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Leakage Inductance Analytical Calculation for

Planar Components with Leakage Layers
Wenhua Tan, Xavier Margueron, Member, IEEE, Laurent Taylor, Nadir Idir, Member, IEEE

Abstract—Planar magnetic components are promising solu-
tions for the integration of power electronic systems. The leak-
age inductance of such components plays an essential role in
power converters. In this paper, an analytical modeling method
for leakage inductance computation is developped for planar
components with plasto-ferrite leakage layers. This method is
based on the solution of Poisson’s equations for magneto-static
using multilayered Green’s functions. The obtained formulations
are general and precise and have been validated by numerical
tests. Experimental characterizations have been performed on
two magnetic components: A planar LLC and planar common
mode choke. The obtained results show that with the described
method, the static leakage inductance of planar components can
be accurately estimated.

Index Terms—Leakage inductance, planar component, mag-
netic shunt, Green’s function.

I. INTRODUCTION

THE trends toward integration of power electronic systems

make planar magnetic components prevalent solutions

to realize more compact power converters [1], [2]. These

components exhibit low profile, high power density and high

reproducibility compared to other types of magnetic com-

ponents. The leakage inductance of such component is a

topic of huge interest. Indeed, due to their low profile, their

leakage inductance value is usually supposed to be low [3].

For many applications, this low value can be an advantage

because transformer’s leakage inductance may cause extra

losses, stress on components and ElectroMagnetic Interference

(EMI) problems due to high frequency voltage oscillations [4]–

[6].

On the opposite, two main applications can find the useful-

ness of a high leakage inductance. For resonant converter LLC

(Fig. 1(a)), the leakage inductance Llk can be used for Zero

Voltage Switching (ZVS), without adding an extra inductor

[7], even if this leakage inductance can also causes voltage

imbalance [8] or high voltage oscillations [9]. This leakage

inductance must have then a specific value for typical soft-

switching converters [10] or Dual Active Bridge (DAB) for

example [11]. If its value is not sufficient, some supplementary

resonant inductor has to be added [12], [13].
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For EMI filters, the leakage inductance of a common-mode

(CM) choke can also be used for filtering differential mode

(DM) perturbations [14]–[18]. For example, in [14], a leakage

layer has been integrated between Printed Circuit Board (PCB)

inside a pot core while in [15], the leakage layer has been

inserted inside a mixed toroidal/EQ planar core. In both case,

this leakage layer enable to increase the leakage inductance

of the CM inductor. Other integrated EMI filters using CM

leakage inductance to filter DM perturbations have also been

reported in the past years, including flexible multilayers [16],

combined toroidal cores for DM and CM chokes [17] or using

magnetic epoxy mixture [18].

As discussed earlier, regarding planar components (trans-

formers or CM chokes), their leakage inductances can be then

increased by adding some supplementary leakage layers (also

called magnetic shunt) such as Ferrite Polymer Composite

(FPC) between the component’s windings [6], [15], [19], [20].

Resonant converters or CM inductors require a specific amount

of leakage inductance so an accurate modeling method for

calculating such Llk is necessary.

In the literature, many methods have been reported to assess

the leakage inductance of a transformer, based on Finite

Element Analysis (FEA) or analytical calculation [21]–[35].

For FEA, computation can be made in 2D, 3D, or mixed

2D/3D for HF losses and inductance values [1], [21]–[23].

FEA is a powerful tool to study electromagnetic components

but when dealing with optimization, using such tool can be

very cumbersome and time consuming. Even if the numerical

resolution is becoming faster with last generation computers,

time for geometry’s description and mesh can also be pro-

hibitive. For magnetic component designers, analytical tool

will be prefered, in particular for first design steps, when

transformer parameters have to be tuned as desired. Most of

the analytical methods for the Llk calculation of a transformer

are based on 1D Dowell’s assumption [24] such that the

magnetic flux is tangential to the surface of conductors [25]–

[31]. This assumption is true when the magnetic window is

well filled with long conductors. However, in some cases,

the winding arrangement may be very irregular such as low

filling factor and non-alignment of conductors. Applying the

Dowell’s assumption will lead to errors in the results. To be

more general, the method of Roth can be applied for 2D

transformer’s winding cross section. This method consists in

using double Fourier series to solve the Poisson’s equations

in a rectangular region [36]. However, double Fourier series

exhibit a low convergence rate so that they are computationally

expensive. Besides, this method only works when the matter

in the rectangular region is uniform. For planar components
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(a) (b)

Fig. 1. Integrated planar LLC. (a) Equivalent circuit. (b) Cross-section of
the component.

whose cross-sections are not magnetically homogeneous, like

in the case of leakage layers, Roth’s method can not be applied.

In such cases, only FEA are performed to determine the value

of the leakage inductance [2]. No analytical formulation is

available in the literature, except in [37] where some reluctance

model is used. This method is still limited to magnetic window

well filled with long conductors.

In [38] and [39], authors propose a general 2D analyti-

cal method for calculating the leakage inductance of planar

transformers. This method is based on a PEEC-like formula

for rectangular conductors. To account for the influence of

magnetic core, the method of magnetic images is employed

on the cross-section of the winding part inside the core [40],

[41]. This general method, completely independent of the

conductor’s arrangement, can accurately evaluate the magnetic

field in the cross-section of the component for conventional

power electronic transformers, planar ones or more recently for

power transformers [42]. However, similarly to Roth’s method,

the PEEC-like formula also requires a uniform environment of

matter as prior condition.

If the cross-sections are magnetically multi-layered, the

application of such method can be very cumbersome. For

the above reasons, an improved method based on multi-

layered Green’s function has been developed in this paper

for calculating the leakage inductance of planar components

having magnetically multi-layered structure.

This paper is organized as follows: in Section II, a re-

view of the leakage inductance calculation and the PEEC-

like formulations are given. Section III introduces the multi-

layered Green’s function with detailed analysis and numerical

validations. In Section IV, two application examples, LLC and

CM choke are presented to validate the proposed method. The

paper will end with conclusion.

II. LEAKAGE CALCULATION PROBLEM ANALYSIS

A. Modeling of Leakage Inductance

The existing modeling methods for calculating the static

leakage inductance rely on the evaluation of the magnetic

energy stored in the component when the total ampere-turns

are compensated [43]. The relation between the leakage in-

ductance and the magnetic energy Wmag is expressed by:

Wmag =
1

2
LlkI

2. (1)

Fig. 2. Rectangular conductor cross-section.

where Llk is the static leakage inductance and I the current

in the winding. This magnetic energy Wmag (1) can be

determined by 2D or 3D finite element simulations (FEM),

which are precise but very time-consuming or with analyti-

cal approaches. This computation is generally based on 2D

approximation that the current direction is perpendicular to

the cross-section of the studied component. Consequently, the

magnetic energy Wmag can be calculated by:

Wmag = WsmagLmean (2)

where Wsmag is the energy per unit length stored in the

cross-section of the studied component whereas Lmean is the

mean length of the winding fixed from the location of the peak

energy density.

In High Frequency (HF), it is well known that the leakage

inductance value will decrease due to eddy current effects

[34], [35]. In this work, impact of HF magnetic fields on

leakage inductances will not be studied. Indeed, the goal of

the developped Green analytic tool is to give designers a fast

estimation of their leakage value, as well as in [39]. If this

static value does not seem sufficient, the design has to be

started again because in HF, leakage will be further reduced.

B. Review of 2D PEEC-like Modeling Method

In 2D magnetostatic analysis, the magnetic field over the

cross-section of a planar component is governed by the fol-

lowing Poisson’s equation:

∇2Az = −µJz. (3)

In order to solve this equation, authors proposed in [38],

[39] the 2D PEEC-like formulations, where the leakage induc-

tance of planar transformers can be calculated analytically with

no hypothesis on the conductors’ topology. In free space, the

potential vector Az in the space due to a rectangular conductor

carrying current I (Fig. 2) can be expressed by (4).

With this analytical formula, the distribution of the potential

vector in the space due to the rectangular conductor can be

determined. In case of multiple conductors, the superposition

principle can be applied for the calculation. As long as the

information of Az is obtained, the integration (5) can be

performed to calculate the magnetic energy per unit length

stored in the cross-section of the component.

Wsmag =
1

2

∫∫

Ω

AzJzdxdy (5)

Thus, the leakage inductance of the component can be esti-

mated by:
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Llk ≈
2WsmagLmean

I2
(6)

This method is general and gives accurate estimation of

the leakage inductance value. However, just as stated in the

introduction, this method can not be applied for multi-layered

structure where the permeability of the window is not uniform.

Although the magnetic image method [40], [41] can applied

for taking into account the influence of magnetic material, it

can not be applied on a multi-layered structure where a ferrite

polymer layer is present, for the following reasons:

1) With this method, four first-order images are employed

due to direct reflections and four second-order images

are added due to secondary reflections [39]. Higher

order images are neglected. However, when FPC layer

is implemented in the region, the reflection phenomenon

becomes much more complicated.

2) The aforementioned method assumes that the thickness

of the ferrite is infinite. As long as the permeability of

the ferrite material is large enough, this assumption is

very close to the reality. However, since the FPC layer

has a low permeability, the impact of its thickness has to

be considered, which further complicates the calculation.

In view of these reasons, an analytical method for leakage

inductance calculation based on Green’s function for multi-

layered structure is introduced.

III. MULTI-LAYERED GREEN’S FUNCTION

A. Description of the Problem

The structure of planar components with PCB technology

is shown in Fig. 1(b). The leakage layer in ferrite polymer

composite is optional but can be used to increase the leakage

inductance for passive component integration in the applica-

tion of soft-switching converters or integrated CM and DM

inductors for EMI filters. It should be noted that the FR-4

epoxy and the isolating layers are considered as magnetically

transparent. As a consequence, the component cross-section

is composed of three layers of matter, i.e. transparent-FPC-

transparent. Similarly to [38], the current is supposed to be

perpendicular to this cross-section and the system is described

by the magnetostatic Poisson’s equation (3). As the relative

permeability of MnZn ferrite material is very high (in order

of 103 − 104), it can be considered as magnetic material with

infinite permeability as an approximation. It can be shown

that the boundary conditions (8) holds by using the continuity

conditions on the tangential component of the magnetic field

H (Fig. 3):

HT
ferrite −HT

window = 0 (7)

Fig. 3. Continuity conditions on the boundary in the core window.

The boundary conditions for the problem are derived as

follows:











∂Az

∂y
= 0 over the horizontal surface

∂Az

∂x
= 0 over the vertical surface

(8)

As seen, homogeneous Neumann boundary conditions are

obtained. However, this problem admits solutions if and only

if the compatibility condition is satisfied:

∫

∂Ω

∂Az

∂n
dl + µ0

∫

Ω

JzdS = 0 (9)

This can be proved by applying Gauss’s Law on the

Poisson’s equation (3). With the homogeneous boundary con-

ditions (8), the first term of equation (9) is null, requiring the

second term to be null too. In fact, this is the prior condition for

the calculation of leakage inductance. Therefore, the Poisson’s

equation (3) with these boundary conditions admit solutions.

After solving the potential vector Az from (9), the equation

(5) and (6) should be used to determine the leakage inductance

of such component.

B. Generality on Green’s Function

Green’s function is a powerful tool for analyzing electro-

magnetic problems. It is a specially constructed function to

solve partial differential equations [44]. It can be regarded as

the impulse response of an electromagnetic system to Dirac

type excitation. For the magnetostatic Poisson’s equation given

in (3), its associated Green’s function is:

∇2G = −µδ (10)

where δ is a Dirac current source. With this Green’s

function, the solution of the original problem can be expressed

by:

Az (x, y) =

∫

Ω

G (x, y) JzdS −
1

µ

∮

∂Ω

Az

∂G

∂n
dl (11)

Az (x, y; a, b) =
−µ0I

16πab

[

XY ln
(

X2 + Y 2
)

+X2 arctan

(

Y

X

)

+ Y 2 arctan

(

X

Y

)∣

∣

∣

∣

X=x−a

X=x+a

]∣

∣

∣

∣

∣

Y=y−b

Y=y+b

(4)
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From this equation, it is desirable to also provide homoge-

neous Neumann boundary conditions for the Green’s function

so that the second term of (11) is null and the potential vector

Az can be represented by a convolution. However, this is

not allowed since such boundary condition will violate the

compatibility condition. Indeed, the following compatibility

condition should be satisfied during the construction of the

Green’s function:

∫

∂Ω

∂G

∂n
dl = −µ0 (12)

C. Multi-layered Green’s Function

In [45], [46], authors present a multi-layered Green’s func-

tion for solving electrostatic Poisson’s equation with homo-

geneous Dirichlet boundary conditions in a bounded multi-

layered region. As stated previously, the studied planar compo-

nents have a magnetically multi-layered cross-section. In this

paper, the method of [45] will be extended for magnetostatic

analysis. It has been shown that the boundary conditions

should verify (8) to admit solutions. Therefore, the following

boundary conditions are proposed:















∂G

∂y

∣

∣

∣

∣

y=H

= −
µ0

L
∂G

∂x

∣

∣

∣

∣

x=0

=
∂G

∂x

∣

∣

∣

∣

x=L

=
∂G

∂y

∣

∣

∣

∣

y=0

= 0
(13)

As seen, only the top edge of the rectangular region is

not zero. With these boundary conditions, the compatibility

conditions given in (12) can be satisfied.

According to the previous analysis, the cross-section of the

planar component is a 3-layer structure. If a Dirac current

source is introduced, the structure is further split into four

layers. Therefore, only a 4-layer structure is studied in this

work. As shown in Fig. 4(a), each layer has a height Hk and

a permeability µk. Here, the local coordinates are applied for

each layer and the origin is chosen at the lower left vertex

of each rectangular region. The Dirac current source locates

at the interface between layer j and j + 1 (j < 4). As a

consequence, the Green’s function in layer i satisfies:

∇2Gi = 0 (14)

The following boundary conditions can be written out:

1) Left and right boundaries of layer i: x = 0 and x = L:

∂Gi

∂x

∣

∣

∣

∣

x=0

=
∂Gi

∂x

∣

∣

∣

∣

x=L

= 0 (15)

2) Top and bottom boundaries (in layer 4 and layer 1):














∂G1

∂y

∣

∣

∣

∣

y=0

= 0 Layer 1

∂G4

∂y

∣

∣

∣

∣

y=H4

= −
µ0

L
Layer 4

(16)

3) Continuity conditions on the interface between layer i

(a) (b)

Fig. 4. 4-layer structure for Green’s function deduction. (a) Source point
higher than FPC layer. (b) Source point lower than FPC Layer.

and i+ 1 (i < 4):














Gi
∣

∣

y=Hi
− Gi+1

∣

∣

y=0
= 0

1

µi

∂Gi

∂y

∣

∣

∣

∣

y=Hi

−
1

µi+1

∂Gi+1

∂y

∣

∣

∣

∣

y=0

= δijδ (x− xs)

(17)

where δij is the Chronecker Delta function whereas δ(x−

xs) presents the Dirac current source.

From these boundary conditions (15), the general solution

in layer i can be derived as follows:

Gi = αi
0y + βi

0 +

∞
∑

n=1

[

αi
n ch (kny) + βi

n sh (kny)
]

cos (knx)

(18)

where ch() and sh() are hyperbolic cosine and sinus func-

tions respectively. Note that the term αi
0y + βi

0 appears since

the eigenvalue of (14) can be zero [46].

In order to determine the parameters αi
0, βi

0, αi
n and βi

n,

the remaining boundary conditions are used. From (16), the

following relations hold:

{

α1
0 = 0 and β1

n = 0

α4
0 = −

µ0

L
and β4

n = −α4
n tanh (knH4)

(19)

The next step consists in using the continuity condition

(17) to establish the link between the parameters of different

layers. The detailed derivation is given in Appendix, only

the final results are given here. The parameters αi
0, βi

0, αi
n

and βi
n can be expressed by (24). Note that

[

F
l,l+1
n

]

and
[

F
l,l+1
n

]

−1
are the up-going and down-going transformation

matrix, respectively:

[

F
l,l+1

0

]

=

[ µl+1

µl
0

Hl 1

]

(20)

[

F
l,l+1

0

]

−1

=

[

µl

µl+1
0

−µl

µl+1
Hl 1

]

(21)

[

F
l,l+1
n

]

=

[

ch (knHl) sh (knHl)
µl+1

µl
sh (knHl)

µl+1

µl
ch (knHl)

]

(22)
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[

F
l,l+1
n

]−1
=

[

ch (knHl) − µl

µl+1
sh (knHl)

−sh (knHl)
µl

µl+1
ch (knHl)

]

(23)

The parameter α1
n and α4

n can be derived from the continuity

condition when i = j.

D. Magnetic Field Calculation

The first integral can be performed on the conductor area

where the current is non-zero. The second term corresponds to

the average value of the potential vector on the boundary of the

region, which is a constant. Neglecting this constant, the first

integral of (11) can be evaluated analytically [due to the term

cos(knxs) in (25)] along x-axis and numerically along y-axis

by discretizing the conductor into K thin elements (Fig.5).

For element k, the y coordinate of the center point ysm =
(yk + yk+1)/2 is chosen for the integration along y-axis.

The magnetic induction B can then be calculated by

deriving Az , as given by (26). Note that the parameters

αi
0, βi

0, αi
n and βi

n are only dependent to the coordinate

of the source point. This property allows the separation of

the mathematical treatment on the source conductor and the

observation one. Therefore, the partial derivation on G (on the

observation point) given in (26) can be performed directly on

the expression whereas the integration on the source conductor

is still evaluated numerically as done before.



















Bx =
∂Az

∂y
= −µ

∫

Ω

∂G (x, y)

∂y
Jds

By = −
∂Az

∂x
= µ

∫

Ω

∂G (x, y)

∂x
Jds

(26)

The final purpose involves estimating the total energy in

the cross-section via the integral (5). The Greens function

has to be integrated both on the source conductor and the

observation conductor. The integration on the source conductor

is performed numerically while the integration on the observa-

tion conductor can be performed analytically according to the

expression (18). However, three cases should be distinguished

(Fig. 6):

1) The position of the source conductor element is higher

than the observation conductor:

In this case, the observation conductor is completely in

layer i+1, therefore the integration is performed with the

Greens function Gi+1 for layer i+1.

2) The position of the source conductor element is lower

than the observation conductor:

In this case, the observation conductor is completely in

layer i, the integration is thereby calculated with the

Greens function Gi for layer i.
3) The position of the source conductor element is included

in the observation conductor:

In this case, as the observation conductor crosses the

two layers, the integration is performed by two separate

parts. Both the Greens function Gi and Gi+1 should be

integrated on the corresponding parts.

Fig. 5. Discretization along y-axis of the source conductor.

Fig. 6. Analytical integration on the observation conductor: Three cases.

Note that during the calculation of Az , a constant

appears on the final obtained results due to the Neumann

type boundary conditions [47]. However, this constant

will not affect the results of (5) since the integral of

this constant over all the conductors will be null as the

total ampere-turns is compensated in the component’s

window.

E. Numerical Validations

To validate the proposed method, the multi-layered Green’s

function is applied on two structures. The first case (Fig. 7)

does not correspond to real component but is computed to

test the developped approach. The second one, is closer to

a real planar component (Fig. 10(a)). For both components,

numerical simulations, performed with ANSYS Maxwell 2D

[48], are done to be compared to Green’s calculation. For each

FEA simulation, total ampere-turns are compensated.

1) Configuration test: As shown in Fig. 7, an FPC layer is

implemented so that the structure is divided into three layers.

The total ampere-turns of the component are compensated. To

analyse the results, two test cuts are performed on this cross-

section at y = 0.75 mm and y = 3.75 mm respectively. The

obtained vector potential on these two test cuts are compared

with Finite Elements simulations results, as shown in Fig.

8(a). As seen, a constant difference is observed between

the calculated curves and the simulated ones. These results
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Fig. 7. Test configuration.

are foreseen due to the Neumann type boundary conditions.

Removing this constant (Fig. 8(b)), a good agreement between

these two curves can be found. The magnetic induction Bx and

By can also be deduced, as illustrated in Fig. 9. One can note

a good coherence between the calculated curves and simulated

ones. After the numerical integration, the magnetic energy

stored in the window is 2.29E − 5J/m while the calculated

one is similar. In the previous analysis, it is supposed that

the permeability is infinite. Indeed, even though the practical

permeability of ferrite material is in the order of 103µ0, the

infinite-permeability assumption still gives good approxima-

tion to the reality. FEA simulations have been performed to

assess the influence of the magnetic core. Results are presented

in Table I where the magnetic energy stored in the windows is

computed with various permeability values. Comparing FEA

results and the Green’s calculations, it can be seen that the

proposed method can accurately determine the magnetic field

in the structures of interest.

2) Planar CM choke: This second test case is based on

the design of a planar CM choke (Fig. 10(a)) made of 3F3

E32/I planar core [49]. Some FPC layer (height 0.8mm)

is added between two windings. The total ampere-turns of

the component are also compensated. The current in each

conductor higher than the FPC layer is −1A whereas the

current is 1A for the conductors lower than the FPC layer.

The Fig 10(b) shows the magnetic field inside the component’s

window. From this simulation, it can be concluded that the

field is not tangential to the conductors. Therefore, the 1D

(a) (b)

Fig. 8. Comparison between calculated results and simulated results. (a)
Before removing the constant. (b) After removing the constant.

Dowell assumption is not directly applicable in such case. This

hypothesis is confirmed when analysing Bx and By (Fig. 11)

along the horizontal test cut at H = 1.5mm. Simulated results

are also compared to the computed ones in Fig. 11, where both

simulated and calculated fields show good agreement.

After numerical integration, the calculated magnetic energy

stored in the window is 2.43E − 5J/m, while the simulated

value is 2.57E − 5J/m. The difference is equal only to 5%.

IV. APPLICATIONS

The previous method has been tested on two real compo-

nents: A LLC transformer and a CM choke. Both devices are

based on the use of ferrite planar cores [49], associated with

FPC C350 [50] for the leakage layers.

A. Components’ description

For the LLC transformer (Fig. 12(a)), two 3F3 E38-cores

are used while for the CM inductor (Fig. 13(a)), two 3C90

E43-cores are preferred.

The transformer is made of 4 copper layers of 35µm with 8

turns for the primary and 2 for the secondary. The CM inductor

is a symmetrical component, made of 8 identical 70µm copper

layers with 4 turns on each layer. For both components a

leakage layer made of FPC is sandwiched between the two

windings to increase the leakage inductance. This FPC layer

is set to 0.2mm and 0.96mm, for the transformer and the CM

inductor, respectively. The winding arrangements are described

in Fig.12(b) and Fig.13(c).

[

αi
0

βi
0

]

=















[

0
0

]

i ≤ j
[

N−1
∏

l=i

[

F
l,l+1

0

]

−1
] [

−µ0

L

0

]

i > j
and

[

αi
n

βi
n

]

=



















[

1
∏

l=i−1

[

F
l,l+1
n

]

]

[

α1
n

0

]

i ≤ j

[

N−1
∏

l=i

[

F
l,l+1
n

]

−1

] [

α4
n

−α4
n tanh (knH4)

]

i > j

(24)















j
∏

l=3

[

F
l,l+1

0

]

−1
[

−µ0

L

β4
0

]

=
j
∏

l=1

[

F
l,l+1

0

]

[

0
β1
0

]

+

[

−
µj+1

L

0

]

j
∏

l=3

[

F
l,l+1
n

]

−1

[

α4
n

−α4
n tanh (knH4)

]

=
j
∏

l=1

[

F
l,l+1
n

]

[

α1
n

0

]

+

[

0

−
2µj+1

nπ
cos (knxs)

] (25)



7

TABLE I
VARIATION OF MAGNETIC ENERGY WITH PERMEABILITY

µr ∞ 10000 5000 1000 500

Wsmag(J/m) 2.29E-5 2.29E-5 2.29E-5 2.28E-5 2.27E-5

(a) (b)

(c) (d)

Fig. 9. Comparison between calculated results and simulated results for the
test case. (a) Test cut 1: Bx. (b) Test cut 1: By . (c) Test cut 2: Bx. (d) Test
cut 2: By .

B. Leakage inductance calculation

For the part inside the core, the previous Green’s com-

putation is applied. For the winding part outside the core,

the FPC layer is not implemented. Therefore, the PEEC-like

formulations can be employed for calculating the magnetic

field as well as the magnetic energy per unit length. In fact,

it can be shown that the PEEC-like formula (4) is the integral

form of the free space Green’s function (Green’s theorem) over

the rectangular region [−a/2, a/2]× [−b/2, b/2] [51]:

G (x, y;xs, ys) = −
µ0

2π
ln

√

(x− xs)
2
+ (y − ys)

2
(27)

The Table II presents energy computed inside the core using

Green’s functions Wic and the one calculated outside the core

based on PEEC formulas Woc. The total leakage inductance

is then calculated with (28) taking into account lengths of

windings inside and outside the core (Fig. 14). For the LLC

transformer, the leakage inductance is evaluated to 162nH
while for the CM inductor, it is equal to 13.4µH .

Llk =
2

I2
[2Wiclic +Woc(loc1 + loc2)] (28)

Regarding computation time, duration depends on the num-

ber of conductors. For example, the LLC computation lasts

3.45s while the CM inductor 5.14s. As a comparison, FEA

performed on the example of Fig. 10(a) lasts 15s. Such semi-

(a)

(b)

Fig. 10. Planar CM choke cross section under simulation. (a) Window cross
section. (b) Field inside the window.

(a) (b)

Fig. 11. Comparison between calculated results and simulated results. (a)
Test cut: Bx. (b) Test cut: By.

analytical approach can then be interesting for component’s

optimization and its leakage inductance tuning.

C. Leakage inductance measurement

Both components are then characterized with an impedance

analyzer [52] and their leakage inductances are measured

based on method proposed in [53]: The leakage impedance

Zs (Fig. 15) is calculated using open-circuit and short-circuit

impedance measurements (29). This method enables to cancel

the effect on magnetizing inductance while calculating the

leakage one (30).

Zs =
Z0

′(Zcc − rp)

(Z0 − rp)− rs
(29)
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(a) (b)

Fig. 12. LLC planar transformer (a) Component top view. (b) Cross section
and dimensions.

(a) (b)

(c)

Fig. 13. Planar CM choke. (a) Component Top view. (b) Component Face
view. (c) Cross section and dimensions

with Z0 the impedance measured from primary winding with

secondary in open-circuit, Z0
′ the impedance measured from

secondary winding with primary in open-circuit and Zcc the

impedance measured from primary winding with secondary in

short-circuit. rp (Fig.15) is deduced from Z0 in low frequency

while rs is calculated with Z0
′ also in low frequency [53].

TABLE II
LEAKAGE INDUCTANCE CALCULATION

Component LLC CM ind

Core type E38 E43

Mag. material 3F3 3C90

lic (m) 25.4E − 3 27.9E − 3
loc1 + loc2 (m) 30E − 3 88E − 3
Wic (J/m) 1.009E − 6 6.691E − 5
Woc (J/m) 5.007E − 7 3.367E − 5
Llk (H) 162E − 9 13.4E − 6

Fig. 14. Typical winding length.

Fig. 15. Equivalent circuit for leakage measurement.

Llkmeas
= Im(

Zs

2πf
) (30)

The measured values are plotted in Fig. 16, where they

are compared to the computed ones. In this figure, for low

frequencies, the leakage inductance is masked by resistances

while in HF, parasitic capacitances cancel the magnetic effect.

The leakage value is quite constant on the frequency range

[1kHz; 1MHz].
In both components coupling coefficients k between wind-

ings are close to 1. Magnetizing inductances are evaluated

to 431µH and 851µH for the LLC and the CM inductor,

respectively. These values are widely stronger than the leakage

ones. With such a difference, the total ampere-turn compen-

sation hypothesis stays valid because magnetizing current can

be neglected in case of short-circuit test.

D. Discussion

Regarding Fig. 16, it can be noted that computation for

both cases gives good result with error lower than 15%. These

differences can be justified for following reasons:

1) Errors related with dimensions: The dimensions reported

in Fig. 12(b) and Fig. 13(c) have been measured directly

on the prototypes and are not precises.

2) Simplification of the geometry: The window’s descrip-

tion is not identical inside and outside the core. The

part inside the magnetic core is well described but the

one outside is simplified and the angles/corners are not

really taken into account.

3) Sensitivity to the average length: The results are directly

proportional to the energy density. They have to be

multiplied by a lenght which is easy to determine inside

the core (depth of the core) but which is more difficult
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to evaluate outside. A mean path is fixed, based on

window’s peak energy but this assumption is not precise.

4) Magnetic material disparities: As an example, the C350

material is given with a permeability of 9 ± 20% [50].

The same computation has been done again, taking into

account this disparity. Calculation has been done with

µr = 10.8(9+20%) and µr = 7.2(9−20%). The Table

III summarizes the results and shows that this parameter

can lead to significant differences.

Without the leakage layers, leakage inductance can be

evaluated, based on [39], to 128nH (Wic = 6.68E − 7J/m)

and 11.8µH (Wic = 5.287E−5J/m) for the LLC transformer

and the CM inductor, respectively. The leakage layers enable

then to increase the leakage inductance and can be analytically

calculated with a good precision with the developped method.

However, this increase can be considered as quite low while

regarding relative differences between leakage inductances

with and without leakage layers. As a percentage, this rise

is equal to 26% for the LLC and 13% for the CM inductor.

These values can still be increased by acting on two main

factors:

1) Increase of FPC thickness: In both examples, FPC layers

are limited to 0.2mm and 0.96mm. Adding some layers,

can enable to increase the leakage inductance value.

2) Addition of FPC outside the core: In this work, only FPC

inside the core was considered. Adding leakage layers

outside the core will also increase the leakage value. But

the present method will not be able to calculate its value.

Only 3D FEA could be performed to do this assessment.

These both solutions can also be discussed. Indeed, in

most of power electronic converters, while power density

is required, HF power transformers are made of interleaved

layers to limit HF copper losses [54], [55]. Such interleaving

reduces the leakage inductance. FPC can be added between

each primary and secondary layers [56] but here also, the

present method will be unusable. Some developpements have

to be made on massively multi-layered windings as well as

HF effects.

In connection with HF power transformers, problem of par-

allel windings should also be adressed. In planar transformers,

parallel layers are a common practice to increase currents

inside windings. The Green method can be applied with such

conductor configurations. Indeed, only current values have

to be settled, as in the example presented in Fig.7. In low

frequency, the current repartition will be homogeneous and

current will be uniformly distributed inside conductors. It is

not true in HF, but the developped Green method is also limited

and can not be applied in HF.

V. CONCLUSION

In this paper, the leakage inductance of planar magnetic

components including leakage layer is studied via an analytical

method based on multilayered Green’s function. Using this

Green’s function, the Poisson equation for a rectangular region

with Neumanns type boundary conditions can be solved to

determine the magnetic field in the cross-section of the studied

component. Simulation and measurement results show that this

Fig. 16. Comparison between measurement and computation results.

method is very effective and accurate for planar component

leakage inductance calculation when a leakage layer is inserted

inside the component’s windings.

APPENDIX A

DERIVATION OF EQUATION

Recall the general solution of Greens function in layer i (18)

and the continuity condition (17). If i 6= j, δij = 0. In this

case, the Dirac current source does not locate on the interface

to analyze. The condition can be expressed by (31). Based on

the equality of the coefficients term by term, the following

matrix systems can be derived:

[

αi+1
n

βi+1
n

]

=
[

F
i,i+1
n

]

[

αi
n

βi
n

]

(n = 0, 1, 2...∞) (33)

Here the matrix
[

F
i,i+1
n

]

is the upward transformation

matrix that relates the parameters of layer i and layer i+1.

Its expression can be found in (20) and (22). The downward

transformation matrix
[

F
i,i+1
n

]

−1
can be defined similarly as:

[

αi
n

βi
n

]

=
[

F
i,i+1
n

]−1

[

αi+1
n

βi+1
n

]

(n = 0, 1, 2...∞) (34)

where
[

F
i,i+1
n

]

−1
is given in (21) and (23).

If i = j, δij = 1. In this case, the Dirac current source

locates on the studied interface. The condition (17) becomes

(32). Integrate the second term of this equation (32) on [0, L]:

L

µj

αj
0 −

L

µj+1

αj+1

0 = 1 (35)

Multiply the two sides of the second equation of (32) by

cos(knx), and integrate it on [0, L]:
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TABLE III
LEAKAGE INDUCTANCE VARIATION

LLC CM

Leakage value Error with Leakage value Error with

measurement measurement

µr = 9 162nH 11.1% 13.4µH 8.2%
µr = 10.8(+20%) 170nH 15.4% 14.7µH < 1%
µr = 7.2(−20%) 154nH 6.4% 12.1µH 17.1%

1

µj

∞
∑

n=1

[

αj
nsh (knHj) + βj

nch (knHj)
]

−
βj+1
n

µj+1

=
2 cos (knxs)

nπ

(36)

Rearrange the equation (35), (36) and the first equation of

(32), the following matrix system are obtained:

[

αj+1

0

βj+1

0

]

=
[

F
j,j+1

0

]

[

αj
0

βj
0

]

+

[

−
µj+1

L

0

]

(37)

[

αj+1
n

βj+1
n

]

=
[

F
j,j+1
n

]

[

αj
n

βj
n

]

+

[

0
2µj+1

−nπ
cos (knxs)

]

(38)

To solve the value of αi
0, βi

0, αi
n and βi

n, the equations (37)

and (38) are solved. On the interface between layers j and j+1

(j < 4), the equations (25) hold. It can be shown that β1
0 =

β2
0 = β3

0 = β4
0 = constant , which agree with feature of a

homogenous Neumann B.C. problem that an arbitrary constant

will appear in the final solutions. In this study, they are set

to be zero for simplicity. It is explained in the text that their

value will not influence the final leakage inductance. Once the

values of α1
n and α4

n are obtained, the relation equations (24)

are applied to find all the parameters αi
0, βi

0, αi
n and βi

n. More

details related to this development are given in [46].

REFERENCES

[1] J. Aime, B. Cogitore, G. Meunier, E. Clavel, Y. Marechal, ”Numerical
Methods for Eddy Currents Modeling of Planar Transformers,” IEEE

Trans. Mag., vol.47, no.5, pp.1014-1017, May 2011.
[2] Z. Ouyang, M. A. E. Andersen, ”Overview of Planar Magnetic Technol-

ogy Fundamental Properties,” IEEE Trans. Power Electron., vol.29, no.9,
pp.4888-4900, Sep 2014.

[3] B.W. Carsten, ”The low leakage inductance of planar transformers; fact
or myth?,” in Proc. Sixteenth Annual IEEE Applied Power Electronics

Conference and Exposition (APEC), 2001, vol.2, pp.1184-1188.

[4] M. Pahlevaninezhad, D. Hamza, P.K. Jain, ”An Improved Layout Strategy
for Common-Mode EMI Suppression Applicable to High-Frequency
Planar Transformers in High-Power DC/DC Converters Used for Electric
Vehicles,” Trans. Power Electron., vol.29, no.3, pp.1211-1228, May 2014.

[5] Colonel Wm. T. McLyman, Transformer and Inductor Design Handbook,
3rd ed. Boca Raton, FL: CRC Press, 2004.

[6] Z. Ouyang, O.C. Thomsen, M. Andersen, ”Optimal Design and Tradeoff
Analysis of Planar Transformer in High-Power DCDC Converters,” IEEE

Trans. Ind. Electron., vol.59, no.7, pp.2800-2810, Jul. 2012.

[7] H. de Groot, E. Janssen, R. Pagano, K. Schetters, ”Design of a 1-MHz
LLC Resonant Converter Based on a DSP-Driven SOI Half-Bridge Power
MOS Module, ” Trans. Power Electron., vol.22, no.6, pp.2307-2320,
Novembre 2007.

[8] J-H. Jung; , ”Bifilar Winding of a Center-Tapped Transformer Including
Integrated Resonant Inductance for LLC Resonant Converters,” IEEE

Trans. Power Electron., vol.28, no.2, pp.615-620, Feb. 2013.

[9] K-B. Park, B-H. Lee, G-W Moon, M-J. Youn, ”Analysis on Center-
Tap Rectifier Voltage Oscillation of LLC Resonant Converter,” Power
Electronics, IEEE Trans. Power Electron., vol.27, no.6, pp.2684-2689,
June 2012.

[10] J. Ferrell, J.-S. Lai, T. Nergaard, X. Huang, L. Zhu, and R. Davis, ”The
role of parasitic inductance in high-power planar transformer design and
converter integration,” in Proc. IEEE APEC, 2004, pp. 510-515.

[11] Y. Wang, S. W. H. de Haan, J. A. Ferreira, ”Design of low-profile
nanocrystalline transformer in high-current phase-shifted DC-DC con-
verter,” Energy Conversion Congress and Exposition (ECCE), 2010 IEEE,
pp.2177-2181, 12-16 Sept. 2010.

[12] M. Vuksic, S.M. Beros, L. Vuksic, ”The Multiresonant Converter
Steady-State Analysis Based on Dominant Resonant Process,” IEEE

Trans. Power Electron., vol.26, no.5, pp.1452-1468, May 2011.

[13] Z. Ouyang; O.C. Thomsen, M. Andersen, ”Planar-Integrated Magnetics
(PIM) Module in Hybrid Bidirectional DCDC Converter for Fuel Cell
Application,” IEEE Trans. Power Electron., vol.26, no.11, pp.3254-3264,
Nov. 2011.

[14] S. Wang; C. Xu, ”Design Theory and Implementation of a Planar EMI
Filter Based on Annular Integrated InductorCapacitor Unit,” IEEE Trans.

Power Electron., vol.28, no.3, pp.1167-1176, March 2013.

[15] W. Tan, C. Cuellar , X. Margueron, N. Idir, ”A Common-Mode Choke
Using Toroid-EQ Mixed Structure,” IEEE Trans. Power Electron., vol.
28, no.1, pp.31-35, Jan. 2013.

[16] X. Wu, D. Xu, Z. Wen, Y. Okuma, and K. Mino, ”Design, modeling,
and improvement of integrated EMI filter with flexiblemultilayer foils,”
IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1344-1354, May 2011.

[17] R. Lai, Y. Maillet, F. Wang, S. Wang, R. Burgos, and D. Boroyevich,















αi
0Hi + βi

0 +
∞
∑

n=1

[

αi
n ch (knHi) + βi

n sh (knHi)
]

cos (knx) = βi+1
0 +

∞
∑

n=1

αi+1
n cos (knx)

αi
0

µi

+
1

µi

∞
∑

n=1

[

αi
nknsh (knHi) + βi

nknch (knHi)
]

cos (knx) =
1

µi

[

αi+1
0 +

∞
∑

n=1

βi+1
n kn cos (knx)

] (31)















αj
0Hi + βj

0 +
∞
∑

n=1

[

αj
n ch (knHj) + βj

n sh (knHj)
]

cos (knx) = βj+1

0 +
∞
∑

n=1

αj+1
n cos (knx)

αj
0

µj

+
1

µj

∞
∑

n=1

[

αj
nknsh (knHj) + βj

nknch (knHj)
]

cos (knx)−
αj+1

0

µj

+
1

µj

∞
∑

n=1

βj+1
n kn cos (knx) = δ (x− xs)

(32)



11

”An integrated EMI choke for differential-mode and common-mode noise
suppression,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 539-544,
Mar. 2010.

[18] F. Luo, D. Boroyevich, P. Mattevelli, K. Ngo, D. Gilham, and N. Gazel,
”An integrated common mode and differential mode choke for EMI
suppression using magnetic epoxy mixture,” in Proc. IEEE Appl. Power

Electron. Conf. Expo., 2011, pp. 1715-1720.

[19] R. Chen, J. V. Wyk, S. Wang et W. Odendaal, ”Improving the Charac-
teristics of integrated EMI filters by embedded conductive Layers,” IEEE

Trans. Power Electron., vol. 20, p. 611-619, May 2005.

[20] M. Pavlovsky, S. W. H. de Haan, J. A. Ferreira, ”Winding Losses in
High-Current, High-Frequency Transformer Foil Windings with Leakage
Layer,” Power Electronics Specialists Conference, 2006. PESC ’06. 37th

IEEE, pp.1,7, 18-22 June 2006.

[21] R. Prieto, J. A. Cobos, O. Garcia, P. Alou, J. Uceda, ”Taking into
account all the parasitic effects in the design of magnetic components,”
Applied Power Electronics Conference and Exposition, 1998. APEC ’98.

Conference Proceedings 1998., Thirteenth Annual, vol.1, pp.400-406, 15-
19 Feb 1998.

[22] R. Prieto, J. A. Cobos, O. Garcia, P. Alou, P.; J. Uceda, ”Study of 3-D
magnetic components by means of ”double 2-D” methodology,” IEEE

Trans. Ind. Elec., vol.50, no.1, pp.183-192, Feb 2003.

[23] R. Doebbelin, M. Benecke, A. Lindemann, ”Calculation of leakage
inductance of core-type transformers for power electronic circuits,” Power

Electronics and Motion Control Conference, 2008. EPE-PEMC 2008.

13th , pp.1280-1286, 1-3 Sept. 2008.

[24] P. Dowell, ”Effects of eddy currents in transformer windings,” Proceed-

ings of the Institution of Electrical Engineers, vol. 113, pp. 1387-1394,
Aug. 1966.

[25] W. G. Hurley, W. H. Wolfle, Transformers and Inductors for Power

Electronics: Theory, design and applications, Wiley, 2013, ISBN:978-1-
119-95057-8

[26] J. P. Ferrieux and F. Forest, Alimentations a Decoupage, Convertisseurs

a Resonance, 2nd ed. Paris, France: Masson, 1994.

[27] R. Prieto, J. A. Oliver, J. A. Cobos, M. Christini, ”Magnetic Component
Model for Planar Structures Based on Transmission Lines,” IEEE Trans.

Ind. Electron., vol. 57, no.5, p.1663-1669, May 2010.

[28] R. Pittini, Z. Zhe, Z. Ouyang, M. A. E. Andersen, O. C. Thomsen,
”Analysis of planar E+I and ER+I transformers for low-voltage high-
current DC/DC converters with focus on winding losses and leakage
inductance,” in Proc. 7th International Power Electronics and Motion

Control Conference (IPEMC), 2012 , vol.1, pp.488-493, 2-5 June 2012.

[29] J. Li; C. Hu; X. Pang, ”Analysis of the leakage inductance of planar
transformer,” in Proc. 9th International Conference on Electronic Mea-

surement & Instruments (ICEMI) pp.1-273-1-276, 16-19 Aug. 2009.

[30] Z. Ouyang; O.C. Thomsen, M. Andersen, ”The analysis and comparison
of leakage inductance in different winding arrangements for planar
transformer,” in Proc. International Conference on Power Electronics and

Drive Systems, pp.1143-1148, 2-5 Nov. 2009.

[31] R. Chen, W. S., J. van Wyk et W. Odendaal, ”Integration of EMI filter
for distributed power system (DPS) front-end converter,” in Proceeding

of IEEE 34th Annual Power Electronics Specialist Conference, 2003.

[32] F. De Leon, S. Purushothaman, L. Qaseer, ”Leakage Inductance De-
sign of Toroidal Transformers by Sector Winding,” IEEE Trans. Power

Electron., vol.29, no.1, pp.473-480, Jan. 2014.

[33] A. Taher, S. Sudhoff, S. Pekarek, ”Calculation of a Tape-Wound Trans-
former Leakage Inductance Using the MEC Model,” IEEE Trans. Energy

Conversion, vol.30, no.2, pp.541-549, June 2015.

[34] M. A. Bahmani, T. Thiringer, ”Accurate Evaluation of Leakage Induc-
tance in High-Frequency Transformers Using an Improved Frequency-
Dependent Expression,” IEEE Trans. Power Electron., vol. 30, no.10, pp.
5738-5745, Oct. 2015.

[35] Z. Ouyang, J. Zhang, W. G. Hurley, ”Calculation of Leakage Inductance
for High-Frequency Transformers,” IEEE Trans. Power Electron., vol. 30,
no.10, pp. 5769-5775, Oct. 2015.

[36] P. Hammond, ”Roth’s method for the solution of boundary-value prob-
lems in electrical engineering”, PROC. IEE, Vol. 114, No. 12, december
1967.

[37] J. Zhang, Z. Ouyang, M. Duffy, M. Andersen, G. Hurley, ”Leakage
Inductance Calculation for Planar Transformers with a Magnetic Shunt,”
IEEE Trans. on Ind. Appl., vol. 50, no. 6, pp. 4107-4112, Nov./Dec. 2014.

[38] X. Margueron, J-P. Keradec and D. Magot, ”Analytical Calculation of
Static Leakage Inductances of H.F. Transformers Using PEEC Formulas,”
IEEE Trans. on Ind. Appl., vol. 43, No. 4, pp.884-892, July/August 2007.

[39] X. Margueron, A. Besri, P-O. Jeannin, J-P. Keradec and G. Parent,
”Complete Analytical Calculation of Static Leakage Parameters: A step

toward HF Transformer Optimization,” IEEE Trans. on Ind. Appl., vol.
46, No. 3, pp.1055-1063, May/June 2010.

[40] J. D. Stratton, Electromagnetic Theory, New York: McGraw-Hill, 1941,
ch. 4.

[41] W. A. Roshen, ”Analysis of planar sandwich inductors by current
images,” IEEE Trans. Magn., vol. 26, no. 5, pp. 2880-2887, Sep. 1990.

[42] M. Lambert, F. Sirois, M. Martinez-Duro, J. Mahseredjian, ”Analyti-
cal Calculation of Leakage Inductance for Low-Frequency Transformer
Modeling,” IEEE Trans. Power Delivery, vol.28, no.1, pp.507-515, Jan.
2013.

[43] K. J. Binns, P. J. Lawrenson, and C. W. Trowbridge, The Analytical and

Numrical Solution of Electric and Magnetic Fields. Hoboken, NJ: Wiley.
[44] P. Olver, Introduction to Partial Differential Equations, Minnesota, USA,

2012.
[45] W. Tan, X. Margueron, N. Idir, ”Analytical modeling of parasitic

capacitances for a planar common mode inductor in EMI filters,” in
Power Electronics and Motion Control Conference (EPE/PEMC), 2012

15th International, pp.DS3f.2-1,DS3f.2-6, 4-6 Sept. 2012.
[46] W. Tan, Modeling and Design of Passive Planar Components for EMI

Filters, Ecole Centrale de Lille, PhD Thesis, november 2012.
[47] L. Landau and E. Lifchitz, Electrodynamique des milieux continus.

Moscou, Russia: Mir, 1969, pp. 186-187.
[48] User’s Guide - Maxwell 2D Version 15, ANSYS Inc, March 2012.
[49] Ferroxcube, http://www.ferroxcube.com
[50] EPCOS, http://www.epcos.com
[51] R. Garg, Analytical and Computational Methods in Electromagnetics,

London Artech House, 2008.
[52] Agilent 4294A Precision Impedance Analyser-Operation Manual, Agi-

lent Technologies.
[53] X. Margueron, J-P. Keradec, ”Identifying the Magnetic Part of the

Equivalent Circuit of n-Winding Transformer,” IEEE Trans. Instru. and

Meas., vol.56, no.1, pp.146-152, Feb. 2007.
[54] R. Prieto, J. A. Cobos, O. Garcia, P. Alou, J. Uceda, ”Using parallel

windings in planar magnetic components,” Power Electronics Specialists

Conference, 2001. PESC. 2001 IEEE 32nd Annual, vol.4, pp.2055-2060,
2001.

[55] X. Margueron, A. Besri, Y. Lembeye, J-P. Keradec, ”Current Sharing
Between Parallel Turns of a Planar Transformer: Prediction and Improve-
ment Using a Circuit Simulation Software,” IEEE Trans. on Ind. Appl.,
vol. 46, No. 3, pp.1064-1071, May/June 2010.

[56] M. Pavlovsky, S. W. H. de Haan, J. A. Ferreira, ”Partial Interleaving:
A Method to Reduce High Frequency Losses and to Tune the Leakage
Inductance in High Current, High Frequency Transformer Foil Windings,”
Power Electronics Specialists Conference, 2005. PESC ’05. IEEE 36th,
pp.1540-1547, 16-18 June 2005.

Wenhua Tan was born in Jiangsu, China, in 1984.
He received B.E. and M.E. degrees from the Xian
Jiaotong University, Xian, China, in 2006 and 2009,
respectively, and the Eng. degree from the Ecole
Centrale de Lyon, Ecully, France, in 2009. From
2009 to 2012, he had been working toward the Ph.D.
degree in electrical engineering in the Ecole Centrale
de Lille, Universite Lille Nord de France, Villeneuve
d’Ascq, France.

His main research interests include passive com-
ponent integration, passive component modeling,

and EMI filters design.



12

Xavier Margueron (M’09) was born in Chambery,
France, in 1980. He received the diploma of Electri-
cal Engineering from the Ecole Nationale Superieure
d’Ingenieurs Electriciens de Grenoble, Saint Martin
d’Heres, France, in 2003 and the PhD Degree in
Electrical Engineering from the Universite Joseph
Fourier, Grenoble, France, in 2006. Its principal
fields of research related to passive components and
HF modelling.

Since September 2007, he has been an associate
professor at the Ecole Centrale de Lille, France,

where he carries out research in the L2EP laboratory. His research interests
include modeling and optimization of HF magnetic passive components for
power electronic converters and planar magnetic technology.

Laurent Taylor was born in Dunkerque, France,
in 1987. He received the M.S. degree from Ecole
Normale Superieure de Cachan, France in 2011,
and from Ecole Centrale de Lille, France in 2012.
He’s currently working toward Ph.D. degree in
Power Electronics and Modeling at the Laboratoire
d’Electrotechnique et d’Electronique de Puissance,
Lille, France.

His research interests include HF power electron-
ics, passive component modeling and model order
reduction methods.

Nadir Idir (M’93) received the Ph.D. degree in
electrical engineering from the University of Lille
1, Villeneuve-dAscq, France, in 1993.

He is currently a Full Professor with IUT A of
the University of Lille 1, where he teaches power
electronics and electromagnetic compatibility. Since
1993, he has been with the Laboratory of Electrical
Engineering and Power Electronics, University of
Lille 1. His research interests include design method-
ologies for HF switching converters, power devices
(SiC and GaN), electromagnetic compatibility of the

static converters, HF modeling of the passive components, and EMI filter
design methodologies.


