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ABSTRACT
To ensure sustainable operations of wireless sensor systems,
environmental energy harvesting has been regarded as the
right solution for long-term applications. In energy-dynamic
environments, energy conservation is no longer considered
necessarily beneficial, because energy storage units (e.g.,
batteries or capacitors) are limited in capacity and leakage-
prone. In contrast to legacy energy conservation approaches,
we aim at energy synchronization for wireless sensor de-
vices. The starting point of this work is TwinStar, which
uses ultra-capacitor as the only energy storage unit. To
efficiently use the harvested energy, we design and imple-
ment leakage-aware feedback control techniques to match
local and network-wide activity of sensor nodes with the dy-
namic energy supply from environments. We conduct sys-
tem evaluation under three typical real-world settings —
indoor, outdoor, and mobile backpack under a wide range
of system settings. Results indicate our leakage-aware con-
trol can effectively utilize energy that could otherwise leak
away. Nodes running leakage-aware control can enjoy 70%
more energy than the ones running non-leakage-aware con-
trol and application performance (e.g., event detection) can
be improved significantly.

Categories and Subject Descriptors

C.2.4 [Computer Communications Networks]: Dis-
tributed Systems

General Terms
Measurement, Design, Performance, Experimentation

Keywords
Energy, Ultra-capacitor, Leakage, Wireless Sensor Networks

1. INTRODUCTION
With the increasing need for cyber-physical interac-

tion, wireless sensor networks (WSN) have evolved into a
key technology for long-term applications such as military
surveillance [12], habitat monitoring [22], and scientific ex-
ploration [9]. Due to the low-cost and small size require-
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ments, sensor nodes used in these applications (e.g., mica se-
ries) are normally equipped with limited power sources (e.g.,
2200 mAh at 3V for two AA batteries), and hazardous or
inaccessible environments preclude manual battery replace-
ment. Without renewable energy resources, a sensor node
can sustain only a few hours at 100% duty cycle.

Clearly, existing energy conservation techniques can only
partially alleviate the conflict between system lifetime and
performance. To ensure sustainability, environmental en-
ergy harvesting [26] has been pursued by the research com-
munity as the right solution for long-term applications.
To store harvested energy, researchers have proposed us-
ing rechargeable batteries [1], such as NiCAD, NiMH, or
Li-ion, or a combination of capacitors and rechargeable bat-
teries [30] as the energy storage buffer. Although these solu-
tions have been proven effective in prolonging the lifetime of
the sensor nodes, there is still room for further improvement,
because (i) rechargeable batteries have limited recharge cy-
cles due to cyclic memory and crystalline formation (e.g.,
a Li-ion battery has 500 cycles, NiMH 300 cycles) and (ii)
sophisticated recharging circuits and electro-chemical con-
version could reduce energy efficiency to as low as 6% [28].

Compared with rechargeable batteries, capacitors possess
a set of advantages: they (i) have more than 1 million
recharge cycles; (ii) have predicable remaining energy inde-
pendent of discharge modes; (iii) are robust to temperature
changes, shock, and vibration; and (iv) have high charg-
ing and discharging efficiency. Furthermore, recent advances
in ultra-capacitor technology make it possible to use ultra-
capacitors as the only energy storage device. For instances, a
research group at MIT [21] has announced nanotube-based
ultra-capacitors, which can provide energy storage densities
comparable to those of batteries. In 2006, a U.S. patent [29]
was issued for an electrical energy storage unit using an
ultra-capacitor that has an energy/weight value of about
342W·h/kg, twice that of Li-ion batteries. The largest ca-
pacitance currently available on the market is 3,000F [19].
Powered by this kind of capacitor, sensor nodes can work
for more than 527 days under a 1% duty cycle with a sin-
gle initial charge of the capacitor. It is highly possible that
in the near future we will witness a paradigm shift from
a battery-based to an ultra-capacitor-based design for all
kinds of embedded devices. Therefore, it is essential to ex-
plore this frontier in advance.

Although ultra-capacitor-based designs have many advan-
tages, they impose a major challenge: the energy leakage of
ultra-capacitors is high when they reach their full capacity.
To our best knowledge, there has been little investigation
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Figure 1: Workload Patterns

1.9 2.1 2.3 2.5 2.7 2.9 3.1
0

5

10

15

20

25

30

35

  
R

em
a
in

in
g
 E

n
er

g
y
 (

k
J
)

  Voltage Measured(V)

1% LED
1% All
99% LED
99% All

(a) Li-ion 3100 mAh
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(b) NiCAD 1100 mAh
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(c) NiMH 2500 mAh
Figure 2: Battery Discharge Characteristics Under Four Types of Workload

into designing systems that consider the leakage of ultra-
capacitors. Therefore, this exploratory work would poten-
tially offer an important step toward a wider acceptance of
capacitor-based embedded devices.

Unlike previous research that focuses mainly on hardware
design, the driving idea of this work is energy synchroniza-

tion – a holistic approach towards energy equilibrium in
WSN. A lightweight predictor is designed to estimate the life
time of a sensor node based on the available environmental
energy and the remaining energy inside the ultra-capacitor.
Leakage-aware feedback control is then used to suggest an
appropriate duty-cycle to the application layer, based on the
gap between the predicted and targeted lifetimes. Instead of
conserving as much energy as possible, the design objective
of our work is to consume as much energy as possible while
maintaining operational sustainability. Specifically, the ma-
jor contributions of this work are as follows:
• To our knowledge, this is the first in-depth work to inves-
tigate the ultra-capacitor-based leakage-aware design. We
empirically model the leakage of ultra-capacitors using off-
line and online methods to avoid environmental effect. The
leakage model allows us to predict the lifetime and control
the duty cycle of a node precisely to achieve an equilibrium
between energy supply and demand.
• We design and implement both local and network-wide
application-level adaptation techniques under diversified
real-world environments including indoor, outdoor as well
as mobile settings. The system evaluation on a network
of TwinStar nodes indicates that our leakage-aware design
successfully utilize energy that could otherwise leak away to
improve application performance significantly.

Figure 3: Lab Setting for Accurate Measurement

The rest of the paper is organized as follows: Section
2 describes the motivation behind a leakage-aware design
for sensor networks. Section 3 gives an overview of the de-
sign architecture. Hardware design, modeling, control, and
adaption are presented in Sections 4, 5, 6, and 7, respec-
tively. System implementation and evaluation are detailed
in Section 8 and 9. Related work is discussed in Section 10.
Finally, Section 11 concludes the paper.

2. MOTIVATION
This section describes the motivation for our work by re-

vealing the uncertainty in battery modeling and identifying
challenging issues in ultra-capacitor-based design. In the
empirical study, we used different types of batteries, ultra-
capacitors, a DC Power-meter and a Tektronix DPO4054
Digital Phosphor oscilloscope as shown in Figure 3.

2.1 Uncertainty in Battery Modeling
An essential requirement for energy management is esti-

mating remaining energy accurately. In battery-based de-
signs, remaining energy would be estimated by establish-
ing battery models. Researchers [23] have demonstrated the
possibility of estimating remaining energy with an ±3% er-
ror, assuming a fixed discharge rate, temperature, and bat-
tery type. However, it would fail to apply to sensor network
settings in which the workload is driven by unpredictable
events/workload, and changing environmental factors (e.g.,
temperature) affects electrochemical reaction significantly.
In contrast, the remaining energy inside an ultra-capacitor
can be precisely estimated according to its voltage.
Impact of Workload: To investigate the impact of
changing workloads on the remaining energy estimation in
battery-based designs, we conducted a series of experiments
using four types of workload, as shown in Figure 1. These
synthetic workloads are generated by choosing different sets
of active components (LED only vs. all components) and
workload (1% vs. 99%). By periodically measuring the
voltages, we can get the battery discharging characteristics
under these four workloads, as shown in Figure 2. Figure 2
confirms that even for batteries of the same type, remaining
energy differs with different types of workloads. For exam-
ple, Figure 2c shows that at the 2.5V, two NiMH batteries
can supply 17.8kJ at the 1%-LED workload (Figure 1a), but
only 9.8kJ at the 99%-All-On workload (Figure 1d). Clearly,
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Figure 4: Leakage Power vs. Time
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Figure 5: Leakage Power vs. Voltages

this big uncertainty would lead to ineffective energy control.
Impact of Battery Type: We also conducted a series of
experiments to investigate the consistency of battery mod-
els over different battery types. In this study, three differ-
ent types of the batteries are investigated: Li-ion, NiCAD
and NiMH. Comparing Figures 2a, 2b, and 2c indicates that
different types of the batteries have different discharge char-
acteristics and different capacities. In other words, there
is no single battery model that can be applied to different
battery types. For example, when a sensor node runs under
the 1%-LED workload, remaining energy under 2.7V is 3.8
kJ, 10.55 kJ, and 22.16 kJ for Li-ion, NiCAD, and NiMH
batteries, respectively.

Figure 2 also shows that the discharge curves for different
batteries exhibit deep slopes within a certain voltage range,
in which a small error in voltage reading would be ampli-
fied into a large error in estimating remaining energy. For
example, as shown in Figure 2b, an 0.1V error would be
translated into a 200% energy difference between 2.4V and
2.5V readings.

2.2 Leakage in the Energy Storages
This section presents our empirical study on the leakage

profile of batteries and ultra-capacitors. We conducted ex-
periments over a period of 6 weeks, using different types
of batteries and ultra-capacitors. Our empirical study con-
cludes that (i) ultra-capacitors are a good substitute for bat-
teries and (ii) energy leakage in ultra-capacitors should not
be overlooked.
Leakage Profile Comparison: To simplify the compari-
son against ultra-capacitors, Li-ion batteries are chosen as
representatives of the other batteries. We conducted leakage
profile comparisons between Li-ion batteries and a 2,000F
ultra-capacitor over a period of 2 months after they are
fully charged. For Li-ion battery, the leakage rate is 8% per
month. The 2,000F ultra-capacitor has a very high leakage
rate (43.8%) during the first month, but low leakage rate
(5.26%) during the second month. At the end of the sec-
ond month, the ultra-capacitor still has 1.9V of remaining
voltage. These results indicate that ultra-capacitors have
leakage performance that is comparable to that of batteries
when voltage is controlled under an appropriate level. How-
ever, ultra-capacitors suffer severe energy leakage when it is
charged to the limit.
Leakage of Ultra-Capacitors: In this experiment, seven
types of ultra-capacitors are used, ranging from 22F to
3000F. After an ultra-capacitor was fully charged, we iso-
lated it and continuously monitored its remaining voltage
over 1000 hours. Figure 4 reveals that (i) the leakage power
reduces over time after the initial charge, and (ii) leakage
is more severe for larger ultra-capacitors than for smaller
ultra-capacitors. For example, at 2.7V, the leakage power of
a 3,000F capacitor is about 17 times of that of a 100F.
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Figure 6: Remaining Energy Vs. Time

We also investigated the correlation between the voltage
and leakage of ultra-capacitors. Figure 5 shows that when
the voltage of ultra-capacitors approaches its limit, the value
of leakage power increases significantly. For example, when
the voltage of the 100F ultra-capacitor increases to 2.7V, its
leakage power is 8.4 mW, which is equivalent to the power
needed for powering a Telos node to work under more than
13% duty cycle.
Lifetime Difference due to Leakage: With the empirical
data collected, we simulate the lifetime of a node consider-
ing leakage. Figure 6 compares the remaining energy in-
side the ideal non-leaking ultra-capacitor and the real ultra-
capacitor with leakage. Here we use a fully charged 50F
ultra-capacitor, to power a MicaZ node at 1% duty cycle.
We can see that ideally, without leakage the MicaZ node’s
lifetime would be 65 hours, but because of the leakage, the
MicaZ node’s lifetime is actually only 49 hours, or 24% less
than the lifetime we would otherwise expect.

3. OVERVIEW OF SYSTEM DESIGN
The empirical study in Section 2 indicates that energy

leakage is a critical hurdle that hinders designers exploiting
the benefits of ultra-capacitor over batteries. To address the
hurdle, we propose a three-layer design as shown in Figure 7.

����������	


���


����������	


���	�����

��
���
�	


���


����
��	


���


��
�
�� �
����	���
�������

�	��
��

����	����

������	��

��	��������

���	������


���	
��

��������
���
���

���������

����	�����

���
��

����
������

Figure 7: Overview of System Architecture

• The hardware layer uses an energy harvesting circuit (e.g.,
solar panel or wind generator) to harvest the environmental
energy and uses an ultra-capacitor as the only energy storage
unit to power sensor nodes. This layer also (i) monitors the
remaining energy inside the ultra-capacitor, (ii) samples the
energy harvesting rate from the energy harvesting circuit,
and (iii) models the leakage profile of the capacitor. These
three pieces of information are then fed into the control layer.
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Figure 8: TwinStar Hardware Architecture
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Figure 9: TwinStar Platform

• The control layer predicts the lifetime of a node based on
the energy harvesting, leakage, and consumption rates. The
difference between the predicted lifetime and user-specified
lifetime is used as the control signal to the duty cycle con-
troller, which suggests a certain percentage of duty cycle
change to the application. The control layer deals with two
conditions: energy oversupply and undersupply. In the case
of oversupply, the controller prevents the ultra-capacitor
from charging to its limit, hence reducing the energy leaked
away. In the case of undersupply, the controller signals the
running program to reduce the rate of energy consumption
so as to ensure the minimal but critical activities of the sen-
sor node at any time.
• In the adaptation layer, a running application changes its
working schedules according to the suggested energy budget.
Adaptation can be archived by changing per-component ac-
tivities in communication and sensing as well as per-flow
activities [15]. We note that designs for the adaption layer
are highly diverse. Instead of using a case-by-case approach,
we propose a generic adaptation technique by treating duty-
cycle as first-class resource that can be allocated, scheduled
and adjusted in Section 7.

4. HARDWARE DESIGN OF TWINSTAR
TwinStar is an add-on power board that harvests energy

from environments and uses an ultra-capacitor as the only
energy storage to overcome the intrinsic limitations of bat-
teries (e.g., energy uncertainty, limited recharge cycles, low
conversion efficiency, and environment unfriendliness). The
architecture of TwinStar is shown in Figure 8. It consists
of (i) the solar panels and peripheral circuit for energy har-
vesting; (ii) the power measurement switch; (iii) the ultra-
capacitor-based energy storage; and (iv) the smart power
supply circuit with a DC/DC converter for powering the
working node attached to the TwinStar board. The corre-
sponding printed circuit board is shown in Figure 9. Due to
space constraints, we only explain a few unique features of
the TwinStar design in the rest of the section.

4.1 Smart Power Supply Circuit
To accommodate fluctuating ambient energy, the voltage

of a power supply shall be stabilized. We apply a high-
efficiency switch-type DC/DC converter for providing a sta-
ble power supply for the working node. In the battery-based
approaches, normally a DC/DC converter is powered di-
rectly by a battery, assuming enough energy is left in the
battery [15, 16]. However, it would be problematic for
the ultra-capacitor-based design, especially under extremely
low ambient energy situations due to the zero-energy boot-

strap problem: Initially, the voltage of the ultra-capacitor
is around 0 and all the system components do not work
including the DC/DC converter. When the voltage of the
ultra-capacitor reaches a threshold level, the converter en-
ters a warming up stage, during which the high-efficiency

switch-type converter needs to excite the external inductor
into oscillations with high transient current (at the level of
10mA). If the scavenged energy is not sufficient to support
the converter to finish this stage, the voltage of the ultra-
capacitor drops below the threshold level and the converter
fails to boot up. Such failure repeats itself, wasting energy
harvested from the environment.

To address this zero-energy boot-up challenge, a smart
control circuit is designed to automatically boot-up and shut
down the DC/DC converter. The basic idea is that dur-
ing the charging state, the DC/DC converter is kept shut
down by the smart control circuit until the ultra-capacitor
accumulates sufficient energy and reaches a voltage much
higher than the DC/DC converter’s input voltage thresh-
old (1.1V); during the discharging period, the DC/DC con-
verter is turned off when the voltage of the ultra-capacitor
approaches the minimum input voltage (0.7V). In this way,
high boot-up current stage and energy waste can be avoided.

However, achieving this kind of smart control needs to
overcome a hidden challenge: there is no appropriate power
supply for the smart control circuit itself before enabling the
DC/DC converter. In our design, we address all the above
challenges by proposing a novel dual solar panel solution
(a small boot solar panel and a big main panel) together
with a Schmitt trigger-based control circuit. The design is
illustrated in Figure 10.

As shown in Figure 10, a small boot solar panel is applied
to power the Schmitt trigger module that is used to control
the on/off status of the DC/DC converter. The small panel
charges a small capacitor (C1, which is 47µF) and keeps the
voltage of C1 higher than 2.5V so as to power the Schmitt
trigger, which is an extremely low power device with power
consumption less than 10µW. Therefore, even with a low
environmental energy supply, the smart control circuit can
still work.

The main panel is the one harvesting energy for the ultra-
capacitor. Note that when the DC/DC converter starts to
work, its output also feeds back to power the Schmitt trigger,
avoiding shutting down the DC/DC converter when there
is no environmental energy but the ultra-capacitor is still
energy-rich.
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Figure 10: Boot-up and Shutdown Control Circuit
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4.2 Ultra-Low-Power Measurement Switch
To enable the control middle layer to accurately predict

the lifetime of the sensor node, the hardware provides power
measurement capabilities. Keeping in mind that it is im-
portant to make the measurement circuit simple and energy
efficient, we used P-channel MOSFET as the switches (K1

and K2 as shown in Figure 11), which are controlled by the
sensor node.
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Figure 11: Power Measurement Circuit

Normally the switch K1 is kept on to harvest environmen-
tal energy. When measuring the energy harvested into the
ultra-capacitor, K1 is switched off and K2 is turned on by
the control signals from the sensor node. In our implemen-
tation, we use MicaZ node and its ADC4 and ADC6 pins
extract the voltage across the resister R1. Since the resis-
tance of the resistor R1 is known, the current Icap(t) goes
through R1 can be calculated.

The power consumption of the P-MOSFET switch is ex-
tremely low, at the level of nW , and thus negligible. A very
small resister R1 is used for the voltage formation and used
only during the measurement moment (at the level of µs),
therefore having a negligible effect on the charging efficiency
for the ultra-capacitor.

4.3 External Sensor Nodes
Our system supports two external sensor nodes: (i) a

working node, (ii) an optional companion node. The work-
ing node is powered solely by the ultra-capacitor. It period-
ically samples the voltage of the ultra-capacitor. Based on
the sampled value it calculates the remaining energy inside
the ultra-capacitor. It also periodically controls the power
measurement switch to measure the environmental power
and calculate the harvested energy.

In order to analyze the system performance and support
on-line debugging, the TwinStar platform also contains the
interface for attaching an optional companion node (in Fig-
ure 9). It is powered and functions separately. Isolation is
important here because this design prevents the companion
node’s interfering with the working node (in Figure 9).

The companion node has three capabilities: (i) periodi-
cally sampling the voltage of the ultra-capacitor, (ii) period-
ically measuring the energy charged into the ultra-capacitor,
and (iii) logging data. Since the companion node is powered
by a separate energy source, it does not have energy con-
straint during a short experiment period. The information
captured in the first two functions can either be written into
the companion node’s flash memory or transmitted via ra-
dio, supporting either off-line or on-line analysis and debug-
ging. All the measurements conducted by the companion
node is protected by voltage follower circuits to avoid load
effects and achieve isolation.

We note that the working node can run alone without the
companion node. It only needs to monitor its energy status
at a low frequency for control purpose. The main purpose
of adding the companion node is to accurately monitor our
system’s performance at a high frequency for evaluation pur-
pose. By using a companion node, the observer affect can

be avoided, otherwise the working node has to monitor and
record energy status by itself. These operations consume a
lot of energy that is not part of workload, causing inaccuracy
in performance evaluation.

4.4 Summary of Hardware Design
The TwinStar node has a battery-free hardware structure

using a combination of an ultra-capacitor and solar panels.
It has several features that match our requirements:
• Stability : To the best of our knowledge, it is the first
design that considers the zero-energy boot up challenge and
uses a dual-panel structure comprising a boot panel and a
harvesting panel. The boot panel ensures stable power har-
vesting under extremely low ambient energy situations. The
harvesting panel is used as the main charging device for the
ultra-capacitor. DC/DC converter provides stable output to
power the working node.
• Visibility : As an experimental platform, the TwinStar
node provides monitoring/debug interfaces for attaching an
additional companion node (as shown in Figure 9), which
can help us understand the behaviors of the running work-
ing node and facilitate system debugging and performance
evaluation. The separate power supply for the companion
node ensures accurate characterizing of the energy profile of
the working node. In the commercial release version, this
companion node can be easily removed to reduce cost.

5. SYSTEM ENERGY MODELING
System modeling is an essential step for effective control.

In this section, we introduce three models: the energy har-
vesting model (Section 5.1), the energy consumption model
(Section 5.2) and the energy leakage model (Section 5.3).
To achieve effective energy synchronization, we need to bal-
ance the interaction among these models into an equilibrium
state.

5.1 Energy Harvesting Model
The energy harvesting model is built online using the mea-

surement switch discussed in Section 4.2. The total energy
EE harvested during the time interval [(k − 1)T, kT ] is:

∆EE[kT ] =

Z kT

(k−1)T

Icap(t) · Vcap(t)dt (1)

Here Vcap(t) is the ultra-capacitor’s voltage at time t.
Both Icap(t) and Vcap(t) can be measured by the ultra-low-
power measurement switch shown in Figure 11. T is called
the sampling period and k is called the sampling instant.

5.2 Energy Consumption Model
The energy consumption of the sensor node is determined

by three parameters: average active mode current Iactive,
average sleep mode current Isleep and duty cycle D (the
percentage of active time). The energy consumption during
the time interval [(k − 1)T, kT ] can be represented as:

∆EC [kT ] = Vnode · (Iactive · D + Isleep · (1 − D)) · T (2)

The average power consumption at the end of time kT
can be represented as follows:

PCAV G
(kT ) =

∆EC [kT ]

T
(3)

5.3 Energy Leakage Model
Based on our empirical study in Section 2, we formulate

a leakage model to characterize the relationship between
the remaining energy in the ultra-capacitor and the leak-
age power. To minimize the environmental effect, such as

323



����������	
���
 ��������	
����
�
��

��
���
�	
���


��������	

���������
����	
����	


�
�������

��

�������

�����	�

����
��	
���


������� ��������
�

�����	�

��������

�
����	�������

�
���

Figure 13: Control Layer Design Overview
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Figure 14: Sustainability

temperature, the leakage model is normally obtained off-line
and can be adjusted online after deployment.

To conduct off-line modeling, the harvesting circuit is shut
down and the node executes a testing program at a constant
duty cycle. At the end of every T seconds, the control layer
periodically monitors the remaining voltage Vcap(t) of the
ultra-capacitor. Therefore, the difference of remaining en-
ergy ∆ER[kT ] during the time interval [(k−1)T, kT ] can be
calculated as:

∆ER[kT ] =
C

2

`

Vcap((k − 1)T )2 − Vcap(kT )2
´

= ER ((k − 1)T ) − ER(kT ) (4)

Without energy harvesting, ∆ER[kT ] is the sum of the
energy consumed by the node and energy leaked away during
time interval [(k − 1)T, kT ], namely

∆ER[kT ] = ∆EC [kT ] +

Z kT

(k−1)T

PL(t)dt

For small value of T , the above equation can be simplified
as:

∆ER[kT ] = ∆EC [kT ] + PL(kT ) · T (5)

By combining Equations (4) and (5), at the end of any
given time kT , the leakage power PL can be calculated by
the sensor node as follows:

PL(kT ) =
ER((k − 1)T ) − ER(kT ) − ∆EC [kT ]

T
(6)

The sensor node builds the leakage model by storing the
value of PL(kT ) and the corresponding ER(kT ) value in its
memory. Figure 12(a) shows the empirical leakage data of
the leakage model for diverse capacitors. To express the
model mathematically and reduce the storage space for the
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Figure 12: Leakage Model

model, we use a piecewise linear approximation of the leak-
age curve. We define turning points as the points in the
curve with considerable slope change, which are used to de-
cide the start and end points of line segments. Therefore,
the whole leakage model can be represented by a set of linear
functions, as shown in Eqn.(7).

PL(ER) =

8

>

>

>

<

>

>

>

:

a1 · ER + b1 ; ER1
≤ ER < ER2

a2 · ER + b2 ; ER2
≤ ER < ER3

... ;
...

an · ER + bn; ERn
≤ ER ≤ ERn+1

(7)

Here ER1
, ER2

,· · · , ERn+1
are the remaining energy val-

ues corresponding to the turning points of the segments. a1,
a2,· · · , an and b1, b2,· · · , bn are the coefficients for each
line segment. Figure 12(b) shows an example for the line-
segment-based modeling of the leakage power. The square
dots represent the turning points. The model we built ac-
curately matches the empirical results.

6. CONTROL LAYER DESIGN
The design objective of the control layer is to consume

as much energy as possible while maintaining sustainability.
Sustainability Ttarget is defined as the duration a node must
survive without ambient energy. Ttarget is a configurable pa-
rameter, set by users according to the environment in which
sensors are deployed. For example, in energy-rich environ-
ments such as deserts, users can set a smaller Ttarget to con-
sume energy aggressively. On the other hand, in energy-poor
and unpredictable environments, a larger Ttarget is desired
to ensure the aliveness of sensor nodes. Once Ttarget is cho-
sen, it is used as the set point in the feedback control based
design as shown in Figure 13.

As shown in Figure 14, to maintain sustainability, the
lifetime predictor periodically predicts the expected lifetime
bTexpect and compares bTexpect with the target lifetime Ttarget.

In the case of energy deficit (i.e., bTexpect < Ttarget), a node

is expected to run out of energy after bTexpect seconds, if it
maintains current level of activity. In the case of energy

surplus (i.e., bTexpect > Ttarget), a node can increase the ac-
tivity accordingly for application performance improvement.
As shown in Figure 13, the change of activity is achieved by

using the difference between bTexpect and Ttarget as the input
to the duty cycle controller, which suggests a certain per-
centage of duty cycle change to the adaptation layer. Un-
like conventional control designs, the duty cycle is suggested

by the control layer to the adaptation layer. The adapta-
tion layer adjusts the duty cycle based on the application’s
requirement. This allows a more flexible design of the en-
ergy adaptation layer. The rationale behind this is that the
short-term duty cycle available might not always be syn-
chronized with the activity demanded by the applications.
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For example, a node should not stop sending critical con-
trol messages disruptively simply because the control layer
suggests to reduce duty cycle due to the brief drop in en-
ergy supply. Short-term mismatching is tolerable because
the energy storage unit (e.g., ultra-capacitor) can serve as a
buffer.

The control layer contains two major components: the
lifetime predictor and the duty cycle controller, as shown in
Figure 13. These are described in the following subsections.

6.1 Design of the Lifetime Predictor
To ensure that sensor nodes can survive dark periods dur-

ing which no ambient energy is available (e.g., night), it is
essential to predict lifetime conservatively based on (i) the
remaining energy, (ii) the energy leakage rate, and (iii) the
energy consumption rate. Since the available environmental
energy changes dynamically, when do prediction, we con-
servatively assume zero energy from the environment in the
future (note: current energy harvested can be measured and
therefore is not assumed to be zero).

As discussed in Section 5.3, the leakage power changes
along with the voltage of an ultra-capacitor. The higher the
voltage, the larger leakage power an ultra-capacitor suffers.

To precisely estimate the expected lifetime bTexpect, we need
to iteratively estimate the amount of energy leaked away.

As shown in Figure 15, a prediction is conducted at time

t0. The predictor initializes bTexpect = 0, then goes through
an iterative process. During each iteration, the predictor

extends the value of the expected lifetime bTexpect by ∆T and
predicts how much energy will be consumed during the ∆T
period. The iterative prediction stops, when the expected
remaining energy is below the minimum energy required to
keep the sensor node alive. Suppose the number of total

iterations is N , the expected lifetime bTexpect = N∆T . More
specifically, the prediction goes through the following steps.
Step 1: Measure Remaining Energy

At the time t0, the remaining energy bER(t0) can be ob-
tained by sampling the voltage Vcap of the ultra-capacitor:

bER(t0) =
1

2
CV

2
cap when n = 0 (8)

Step 2: Predict the Leakage Power at Time t0+n∆T
Based on the leakage model specified in Eqn. 7, the pre-

dicted leakage power at time t0 + n∆T is estimated as:

bPL(t0 + n∆T ) = ai · bER(t0 + n∆T ) + bi

where ERi
≤ bER(t0 + n∆T ) < ERi+1

, n ≥ 0

(9)

Where ∆T is the time step used by the predictor to con-
duct the prediction operation.
Step 3: Predict Remaining Energy at t0 + (n + 1)∆T

Assuming no environmental energy, the predicted remain-
ing energy at time t0 + (n + 1)∆T is:

bER(t0 + (n + 1)∆T ) =
bER(t0 + n∆T ) −

R t0+(n+1)∆T

t0+n∆T

“

PC(t) + bPL(t)
”

dt
(10)

For simplicity, the above prediction is approximated as:

bER(t0 + (n + 1)∆T ) ≈
bER(t0 + n∆T ) −

“

PC(t0 + n∆T ) + bPL(t0 + n∆T )
”

∆T

(11)
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Figure 15: Iterative Prediction

Step 4: Test and Jump
As shown in Figure 15, the prediction process is itera-

tive, in which the remaining energy bER(t0 + (n + 1)∆T ) is

predicted based on the prediction result of bER(t0 + n∆T ).
The predicted lifetime of a node ends when there is no suf-
ficient energy to sustain its basic operations. Namely, if
bER(t0 + (n + 1)∆T ) < Emin, the lifetime predictor returns

n∆T as the expected lifetime bTexpect of the node. Other-
wise, n = n + 1 and the lifetime predictor goes back to Step
2.

We note the prediction result is affected by power con-
sumption pattern PC(t). With a constant energy consump-
tion rate (i.e., PC(t) = c), more energy is leaked during the
high voltage stage. For a leakage-aware design, it is neces-
sary to adjust the power consumption pattern PC(t) based
on the value of the leakage power PL(t). In general, we shall
increase power consumption when the PL(t) value is high
and reduce power consumption when the PL(t) value is low.
This type of adjustment is achieved in the controller design
introduced in the following sections.

6.2 Reducing Prediction Overhead
Our prediction is based on the approximations that the

predicted leakage power value bPL(t) does not change during
two consecutive iterations. In order to increase the accu-
racy of prediction, a smaller ∆T value is desired. However,
a smaller ∆T value leads to more iterations, resulting in
more energy consumption in computation. Clearly, it is dif-
ficult to reconcile the conflict between prediction accuracy
and computation overhead with a single ∆T value. It should
be noted that the leakage power value changes quickly when
voltage is high but changes slowly when voltage is low, as
shown earlier in Figure 12(a). Therefore, the prediction
of the lifetime can be scheduled along the predicted time-
line with increasing ∆T values (decreasing frequency). This
adaptive prediction allows the node to estimate accurately in
high leakage power stage and efficiently in low leakage power
stage. In our implementation, using adaptive prediction, the
maximum number of iterations needed is 305. Compared to
the approach using a single small ∆T value, which needs
10,389 iterations, our adaptive predictor can reduce 10084
extra iterations, while maintaining a 99% accuracy.

6.3 Design of the Duty-Cycle Controller
In this section, we describe the design of the controller in

the system. The controller indicates the suggested change of
duty cycle ∆Dsuggest to the adaptation layer based on the
remaining energy inside the ultra-capacitor and the time dif-

ference Tdiff = bTexpect−Ttarget. Here we use a P-controller,
considering the fact that the bigger the difference Tdiff , the
larger ∆D is needed to adjust.
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The major issue for the P-controller design is to choose
an appropriate control gain P , so that the sensor node can
reduce the amount of energy leaked away and still meet
the lifetime goal of Ttarget. Intuitively, if the sensor node
increases its duty cycle at the ultra-capacitor’s high leak-
age power stage, it can capture energy that would otherwise
leaked away. To illustrate the design, consider two scenarios:

Energy Surplus: In the case of an energy surplus, bTexpect

is larger than Ttarget, we get a positive Tdiff value. To con-

verge bTexpect to the set point Ttarget, a positive duty-cycle
change that can increase the power consumption PC(t) needs
to be suggested to the adaption layer. Clearly, it is desirable
to increase more duty-cycle when the leakage power value
PL(t) is high. Therefore, in the case of an energy surplus,
we used the following adaptive P-controller:

∆Dsuggest = G+ · PL · Tdiff (12)

where G+ is a coefficient for control gain adjustment in the
case of an energy surplus.

Energy Deficit: In the case of an energy deficit, bTexpect

is smaller than Ttarget, and we get a negative Tdiff value.

To converge bTexpect to the set point Ttarget, we shall reduce
the power consumption PC(t) by suggesting a negative duty
cycle change to the adaption layer. It is desirable to keep
a high duty cycle when the leakage power PL(t) is high.
Therefore, in the case of an energy deficit, we would like
to reduce the duty cycle slowly in the ultra-capacitor’s high
leakage power stage. The following adaptive P-controller is
used:

∆Dsuggest =
G
−

PL

· Tdiff (13)

where G
−

is a coefficient for control gain adjustment in
the case of an energy deficit.
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Figure 16: Control Layer Current Draw

6.4 Computation Overhead
The duty-cycle control is an online process, hence its over-

head should be carefully considered. Clearly, the overhead of
the control layer is determined by the overhead of each con-
trol operation and the frequency of control. In each control
operation, a node needs to predict the lifetime and use the
difference between the expected lifetime and targeted life-
time to control the duty cycle change. The active duration
of each control operation is very small. For instance, Fig-
ure 16 shows the profile of current draw measured with an
oscilloscope. Each control operation draws approximately
7.2mA for about 4ms, which can be translated into 86.4µJ

per control operation. The frequency of control operation
in our design is at the order of minutes (e.g., 5 minutes by
default). Compared to the typical energy consumption of
a sensor device (e.g., MicaZ), energy consumption of the
control layer adds only 0.0013% overhead to the system.

7. ADAPTATION LAYER DESIGN
The high-level goal of the adaptation layer is to optimize

the system performance by adjusting the system activities,

such as sensing and communication, based on the applica-
tion’s requirement and the suggested duty-cycle from the
control layer. Specifically, let the active instance of a sensor
node be a tuple (t, d), where t is the start time of the active
instance and d is the corresponding duration of this active
instance, the working schedule of a node can be represented
as Γ = {(t1, d1), (t2, d2), ...}. Essentially, Γ stores all active
instances for a node. With the suggested duty-cycle from the
control layer, a node can increase or decrease its duty cycle
by either increasing/reducing the number of active instances
or extending/shrinking the active duration. For sensor ac-
tivities such as sensing or communication, such increase or
decrease of duty cycle at a single node could significantly
impact the whole system performance. To optimize the sys-
tem performance and make the best use of available energy,
the adaptation layer conducts two types of energy synchro-
nization operations: (i) local energy synchronization and (ii)
global energy synchronization.

Duty-cycle-based adaption is generic enough to be applied
in many protocols. Due to space constraints, in the rest of
this section, we can only present an exemplary adaptation
layer design for the event detection application as a case
study to demonstrate how the energy synchronization oper-
ations are conducted. Other designs can be accommodated
in the future. For most of the sensing applications, the work-
ing schedules of sensor nodes are periodic. For example, a
periodic working schedule {(1, 3), (101, 3), (201, 3), ...} rep-
resents the sensor node is active for 3 active durations every
100 units of time, The duty cycle of a sensor node, therefore,
is the ratio between the total number of active durations
within a period and the time duration of the period. In the
above example, the duty cycle is 3%.

7.1 Local Energy Synchronization
In local energy synchronization, an individual sensor node

adjusts its own duty cycle based on the suggestion from the
control layer. For the event detection application, an indi-
vidual sensor node’s active instances should be evenly scat-
tered within a period to minimize the expected detection
delay of a target within its sensing range. For example, as-
sume the initial duty cycle is 1% and the duration of a period
is 100 units of time, the adaptation layer can set the working
schedule to be Γ = {(0, 1), (100, 1), ...}. The expected detec-
tion delay is 100

2
= 50. When the control layer suggests

to change the duty cycle to 2%, to minimize the expected
detection delay, the adaptation layer can set the working
schedule to be Γ = {(0, 1), (50, 1), ...}. The expected detec-
tion delay is reduced to 50

2
= 25. In this example, we can

see that the adaptation layer’s local energy synchronization
is important. By doing local energy synchronization, the
sensor node makes best use of available energy and reduces
the expected detection delay from 50 to 25.

7.2 Global Energy Synchronization
In global energy synchronization, multiple sensor nodes

inside the network cooperatively adjust their duty cycles to
optimize the system performance. In many applications,
multiple sensors are deployed to monitor the same region to
enhance detection fidelity. Under such scenarios, those sen-
sor nodes should coordinate their working schedules with
each others’ available duty cycle budget. Specifically, the
nodes that monitor the same region can divide the whole
period into several sections. The number of sections is equal
to the number of these nodes. Each node only increases
or decreases the number of active instances within its own
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sections. In this way, no energy is wasted for the nodes
to exchange information to coordinate their schedules and
avoid being active at the same time. For example, assuming
nodes a and b are deployed to monitor a region and the ini-
tial duty cycle for node a and node b is 1% each. As shown
in Figure 17(a), the initial working schedule for node a and
b is Γa = {(0, 1), (100, 1), ...} and Γb = {(50, 1), (150, 1), ...},
respectively. The expected detection delay in the common
sensing region of node a and b is 50

2
= 25. When the con-

trol layer suggests node a to increase the duty cycle to 2%,
without global energy synchronization, to minimize the de-
tection delay the adaptation layer will add active instances
in the middle of node a’s initial active instances, as shown
in Figure 17(b). These newly added active instances over-
lap with node b’s initial active instances. Therefore, the
expected detection delay in the common sensing region of
node a and b remains the same. However, with global en-
ergy synchronization, node a’s adaptation layer will evenly
distribute the active instances within node a’s sections (i.g.,
from 0 to 49), as shown in Figure 17(c). In this way, the
expected detection delay in the overlapping region of node
a and b reduces from 25 to 18.75.
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Figure 17: Global Energy Synchronization Example

The above example shows that in addition to local energy
synchronization, global energy synchronization is important
for the adaptation layer to efficiently utilize the available
energy suggested from the control layer and optimize the
network level system performance as a whole.

8. EVALUATION I:

LOCAL ENERGY SYNCHRONIZATION
In this section, we evaluate system performance of a sin-

gle TwinStar node under different types of environmental
energy patterns. Since this work is the first one investigat-
ing leakage-aware control, the state-of-art (e.g, energy har-
vesting and conservation) is complementary, however, pro-
vides no appropriate baselines for comparison. Therefore, we
compare our system working in Leakage-Aware (LA) mode
with the same system but in a Non-Leakage-Aware (NLA)
mode. The NLA mode has no information on the leakage
rate of the ultra-capacitor. In other words, the system in
the non-leakage-aware mode predicts the expected lifetime
and controls the duty cycle of the working node, based on
the current energy consumption and remaining energy inside
the ultra-capacitor. Without considering the leakage profile,

the feedback controller in the non-leakage mode uses a fixed
P-controller for both the energy surplus and energy deficit
scenarios.

We also compare the LA and NLA systems with an oracle

system that assumes the knowledge of all the available envi-
ronmental energy in the future. The oracle system runs off-
line, based on the empirical environmental energy collected
under three different scenarios (described in Section 8.3).

8.1 Evaluation Metrics and Baseline
The key advantage of the leakage-aware design is effi-

ciently using energy that would possibly leak away. We use
two metrics to evaluate the performance of our system, (i)
Cumulated Active Time (CAT): the cumulated active
time of a sensor node. Under a given energy harvesting
pattern, the larger the CAT value, the more work a sensor
node can perform. (ii) Leakage to Consumption Ratio
(LCR): the ratio between leakage power value and power
consumption value at any given time. The smaller the LCR
value, the less energy leaked away.

8.2 Implementation
We designed and implemented the adaptation layer and

the control layer using TinyOS and NesC. The compiled
image of a full MicaZ node implementation occupies 17,894
bytes of code memory and 368 bytes of data memory.

As shown in Figure 8 in Section 3, our hardware contains
a custom circuit board to harvest the energy and two off-the-
shelf sensor nodes (e.g., MicaZ nodes): (i) a working node,
which is powered by the ultra-capacitor, and (ii) a compan-
ion node, which is powered by batteries. The companion
node periodically wakes up to measure the energy harvest-
ing rate and the remaining voltage inside the ultra-capacitor
for evaluation purpose. Measurements are logged into the
flash and are used to conduct off-line analysis of system per-
formance. We note that the companion node has a separate
power supply and acts as the observer for our system. The
working node is the node that actually runs our system. It
also periodically wakes up to sample the remaining voltage
of the ultra-capacitor for the purpose of feedback control.
The predictor and controller are invoked periodically and
get the suggested duty cycle ∆D. The adaption layer ad-
justs the node’s duty cycle based on the suggested ∆D by
extending the length of active instances.

8.3 Different Deployment Scenarios
We ran our system under three different scenarios: out-

door, indoor, and mobile backpack, as shown in Fig-
ures 18, 19 and 20, respectively. These scenarios are care-
fully selected to represent a wide range of energy harvesting
patterns: (i) periodical and vibrated energy for the out-
door environment, (ii) periodical and constant energy for
the indoor environment, and (iii) dynamic and highly un-
predictable energy in the mobile environment. For each
scenario, we used two sets of hardware, one running in
the leakage-aware mode, the other in the non-leakage-aware
mode. We put these two sets of hardware near each other so
that they harvested a similar amount of environmental en-
ergy. The working node woke up every 5 minutes in all three
scenarios. The companion node woke up every 15 seconds
for the outdoor and indoor experiments. For the backpack
experiment, since the environmental energy changed very
frequently, the companion node woke up every 1 second. In
all the scenarios, the MicaZ nodes were initially working at
a 1% duty cycle.
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Figure 18: Outdoor
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Figure 19: Indoor

Mobile Backpack
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Figure 20: Mobile Backpack
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8.4 Outdoor Experiment
The outdoor scenario represents such potential applica-

tions as environment monitoring [22] and scientific explo-
ration [9]. In the outdoor experiment, we deployed our
system outside of a fifth-floor apartment, as shown in Fig-
ure 18(a). We put TwinStar nodes outside the window, fac-
ing south. The total time duration of this experiment was
76 hours.

Figure 18(b) shows the energy harvested by the system
in the leakage-aware and non-leakage-aware modes over the
76 hours. We placed two systems close to each other to
harvest similar amounts of energy from the environment.
By inspecting Figure 18(c) closely, one can discover that
the leakage-aware system consumes energy quickly when the
voltage is high (i.e., leakage is high) and it slows down the
consumption when the voltage is low. This reduces the
amount of energy leaked away. As a result, at the end of
the experiment, the capacitor’s voltage for the leakage-aware
system was 1.14V, higher than the capacitor’s voltage for the
non-leakage-aware system, which was 1.09V.

Figure 18(d) compares the cumulated active time among
the leakage-aware, non-leakage-aware, and oracle systems.
Clearly, the leakage-aware system allows nodes to consume
more energy over time than the non-leakage-aware system.
Since the oracle system have the knowledge of the available
environmental energy in the future, it can more aggressively
consume energy to reduce the energy leaked away. How-
ever, the curves of leakage-aware and oracle systems are very
close to each other. Moreover, it’s very difficult to predict
the available environmental energy in the future. For exam-
ple, in Figure 18(b), the available environmental energy on
the third day is 5 − 6 times less than on the previous two
days. By inspecting Figure 18(d) carefully, one can observe
that the leakage-aware system exhibits a certain stair effect.
This is because of the changing duty cycles of the adaption
layer according to the energy harvesting pattern, as shown
in Figure 18(b). Obviously, the leakage-aware system is very
effective. For example, after 70 hours, the leakage-aware sys-
tem allowed a node to stay active 70% longer than did the
non-leakage-aware system.

Figure 18(e) shows the Leakage to Consumption Ratio
(LCR) values of the systems running in the oracle, leakage-
aware, and non-leakage-aware modes over the 76 hours. By
increasing the energy consumption at the high leakage power
stage and reducing the energy consumption at the low leak-
age power stage, the oracle and leakage-aware systems al-
ways maintain the LCR value at very low level. The LCR
value of the non-leakage aware system is more than twice
larger than that of the leakage aware system.

8.5 Indoor Experiment
The indoor scenario represents such potential applications

as facility management, structure monitoring. As shown in
Figure 19(a), our system was deployed under the overhead
light in our lab. The total time duration for this experiment
was 72 hours. The light was turned on in the morning, when
people came to the lab, and turned off in the middle of the
day or during the night when no one was inside the lab.

Figure 19(b) shows the energy harvested by the systems
working in leakage-aware and non-leakage-aware modes over
the 72-hour period. The fluctuation of the energy level was
due to the turned on or off of the neighboring overhead
lights. These two systems harvested similar amounts of en-
ergy from the environment, but they had different amounts

of cumulated active time, as shown in Figure 19(d). The cu-
mulated active time for both leakage-aware and non-leakage-
aware systems in the indoor scenario was smaller than that
of the outdoor scenario because in the indoor scenario, the
total available energy was smaller. For the same reason,
the gap of cumulated active time between the leakage-aware
system and oracle system was smaller than that of the out-
door scenario. Figure 19(e) shows again that compared with
the non-leakage aware system, the leakage aware system has
much smaller value of LCR during the high leakage power
stage than the non-leakage-aware system.

8.6 Mobile Backpack Experiment
We also deployed our system on a backpack, as shown in

Figure 20(a). It was carried by a graduate student every day
for 3 days. During the night and in the early morning, the
backpack was placed near a living room window to harvest
environmental energy through the window. During the day,
the graduate student carried it to attend outdoor and indoor
activities. This scenario represents such potential applica-
tions as assisted living and human-centric sensing [8]. The
total time duration of this experiment was 76 hours.

Figure 20(b) shows the energy harvested by the systems
working in the leakage-aware and non-leakage-aware modes
over the 76 hours. Compared with the outdoor and indoor
cases, the energy harvested in the backpack experiments was
very bursty, with the high peak corresponding to outdoor
activity and the flat part corresponding to indoor activity.
Figure 20(c) shows the capacitor’s voltage measured over
time. Clearly, the leakage-aware system was more respon-
sive to the change in the energy harvesting rate, increasing
duty cycle rapidly in the presence of bursty influxes of en-
ergy. Therefore the leakage-aware system stayed at high
voltage values for a smaller amount of time, hence suffer-
ing less energy leakage. At the end of the experiment, the
voltage of the capacitor for the leakage-aware system was
0.19V higher than that of the non-leakage-aware system.
Figure 20(d) shows again that the leakage-aware system en-
joys much more cumulated active time than the non-leakage-
aware system. Figure 20(e) confirms the above results.

8.7 Summary
We have evaluated our system under different environmen-

tal energy patterns. In all these scenarios, our leakage-aware
system outperforms the non-leakage-aware system. The key
observations are: (i) the working node never runs out of
power (note: minimum voltage to maintain liveness is 0.7V);
(ii) the leakage-aware design is more responsive to the influx
of energy, increasing duty cycle quickly; and (ii) the leakage-
aware system maintains a high duty cycle when the voltage
is high and a low duty cycle when the voltage is low. This
type of control effectively reduces the amount of leakage.

9. EVALUATION II:

GLOBAL ENERGY SYNCHRONIZATION
In this section, we evaluate the system performance of a

network of TwinStar nodes under the global energy synchro-
nization scheme. The event detection application is run on
top of the adaptation layer.

9.1 Evaluation Metrics
In event detection application, the detection delay is a

very important metric to evaluate system performance. For
the events such as fire, a shorter detection delay significantly
reduces the amount of damage. The metrics used to evalu-
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Figure 22: Distribution of Harvested Power

ate the performance of our system is the Average Detec-
tion Delay: the summation of the detection delay of all the
events divided by the total number of detected events.

9.2 Implementation
We deployed 12 TwinStar nodes in a 12 meters by 11

meters wooded area (shown in Figure 21) to continuously
collect solar energy (shown in Figure 22) for two days. The
collected energy pattern is used to power 12 TwinStar nodes
to work under 3 different modes: Leakage-Aware (LA), Non-
Leakage-Aware (NLA), and oracle, with 48 hours per mode.
The sensing irregularity model [14] is used. During the 48
hours’ experiment, 500 events are randomly emulated within
the 12m × 11m area.

9.3 Distribution of Energy
Figure 23 shows the energy distribution among these 12

nodes, after they run for 48 hours in the LA, NLA, and oracle
modes, respectively. Figure 23(a) shows that when the nodes
work in NLA mode, regardless of available environmental
energy, all the nodes consume similar amount of energy. The
extra harvested environmental energy is leaked away. As
shown in Figure 23(b), when the nodes work in LA mode,
the energy they consumed is synchronized with the amount
of energy they harvested from the environment. The more
energy they harvested, the more energy they consumed. By
comparing Figure 23(b) with Figure 23(c), the nodes work
in LA mode and oracle mode have similar performance.

9.4 Impact of Harvested Power Fluctuation
Since the available environmental energy varies every day,

in this section, we evaluate the impact of harvested power
fluctuation to the systems work in LA, NLA, and oracle
mode, respectively. We use the energy pattern collected
(shown in Figure 22) as a baseline, and generate an energy
pattern in which the harvested power is varied from 20%
to 200% of the baseline for each TwinStar node. The met-
ric used is the average detection delay (ADD). As shown in
Figure 24, when the harvested power increases, the systems
work in all the 3 modes have smaller average detection de-
lay, and the gap of the ADD among these 3 modes increases.
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Figure 23: Distribution of Energy

The reason is that with more energy harvested, more energy
leaked away in NLA mode. When the harvested power in-
creases to 200% of the baseline, the ADD of LA is 27% less
than that of NLA, while the ADD of oracle is only 9% less
than that of LA.

9.5 Impact of Energy Period
Different environments have different period of available

environmental energy. For example, during the winter sea-
son, the solar panel may be covered with snow, which pre-

330



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

  Harvested Power Fluctuation

  
A

v
g
. 
D

et
ec

ti
o
n

 D
el

a
y
 (

s)

Oracle
LA
NLA

Figure 24: Impact of Harvested Power Fluctuation

vents TwinStar nodes from harvesting the environmental en-
ergy effectively. TwinStar node can only resume to harvest
the energy after the snow on the solar panel melts. In this
section, we evaluate the impact of energy period to the sys-
tems work in LA, NLA, and oracle mode, respectively. We
use the energy pattern collected (shown in Figure 22) as a
baseline, and vary the energy period from 12 hours to 48
hours. Average detection delay is used to evaluate the sys-
tem performance. Figure 25 shows that when the energy
period increases, the systems working in all the 3 modes
have higher average detection delay, and the gap of the av-
erage detection delay among these 3 modes decreases. This
is because when the energy period increases, the TwinStar
nodes work more conservatively. When the energy period is
12 hours, the average detection delay of the network works
in LA mode is 48% less than that works in NLA mode. The
performance of LA and oracle is very close to each other.
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Figure 25: Impact of Environmental Energy Period

10. STATE OF THE ART
Energy harvesting is the conversion of ambient energy into

usable electrical energy. Several technologies have been de-
veloped for extracting energy from the environment, includ-
ing solar [30], wind [5], kinetic, and vibrational [26] energy.
With these energy-harvesting technologies, researchers have
designed various types of platforms to collect ambient en-
ergy from human activity or environments [20, 16, 5, 30].
Notable ones designed specially for sensor networks are He-
liomote [16, 1], Prometheus [30], Trio [20], AmbiMax [5] and
PUMA [4]. According to the type of energy storage used,
these platforms can be separated into three categories: (i)
rechargeable battery-based platforms [1], (ii) designs com-
bining ultra-capacitors and rechargeable batteries [20, 30],
and (iii) capacitor-based designs.
• In rechargeable battery designs, such as Heliomote [16, 1],
the energy harvesting panel is directly connected to its bat-
tery. As the primary energy storage device, the rechargeable
battery is charged and discharged frequently, leading to low
system lifetimes due to the physical limitation on the num-
ber of recharge cycles.
• In designs that combine ultra-capacitors and rechargeable
batteries such as Prometheus [30], the solar energy is first
stored in the primary energy buffer, which is one or multiple

ultra-capacitors. The rechargeable batteries are then used
as the secondary energy buffer. This design inherits both
the advantages and limitations of batteries and capacitors.
For examples, it is difficult to predict remaining energy be-
cause of the inclusion of batteries, and the lifetime of energy
storage subsystem is decided by the shelf time of batteries
(in the order of a few years). Within this category, sev-
eral similar systems have been built with a few enhanced
features. For examples, AmbiMax [5] harvests energy from
multiple ambient power sources (e.g., solar and wind gener-
ators), and PUMA [4] uses a power routing switch to route
multiple power sources to multiple subsystems. The higher
utilization of ambient power is achieved through a combina-
tion of MPPT and power defragmentation.
• To our best knowledge, previous works have intention-
ally avoided capacitor-only design, citing the leakage is-
sue [30]. To alleviate leakage, small capacitors are nor-
mally used, which makes secondary energy storage (bat-
teries) necessary. However, the development of battery ca-
pacities is very slow and still leakage-prone. In addition,
charging efficiency for batteries is comparatively low [28].
For example, according to the Natural Resources Defense
Council [28], common battery chargers provide an efficiency
between 6% and 40%. Different from previous works, this
work investigates the frontiers of capacitor-only design and
studies not only hardware designs but also related software
control techniques to reduce the impact of energy leak-
age. Energy conservation is an intensively studied area.
Many solutions have been proposed at different layers, in-
cluding high-efficiency hardware design [7], link layer de-
sign [32], topology management [24], node placement [6],
network routing [17], sensing coverage [18], data aggrega-
tion [25], data placement [3, 27], operating system [11], and
application-level energy-aware designs [12]. However, only
a few works have focused on energy measurement [31] and
energy adaptation [13, 10, 2]. Odyssey [13], and ECOsys-
tem [10] demonstrate that application-level adaptations can
successfully meet user-specified lifetimes for PDAs and lap-
tops running Linux or other embedded OSes. The differ-
ences between these works and ours are that (i) they focus
on battery modeling or application adaptations, while our
work focuses on battery-free design and control, and (ii) they
currently do not consider energy harvesting issues.

The most closely related work for energy adaption is
Eon [15], which is the first programming language for energy-
adaptive applications in wireless sensor networks. Using
Eon, programmers can easily annotate flows in energy states.
Eon’s automatic energy management uses these annotations
to change application behavior adaptively. Since Eon fo-
cuses on language and the adaption layer, it is highly com-
plementary to the leakage-aware hardware and controller de-
sign in this work.

11. CONCLUSIONS
Slow development in battery technology and rapid ad-

vances in ultra-capacitor design have motivated us to in-
vestigate the possibility of using capacitors as the sole en-
ergy storage for wireless sensor nodes. In this work, we
build TwinStar, an add-on power board that uses energy
harvesting circuits (e.g., solar panels or wind generators)
to harvest the energy from the environment and employs
an ultra-capacitor as the only energy storage unit to power
the sensor node. The Twinstar power board incorporates
a smart control circuit to address the zero-energy boot-up
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problem and an ultra-low-power measurement circuit to pre-
cisely measure the energy harvesting rate.

To promote the capacitor-only-design, this work takes a
first step in reducing the impact of energy leakage on overall
energy efficiency. With the leakage model built, we improve
the accuracy in predicting the expected lifetime of an in-
dividual sensor node. To ensure long-term sustainability,
we propose a feedback-based approach that suggests an ap-
propriate duty-cycle change to the adaption layer, based on
the gap between the predicted and targeted lifetimes. The
controller increases activity when the leakage power is high.
This type of leakage-aware control allows us to utilize the
energy that would otherwise leak away.

We invested significant amount effort to evaluate our de-
sign in multiple real-world settings: (i) indoor, (ii) outdoor,
and (iii) mobile backpack. We also studied the global syn-
chronization with a network of TwinStar nodes. The results
indicate the effectiveness of the leak-aware design compared
with a design that ignores the leakage issue. In future work,
we shall focus more on the design of the adaptation layer,
so that a system can gracefully adjust activities for optimal
user-level performance.
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