Leakage Minimization Using Self Sensing and Thermal
Management

Alireza Vahdatpour
Computer Science Department
University of California, Los Angeles

alireza@cs.ucla.edu

ABSTRACT

We have developed a system architecture, measuring and
modeling techniques, and algorithms for on-line power and
energy optimization and thermal management. The start-
ing point for our approach is a simple and small gate-level
network that can be used for real-time and low overhead
measurement of temperature on chip positions where our
network gates are placed. We use linear programming and
interpolation to calculate the temperature at any arbitrary
point of the integrated circuit. The periodic calculations
of the temperature are used to estimate locally dissipated
energies, which are consequently used to derive the most ef-
ficient use of operational times to minimize the overall leak-
age energy. All concepts and algorithms are experimentally
validated using a simulation platform that consists of the
Alpha 21364 processor and the SPEC benchmarks.

Categories and Subject Descriptors

B.7.m [Hardware]: Integrated Circuits—Miscellaneous

General Terms

Measurement, Design

Keywords
Leakage Energy, Thermal Management, Delay

1. INTRODUCTION

There are two principal forces that created an impetus for
our research: (i) need for accurate, low latency, high spa-
tial and time resolution dynamic thermal monitoring and
run-time management in order to optimally use the avail-
able energy while satisfying all timing constraints; and (ii)
importance of accurate and dynamic, yet low cost and low
overhead monitoring of integrated circuits (ICs) using their
own circuitry with respect to a variety of design metrics such
as substrate and crosstalk noise, temperature and energy,
and aging and pending failures.

Thermal management and techniques for reducing leakage
power and energy in ICs have emerged as a popular research

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’10, August 18-20, 2010, Austin, Texas, USA.

Copyright 2010 ACM 978-1-4503-0146-6/10/08 ...$10.00.

265

Miodrag Potkonjak
Computer Science Department
University of California, Los Angeles
miodrag@cs.ucla.edu

topic. While leakage power percentage in current technolo-
gies is still relatively low, it is bound to significantly increase
with each new IC generation. In this paper we restrict our
focus on thermal self-measurements and thermal run-time
management. The special emphasize is placed on minimiz-
ing the consumed leakage energy over time. We introduce
several conceptual and technical innovations for thermal and
power monitoring and management. Maybe the best way to
summarize them and their role is to briefly explain the new
overall approach, which consists of the following four phases:
(i) Self-sensing network. We create and superimpose a sim-
ple gate network over the actual design of the IC. The self-
sensing network and the design are completely disjoint in or-
der to enable their simultaneous operation. The self-sensing
network imposes no performance overhead. Also, power and
energy overheads are negligible since the size of the network
is much smaller and the network is much less frequently used.
By using the available white spaces, the hardware overhead
can be essentially eliminated or greatly minimized. Since
the delay is proportional to the temperature of gates, we can
obtain temperature of locations close to the network gates,
by measuring the delay of the gates in the self-sensing net-
work. (ii) Numerical and algebraic thermal interpolation.
Once we measured the delay of the circuit, we use linear
programming formulation and interpolation techniques to
calculate the temperature at any arbitrary point of inter-
est at the chip. (iii) Energy-centric approach. We use two
or more consecutive temperature measurements to calculate
the electrical energy transformed into the thermal energy at
each filed of a grid imposed over the IC. The key observa-
tion is that while the current temperature depends on the
long sequence of previous temperatures, the energy infor-
mation is independent from historical data. (iv) Real-time
measurement-based temperature and energy management.
The locally generated heat energy depends on the number
and characteristic of local gates and the input data used by
the functionality. It is well known that the same program
may consume often several times and sometimes even several
orders of magnitude more or less energy and execution time
depending on the input data. We have developed a real-time
methodology to interleave cooling and operational intervals,
depending on the runtime thermal activity in such a way
that leakage energy is minimized. The rest of the paper is
organized as of the following: Section 2 covers related work
and preliminaries. In Section 3 we introduce our self sensing
architecture and present its evaluation. Section 4 presents
the leakage minimization technique and Section 5 contains

the simulation results.
Section 6.

Finally, the paper is concluded is

2. RELATED WORK AND BACKGROUND

In the last two decades, energy emerged as a premier de-
sign and run-time management metric. Thermal manage-
ment has attracted a great deal of attention and a variety
of low power techniques have been proposed [1, 2, 3]. There
are recent studies (i.e. [17]) on using digital design blocks
for temperature measurement. The measurement circuit in
such studies are generally large, and therefore, temperature
readings are average values for wide areas in an IC. In ad-
dition, approaches by [9] and [10] use processor specific fea-
tures such as performance counters to estimate processor
temperature in the software during the runtime, which is
applicable to few processor families supporting the feature
and leads to high performance overhead in execution time.
Recently, Potkonjak et. al [7] have shown how the post sili-
con gate-level characterization (in presence of manufacturing
variability) is viable using input vector control techniques.
We use similar methodology to measure the delay of the
sensor gates. While [6] has presented a temperature man-
agement technique for leakage minimization, our approach
has fundamental differences. [6] assumes the thermal be-
haviors of the task and processor are known a priori. In
addition, it assumes that the leakage energy consumption of
the processor is negligible in sleep mode, which requires ex-
tra power gating and supply control logic to be implemented
in the processor. In addition, up to our knowledge, none of
the studies in leakage management considered the spatial
variation of the processor temperature.

2.1 Delay Model and Measurement

The impact of temperature on delay has been studied
widely. Depending on the fabrication process and the circuit
technology, several timing-temperature models have been
proposed (e.g. [12, 11]). In this study, we used the lin-
ear temperature-delay model introduced by [11]. According
to this study, the variation of the delay is about 6%, when
temperature varies by 50°C (starting from 50°C).

We use the scheme from Figure 1.a to measure the de-
lay of a logic circuit. Clock cycle period can be dynami-
cally changed in a circuit by the resolution of pico seconds
[13]. At the same time, considering gigahertz and megahertz
clock frequencies of integrated circuits (where the clock pe-
riod is larger than hundreds of pico seconds), high resolution
dynamic management of clock frequency is feasible. To ac-
curately measure the propagation delay of a circuit, it is
enough to continuously and slightly increase the clock fre-
quency of the measurement circuit (see Figure 1), until the
clock cycle period becomes less than the propagation delay
of the circuit. Upon reaching this point, the change in the
output of the circuit (Output) will not affect FFy and Out
will be different than Output. This clock cycle period can
be assumed to be the propagation delay of the logic circuit.
Figures 1.b and 1.c depict the conditions where the clock
period is slightly more and less than the propagation delay
(to) of the combinational circuit of Figure l.a. Note that
in this example, the Output of the combinational circuit is
assumed to become high as the input becomes high.

2.2 Leakage Energy Model

Energy consumption of an IC consists of dynamic and

266

[

| ;(In,ﬁ..A!:g leto = At}

******* ‘ o I iy
Combinational i s
o I T I i

| nput H i

o Out) gL [! i

I | out 1 ;!_ i h

]

(a) (b) (c)

Figure 1: a) A simple mechanism for delay measure-
ment b-c) Circuit behavior when propagation delay
is smaller and greater than the clock period

x10°

@

>
T

~

Leakage Current (A)

T . . \)
0 20 20 60 80 100 120
Temperature (C)

Figure 2: Leakage current vs. temperature

leakage energies. In CMOS technology, dynamic energy con-
sumption directly depends on the working voltage level and
the switching activity of transistors. Leakage power is re-
sulted by the flow of leakage current through transistors and
is modeled to be:

Pleakage =N- [leak:age - Vaa

where N is the number of transistors in the circuit and

Ticakage is a function of several parameters, most impor-
tantly the thermal voltage (v:), supply voltage (Viq), and
threshold voltage (ven)[5]:

YVp TS
vt

Vg B 2 —Vdd
Licakage = A-e*7ddTP 0P . (1 —e vt)-e

where both v; and v, are functions of temperature and
A,a, (3,7, and § are constant coefficients which depend on
transistor technology and fabrication process. Figure 2 de-
picts how leakage current of a nominal transistor increases
significantly by increasing the temperature. As an illustrat-
ing example, [4] reports that while at 30°C leakage power is
only 6% of the total power consumption, it becomes 56% of
the total power at 110°C.

3. SELF SENSING NETWORK

The most basic approach for temperature sensing is to
place thermal sensors in the IC package. This solution has
clear shortcomings. Not only are thermal sensors (diodes)
costly, their size is relatively large. Additionally, the rate at
which the die temperature can change is increasing to the
point that the currently available thermal sensor interface
logic is too slow to allow reliable die temperature measure-
ment or closed loop thermal control [8]. Recent approaches
by [9] and [10] use processor specific features such as per-
formance counters to estimate IC temperature at runtime.
In addition to being inaccurate ([10] reports 10% error), the
required software mechanism adds about 4 to 8°C' of ther-
mal overhead and can slow down the execution of applica-
tions by up to 54% [9]. The major disadvantage of current
temperature monitoring mechanisms is in the spatial gran-
ularity of the sensing. Generally, these methods account
the dynamic energy consumed by the processor or its main
functional blocks to estimate the average temperature of the
processor die or its functional blocks. We will show that due
to the high spatial variation of the temperature, using such
mechanisms for power management results in high inaccu-
racy. Our technique requires placement of a low overhead

>

Inverter

)

1]

Flip Flop

>

Figure 3: A 4x3 sensory circuit

sensory circuit in the IC. The self-sensing circuit consists
of basic logic gates with controlled manufacturing charac-
teristics (e.g. gate size). We have designed a circuit with
minimum number of dedicated inputs and outputs, so that
it can be easily integrated with any IC. By monitoring the
delay introduced from temperature variation on each of the
gates in the sensory circuit, we estimate the temperature
using the relation between the temperature and the delay of
gates.

3.1 Sensory Circuit Architecture

Figure 3 depicts a sample structure of the proposed tem-
perature monitoring circuit. In general, this network con-
sists of m rows and n columns of inverters; Each row consists
of n inverters and n — 1 multiplexers and each column is a
chain of m inverters. The multiplexer placement is such that
2"~1 combinations of inverters chains can be made on each
row by changing the select inputs of the multiplexers (con-
necting inverters from different rows to each other). As a
result, in addition to the n vertical inverter chains, m - 2"~*
horizontal inverter chains can be constructed dynamically in
the network.

The depicted network has only one input and two output
ports. Flip-flops FFpo..FFgm-1 and FFyo..FFy,_1 are
placed on the input side of the cascaded inverters, and the
other end of the inverter chains are connected to exclusive-
or gates. The chain of flip-flops results in activation of a
single horizontal and a single vertical inverter chain in each
clock cycle (fed with the new value of the input, considering
the input of the circuit is toggled every maz(m,n) cycles)
and cause the change in the value of Output_Horiz and Out-
put_Vert. Note that the output of the exclusive-or gate will
change anytime one of its inputs changes. As described in
Section 2.1, by changing the clock frequency of the flip-flops
on both sides of the inverter chains, the propagation delay
can be measured. Upon measuring the propagation delay of
the inverter chains, we use a linear programming approach to
calculate each multiplexer and inverter delay from the mea-
sured chain delays. Briefly describing the linear program, in
each equation the measured delay is equal to the sum of the
delays of the gates on the active inverter path plus the delay
of the XOR gate. Here we omit the full description of the
linear program due to space limitation. Interested readers
may contact the authors for extended description.

Upon solving the linear equation, estimated delays for
each inverter are used to estimate the temperature of the

Multiplexer

Output_Horiz

Exclusive OR

267

61,1
1Q4)DJQdissipaled
Qg g, Qo
61 Fy 6+
Q4 Yn¢
9j+1.i

Figure 4: The heat conduction and convection be-
tween cells in a silicon grid and the environment

IC at the sensory circuit gate locations. We use the model
introduced in Section 2.1 to calculate the temperature vari-
ation using propagation delay values. Thereafter, a two-
dimensional linear interpolation is used to extend the tem-
perature estimation for the whole IC surface.

3.2 Activity and Thermal Energy Measurement

Beside introducing the approach of using gate delays for
fine grain temperature monitoring, we propose a method to
monitor the energy consumption of the IC with high spatial
and temporal resolution. In addition to the current activ-
ity of the IC, temperature of the IC also depends on the
previous activity of it and also heat conduction and con-
vection. Hence, it cannot be used as a history independent
metric for evaluating processor activity. In the following, us-
ing the temperature information, we derive accurate values
of energy consumption with high spatial and temporal reso-
lutions (energy consumption and thermal energy terms are
used interchangeably, since consumed energy is dissipated in
forms of heat). To do so, first we divide the surface of the IC
into a grid. Each cell in the grid has a temperature sensor
gate placed on it, using the sensing circuit described in the
previous section. Figure 4 depicts five neighboring cells of
a grid. Lets assume that 6;, and ', ; are the temperature
values of the grid cell located at row j and column i at time
t and t + At. According to the heat convection and conduc-
tion laws, and assuming that time period At is reasonably
small, such that variation of temperature is linear in that
time, the following equations are valid for the cell j,:

0,0+ 0.
AQdissipated =H- Asurface . (% - eai'r) <At
AQubsorbed =m - C- (9]\1’ - eljyi) At

(05,i+0"5,4) _ (0j,i1+0"5,i41)
2

AQo,+1 = —k - Asige - 2 <At
Az
(05,046 5,.8) (0i+1,i+6"j41,4)
AQx1,0 = —k - Agige - 2 2 <At

Az

Where H and k are the heat transfer and the silicon con-
ductivity coefficients. m is the mass of the silicon in the
cell, and c is the specific heat coefficient for silicon. Agiqge
and Asurface are the thickness and the area of the grid cells.
AISO, AQdissipateth AQ&bSOT‘bEd: AQO,:EI: and Q:tl,O are the
thermal energies dissipated through the air, absorbed in the
silicon in forms of heat, and transferred between neighboring
cells via heat conduction. In addition, according to conser-
vation of energy law, the total amount of consumed and
dissipated energies are equal:

AQconsumed = AC?absorbed + AQdissipated + AQO,:l:l + AQil,O

where AQ consumed 1S the total energy consumed by the logic
gates inside the cell during At. As discussed, AQconsumed
is an independent metric for each cell, and can be used as
the criteria to locate units that are consuming substantial
energy in the IC.

35

L2 Left L2_Right L2_Left L2_Right

L2 L2

(@) (b)

Figure 5: Temperature map generated from iter-
ative execution of facerec on EV7: (a) High reso-
lution simulation (b) Estimation by an 8x8 sensor
architecture

Table 1: The effect of changing the sensing architec-

ture size on the accuracy of temperature estimation
size | ammp applu aspi art bzip2 equake facerec
162 0.17 0.14 0.24 0.14 0.26 0.11 0.44
82 0.16 0.14 0.21 0.18 0.31 0.11 0.35
42 0.49 0.43 0.76 0.41 0.84 0.35 1.25
22 0.64 0.55 0.98 0.62 1.08 0.45 1.52

3.3 Analysis of The Sensing Architecture

We have used HotSpot [15] to profile the execution of the
SPEC 2000 benchmark suite [14] applications on a 90-nm
technology Alpha 21364 (EV7) processor. To evaluate our
self-sensing network characteristics, we fed the temperature
maps (matrix of size 64 x 64) extracted from HotSpot into
sensing architectures with different sizes, using the reverse
of the temperature delay model. Upon estimating the tem-
perature using the sensing architecture and linear program-
ming, we performed linear interpolation to derive a 64 x 64
matrix of temperature values for the IC. Figures 5.a and 5.b
depict two temperature maps, generated by Hotspot and an
8 X 8 sensor architecture.

To examine the impact of the size of the sensing archi-
tecture on the accuracy of temperature estimation, we per-
formed temperature sensing with architectures of size 22, 42,
82, and 162. Table 1 depicts the L2 error norm of estimating
the IC temperature, comparing to results that HotSpot gen-
erated. Increasing the size of the sensing architecture results
in lowering the estimation error.

It is worth to mention that delay also depends on other pa-
rameters such as manufacturing variability (MV) and supply
voltage (SV). Sensitivity to these parameters increases with
each new technology node. The MV impact can be elimi-
nated using an additional one time measurements that are
conducted after the manufacturing. In these measurements,
the nominal delays of the gates at a controlled temperature
are measured, and stored to a lookup-table, to normalize the
runtime temperature calculations. We used delay as a met-
ric for temperature, since its measurement is fast and cheap.
To guarantee the accuracy of temperature estimation using
delay (also dependent on SV variation), multi-modal mea-
surements can be utilized. For example, by periodical mea-
surements of leakage and switching power, the estimations
are validated.

4. LEAKAGE MINIMIZATION

In this section, we study the temperature behavior of pro-
cessors and present an execution time mechanism to min-
imize leakage energy consumption based on the proposed
temperature self-sensing network. The dashed line in Fig-
ure 6 depicts the thermal behavior of the Alpha processor,

268

——Controlled
---Greedy

Temperature

~N

600 800 1000 1200 1400,5,0s

Time

% 200 400
Figure 6: Maximum temperature for executing fac-
erec in greedy and controlled modes

when executing several iterations of a benchmark task (fac-
erec). Processor’s temperature increases exponentially, until
it reaches its thermal equilibrium point. The temperature
remains in the equilibrium point until the execution finishes
and the processor enters the sleep mode, in which the tem-
perature decreases exponentially. It is clear that executing
the task in high temperature will result in high leakage en-
ergy consumption. A naive approach to minimize the leak-
age energy is to add sleep intervals (for cooling down the
processor) in the task execution (Figure 6 depicts an ex-
ample). Since the cool down process becomes significantly
slower in lower temperatures, keeping the IC in low tempera-
tures results in the increase in the total time required for the
task execution, which may result in higher total leakage en-
ergy consumption (processor consumes leakage energy even
in the sleep mode). For example, keeping the IC tempera-
ture in the range of 46 — 48°C for the facerec will make the
execution time 5 times larger and hence the total dissipated
leakage energy becomes 2.5 times larger.

Studies such as [6] suggest dynamic programming approach
to optimally allocate execution and sleep times to a task, ac-
cording to operational temperature. They assume that the
total runtime of the task, and the thermal behavior of the
processor for the specific task are known a priori. However,
as [16] suggests, even runtime of the same task significantly
changes based on the variation of the input data. More-
over, other parameters such as the ambient temperature also
cause variation in the thermal behavior of the processor. In
contrast to previous studies, we define the problem of leakage
minimization for running a task to be minimizing the total
leakage energy of the processor during both execution (heat
up) and sleep (cool down) modes. Up to our knowledge, pre-
vious studies have only considered IC energy consumption
in active mode, which is not realistic.

4.1 Optimal Temperature for Leakage

it is required to find the optimal thermal operation point,
where the trade-off between the increase in the execution
time (due to addition of sleep intervals) and the reduction
in leakage power (due to reduction of the IC temperature) is
optimized. Assuming [0;...02] to be the desired operational
temperature range, the power intensity of the task execution
being stable, and the initial processor temperature to be 6o,
the total time required to execute a task is:

T =T (09,61) + 7 Tw(or,00) + (n = 1) - Ts(05,01)

Ty =Ty, . .
#. T, is the total workload time (the
w(ty,02

time for execution without interruption), and T, ¢y and
Ts(0,6') are the time periods that the IC temperature rises or
falls from 6 to ', during active or sleep modes, respectively.
n shows how many active and sleep intervals are required to
perform the task. Finally, the total leakage energy is:

where n =

Eleakage = Ew(99,0,) T 1 Ew(oy,00) + (0 — 1) - Egg,,0,)

Table 2: Ratio of leakage energy consumption in
managed mode to the greedy mode

Benchmark applu ammp bzip2 equake facerec mesa
Max temp. 63.9 58.2 84.0 50.6 110 73.7
Optimal temp. 52 42 60 43 72 52

w/o cooldown 1.09 1.19 1.08 1.14 1.23 1.06
with cooldown 0.78 0.82 0.78 0.79 0.67 0.79

Here Ey(00,0,)s Ew(6,,05), and Egg, ¢,) represent consumed
leakage energy during time intervals T, (64,6;)» Tw(6;,6-), and
Ts(0,,0,) respectively. It should be again noted that in the
above calculations, for simplicity we assumed that the power
intensity of the task execution is not changing during the
runtime. In general case, calculating n requires complete
energy profile of the task execution. As it was mentioned,
depending on the workload of the task, the thermal equilib-
rium temperature differs and hence the exponential rate of
the temperature rise and fall curves varies. Therefore, based
on the above formulation, the optimal temperature range for
operation of each task and each set of inputs differs. Assum-
ing that the equilibrium point and T, are known, an off-line
solution can find the best operational range by calculating
the total leakage energy consumed by the IC for all opera-
tional temperature ranges.

Although the off-line method can determine the optimal
temperature range for the operation, the assumption that
the thermal behavior and the dynamic of task execution are
known is unrealistic, since not only tasks behavior and run-
time length change by the variation in data inputs, but also
the processors temperature may get affected by other pro-
cesses, interrupts or variations in the cooling mechanism.
Next, we present a real-time heuristic mechanism to deter-
mine a beneficial operational temperature range.

4.2 Real-time Mechanism

According to equations in section 4.1, an operational tem-
perature range with lower leakage energy and larger T, (9, ,6,)
is a better choice for minimizing total leakage energy, since
it results in decreasing the value of second and third terms
of the equation. Assuming 03 — 6; = 1°C, Figure 7 depicts
the behavior of R(61,602) and ELcqkage When the the tem-
perature of the processor is kept in [q01..92] for the facerec
benchmark, where R is defined to be:

T (61,02)
Eo(61,00) T Es(02,01)

R(01,62) =

While calculating the total dissipated leakage energy re-
quires knowledge of the length of the execution and the ther-
mal behavior of the task, R only depends on the leakage en-
ergy consumption of the processor between 6, and 02 (which
we use our sensory circuit to measure), and the information
regarding heat dissipation in the corresponding temperature
range for cooling down, which can be precisely calculated
based on the Newton’s law of cooling. Therefore, R can be
calculated in real-time to predict the total energy consump-
tion variation. Note that while in the depicted example, R is
completely correlated with the total leakage energy, in gen-
eral case, task workload variation changes exponential rate
of temperature variation and hence T(g, o,) differs. There-
fore, R cannot optimally predict the total energy consumed
in the runtime.

Algorithm 1 presents our real-time mechanism for mini-
mizing the leakage energy. This procedure is periodically
executed to monitor the energy consumption (Q¢) and the

269

—R
—+—Energy

o oY e S S
R L SN s o

40 50 60 70

Temperature

80 a0 100 110
Figure 7: Variation of R and Energy vs. 6¢;, where

s — 0, = 1. Values on Y axis are normalized.

temperature (6;) of the processor and decides whether the
processor should go to sleep mode or not. A peak detection
method is used to detect the maximum value of R. We use
the average value of R in the last « iterations to avoid se-
lection of local maximum values. Upon detecting the peak
value of R, temperature is watched to lie in the operational
temperature range by switching the processor mode between
sleep and active modes. 3 determines the granularity of op-
erational temperature range. While a smaller § results in
more frequent switching between active and sleep modes, it
also requires higher granularity of temperature sensing.

Algorithm 1 The real-time method for leakage minimiza-
tion
Input: {6o,...,0:}, {Qo, ..., Qt}
Output: OperationMode(t) {OperationMode(t) = Active or Sleep}
if bestRange is not assigned yet then

0t —01_1
R(t) — Q1+ Cooling(0¢,0;_1)

if avg(R(t —), ..., R(t)) > avg(R(t —a—1),..
OperationMode(t) <+ Active; return
else
bestRange < (0+,0: — 3)
OperationMode(t) « Sleep; return
end if
end if
if 6; > max(bestRange) then
OperationMode(t) < Sleep; return
else if 6; < min(bestRange) then
OperationMode(t) < Active; return
else
OperationMode(t) < OperationMode(t — 1); return
end if

S. SIMULATION RESULTS

Following the simulation steps discussed in Section 3.3,
we evaluated the leakage minimization algorithm using the
SPEC2K benchmarks. Unlike other studies that use single
temperature to measure the leakage power of the IC, we
used the high spatial resolution temperature of the processor
to estimate the leakage power. Therefore, assuming the 1C
surface is divided into an m x n grid, the total leakage power
of the processor is calculated by:

., R(t—1)) then

m n
Pleak:age = Z Z N[’L,]] . Ileakage[i,j] - Vdd
i=1j—1

where Nj; ;1 and Ijeqkagels,s] denote the number of gates and
the leakage current in each block of the grid. As mentioned,
spatial temperature variation is high on the processor sur-
face, therefore, using one temperature value for calculating
leakage energy is a biased observation. While applying tem-
perature controlling mechanisms causes huge leakage energy
reduction in hot spot areas, the leakage energy consump-
tion in the cooler area of the IC remains in the same level.
Since hot spots usually occupy small portion of the proces-
sor, we believe that overall leakage energy saving by means of
temperature management cannot be in the range of 30-40%

Table 3: Ratio of leakage energy and execution time for different lengths of operational ranges

realtime

)

greedy
applu ammp art bzip2 equake facerec galgal gap mesa
E T E T E T E T E T E T E T E T E T
1° 0.95 | 1.12 0.96 | 1.21 0.96 | 1.21 0.94 | 1.11 0.96 | 1.15 0.90 | 1.46 0.93 | 1.26 0.95 | 1.10 0.94 | 1.10
2 0.96 1.14 0.96 1.28 0.96 1.26 0.94 1.13 0.96 1.22 0.91 1.61 0.94 1.14 0.96 1.14 0.95 1.14
3° 0.96 | 1.19 0.96 | 1.34 0.96 | 1.31 0.94 | 1.19 0.96 | 1.27 || 0.92 | 1.64 0.94 | 1.15 0.96 | 1.19 0.95 | 1.18
4° 0.96 | 1.23 0.96 | 1.37 0.96 | 1.36 0.95 | 1.19 0.96 | 1.32 0.92 | 1.69 0.95 | 1.20 0.96 | 1.23 0.95 | 1.21

(reported by previous studies) unless the whole processor
package becomes significantly hot.

To evaluate the leakage energy consumed by uninterrupted
execution of each benchmark (greedy approach), we executed
each benchmark 40 times in order to let the processor reach
its thermal equilibrium, and then we allowed the processor
to cool down to reach the ambient temperature. Thereafter,
based on the thermal activity model, we calculated the opti-
mal operational temperature range for each benchmark. Ta-
ble 2 reports the ratio of leakage energy consumed when the
Algorithm 1 uses the off-line calculated optimal temperature
range as the operational range. We have compared it to the
leakage energy consumption of the greedy approach in two
scenarios; with and without considering the leakage energy
that is consumed when the processor is cooling down after
the completion of the task execution. The maximum tem-
perature in the table denotes the temperature of the hottest
spot during the execution of the benchmark (as a notion of
power intensity of the benchmark).

To evaluate the real-time mechanism for energy saving, we
set B to 1°C, 2°C, 3°C, and 4°C respectively. In addition,
we measured the leakage energy that the greedy approach
consumes in the time interval that the real-time mechanisms
requires to finish the execution of the task. This way, we
compare our algorithm with the greedy mode, with respect
to the total time that can be dedicated to the processor to
execute a benchmark. As results are reported in Table 4, T'
denotes the ratio of the time the processor requires to per-
form the task by applying the real-time mechanism, to T%,.
Comparing to the results of Table 3, the ratio of saving is
smaller, since not only is the operational temperature range
determined by the on-line algorithm but also the energy of
the greedy approach is calculated for the same time that on-
line algorithm finishes the task (not a complete cool down).
In other words, when the processor is assigned a slightly
longer time period (than T,) to execute a task, it can use
thermal management technique to reduce the leakage en-
ergy. Clearly, shortening 3 causes the processor to operate
more closely to its optimal temperature point. However,
it requires more frequent and accurate temperature sensing.
The real-time mechanism has single temperature and energy
values as input. However, we discussed earlier that there is
high spatial variation in the temperature of the processor.

6. CONCLUSION

We presented a real-time temperature sensing architec-
ture, energy modeling technique and algorithm for temper-
ature and energy management and optimization. By in-
troducing a low overhead mechanism to monitor the tem-
perature of the integrated circuits, we proposed a model to
independently monitor the energy consumption of each unit
in the IC. In addition, we presented a real-time mechanism
to minimize the leakage energy consumed by the processor
to run tasks. We showed that in addition to the operational
temperature, operational times can also be managed to re-
duce the overall leakage energy consumption.

270

7. ACKNOWLEDGMENTS

This research is partially supported by the Center for
Domain-Specific Computing (CDSC) funded by the NSF Ex-
pedition in Computing Award CCF-0926127.

8. REFERENCES

[1] D Kirovski, M Potkonjak, System-Level Synthesis of
Low-Power Hard Real-Time Systems, DAC 1997, pp.
697-702.

F Dabiri, A Vahdatpour, M Potkonjak, M Sarrafzadeh,
Energy Minimization for Real-Time Systems with
Non-Convex and Discrete Operation Modes, DATE 2009,
pp- 1416-1421.

Y Alkabani et al., Input vector control for post-silicon
leakage current minimization in the presence of
manufacturing variability, DAC 2008, pp. 606-609.

F Fallah, M Pedram, Standby and Active Leakage Current
Control and Minimization in CMOS VLSI Circuits, IEICE
Trans. on Electronics, 2005.

Y Zhang, D Parikh, K Sankaranarayanan, K Skadron,
Hotleakage: A temperature-aware model of subthreshold
and gate leakage for architects, University of Virginia,
Computer Science Tech Report, 2003.

L Yuan, S Leventhal, G Qu, Temperature-aware leakage
minimization technique for real-time systems. ICCAD 2006,
pp. 761-764, CA, USA.

M Potkonjak, A Nahapetian, M Nelson, T Massey,
Hardware Trojan horse detection using gate-level
characterization, DAC 2009, pp. 688-693.

S Gunther, F Binns, DM Carmean and JC Hall, Managing
the impact of increasing microprocessor power
consumption, Intel Technology Journal, 2001.

KJ Lee, K Skadron, Using Performance Counters for
Runtime Temperature Sensing in High-Performance
Processors, IPDPS 2005, page 232.1, DC, USA.

A Merkel, F Bellosa, Balancing power consumption in
multiprocessor systems, ACM SIGOPS European
Conference on Computer Systems, 2006, pp. 403-414.

C de Benito, S Bota, JL Rossellé, J Segura, Temperature
impact on multiple-input CMOS gates delay, Proceedings
of SPIE, 2007.

BP Das et. al., Voltage and Temperature Scalable Gate
Delay and Slew Models Including Intra-Gate Variations,
International Conference on VLSI Design, 2008.

J Kalisz, Review of methods for time interval
measurements with picosecond resolution, Metrologis, vol.
41, pp. 17-32, 2004.

SPEC-CPU2000. Standard Performance Evaluation
Council, Performance Evaluation in the New Millennium,
Version 1.1.

S Ghosh, S Velusamy, K Sankaranarayanan, K Skadron,
HotSpot: A Compact Thermal Modeling Methodology for
Early-Stage VLSI Design, IEEE Trans. VLSI Systems,
14(5): 501-513, 2006.

K Gururaj, J Cong, Energy Efficient Multiprocessor Task
Scheduling under Input-dependent Variation, DATE 2009,
pp. 411-416, France.

P Chen et. al., A Fully Digital Time-Domain Smart
Temperature Sensor Realized With 140 FPGA Logic
Elements, IEEE Transactions on Circuits and Systems,
54(12): 2661-2668, 2007.

2]

(3]

4

8

9

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17]

