS−AVT 2.1/SIGNOFF/common/LEF/CORE90GPLVT ANT.lef

67 ${CMOS090GP DIR}/CORE90GPSVT SNPS−AVT 2.1/SIGNOFF/common/LEF/CORE90GPSVT ANT.lef

68 ${CMOS090GP DIR}/CORX90GPLVT SNPS−AVT 4.2/SIGNOFF/common/LEF/CORX90GPLVT ANT.lef

69 ${CMOS090GP DIR}/CORX90GPSVT SNPS−AVT 4.2/SIGNOFF/common/LEF/CORX90GPSVT ANT.lef

70 ${CMOS090GP DIR}/CLOCK90GPLVT SNPS−AVT 2.1/SIGNOFF/common/LEF/CLOCK90GPLVT ANT.lef

71 ${CMOS090GP DIR}/CLOCK90GPSVT SNPS−AVT 2.1/SIGNOFF/common/LEF/CLOCK90GPSVT ANT.lef

72 ${CMOS090GP DIR}/PR90M7 SNPS−AVT 3.0/SIGNOFF/common/LEF/PR90M7 ANT.lef

73 data/LEF/IO90GPHVT 3V3 50A 7M2T PGC.lef

74 data/LEF/IO90GPHVT BASIC 50A 7M2T PGC.lef

75 ${CMOS090GP DIR}/IO90GPHVT REF COMPENSATION 3V3 50A SNPS−AVT 4.0/SIGNOFF/common/LEF/

IO90GPHVT REF COMPENSATION 3V3 50A.lef”

76

77

78 set rda Input ( u i c o r e c n t l ) { aspect }

79 set rda Input ( u i a s p e c t r a t i o ) {1 . 0 }

80 set rda Input ( u i c o r e u t i l ) {0 . 7 }

81 set rda Input ( u i c o r e h e i g h t ) {}

82 set rda Input ( u i c o r e w id th ) {}

83 set rda Input ( u i c o r e t o l e f t ) {}

84 set rda Input ( u i c o r e t o r i g h t ) {}
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85 set rda Input ( u i c o r e t o t o p ) {}

86 set rda Input ( u i co r e to bo t tom ) {}

87 set rda Input ( u i max i o he i gh t ) {0}

88 set rda Input ( u i r ow he i gh t ) {3 .92 }

89 set rda Input ( u i i sHorTrackHa l fP i t ch ) {0}

90 set rda Input ( u i i sVerTrackHa l fP i t ch ) {1}

91 set rda Input ( u i i oO r i ) {R0}

92 set rda Input ( u i i sOr i gCen t e r ) {0}

93 set rda Input ( u i e x c n e t ) {}

94 set rda Input ( u i d e l a y l im i t ) {1000}

95 set rda Input ( u i n e t d e l a y ) {1000 . 0p s }

96 set rda Input ( u i n e t l o ad ) {0 . 5 p f }

97 set rda Input ( u i i n t r a n d e l a y ) {120 . 0p s }

98 set rda Input ( u i c a p t b l f i l e ) {}

99 set rda Input ( u i d e f c a p s c a l e ) {1 . 0 }

100 set rda Input ( u i d e t c a p s c a l e ) {1 . 0 }

101 set rda Input ( u i x c ap s c a l e ) {1 . 0 }

102 set rda Input ( u i r e s s c a l e ) {1 . 0 }

103 set rda Input ( u i s h r s c a l e ) {1 . 0 }

104 set rda Input ( u i t ime un i t ) {none}

105 set rda Input ( u i c ap un i t ) {}

106 set rda Input ( u i o a r e f l i b ) {}

107 set rda Input ( u i oa abst ractname ) {}

108 set rda Input ( u i s i g s t o rm l i b ) {}

109 set rda Input ( u i c d b f i l e ) {}

110 set rda Input ( u i e c h o f i l e ) {}

111 set rda Input ( u i x i l m f i l e ) {}

112 set rda Input ( u i q x t e c h f i l e ) {}

113 set rda Input ( u i q x l i b f i l e ) {}

114 set rda Input ( u i q x c o n f f i l e ) {}

115 set rda Input ( ui pwrnet ) {vdd vdde vdd0 vdd1 vdd2 vdd3 vddcore }

116 set rda Input ( u i gndnet ) {gnd gnde \

117 CLKSLEEP TQ DIGA DIGB KOFF REFA REFB REFC REFD REFE REFF \

118 A13SRC A12SRC A11SRC A10SRC A9SRC A8SRC A7SRC A6SRC A5SRC A4SRC A3SRC A2SRC A1SRC

A0SRC \

119 IO CLKSLEEP IO TQ IO DIGA IO DIGB IO KOFF IO REFA IO REFB IO REFC IO REFD IO REFE

IO REFF \

120 IO A13SRC IO A12SRC IO A11SRC IO A10SRC IO A9SRC IO A8SRC IO A7SRC IO A6SRC IO A5SRC

IO A4SRC IO A3SRC IO A2SRC IO A1SRC IO A0SRC \

121 }

122 set rda Input ( f l i p f i r s t ) {1}

123 set rda Input ( double back ) {1}

124 set rda Input ( a s s i g n b u f f e r ) {1}

125 set rda Input ( u i g e n f o o t p r i n t ) {0}

C.3 IO Filler.tcl

1 #de f ine user g r i d

2 s e tP r e f e r en c e ConstraintUserXGrid 0 .56

3 s e tP r e f e r en c e ConstraintUserYGrid 0 .56

4 snapFPlanIO −usergr id

5 redraw

6

7 #add IO f i l l e r from the b i g g e r to the sma l l e r
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8 add I oF i l l e r −ce l l IOFILLER64 LIN −pre f ix i o f i l l p e r i

9 add I oF i l l e r −ce l l IOFILLER32 LIN −pre f ix i o f i l l p e r i

10 add I oF i l l e r −ce l l IOFILLER16 LIN −pre f ix i o f i l l p e r i

11 add I oF i l l e r −ce l l IOFILLER8 LIN −pre f ix i o f i l l p e r i

12 add I oF i l l e r −ce l l IOFILLER4 LIN −pre f ix i o f i l l p e r i

13 add I oF i l l e r −ce l l IOFILLER2 LIN −pre f ix i o f i l l p e r i

14 add I oF i l l e r −ce l l IOFILLER1 LIN −pre f ix i o f i l l p e r i

15 redraw

C.4 do power domains.tcl

1 #crea te power domains

2 deletePowerDomain

3 createPowerDomain PD0 − t iming l ibs ”CORE90GPSVT”

4 createPowerDomain PD1 − t iming l ibs ”CORE90GPSVT”

5 createPowerDomain PD2 − t iming l ibs ”CORE90GPLVT”

6 createPowerDomain PD3 − t iming l ibs ”CORE90GPLVT”

7 createPowerDomain PDCORE − t iming l ibs ”CORE90GPSVT”

8

9

10 #inc lude in s tance s

11 modifyPowerDomainMember PD0 − instance core /mult 0 −power ( vdd0:vdd ) −ground ( gnd:gnd )

12 modifyPowerDomainMember PD0 − instance i o co vdd i o co 0 −power (vdd0:VDDCORE1V0) −move

13

14 modifyPowerDomainMember PD1 − instance core /mult 1 −power ( vdd1:vdd ) −ground ( gnd:gnd )

15 modifyPowerDomainMember PD1 − instance i o co vdd i o co 1 −power (vdd1:VDDCORE1V0) −move

16

17 modifyPowerDomainMember PD2 − instance core /mult 2 −power ( vdd2:vdd ) −ground ( gnd:gnd )

18 modifyPowerDomainMember PD2 − instance i o co vdd i o co 2 −power (vdd2:VDDCORE1V0) −move

19

20 modifyPowerDomainMember PD3 − instance core /mult 3 −power ( vdd3:vdd ) −ground ( gnd:gnd )

21 modifyPowerDomainMember PD3 − instance i o co vdd i o co 3 −power (vdd3:VDDCORE1V0) −move

22

23 modifyPowerDomainMember PDCORE − instance i o c o vdd i o c o c o r e −power (vddcore:VDDCORE1V0

) −move

24 modifyPowerDomainMember PDCORE − instance ∗ −power ( vddcore:vdd ) −ground ( gnd:gnd )

25

26 #re s i z e i t

27 modifyPowerDomainAttr PDCORE −box 194 .04 381 .76 691 .76 587 .76 −rsExts 10 10 40 10

−minGaps 10 10 10 10

28 createPowerDomainCut 640 .88 469 .28 691 .76 597 .76

29 modifyPowerDomainAttr PD0 −box 194 .04 194 .04 433 .76 361 .76 −rsExts 10 10 10 10

−minGaps 10 10 10 10

30 modifyPowerDomainAttr PD1 −box 194 .04 606 .56 640 .88 994 .32 −rsExts 10 10 10 10

−minGaps 10 10 10 10

31 modifyPowerDomainAttr PD2 −box 452 .26 194 .04 691 .76 361 .76 −rsExts 10 10 10 10

−minGaps 10 10 10 10

32 modifyPowerDomainAttr PD3 −box 659 .48 490 .44 994 .32 994 .32 −rsExts 10 10 10 10

−minGaps 10 10 10 10

C.5 create global net.tcl

1 Puts ”###############################”
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2 Puts ”###”

3 Puts ”### Power d e c l a r a t i o n f o r s t d− c e l l s and IO PADs”

4 Puts ”###”

5 Puts ”###############################”

6

7

8 ###

9 ### WARNING : A l l the global nets shou ld be dec la red f i r s t in the ” . c o n f ” f i l e

10 ###

11

12

13 ###

14 ### f i r s t , d ec l a r e vdd/gnd pin ’ s for a l l s t d− c e l l s

15 ###

16

17 globalNetConnect vdd −type pgpin −pin {vdd } − inst ∗ −module {}

18 globalNetConnect gnd −type pgpin −pin {gnd } − inst ∗ −module {}

19

20 ### dec l a r e 0/1 vhd l / v e r i l o g cons tan t s to be on vdd/gnd supp l y s

21 globalNetConnect vdd −type t i e h i −module {}

22 globalNetConnect gnd −type t i e l o −module {}

23

24 ###

25 ### IO pads

26 ### − Al l the ins tance names for the IO pads must have the ” i o ” p r e f i x

27 ###

28

29

30 ### IO ’ s & core supp ly

31 globalNetConnect vdd −type pgpin −pin {vdd } − inst i o∗ −module {} −overr ide

32 globalNetConnect gnd −type pgpin −pin {gnd } − inst i o∗ −module {} −overr ide

33

34 ### remaining IOs pins

35 globalNetConnect gnde −type pgpin −pin {gnde } − inst i o∗ −module {} −overr ide

36 globalNetConnect vdde −type pgpin −pin {vdde } − inst i o∗ −module {} −overr ide

37

38 globalNetConnect IO CLKSLEEP −type pgpin −pin {CLKSLEEP } − inst i o∗ −module {}

−overr ide

39 globalNetConnect IO TQ −type pgpin −pin {TQ } − inst i o∗ −module {} −overr ide

40 globalNetConnect IO DIGA −type pgpin −pin {DIGA } − inst i o∗ −module {} −overr ide

41

42 globalNetConnect IO DIGB −type pgpin −pin {DIGB } − inst i o∗ −module {} −overr ide

43 globalNetConnect IO KOFF −type pgpin −pin {KOFF } − inst i o∗ −module {} −overr ide

44

45 globalNetConnect IO REFA −type pgpin −pin {REFA } − inst i o∗ −module {} −overr ide

46 globalNetConnect IO REFB −type pgpin −pin {REFB } − inst i o∗ −module {} −overr ide

47 globalNetConnect IO REFC −type pgpin −pin {REFC } − inst i o∗ −module {} −overr ide

48 globalNetConnect IO REFD −type pgpin −pin {REFD } − inst i o∗ −module {} −overr ide

49 globalNetConnect IO REFE −type pgpin −pin {REFE } − inst i o∗ −module {} −overr ide

50 globalNetConnect IO REFF −type pgpin −pin {REFF } − inst i o∗ −module {} −overr ide

51

52 globalNetConnect IO A0SRC −type pgpin −pin {A0SRC } − inst i o∗ −module {} −overr ide

53 globalNetConnect IO A1SRC −type pgpin −pin {A1SRC } − inst i o∗ −module {} −overr ide

54 globalNetConnect IO A2SRC −type pgpin −pin {A2SRC } − inst i o∗ −module {} −overr ide

55 globalNetConnect IO A3SRC −type pgpin −pin {A3SRC } − inst i o∗ −module {} −overr ide
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56 globalNetConnect IO A4SRC −type pgpin −pin {A4SRC } − inst i o∗ −module {} −overr ide

57 globalNetConnect IO A5SRC −type pgpin −pin {A5SRC } − inst i o∗ −module {} −overr ide

58 globalNetConnect IO A6SRC −type pgpin −pin {A6SRC } − inst i o∗ −module {} −overr ide

59 globalNetConnect IO A7SRC −type pgpin −pin {A7SRC } − inst i o∗ −module {} −overr ide

60 globalNetConnect IO A8SRC −type pgpin −pin {A8SRC } − inst i o∗ −module {} −overr ide

61 globalNetConnect IO A9SRC −type pgpin −pin {A9SRC } − inst i o∗ −module {} −overr ide

62 globalNetConnect IO A10SRC −type pgpin −pin {A10SRC } − inst i o∗ −module {}

−overr ide

63 globalNetConnect IO A11SRC −type pgpin −pin {A11SRC } − inst i o∗ −module {}

−overr ide

64 globalNetConnect IO A12SRC −type pgpin −pin {A12SRC } − inst i o∗ −module {}

−overr ide

65 globalNetConnect IO A13SRC −type pgpin −pin {A13SRC } − inst i o∗ −module {} −overr ide

66

67

68 ############ remaining 3V3 IOs pins ############

69

70 globalNetConnect vdde −type pgpin −pin {vdde3v3 } − inst i o∗ −module {} −overr ide

71

72 globalNetConnect IO CLKSLEEP −type pgpin −pin {CLKSLEEP3V3 } − inst i o∗ −module {}

−overr ide

73 globalNetConnect IO TQ −type pgpin −pin {TQ3V3 } − inst i o∗ −module {} −overr ide

74 globalNetConnect IO DIGA −type pgpin −pin {CHIPSLEEP3V3 } − inst i o∗ −module {}

−overr ide

75

76 globalNetConnect IO REFA −type pgpin −pin {REFAPBIAS3V3 } − inst i o∗ −module {}

−overr ide

77 globalNetConnect IO REFB −type pgpin −pin {REFBAMPL3V3 } − inst i o∗ −module {}

−overr ide

78 globalNetConnect IO REFC −type pgpin −pin {REFCAMPH3V3 } − inst i o∗ −module {}

−overr ide

79 globalNetConnect IO REFD −type pgpin −pin {REFDNBIAS3V3 } − inst i o∗ −module {}

−overr ide

80 globalNetConnect IO REFE −type pgpin −pin {REFEIO3V3 } − inst i o∗ −module {}

−overr ide

81

82 globalNetConnect IO A0SRC −type pgpin −pin {A0SRC3V3 } − inst i o∗ −module {}

−overr ide

83 globalNetConnect IO A1SRC −type pgpin −pin {A1SRC3V3 } − inst i o∗ −module {}

−overr ide

84 globalNetConnect IO A2SRC −type pgpin −pin {A2SRC3V3 } − inst i o∗ −module {}

−overr ide

85 globalNetConnect IO A3SRC −type pgpin −pin {A3SRC3V3 } − inst i o∗ −module {}

−overr ide

86 globalNetConnect IO A4SRC −type pgpin −pin {A4SRC3V3 } − inst i o∗ −module {}

−overr ide

87 globalNetConnect IO A5SRC −type pgpin −pin {A5SRC3V3 } − inst i o∗ −module {}

−overr ide

88 globalNetConnect IO A6SRC −type pgpin −pin {A6SRC3V3 } − inst i o∗ −module {} −overr ide

89 globalNetConnect IO A7SRC −type pgpin −pin {A7SRC3V3 } − inst i o∗ −module {}

−overr ide

90 globalNetConnect IO A8SRC −type pgpin −pin {A8SRC3V3 } − inst i o∗ −module {}

−overr ide

91 globalNetConnect IO A9SRC −type pgpin −pin {A9SRC3V3 } − inst i o∗ −module {}

−overr ide
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92 globalNetConnect IO A10SRC −type pgpin −pin {A10SRC3V3 } − inst i o∗ −module {}

−overr ide

93 globalNetConnect IO A11SRC −type pgpin −pin {A11SRC3V3 } − inst i o∗ −module {}

−overr ide

94 globalNetConnect IO A12SRC −type pgpin −pin {A12SRC3V3 } − inst i o∗ −module {}

−overr ide

95 globalNetConnect IO A13SRC −type pgpin −pin {A13SRC3V3 } − inst i o∗ −module {}

−overr ide

96

97 ###

98 globalNetConnect CLKSLEEP −type pgpin −pin {CLKSLEEP3V3 } − inst i o r e f ∗ −module {}

−overr ide

99 globalNetConnect TQ −type pgpin −pin {TQ3V3 } − inst i o r e f ∗ −module {} −overr ide

100 globalNetConnect DIGA −type pgpin −pin {CHIPSLEEP3V3 } − inst i o r e f ∗ −module {}

−overr ide

101

102 globalNetConnect REFA −type pgpin −pin {REFAPBIAS3V3 } − inst i o r e f ∗ −module {}

−overr ide

103 globalNetConnect REFB −type pgpin −pin {REFBAMPL3V3 } − inst i o r e f ∗ −module {}

−overr ide

104 globalNetConnect REFC −type pgpin −pin {REFCAMPH3V3 } − inst i o r e f ∗ −module {}

−overr ide

105 globalNetConnect REFD −type pgpin −pin {REFDNBIAS3V3 } − inst i o r e f ∗ −module {}

−overr ide

106 globalNetConnect REFE −type pgpin −pin {REFEIO3V3 } − inst i o r e f ∗ −module {}

−overr ide

107

108 globalNetConnect A0SRC −type pgpin −pin {A0SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

109 globalNetConnect A1SRC −type pgpin −pin {A1SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

110 globalNetConnect A2SRC −type pgpin −pin {A2SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

111 globalNetConnect A3SRC −type pgpin −pin {A3SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

112 globalNetConnect A4SRC −type pgpin −pin {A4SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

113 globalNetConnect A5SRC −type pgpin −pin {A5SRC3V3 } − inst i o r e f ∗ −module {}

−overr ide

114 globalNetConnect A6SRC −type pgpin −pin {A6SRC3V3 } − inst i o r e f ∗ −module {} −overr ide

115

116 ###

117 globalNetConnect CLKSLEEP −type pgpin −pin {CLKSLEEP3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide

118 globalNetConnect TQ −type pgpin −pin {TQ3V3 } − inst i o c o v s s i o r e f a s r c −module {}

−overr ide

119 globalNetConnect DIGA −type pgpin −pin {CHIPSLEEP3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide

120

121 globalNetConnect REFA −type pgpin −pin {REFAPBIAS3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide

122 globalNetConnect REFB −type pgpin −pin {REFBAMPL3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide

123 globalNetConnect REFC −type pgpin −pin {REFCAMPH3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide
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124 globalNetConnect REFD −type pgpin −pin {REFDNBIAS3V3 } − inst i o c o v s s i o r e f a s r c

−module {} −overr ide

125 globalNetConnect REFE −type pgpin −pin {REFEIO3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

126

127 globalNetConnect A0SRC −type pgpin −pin {A0SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

128 globalNetConnect A1SRC −type pgpin −pin {A1SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

129 globalNetConnect A2SRC −type pgpin −pin {A2SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

130 globalNetConnect A3SRC −type pgpin −pin {A3SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

131 globalNetConnect A4SRC −type pgpin −pin {A4SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

132 globalNetConnect A5SRC −type pgpin −pin {A5SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

133 globalNetConnect A6SRC −type pgpin −pin {A6SRC3V3 } − inst i o c o v s s i o r e f a s r c −module

{} −overr ide

134

135 ### Mult IO power pad

136 globalNetConnect vddcore −type pgpin −pin {VDDCORE∗} − inst i o c o vdd i o c o c o r e −module

{} −overr ide

137 globalNetConnect vdd0 −type pgpin −pin {VDDCORE∗} − inst i o c o vdd i o co 0 −module {}

−overr ide

138 globalNetConnect vdd1 −type pgpin −pin {VDDCORE∗} − inst i o c o vdd i o co 1 −module {}

−overr ide

139 globalNetConnect vdd2 −type pgpin −pin {VDDCORE∗} − inst i o c o vdd i o co 2 −module {}

−overr ide

140 globalNetConnect vdd3 −type pgpin −pin {VDDCORE∗} − inst i o c o vdd i o co 3 −module {}

−overr ide

141

142 ### connect c e l l s to the co r r ec t io

143 globalNetConnect vddcore −type pgpin −pin {vdd} − inst ∗ −module core −overr ide

144 globalNetConnect vdd0 −type pgpin −pin {vdd} − inst ∗ −module core /mult 0 −overr ide

145 globalNetConnect vdd1 −type pgpin −pin {vdd} − inst ∗ −module core /mult 1 −overr ide

146 globalNetConnect vdd2 −type pgpin −pin {vdd} − inst ∗ −module core /mult 2 −overr ide

147 globalNetConnect vdd3 −type pgpin −pin {vdd} − inst ∗ −module core /mult 3 −overr ide

148

149

150 ###

151 ### execute command

152 ###

153 applyGlobalNets

154

155

156 ###

157 ### check a l l des ign

158 ### (a s p e c i f i c check can a l s o be performed in menu : FloorPlan−>Global Net

Connection−> check but ton )

159 ###

160 #checkdes ign −all
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C.6 pwr.tcl

1 #add r ing s ( core + power domains )

2

3 #extern r ing

4 addRing \

5 −spacing bottom 3 . 0 \

6 −spacing top 3 . 0 \

7 − spac ing r i ght 3 . 0 \

8 − s pa c i ng l e f t 3 . 0 \

9 −width bottom 10 \

10 −width top 10 \

11 −width r ight 10 \

12 −width l e f t 10 \

13 − layer bottom M7 \

14 − layer top M7 \

15 − l a y e r r i gh t M6 \

16 − l a y e r l e f t M6 \

17 −of f set bottom 0 .45 \

18 −o f f s e t t op 0 .45 \

19 − o f f s e t r i g h t 0 .45 \

20 − o f f s e t l e f t 0 . 45 \

21 −center 1 \

22 − s t a cked v i a t op l aye r M7 \

23 − s tacked v ia bot tom layer M1 \

24 −around core \

25 − j og d i s tance 0 .45 \

26 −threshold 0 .45 \

27 −nets {gnd vddcore }

28

29 #PD0

30 d e s e l e c tA l l

31 se lectGroup PD0

32 addRing \

33 −type b l o c k r i n g s \

34 −around power domain \

35 −spacing bottom 1 . 5 \

36 −spacing top 1 . 5 \

37 − spac ing r i ght 1 . 5 \

38 − s pa c i ng l e f t 1 . 5 \

39 −width bottom 8 \

40 −width top 8 \

41 −width r ight 8 \

42 −width l e f t 8 \

43 − layer bottom M7 \

44 − layer top M7 \

45 − l a y e r r i gh t M6 \

46 − l a y e r l e f t M6 \

47 −of f set bottom 0 .45 \

48 −o f f s e t t op 0 .45 \

49 − o f f s e t r i g h t 0 .45 \

50 − o f f s e t l e f t 0 . 45 \

51 − s t a cked v i a t op l aye r M7 \

52 − s tacked v ia bot tom layer M1 \

53 − j og d i s tance 0 .45 \
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54 −threshold 0 .45 \

55 −nets {vdd0}

56 dese lectGroup PD0

57

58 #PD1

59 se lectGroup PD1

60 addRing \

61 −type b l o c k r i n g s \

62 −around power domain \

63 −spacing bottom 1 . 5 \

64 −spacing top 1 . 5 \

65 − spac ing r i ght 1 . 5 \

66 − s pa c i ng l e f t 1 . 5 \

67 −width bottom 8 \

68 −width top 8 \

69 −width r ight 8 \

70 −width l e f t 8 \

71 − layer bottom M7 \

72 − layer top M7 \

73 − l a y e r r i gh t M6 \

74 − l a y e r l e f t M6 \

75 −of f set bottom 0 .45 \

76 −o f f s e t t op 0 .45 \

77 − o f f s e t r i g h t 0 .45 \

78 − o f f s e t l e f t 0 . 45 \

79 − s t a cked v i a t op l aye r M7 \

80 − s tacked v ia bot tom layer M1 \

81 − j og d i s tance 0 .45 \

82 −threshold 0 .45 \

83 −nets {vdd1}

84 dese lectGroup PD1

85

86 #PD2

87 se lectGroup PD2

88 addRing \

89 −type b l o c k r i n g s \

90 −around power domain \

91 −spacing bottom 1 . 5 \

92 −spacing top 1 . 5 \

93 − spac ing r i ght 1 . 5 \

94 − s pa c i ng l e f t 1 . 5 \

95 −width bottom 8 \

96 −width top 8 \

97 −width r ight 8 \

98 −width l e f t 8 \

99 − layer bottom M7 \

100 − layer top M7 \

101 − l a y e r r i gh t M6 \

102 − l a y e r l e f t M6 \

103 −of f set bottom 0 .45 \

104 −o f f s e t t op 0 .45 \

105 − o f f s e t r i g h t 0 .45 \

106 − o f f s e t l e f t 0 . 45 \

107 − s t a cked v i a t op l aye r M7 \

108 − s tacked v ia bot tom layer M1 \
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109 − j og d i s tance 0 .45 \

110 −threshold 0 .45 \

111 −nets {vdd2}

112 dese lectGroup PD2

113

114 #PD3

115 se lectGroup PD3

116 addRing \

117 −type b l o c k r i n g s \

118 −around power domain \

119 −spacing bottom 1 . 5 \

120 −spacing top 1 . 5 \

121 − spac ing r i ght 1 . 5 \

122 − s pa c i ng l e f t 1 . 5 \

123 −width bottom 8 \

124 −width top 8 \

125 −width r ight 8 \

126 −width l e f t 8 \

127 − layer bottom M7 \

128 − layer top M7 \

129 − l a y e r r i gh t M6 \

130 − l a y e r l e f t M6 \

131 −of f set bottom 0 .45 \

132 −o f f s e t t op 0 .45 \

133 − o f f s e t r i g h t 0 .45 \

134 − o f f s e t l e f t 0 . 45 \

135 − s t a cked v i a t op l aye r M7 \

136 − s tacked v ia bot tom layer M1 \

137 − j og d i s tance 0 .45 \

138 −threshold 0 .45 \

139 −nets {vdd3}

140 dese lectGroup PD3

141

142 #PDCORE

143 se lectGroup PDCORE

144 addRing \

145 −type b l o c k r i n g s \

146 −around power domain \

147 −spacing bottom 1 . 5 \

148 −spacing top 1 . 5 \

149 − spac ing r i ght 1 . 5 \

150 − s pa c i ng l e f t 1 . 5 \

151 −width bottom 8 \

152 −width top 8 \

153 −width r ight 8 \

154 −width l e f t 8 \

155 − layer bottom M7 \

156 − layer top M7 \

157 − l a y e r r i gh t M6 \

158 − l a y e r l e f t M6 \

159 −of f set bottom 0 .45 \

160 −o f f s e t t op 0 .45 \

161 − o f f s e t r i g h t 0 .45 \

162 − o f f s e t l e f t 0 . 45 \

163 − s t a cked v i a t op l aye r M7 \
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164 − s tacked v ia bot tom layer M1 \

165 − j og d i s tance 0 .45 \

166 −threshold 0 .45 \

167 − l e f t 0 \

168 −tl 1\

169 −bl 1\

170 −nets {vddcore}

171 dese lectGroup PDCORE

172

173 #IO REF COMPENSATION

174 addRing \

175 −type b l o c k r i n g s \

176 −around each b lock \

177 −spacing bottom 1 . 5 \

178 −spacing top 1 . 5 \

179 − spac ing r i ght 1 . 5 \

180 − s pa c i ng l e f t 1 . 5 \

181 −width bottom 8 \

182 −width top 8 \

183 −width r ight 8 \

184 −width l e f t 8 \

185 − layer bottom M7 \

186 − layer top M7 \

187 − l a y e r r i gh t M6 \

188 − l a y e r l e f t M6 \

189 −of f set bottom 0 .55 \

190 −o f f s e t t op 0 .55 \

191 − o f f s e t r i g h t 0 .55 \

192 − o f f s e t l e f t 0 . 55 \

193 − s t a cked v i a t op l aye r M7 \

194 − s tacked v ia bot tom layer M1 \

195 − j og d i s tance 0 .45 \

196 −threshold 0 .45 \

197 −nets {vdd vdde}

198

199 addRing \

200 −type b l o c k r i n g s \

201 −around each b lock \

202 −spacing bottom 1 . 5 \

203 −spacing top 1 . 5 \

204 − spac ing r i ght 1 . 5 \

205 − s pa c i ng l e f t 1 . 5 \

206 −width bottom 8 \

207 −width top 8 \

208 −width r ight 8 \

209 −width l e f t 8 \

210 − layer bottom M7 \

211 − layer top M7 \

212 − l a y e r r i gh t M6 \

213 − l a y e r l e f t M6 \

214 −of f set bottom 20 . 5 \

215 −o f f s e t t op 20 . 5 \

216 − o f f s e t r i g h t 20 . 5 \

217 − o f f s e t l e f t 20 . 5 \

218 − s t a cked v i a t op l aye r M7 \
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219 − s tacked v ia bot tom layer M1 \

220 −threshold 0 .45 \

221 −bottom 0 \

222 −r ight 0 \

223 −lb 1 \

224 −tr 1 \

225 −nets {gnd}

C.7 followPin.tcl

1 Puts ”###############################”

2 Puts ”###”

3 Puts ”### Create s td− c e l l f o l l ow pin ”

4 Puts ”###”

5 Puts ”###############################”

6

7 d e s e l e c tA l l

8 cutCoreRow

9

10 #avoid v ia6 7 on VDDCO HDRV MT 1V0 LIN edge

11 createRouteBlk −box 233 .4700 1042 .6900 276 .7550 1047 .9950 − layer 6

12 createRouteBlk −box 911 .768 1042 .69 955 .176 1049 .237 − layer 6

13 createRouteBlk −box 504 .69 139 .071 548 .532 146 .015 − layer 6

14 createRouteBlk −box 232 .895 140 .142 277 .333 146 .272 − layer 6

15

16 # Use editPowerVia to generate s t r i p e s− f o l l owp in s

17 #−noBlockPins f irstAfterRowEnd

18 s route −verbose −noPadRings −noStr ipes \

19 −corePinMaxViaWidth 30 −corePinMaxViaHeight 70 \

20 −targetViaTopLayer 7 −crossoverViaTopLayer 7 \

21 −secondaryStopSCPin f i r s t S t r i p e \

22 −viaConnectToShape { s t r i p e r ing } \

23 −de leteExis t ingRoutes \

24 −padPinWidth 7\

25 −nets {gnd vdd vdd0 vdd1 vdd2 vdd3 vddcore vdde}

26

27 #avoid rou t ing too close to the pad

28 createRouteBlk −box 923 .796 143 .219 927 .711 156 .959 − layer a l l

29

30 #Route IO REF sp e c i a l ne t s

31 s route −verbose −noPadRings −padPinToAlignedBlockPin \

32 −stopStripeSCPin lastPadRing −de leteExis t ingRoutes −nets {\

33 CLKSLEEP TQ DIGA DIGB KOFF REFA REFB REFC REFD REFE REFF \

34 A6SRC A5SRC A4SRC A3SRC A2SRC A1SRC A0SRC }

35 # A13SRC A12SRC A11SRC A10SRC A9SRC A8SRC A7SRC

36

37 #Remove b l o ckage s

38 de l e teAl lRouteBlks

39

40 clearCutRow

41 d e s e l e c tA l l
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C.8 place output bufs.tcl

1 p l a c e In s t anc e Z sv t bu f 194 .04 570 .385 MY

2 p l a c e In s t anc e Z l v t bu f 194 .04 535 .085 R180

3 p l a c e In s t anc e s ou t bu f 194 .04 409 .714 R180

C.9 output nets.tcl

1 #outputs ne t s with width o f 1 um

2 s e tEd i t − f o r c e s p e c i a l 1

3 s e tEd i t −width hor izonta l 1

4 s e tEd i t −width ve r t i ca l 1

5

6 #s ou t

7 s e tEd i t −nets s out

8 s e tEd i t − l a y e r ho r i z on ta l M1

9 s e tEd i t − l a y e r v e r t i c a l M2

10 uiSetTool addWire

11 editAddRoute 194 .847 411 .480

12 editAddRoute 145 .233 411 .459

13 editAddRoute 144 .821 413 .911

14 editAddRoute 145 .115 413 .911

15 editCommitRoute 145 .115 413 .911

16 s e tEd i t − l a y e r ho r i z on ta l M2

17 editAddRoute 142 .614 413 .933

18 editAddRoute 145 .259 413 .439

19 editAddRoute 145 .043 413 .933

20 editCommitRoute 145 .043 413 .933

21 uiSetTool s e l e c t

22

23 #Z l v t

24 s e tEd i t −nets Z l v t

25 s e tEd i t − l a y e r ho r i z on ta l M1

26 s e tEd i t − l a y e r v e r t i c a l M2

27 uiSetTool addWire

28 editAddRoute 195 .073 536 .971

29 editAddRoute 145 .874 536 .559

30 editAddRoute 145 .028 549 .990

31 s e tEd i t − l a y e r ho r i z on ta l M2

32 editAddRoute 142 .497 549 .872

33 editCommitRoute 142 .497 549 .872

34 uiSetTool s e l e c t

35

36 #Z sv t

37 s e tEd i t −nets Z svt

38 uiSetTool addWire

39 s e tEd i t − l a y e r ho r i z on ta l M1

40 s e tEd i t − l a y e r v e r t i c a l M2

41 editAddRoute 195 .030 572 .574

42 editAddRoute 146 .930 572 .574

43 editAddRoute 146 .764 685 .499

44 s e tEd i t − l a y e r ho r i z on ta l M2

45 editAddRoute 142 .467 685 .146

46 editCommitRoute 142 .467 685 .146
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47 uiSetTool s e l e c t

C.10 fix drc errors.tcl

1 #################################################

2 #Fix the DRC error s d i s covered with c a l i b r e DRC

3 #################################################

4

5 #lower net

6 #move the f i r s t part

7 s e l e c tWi r e 950 .5100 203 .6300 952 .6100 203 .7700 3 gnd

8 s e l e c tWi r e 952 .4700 203 .6300 954 .2900 203 .7700 3 gnd

9 s e l e c tWi r e 954 .1500 203 .6300 981 .6100 203 .7700 3 gnd

10 editMove y −1.399

11 d e s e l e c tA l l

12 #add v ia at the end

13 s e tEd i t − l a y e r ho r i z on ta l M3 − l a y e r v e r t i c a l M4 −nets gnd

14 s e tEd i t −width hor izonta l 0 . 14 −width ve r t i ca l 0 . 14

15 editAddRoute 981 .604 202 .292

16 editAddRoute 983 .905 202 .306

17 editCommitRoute 983 .905 202 .306

18 uiSetTool s e l e c t

19 d e s e l e c tA l l

20

21 ##

22 s e l e c tWi r e 983 .9900 203 .6300 984 .6900 203 .7700 3 gnd

23 ed i tDe l e t e −objects Se l e c t ed

24 d e l e t eT i l e s − se l ec ted

25 deleteBumps − se l ec ted

26 s e l e c tWi r e 984 .5500 203 .6300 984 .6900 244 .8500 2 gnd

27 ed i t S t r e t c h y −0.683 low

28 editAddRoute 984 .610 203 .019

29 editAddRoute 981 .323 203 .076

30 editCommitRoute 981 .323 203 .076

31 uiSetTool s e l e c t

32 d e s e l e c tA l l

33

34 #################################

35

36 #upper net

37 #de l e t e e x i s t i n g wire

38 s e l e c tWi r e 946 .4700 450 .8700 947 .7300 451 .0100 5 gnd

39 s e l e c tWi r e 947 .5900 450 .8700 947 .7300 451 .5700 4 gnd

40 s e l e c tWi r e 947 .5900 451 .4300 981 .6100 451 .5700 3 gnd

41 ed i tDe l e t e −objects Se l e c t ed

42 d e l e t eT i l e s − se l ec ted

43 deleteBumps − se l ec ted

44 #crea te the new one

45 editAddRoute 942 .920 448 .604

46 editAddRoute 944 .305 455 .932

47 editAddRoute 984 .069 455 .849

48 editCommitRoute 984 .069 455 .849

49 s e tEd i t − l a y e r v e r t i c a l M3

50 #add ex t ra v ia
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51 editAddRoute 942 .905 455 .921

52 editAddRoute 942 .913 455 .503

53 editAddRoute 942 .961 455 .527

54 editCommitRoute 942 .961 455 .527

55 s e tEd i t − l a y e r v e r t i c a l M4

56 uiSetTool s e l e c t

57 d e s e l e c tA l l

58

59 #################################

60

61 #move o f f end ing net M1.S.3.1

62 #uiSetTool moveWire

63 s e l e c tWi r e 385 .6300 383 .6700 387 .7300 383 .8100 3 c l k p

64 s e l e c tWi r e 383 .6700 383 .6700 385 .7700 383 .8100 3 c l k p

65 editMove y 1 .246

66 d e s e l e c tA l l

67

68 s e l e c tWi r e 382 .8400 383 .4000 385 .4200 383 .5200 1 core / data gen 1 / c lk p Fence N0

69 ed i tDe l e t e −objects Se l e c t ed

70 d e l e t eT i l e s − se l ec ted

71 deleteBumps − se l ec ted

72 s e l e c tWi r e 380 .5900 383 .3900 382 .9700 383 .5300 3 core / data gen 1 / c lk p Fence N0

73 ed i t S t r e t c h x 3 .292 high

74 uiSetTool s e l e c t

75 d e s e l e c tA l l

76

77 ##################

78

79 #move an o f f end ing net on M1

80 s e l e c tWi r e 911 .2600 528 .7200 911 .6000 528 .8400 1 core /mult 3 /mult par4 0 /

AandBx15xx17x

81 editMove y 0 .558

82 uiSetTool s e l e c t

83 d e s e l e c tA l l

C.11 top.ctstch

1

2 ### CLK ###

3

4 # Sample Gated CTS Command

5 AutoCTSRootPin i o c l k /ZI

6

7 NoGating NO

8 Buf f e r IVSVTX6 BFSVTX1 BFSVTX8 BFSVTX10 BFSVTX12 IVLVTX6 BFLVTX1 BFLVTX8 BFLVTX10

BFLVTX12

9

10 MaxDelay 10ps

11 MinDelay 0ps

12 MaxSkew 100ps

13

14 End

15

16
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17 ### Reset ###

18

19 # Sample Gated CTS Command

20 AutoCTSRootPin i o r s t n /ZI

21

22 NoGating NO

23 Buf f e r IVSVTX6 BFSVTX1 BFSVTX2 BFSVTX4 BFSVTX6 BFSVTX8 BFSVTX12 IVLVTX6 BFLVTX1

BFLVTX2 BFLVTX4 BFLVTX6 BFLVTX8 BFLVTX12

24

25

26 MaxSkew 1ns

27

28 End

C.12 ioplace.io

1 ######################################################

2 # #

3 # Si l i c on Pe r sp e c t i v e , A Cadence Company #

4 # FirstEncounter IO Assignment #

5 # #

6 ######################################################

7

8 Ver s i on : 2

9

10 Pad: i o c o r n e r 4 SE CORNER LIN

11 Pad: i o c o r n e r 3 NE CORNER LIN

12 Pad: i o c o r n e r 2 NW CORNER LIN

13 Pad: i o c o r n e r 1 SW CORNER LIN

14

15 Pad: i o co vdd i o co 1 N VDDCO HDRV MT 1V0 LIN

16 Pad: i o v s s i o 2 N VSSIO 3V3 LIN

17 Pad: i o c o vdd i o c o c o r e N VDDCO HDRV MT 1V0 LIN

18 Pad: i o vdd i o 2 N VDDIO 3V3 LIN

19 Pad: i o c o v s s i o c o 3 N VSSIOCO LIN

20 Pad: i o co vdd i o co 3 N VDDCO HDRV MT 1V0 LIN

21

22 Pad: i o s i n W

23 Pad: i o s o u t W

24 Pad: i o Z l v t W

25 Pad: i o Z s v t W

26 Pad: i o s h i f t n W

27 Pad: i o c o v s s i o c o 2 W VSSIOCO LIN

28

29 Pad: i o co vdd i o co 0 S VDDCO HDRV MT 1V0 LIN

30 Pad: i o c l k S

31 Pad: i o co vdd i o co 2 S VDDCO HDRV MT 1V0 LIN

32 Pad: i o l o ad n S

33 Pad: i o c o v s s i o c o 1 S VSSIOCO LIN

34 Pad: i o c o v s s i o r e f a s r c S VSSIO 3V3 REF ASRC LIN

35

36 Pad: i o co vdd i o co g E VDDIOCO LIN

37 Pad: i o c o v s s i o c o g E VSSIOCO LIN

38 Pad: i o s e l 0 E
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39 Pad: i o s e l 1 E

40 Pad: i o s e l r e g E

41 Pad: i o r s t n E



Appendix D

FPGA source code

D.1 main FPGA.vhd

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 −− Ti t l e : FPGA code fo r demostrator t e s t board

3 −− Projec t :

4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 −− Fi l e : main FPGA. vhd

6 −− Author : <mtschuster@WS−3439>

7 −− Company :

8 −− Created : 2007−02−03

9 −− Last update : 2007−02−03

10 −− Platform :

11 −− Standard : VHDL’93

12 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

13 −− Descr ip t ion : This code generate the s t imu l i needed to :

14 −− 1) S e l e c t the de s i r ed mu l t i p l i e r ;

15 −− 2) Reset i n t e r na l r e g i s t e r s ;

16 −− 3) Execute 10 ’000 ’000 o f Mu l t i p l y and Accumulate on the 64

17 −− b i t r e g i s t e r ;

18 −− 4) Read back the content o f the accumulator r e g i s t e r with a

19 −− f requency d i v i d ed by 4 ;

20 −− 5) Ver i fy the read data with the expec ted va lue and output

21 −− the dec i s i on on the pass / f a i l p ins ;

22 −− 6) At the end o f t h i s sequence , ch ip c l o c k i s s topped to

23 −− a l l ow s t a t i c power measurements .

24 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25 −− Copyright ( c ) 2007

26 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

27 −− Revis ions :

28 −− Date Version Author Descr ip t ion

29 −− 2007−02−03 1.0 mtschuster Created

30 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

31 l ibrary i e e e ;

32 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

33 use i e e e . s t d l o g i c un s i g n ed . a l l ;

34

35 entity main i s

191
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36 port (

37 −−4 user sw i t che s ( normal ly ON)

38 S1 : in s t d l o g i c ;

39 S2 : in s t d l o g i c ;

40 S3 : in s t d l o g i c ;

41 S4 : in s t d l o g i c ;

42 −−r e l a y output s f o r the 4 mu l t i p l i e r s

43 −− BEWARE: 0=on (VDDM) ; 1=o f f (GND)

44 P1 : out s t d l o g i c ; −− mult0 : RCA32 SVT

45 P2 : out s t d l o g i c ; −− mult1 : RCA32 PAR4 SVT

46 P3 : out s t d l o g i c ; −− mult2 : RCA32 LVT

47 P4 : out s t d l o g i c ; −− mult3 : RCA32 PAR4 LVT

48 −− Test r e s u l t l e d s

49 OK led : out s t d l o g i c ; −− t e s t passed

50 KO led : out s t d l o g i c ; −− t e s t f a i l e d

51 −− Control FPGA pins

52 mult num : in s t d l o g i c v e c t o r (1 downto 0) ; −−mu l t i p l i e r s e l e c t o r

53 −− Se r i a l i n t e r f a c e pins

54 CHIP sout : in s t d l o g i c ; −− s e r i a l i n t e r f a c e output

55 CHIP sin : out s t d l o g i c ; −− s e r i a l i n t e r f a c e input

56 CHIP shi f t n : out s t d l o g i c ; −− enab le b i t s h i f t i n g , a c t i v e low

57 CHIP load n : out s t d l o g i c ; −− enab le p a r a l l e l load , a c t i v e low

58 CHIP sel : out s t d l o g i c v e c t o r (1 downto 0) ; −− s e l e c t the mu l t i p l i e r unde

t e s t

59 CHIP se l reg : out s t d l o g i c ; −− route to /from the s h i f t r e g i s t e r

60 CHIP clock : out s t d l o g i c ; −− chip c l o c k

61 CHIP rst n : out s t d l o g i c ; −− chip asynchronous rese t , a c t i v e low

62 c l o ck : in s t d l o g i c ; −− FPGA c lock

63 ) ;

64 end main ;

65

66 architecture arch of main i s

67 −− s t a t e machine s t a t e s

68 type FSM states i s ( INIT , RUN, READBACK, VERIFY) ;

69 signal cu r r s t a t e , n ex t s t a t e : FSM states ;

70 signal r s t n : s t d l o g i c ; −− g l o b a l r e s e t

71 signal count : i n t e g e r range 0 to 16777215; −− counter de l ay ing

the next s t a t e

72

73 signal c l o ck s l ow : s t d l o g i c ; −− c l o c k d i v i d ed by 4

74 signal c l o c k s l ow enab l e : s t d l o g i c ; −− enab le c l ock s l ow , a c t i v e h igh

75 signal c l o c k d i v c oun t e r : s t d l o g i c v e c t o r (1 downto 0) ; −− c l o c k d i v i d e r

counter

76

77 signal read : s t d l o g i c ; −− readback t r i g g e r

78 signal data : s t d l o g i c v e c t o r (63 downto 0) ; −−readback data

79 signal f a i l : s t d l o g i c ; −− t e s t passed

80 signal pass : s t d l o g i c ; −− t e s t f a i l e d

81

82 signal mul t s e l : s t d l o g i c v e c t o r (1 downto 0) ; −−mu l t i p l i e r

s e l e c t i o n

83 begin

84 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

85 −− COMBINATORIAL LOGIC

86 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



D.1. main FPGA.vhd 193

87

88 −− r e s e t : through swi tch 4

89 r s t n <= S4 ;

90 −−mu l t i p l i e r s e l e c t i o n and chip c l o c k mu l t i p l e x i n g

91 mul t s e l <= mult num ;

92 CHIP sel <= mul t s e l ;

93 c l o ck s l ow <= c l o ck d i v c oun t e r (1 ) ;

94 CHIP clock <= c lo ck s l ow when c l o ck s l ow enab l e = ’1 ’ else c l o ck ;

95 −−t e s t r e s u l t l e d s

96 OK led <= pass ;

97 KO led <= f a i l ;

98 −−s e l e c t mu l t i p l i e r s power

99 P1 <= ’0 ’ when mul t s e l = ”00” else ’ 1 ’ ;

100 P2 <= ’0 ’ when mul t s e l = ”01” else ’ 1 ’ ;

101 P3 <= ’0 ’ when mul t s e l = ”10” else ’ 1 ’ ;

102 P4 <= ’0 ’ when mul t s e l = ”11” else ’ 1 ’ ;

103

104 −− Fin i t e s t a t e machine d e f i n i t i o n

105 FSM : process ( cu r r s t a t e , count , mul t s e l , data , S4 )

106 −− number o f c l o c k o f the i n i t s t a t e

107 constant INIT LENGTH : i n t e g e r := 4 ;

108 −− number o f c l o c k s f o r the running s t a t e

109 −− i t corresponds to number o f mu l t i p l i c a t i o n s + 2

110 −− p a r a l l e l mu l t i p l i e r s r e qu i r e 3 ex t ra c l o c k s due to l a t ency

111 constant RUNNING LENGTH : i n t e g e r := 10000002;

112 constant RUNNING LENGTH PAR : i n t e g e r := RUNNING LENGTH +

3 ;

113 −− number o f c l o c k to execute readback ta sk based on f u l l speed c l o c k

114 constant READBACKLENGTH : i n t e g e r := 254 ;

115

116 −− expec ted r e s u l t a f t e r 10 ’000 ’000 mu l t i p l i c a t i o n s and accumulat ions

117 constant EXPECTED RESULT : s t d l o g i c v e c t o r (63 downto 0) := X”0

E4DD39EA61421FC” ;

118 −− on low supp ly v o l t a g e s (<0.4V) one ex t ra mu l t i p l i c a t i o n can occur

119 constant EXPECTED RESULT LV : s t d l o g i c v e c t o r (63 downto 0) := X”1628

d37ce47c248c ” ;

120

121 begin

122 −−− chip d e f a u l t s va lue s

123 CHIP sin <= ’0 ’ ;

124 CHIP shi f t n <= ’1 ’ ;

125 CHIP load n <= ’1 ’ ;

126 CHIP se l reg <= ’0 ’ ;

127 c l o c k s l ow enab l e <= ’0 ’ ;

128 CHIP rst n <= ’1 ’ ;

129 read <= ’0 ’ ;

130 pass <= ’0 ’ ;

131 f a i l <= ’0 ’ ;

132 −− s t a t e machine

133 case c u r r s t a t e i s

134 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

135 −− l oad zeros from random generator to s e r i a l i n t e r f a c e r e g i s t e r s

136 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

137 when INIT =>

138 CHIP load n <= ’0 ’ ; −− p a r a l l e l load
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139 CHIP shi f t n <= ’1 ’ ; −− no s h i f t

140 CHIP se l reg <= ’1 ’ ; −− from rand to regs

141 CHIP rst n <= ’0 ’ ; −− mantain the random generator to zeros

142 −− a f t e r the i n i t time i s passed go to the next s t a t e

143 i f count = INIT LENGTH then

144 nex t s t a t e <= RUN;

145 else

146 nex t s t a t e <= INIT ;

147 end i f ;

148 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

149 −− run the mu l t i p l i c a t i o n s and accumulat ions

150 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

151 when RUN =>

152 CHIP load n <= ’0 ’ ; −− p a r a l l e l load

153 CHIP shi f t n <= ’1 ’ ; −− no s h i f t

154 CHIP se l reg <= ’0 ’ ; −− from rand to mu l t i p l i e r

155 CHIP rst n <= ’1 ’ ; −− a c t i v a t e the random generator

156 −− a f t e r the mu l t i ca t i on and accumulation , go to the next s t a t e

157 −− due to the p a r a l l e l nature o f mult1 and mult3 , few ex t ra c l o c k s are

requ i r ed

158 i f ( count = RUNNING LENGTH and mul t s e l (0 ) = ’0 ’ )

159 or ( count = RUNNING LENGTH PAR and mul t s e l (0 ) = ’1 ’ ) then

160 nex t s t a t e <= READBACK;

161 else

162 nex t s t a t e <= RUN;

163 end i f ;

164 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

165 −− read back va lue s from the r e g i s t e r s through the s e r i a l i n t e r f a c e

166 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

167 when READBACK =>

168 CHIP load n <= ’1 ’ ; −− s e r i a l behaviour

169 CHIP shi f t n <= ’0 ’ ; −− a c t i v a t e data s h i f t i n g

170 read <= ’1 ’ ; −− a c t i v a t e readback

171 c l o c k s l ow enab l e <= ’1 ’ ; −− swi t ch to s low c l o c k

172 −− t r i g g e r data reading and once f i n i s h e d go to the f i n a l s t a t e

173 i f count = READBACK LENGTH then

174 nex t s t a t e <= VERIFY;

175 else

176 nex t s t a t e <= READBACK;

177 end i f ;

178 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

179 −− v e r i f y read data with the expec ted data and output the r e s u l t to l e d s

180 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

181 when VERIFY =>

182 nex t s t a t e <= VERIFY; −− looped s t a t e u n t i l a r e s e t i s f i r e d

183 c l o c k s l ow enab l e <= ’1 ’ ; −− remain with s low c l o c k

184 i f ( data = EXPECTED RESULT) or ( data = EXPECTED RESULT LV) then

185 pass <= ’1 ’ ; −− green LED on

186 else

187 f a i l <= ’1 ’ ; −− red LED on

188 end i f ;

189 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

190 −− i f something s t range happens , go to the i n i t s t a t e

191 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

192 when others =>
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193 nex t s t a t e <= INIT ;

194 end case ;

195 end process FSM;

196

197 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

198 −− SEQUENTIAL LOGIC

199 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

200 −−asynchrounous r e s e t r e g i s t e r s

201 FSM regs : process ( c lock , r s t n )

202 begin

203 i f r s t n = ’0 ’ then

204 c u r r s t a t e <= INIT ;

205 data <= ( others => ’ 0 ’ ) ;

206 e l s i f ( c lock ’ event and c l o ck = ’1 ’ ) then

207 c u r r s t a t e <= nex t s t a t e ;

208 −− read data back when read = ’1 ’

209 i f read = ’1 ’ and c l o c k d i v c oun t e r = ”01” then

210 data <= data (62 downto 0)&CHIP sout ;

211 end i f ;

212 end i f ;

213 end process FSM regs ;

214

215 −−synchronous r e s e t r e g i s t e r s

216 −−at each new FSM s t a t e the counter i s r e s e t

217 counter : process ( c lock , r s t n )

218 begin

219 i f c lock ’ event and c l o ck = ’1 ’ then

220 i f r s t n = ’0 ’ or ( c u r r s t a t e /= nex t s t a t e ) then

221 count <= 0 ;

222 else

223 count <= count + 1 ;

224 end i f ;

225 end i f ;

226 end process counter ;

227

228 −−generate lower frequency c l o c k

229 gen CHIP clk : process ( c lock , read )

230 begin

231 i f c lock ’ event and c l o ck = ’0 ’ then

232 i f read = ’0 ’ then

233 c l o c k d i v c oun t e r <= ”10” ;

234 else

235 c l o c k d i v c oun t e r <= c l o ck d i v c oun t e r + ”01” ;

236 end i f ;

237 end i f ;

238 end process gen CHIP clk ;

239 end arch ;
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Appendix E

MATLAB based automated test

functions

E.1 test mult.m

1 function data = te s t mu l t (mult , f r eq , vo l t )

2 %mult in 0−3

3 %fr e q lower than 80MHz

4 %vo l t lower or equa l to 1V

5

6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

7 % Connect dev i c e s

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 % Open dev i c e s

10 k2400 = v i s a ( ’ n i ’ , ’GPIB0 : : 1 3 : : 0 : : INSTR ’ ) ;

11 k213 = v i s a ( ’ n i ’ , ’GPIB0 : : 1 1 : : 0 : : INSTR ’ ) ;

12 a g i l e n t = v i s a ( ’ n i ’ , ’GPIB0 : : 1 0 : : 0 : : INSTR ’ ) ;

13 fopen ( k2400 ) ;

14 fopen ( k213 ) ;

15 fopen ( a g i l e n t ) ;

16

17 % Get informat ion about dev i c e s

18 fpr intf ( k2400 , ’ ∗IDN? ’ ) ;

19 cu r r en t s en s e = fscanf ( k2400 )

20 vo l t a g e s ou r c e = fscanf ( k213 )

21 fpr intf ( ag i l en t , ’ ∗IDN? ’ ) ;

22 f r equency gene ra to r = fscanf ( a g i l e n t )

23

24

25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 % I n i t i a l i z e dev i c e s

27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 % Reset dev i c e s

29 fpr intf ( k2400 , ’ ∗RST ’ ) ;

30 fpr intf ( ag i l en t , ’ ∗RST ’ ) ;

31 % Prepare the k2400 fo r current measurements

32 fpr intf ( k2400 , ’ :SOUR:FUNC VOLT’ ) ; % se t source to v o l t a g e

197
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33 fpr intf ( k2400 , ’ :SOUR:VOLT:MODE FIXED ’ ) ; % se t source to DC

34 fpr intf ( k2400 , ’ :SOUR:VOLT 0 ’ ) ; % re s e t source to 0

35 fpr intf ( k2400 , ’ : SENS :FUNC ”CURR” ’ ) ; % s e l e c t current measurement

36 fpr intf ( k2400 , ’ :CURR:NPLC 0 .1 ’ ) ; % se t i n t e g r a t i on time 1 = 1/50Hz , 0.1 = 1/500Hz

37 fpr intf ( k2400 , ’ :CURR:PROT 0.02 ’ ) ; % se t Compliant to 20mA

38 fpr intf ( k2400 , ’ :CURR:RANG 0.01 ’ ) ; % se t range to 10mA

39 fpr intf ( k2400 , ’ :FORM:ELEM CURR’ ) ; % se t current data format

40 fpr intf ( k2400 , ’ :TRIG:COUNT 5 ’ ) ; % number o f mul t i read

41 fpr intf ( k2400 , ’ :ARM:SOUR PSTEST ’ ) ; % enab le t r i g g e r on p o s i t i v e edge o f SOT

42 fpr intf ( k2400 , ’ :SOUR:DEL 0.05 ’ ) ; % in t ra measure de lay to 50ms

43 fpr intf ( k2400 , ’ :OUTP ON’ ) ; % enab le output

44

45

46 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

47 % Body of the code

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

49

50 s e t mul t (mult , k213 ) ; % s e l e c t mu l t i p l i e r

51

52 i = 0 ;

53 for f = f r e q % for each frequency do

54 s e t f r e q ( f , a g i l e n t ) ; % se t the frequency

55 pause (2 ) ; % al low frequency to s t a b i l i z e

56 i = i +1; j = 0 ;

57 for V = vo l t % for each supp ly v o l t a g e do

58 j = j +1;

59 % check t ha t supp ly v o l t a g e never exceed 1V

60 vdd core = V+0.1; % se t core v o l t a g e 100mV higher than mu l t i p l i e r

61 i f vdd core > 1

62 vdd core = 1 ;

63 end

64 i f V > 1

65 V = 1 ;

66 end

67

68 s e t v o l t a g e ( vdd core , k213 ) ; % se t the core supp ly v o l t a g e

69 fpr intf ( k2400 , [ ’ :SOUR:VOLT ’ num2str(V) ] ) ; % se t mu l t i p l i e r supp ly v o l t a g e

70 s t a r t o f f ( k213 ) ; % re s e t the FPGA

71 fpr intf ( k2400 , ’ : INIT ’ ) ;% arm the current sens ing

72 s t a r t on ( k213 ) ; % ac t i v a t e the FPGA and t r i g g e r the sens ing

73 dyn = str2num( g e t cu r r en t ( k2400 ) ) ; % read the current va lue s

74 pass = pa s s t e s t ( k213 ) ; % check i f t e s t pass o f f a i l

75 fpr intf ( k2400 , ’ :ARM:SOUR IMM’ ) ; % take an immadiate measure f o r s t a t i c

76 fpr intf ( k2400 , ’ : INIT ’ ) ; % arm the current sens ing

77 s t a t = str2num( g e t cu r r en t ( k2400 ) ) ; % read the current va lue s

78 data ( i , j , : ) = [ f V max( dyn ) min( s t a t ) pass ] ; % sto r e r e s u l t s in data

79 fpr intf ( k2400 , ’ :ARM:SOUR PSTEST ’ ) ; % enab le t r i g g e r on p o s i t i v e edge o f SOT

80 end

81 end

82

83 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

84 % Disconnect dev i c e s

85 %%%%%%%%%%%%%%%%%%%%%%%%%%%%

86 % Disab l e outputs

87 fpr intf ( k2400 , ’OUTP OFF ’ ) ;
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88 fpr intf ( ag i l en t , ’OUTP OFF ’ ) ;

89

90 % Close dev i c e s

91 fc lose ( k2400 ) ;

92 fc lose ( k213 ) ;

93 fc lose ( a g i l e n t ) ;

94

95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

96 %% Agi l en t 33250A frequency generator code

97 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

98 function s e t f r e q ( f req , dev ) % se t a square c l o c k on a g i l e n t

99 fpr intf ( dev , [ ’APPL:SQU ’ num2str( f r e q ) ’ , 3 . 3 , 1 .65 ’ ] ) ;

100

101 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

102 %% Kei th l ey 2400 current sens ing code

103 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

104 function curr = ge t cu r r en t one ( dev ) % take a one−sho t measure

105 fpr intf ( dev , ’ :MEAS:CURR? ’ ) ;

106 curr = fscanf ( dev ) ;

107

108 function curr = ge t cu r r en t ( dev ) % take a current measure

109 fpr intf ( dev , ’ :FETCH? ’ )

110 curr = fscanf ( dev ) ;

111

112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

113 %% Kei th l ey 213 quad vo l t a g e source code

114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

115 function s e t v o l t a g e (v , dev ) % ca l i b r a t e d vo l t a g e on k213

116 fpr intf ( dev , [ ’P1C0A0R1H0J128 ,143V ’ num2str( v ) ’X ’ ] ) ;

117

118 function s t a r t on ( dev ) % CHIP rst n high

119 fpr intf ( dev , ’P4V3 . 3X ’ ) ;

120

121 function s t a r t o f f ( dev ) % CHIP rst n low

122 fpr intf ( dev , ’P4V0X ’ ) ;

123

124 function s e t mul t (num, dev ) ; % s e l e c t the mu l t i p l i e r under t e s t

125 i f num == 0

126 s t r 1 = ’P2V0X ’ ;

127 s t r 2 = ’P3V0X ’ ;

128 e l s e i f num == 1

129 s t r 1 = ’P2V3 . 3X ’ ;

130 s t r 2 = ’P3V0X ’ ;

131 e l s e i f num == 2

132 s t r 1 = ’P2V0X ’ ;

133 s t r 2 = ’P3V3 . 3X ’ ;

134 else

135 s t r 1 = ’P2V3 . 3X ’ ;

136 s t r 2 = ’P3V3 . 3X ’ ;

137 end

138 fpr intf ( dev , s t r 1 ) ;

139 fpr intf ( dev , s t r 2 ) ;

140

141 function pass = pa s s t e s t ( dev ) %wait f o r t e s t r e s u l t s and check i f t e s t passed

142 pass = 0 ;
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143 f a i l = 0 ;

144 while ( pass == 0 && f a i l == 0)

145 fpr intf ( dev , ’U5X ’ ) ;

146 din = str2num( fscanf ( dev ) ) ;

147 pass = b i t g e t ( din , 1 ) ;

148 f a i l = b i t g e t ( din , 3 ) ;

149 end
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