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Leakage radiation microscopy of surface plasmon polaritons

A. Drezet ∗, A. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher,
B. Steinberger, F.R. Aussenegg, A. Leitner, J.R. Krenn

Institute of Physics, Karl-Franzens University Graz, Universitätsplatz 5, A-8010 Graz, Austria
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Abstract

We review the principle and methodology of leakage radiation microscopy (LRM) applied to surface plasmon polaritons (SPPs). Therefore we

first analyze in detail the electromagnetic theory of leaky SPP waves. We show that LRM is a versatile optical far-field method allowing direct

quantitative imaging and analysis of SPP propagation on thin metal films. We illustrate the LRM potentiality by analyzing the propagation of SPP

waves interacting with several two-dimensional plasmonic devices realized and studied in the recent years.
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1. Introduction

In recent years intensive investigations of surface plasmon

polaritons (SPPs) have been made in the promising context of

nanophotonics. This research is actually motivated by the current

trends for optical device miniaturisation and by the possibilities

of merging aspects of nanophotonics with those of electronics.

SPPs are electromagnetic waves bounded to dielectric–metal

interface. As surface waves, SPPs are exponentially damped in

the directions perpendicular to the interface [1]. Furthermore,

SPPs could be used to transfer optical information in a two-

dimensional (2D) environment. This appealing property can be

used for optical addressing of different 2D optical systems and

nanostructures located at a dielectric/metal interface. Actually

several 2D SPP devices including passive nanostructures includ-

ing mirrors or beam splitter and active elements like molecules or

quantum dots are currently under development and investigation.

Developments such as these raise the prospect of a new branch of

photonics using SPPs, for which the term “plasmonics” emerged

[2–4].

However, for experimental investigations of optical devices

an important characteristic of SPP modes is that their spa-

tial extent is governed and defined by the geometry of the

nanoelements rather that by the optical wavelength [7]. This con-

sequently opens possibilities for breaking the diffraction limit
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but requires instruments of observation adapted essentially to

the subwavelength regime and being capable of imaging the

propagation of SPPs in their 2D environment. Usually the anal-

ysis of the subwavelength regime implies necessarily near field

optical (NFO) methods [5,6] able to collect the evanescent (i.e.,

non-radiative) components of the electromagnetic fields asso-

ciated with SPPs. However, when the metal film on which the

2D optical elements are built is thin enough (i.e., with a thick-

ness below 80–100 nm) and when the subtratum optical constant

(usually glass) is higher than the one of the superstratum medium

an other possibility for analyzing SPP propagation occurs. This

possibility is based on the detection of coherent leaking of SPPs

through the substratum. Such a far-field optical method is called

leakage radiation microscopy (LRM) [8–10] and allows indeed

a direct quantitative imaging and analysis of SPP propagation

on thin metal films.

The aim of this article is to present a short overview of recent

progress in the field of SPP imaging using LRM. In a first part of

this work we will describe the theoretical principles underlying

LRM. In the second part we will discuss modern leakage radia-

tion methods and illustrate the LRM potentialities by analyzing

few experiments with SPP waves interacting with 2D plasmonic

devices.

2. Leakage radiation and surface plasmon polaritons

In order to describe the theoretical mechanisms explaining

leakage radiation it will be sufficient for the present purpose to
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limit our analysis to the case of a metal film of complex permittiv-

ity ǫ1(ω) = ǫ′
1 + iǫ

′′
1 (ω = 2πc/λ is the pulsation) sandwiched

between two dielectric media of permittivity ǫ0 (substrate) and

ǫ2 < ǫ0 (superstratum). This system is theoretically simple and

to a good extent experimentally accessible [1,11]. In the lim-

iting case where the film thickness D is much bigger than the

SPP penetration length in the metal (i.e., D � 70 nm for gold

or silver in the visible domain) one can treat the problem as two

uncoupled single interfaces. We will consider as an example the

interface 0/1 (the media 0 and 1 are located in the domain z ≥ 0

and z ≤ 0 respectively). Such an interface will be identified in

the following with the plane z = const. in cartesian coordinates.

An elementary harmonic SPP wave is actually a TM electromag-

netic mode characterized by its pulsation ω and its magnetic field

H = [0, Hy, 0] where the y component can be written

H0 = αeikxx eikz0z e−iωt in the medium 0

H1 = eikxx eikz1z e−iωt in the medium 1,
(1)

and where kx = k′
x + ik

′′
x is the (complex valued) wave vector

of the SPP propagating in the x direction along the inter-

face. kzj ≡ kj = ±
√

[(ω/c)2ǫi − k2
x] are the wave vectors in

the medium j = [0(dielectric), 1(metal)] along the direction z

normal to the interface. By applying boundary conditions to

Maxwell’s equations one deduces additionally α = 1 and

k1

ǫ1
−

k0

ǫ0
= 0, (2)

which implies

kx = ±
(ω

c

)

√

ǫ0ǫ1

ǫ0 + ǫ1
(3)

kj = ±
(ω

c

)

√

ǫ2
j

ǫ0 + ǫ1
(4)

for a SPP wave propagating along the x direction. The choice

of the sign convention connecting the z and x components of

the wave vector is a priori arbitrary and must be done only on

a physical ground. Indeed, due to ohmic losses in the metal we

expect an exponentially decaying SPP wave propagating along

the interface. This condition implies the relation k′
x · k

′′
x ≥ 0 [11].

This inequality is actually always fulfilled since from Eq. (3) one

deduces

k′
x · k

′′
x =

1

2

(ω

c

)2 ǫ2
0ǫ

′′
1

(ǫ0 + ǫ′
1)

2 + (ǫ
′′
1)

2
> 0 (5)

which is indeed positive because ǫ
′′
1 > 0. By writing kzj = k′

j +
ik

′′
j one additionally obtains the relation

−k′
0 · k

′′
0 =

(ω/c)2ǫ
′′
1

2
− k′

1 · k
′′
1 = k′

x · k
′′
x ≥ 0. (6)

This relation fixes the sign conventions since the wave must also

decay exponentially when going away from the interface in both

media. More precisely one gets

k′
0 · k

′′
0 ≤ 0, (7)

k′
1 · k

′′
1 =≥ 0. (8)

The product k′
1 · k

′′
1 is positive if ǫ′

1 ≥ −|ǫ1|2/(2ǫ0), a fact which

is indeed true for silver and gold interfaces with air or glass

in most of the visible optical domain. However small negative

values of Eq. (8) occur for silver close to the interband region

around λ ∼ 350 nm. Additionally a higher value of ǫ0 will also

change the sign in Eq. (8). Fig. 1 shows the behavior of the SPP

magnetic field close to an interface gold/air and gold/glass at

the optical wavelength λ = 800 nm. At such a wavelength the

conditions given by Eqs. (5)–(8) impose the solutions

kx = ±
(ω

c

)

√

ǫ0ǫ1

ǫ0 + ǫ1
, kj = −

(ω

c

)

√

ǫ2
j

ǫ0 + ǫ1
. (9)

The real parts of the kz components of the SPP wave vector are

for both media oriented in the same direction corresponding to a

wave propagating from the air side to the metal side (see inset in

Fig. 1). Furthermore the waves are exponentially damped when

going away from the interface in agreement with Eq. (7) and (8)

(see Fig. 1). Most important for us is that the Poynting vector

[12]S = Real[E × H∗]/2 is defined in the medium j by

Sj =
1

2
c Real

[

kxx̂ + kj ẑ

ωǫj/c

]

e−2k
′′
x x−2k

′′
z z. (10)

On the dielectric side the energy flow is as expected oriented

in the direction of Real[k]. However it can be shown on the

metal side and for wavelengths not too close from the spec-

tral region associated with the interband transition of gold or

silver that the energy flow in the x direction is oriented oppo-

sitely to the wave vector Real[kx] since Real[kx/ǫ1] = (k′
xǫ

′
1 +

k
′′
xǫ

′′
1)/|ǫ1|2 is dominated by k′

x · ǫ′
1 and since ǫ′

1 < 0. However

Fig. 1. Structure of the SPP magnetic field Real[Hy] across an interface air/gold

(thick line) and glass/gold (dashed line). The optical wavelength considered is

λ = 800 nm. The permittivity of glass is taken to be ǫglass = 2.25. The inset

shows the conventions for the axes x and z. The arrows indicate the direction of

the real part of the wave vector normally and parallely to the interface.
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the total energy flow in the x direction Sx =
∫ +∞

0 S(air)
x dz +

∫ 0
−∞ S(metal)

x dz is oriented along k′
x. Additionally in the z direc-

tion Real[k1/ǫ1] = (k′
1ǫ

′
1 + k

′′
1ǫ

′′
1)/|ǫ1|2 is parallel to k′

1 since

k
′′
1ǫ

′′
1 dominate. This implies in particular that the energy asso-

ciated with the SPP wave is absorbed by the metal during its

propagation through the interface from the air side to the glass

side. It should be observed that already in the case of the ideal

plasma model neglecting losses the wave vector kx = k′
x is

antiparallel to Sx in the metal since there is no imaginary part

and since ǫ1 = 1 − ω2
p/ω2 < 0 (see also Refs. [13,14]).

We show in Fig. 2 the curves associated with the dispersion

relations of SPPs propagating along a gold/air and gold/glass

interface respectively. Fig. 2A represents the dependencies ω

versus k′
x corresponding to Eq. (3). Fig. 2B shows the depen-

Fig. 2. Dispersion relations of SPP waves propagating along an air/gold (thin

dashed curve) and glass/gold (thick dashed curve) interface. (A) Real part of

the dispersion relations showing the evolution of k′
x with ω/c = 2π/λ. The light

cones corresponding to an optical wave propagating in air and glass (i.e., in the

bulk medium) are represented by a thin and thick continuous line respectively.

The back bending at λ = 520 nm correspond to the interband resonance. (B)

Imaginary part of the dispersion relations showing the evolution of LSPP with

ω/c = 2π/λ. The damping is higher for the glass/gold interface.

dencies ω versus LSPP where LSPP = 1/(2k
′′
x) is the propagation

length of the SPP waves (for the metal optical constant we used

the experimental values given in Ref. [15]). The typical back

bending around λ = 520 nm corresponds to the resonance asso-

ciated with the bound electrons and the interband transition (for

a good discussion see Ref. [17]). Far away from the interband the

real part of the dispersion is close to the asymptotic light lines:

we speak about Zenneck surface modes by opposition to Fano

and evanescent modes existing close to the interband [13,16].

An important feature occurs close to this interband transition

since the slope in Fig. 2A is diverging. This means that the

group velocity defined by vg = ∂ω/∂k′
x is infinite. This point

deserves a more cautious analysis (in connection with causal-

ity) and will not be discussed here. One should only observe that

due to losses in the interband region the group velocity does not

equal the energy velocity (defined by the ratio of the Poynting

vector to the energy density).

A second important feature concerning Fig. 2A is that the

air/gold dispersion curve is located inside of the light cone for

glass defined by the equation K2 = (ω/c)2ǫglass where K is a real

light wave vector and ǫglass = 2.25. Writing K = [Kx, 0, Kz] the

wave vector of a TM (i.e., p polarized) plane wave propagating

away from the interfaces into the glass side one see that SPPs

propagating at the air/metal interface can radiate into the glass

substrate if the condition

Kx ≈ ±Real

[

(ω

c

)

√

ǫ0ǫ1

ǫ0 + ǫ1

]

(11)

is approximately fulfilled. Here we neglected the role of the

imaginary part in Eq. (3). Similarly one can deduce that none of

the SPPs propagating at the two interfaces can radiate into the

air side.

In order to have a more complete analysis one must actu-

ally consider the problem with two coupled interface 0/1

(glass/metal) and 1/2 (metal/air) supporting SPP waves and sep-

arated by a small distance D. The two interfaces are coupled

by evanescent SPP waves tunnelling through the metal slab.

Such a mathematical problem can only be treated numerically

by resolving an implicit equation. As for the single interface this

equation can be defined directly from Maxwell’s equations [11].

However it is much easier and convenient for the following to

remark with Raether [1] that Eq. (2) and consequently Eq. (3)

are obtained by finding the zeros of the numerator in the Fresnel

reflectivity coefficient for a TM wave coming from the dielectric

side:

R
p
0,1 =

(k0/ǫ0 − k1/ǫ1)

(k1/ǫ1 + k0/ǫ0)
, (12)

with kj = ±
√

((ω/c)2ǫj − k2
x). Actually Raether [1] reasoned

with the denominator of the Fresnel coefficient due to different

conventions for the signs of the wave vectors kj . However it is

remarkable that the result is the same at the end of the calcula-

tions. Identically one can thus define the Fresnel coefficient for
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a TM wave reflected by the slab 0-1-2 [1,12,17]:

R
p
0,1,2 =

R
p
0,1 + R

p
1,2 e2ik1D

1 + R
p
0,1R

p
1,2 e2ik1D

, (13)

and find the zeros of the numerator, i.e., one can solve the implicit

equation

R
p
0,1 + R

p
1,2 e2ik1D = 0, (14)

in order to define the SPP dispersion relations. From this equa-

tion it follows that
(

k0

ǫ0
+

k1

ǫ1

) (

k2

ǫ2
−

k1

ǫ1

)

eik1D

+
(

k1

ǫ1
−

k0

ǫ0

) (

k2

ǫ2
+

k1

ǫ1

)

e−ik1D = 0. (15)

As for the single interface one has an important relation between

the real and imaginary parts of the SPP wave vectors in the

different medium:

−k′
0 · k

′′
0 =

(ω/c)2ǫ
′′
1

2
− k′

1 · k
′′
1 = −k′

2 · k′′ = k′
x · k

′′
x. (16)

Since we are interested only into the solutions which are decay-

ing along the interface we (in agreement with our previous

treatment of the single interface) suppose the condition k′
x · k

′′
x ≥

0 satisfied. A second important point is that due to the arbitrari-

ness in the sign of kj there are in fact a priori 8 possibilities

for writing Eq. (15). However, Eq. (15) is invariant under the

transformation k1 → −k1. This means that the number of a pri-

ori possibilities for the sign of kj is reduced from 8 to 4. This

multiplicity was studied by Burke and Stegeman [11] however

since for the present purpose we are looking for SPP waves leak-

ing from the air/metal interface into the glass substrate we will

consider only the possibility

k0 = −

√

(

(ω

c

)2
ǫ0 − k2

x

)

k1 = +

√

(

(ω

c

)2
ǫ1 − k2

x

)

k2 = −

√

(

(ω

c

)2
ǫ2 − k2

x

)

.

(17)

The sign of k1 is however arbitrary as explained above and we

choose it here positive by definition. In order to define a SPP

wave leaking into the glass substrate one has thus to substitute

Eq. (17) into Eq. (15) and find numerically (i.e., by a mini-

mization procedure [18,19]) the zeros of the implicit equation

with variable k′
x and k

′′
x. This has to be done only in the quar-

ter of the complex plane corresponding to k′
x > 0, k

′′
x > 0. The

quarter k′
x < 0, k

′′
x < 0 must be equivalent due to symmetry and

corresponds actually to decaying SPP waves propagating in the

negative x direction. The two other quarters of the complex plane

correspond to growing SPP waves along the interface and will

be rejected on a physical ground (compare Ref. [11]).

Fig. 3A and B shows numerical calculations of dispersion

relations corresponding to a SPP wave leaking through a gold

film from the air side to the glass side. The thickness is taken to

be D = 70, 50, 20, and 10 nm respectively. For the value D ≥ 70

nm the dispersion relation is identical to the dispersion for the

single air/gold interface for semi infinite media. However, for

smaller thickness the coupling between the interface increases

and the propagation length decreases as shown in Fig. 3B. The

magnetic field associated with SPP electromagnetic modes in

this layered system is given by

H0 = eikxx eik0z e−iωt

H1 = eikxx[α sin(k1z) + β cos(k1z)] e−iωt

H2 = γ eikxx eik2(z−D) e−iωt .

(18)

Fig. 3. Dispersion relations of SPP waves propagating along an air/gold inter-

face and leaking into glass. The dispersion is calculated for four film thickness

D: 70 nm (dashed line curves), 50 nm (continuous line with triangular markers),

20 nm (continuous line with square markers), and 10 nm (continuous line with

circular markers).(A) Real part of the dispersion relations showing the evolution

of k′
x with ω/c = 2π/λ. The light cone corresponding to optical wave propa-

gating in air (i.e., in the bulk medium) is represented by a continuous line. (B)

Imaginary part of the dispersion relations showing the evolution of LSPP with

ω/c = 2π/λ.
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The coefficients α, β, γ are obtained by considering the bound-

ary conditions and one finds

α = i
k0ǫ1

k1ǫ0
, β = 1

γ = i
k0ǫ1

k1ǫ0
sin(k1D) + cos(k1D).

(19)

As an illustration we show in Fig. 4 the evolution of the real

part of the magnetic field across a 50 nm thick gold slab sand-

wiched between the glass substratum and the air superstratum

for an optical wavelength λ = 800 nm. As visible the SPP field is

located in the vicinity of the air/gold interface and is evanescent

on the air side. This is clearly reminiscent of our former analysis

of SPPs propagating at the single air/metal. In addition however

the wave is leaking radiatively (i.e., propagatively) into the glass

substrate. However from Eq. (18) and the condition k′
0 · k

′′
0 ≤ 0 it

is clear that the leaking wave is exponentially growing in the −z

direction when going away from the gold slab. This is already

the result we obtained when we considered the limit of the thick

slab. An exponentially growing wave looks non-physical and

is in particular associated with infinite radiated energy in the

far field. There is now the question of how to connect a grow-

ing wave with the basic reasoning giving rise to Eq. (11) and

the idea of phase matching between the (real part) of the SPP

wave vector with a propagative plane wave vector in the glass

substrate. However such paradoxes disappear for two reasons:

first, an infinite energy occurs only because we considered an

infinite interface or equivalently because we did not consider

how the SPP is locally launched on the metal film. When such

conditions are taken into account this paradox must disappear

[11]. Second, the SPP wave defined by Eq. (18) is actually a

wave packet when looked at through the Fourier basis of prop-

agative TM plane waves. Since in the far field (i.e., in the glass

Fig. 4. Structure of the magnetic field Real[Hy] associated with a SPP mode

leaking through a gold film of thickness 50 nm (medium 1) from the air side

(medium 2) to the glass side (medium 0). The evolution is represented along the

normal z to the interfaces. The optical wavelength considered is λ = 800 nm.

The two horizontal lines show the interfaces separated by 50 nm. The inset shows

the conventions for the axis x and z. The arrows indicate the direction of the real

part of the wave vector normally and parallely to the interface.

substrate) one actually detect such plane waves one must do a

Fourier transform in order to generalize Eq. (11) [1,11]. Instead

of Eq. (11) one obtains consequently a statistical distribution of

(real) wave vectors Kx given by

I(Kx) =
const.

(Kx − k′
x)2 + (k

′′
x)

2
, (20)

where 2k
′′
x defines the full width at half maximum (FWHM)

of this Lorentz distribution of radiated plane waves. By noting

as usual θ the angle between the wave vectors K of the plane

waves refracted into the glass substrate and the normal z to the

interfaces one has by definition Kx = 2π
√

ǫ0/λ sin θ and the

angular distribution of radiated power is in the far field given

by:

I(θ) =
const.

(2π
√

ǫ0/λ sin θ − k′
x)2 + (k

′′
x)

2
. (21)

3. Leakage radiation microscopy

Historically the first observations of leakage radiation by

SPP propagating on a thin metal film were reported by ana-

lyzing scattering by rough metal surfaces of light into SPPs

[1,20]. The possibility of using rough surface to excite SPPs

was extensively studied in the past [1] and is based on the fact

that the scattering by small defects on a flat film can represent

a source of evanescent momentum sufficient for the light waves

to match the SPP dispersion relation. Equivalently the amount

of momentum needed can be carried by grating coupling [1].

SPP waves are subsequently emitted back into the glass sub-

strate as leakage radiation (see Fig. 5). This light collected on

a photographic plate forms a ring-like distribution in agreement

with Eqs. (11), (20) and (21). The FWHM of the SPP wave

vector distribution is in direct correspondence with the radial

width of the ring [20]. Further progress was obtained recently

with the development of near field scanning optical microscopy

(NSOM) which allows the local optical excitation of evanescent

waves in the vicinity of a metal surface. Such evanescent waves

can carry a sufficient amount of momentum to couple to SPP

waves. Direct observations have indeed confirmed this principle

[8,21,22]. As an example we show in Fig. 6 an experiment in

which the NSOM tip launches SPPs on an aluminum film which

after interaction with a hole excites optically some quantum dots

(QDs) located below. The collected signal shows a specific QD

luminescence spectrum [23]. By scanning the sample around

the NSOM tip one can realize SPP mapping since the hole acts

a probe structure for the field emitted by the tip. Quantitative

analysis of the total luninescence of the QDs associated with

a given hole show clearly that the QD excitation is mediated

by SPPs propagating on the aluminum film. Fig. 6B shows the

radial dependence of the collected intensity. These results agree

well with a 2D SPP dipole model supposing an effective dipole

located at the tip apex [8,22](see also the discussions concerning

the Bethe–Bouwkamp [24–26] theory of diffraction by a small

aperture in a metal film in Refs. [27–31]). Following this model

the SPP wave can be theoretically modelled by a scalar wave
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Fig. 5. Observation of leakage radiation (LR) through a rough thin silver film

(wavelength λ = 550 nm). (A) SPPs are launched on the air/silver interface

by using scattering by film rugosities to produce the amount of momentum

necessary to match the SPP dispersion relation. SPPs are leaking through the

glass substrate and detected using a photographic plate in the far field. (B)

Photography showing the leakage radiation cone. The photography is extracted

from the work by Simon and Guha [20] (© Opt. Comm., Elsevier, 1976).

Ψ (ρ, θ) given by

Ψ (ρ, φ) = const.
eikSPPρ cos φ

√
ρ

, (22)

where kSPP = k′
x + ik

′′
x is given by Eq. (3), ρ, φ are polar coordi-

nates on the metal film and the origin of the coordinate is taken at

the dipole position. φ is the angle between the dipole associated

with the NSOM tip (parallel to the polarization of the laser beam

injected in the NSOM tip) and the the radial vector ρ = [x, y].

This simplified model can be theoretically justified by using the

Green Dyadic Formalism [32] and has been applied by many

authors successfully [8,9,22,33–36] to SPP waves propagating

in various environments.

Several authors applied NSOM methods coupled to LRM

[8,9]. In particular in Ref. [8] Hecht et al. realized an optical setup

using an immersion oil objective to collect the leakage radiation

emitted by the NSOM tip on gold or silver films (see Fig. 7). The

system shown in Fig. 7B is a 60 nm thick silver film optically

excited by a NSOM tip at the laser wavelength λ = 633 nm. It

can be shown by analyzing Fig. 7B that the radiation pattern is

well described by a 2D dipole model in agreement with Eq. (22).

Fig. 6. (A) Sketch of the experiment using a NSOM tip to excite SPPs on an

aluminum film with nanoholes. The film containing 240 nm diameter holes

covers a CdTe/ZnTe system of QDs whose spectral luminescence induced by

SPP excitation is characteristic of a given hole. The laser excitation wavelength

is 514.5 nm. (B) Radial mapping of the SPP intensity. The SPP intensity is

proportional to the QDs luminescence of a given hole. The curve represents the

evolution of the total luminescence collected (using a detector in the optical far

field) as a function of the distance R separating the NSOM (source) from the

hole (probe). The experiment is made at 4.2 K [22] (© Europhys. Lett., EDP,

2003).

In particular the SPP propagation length was measured and is

in fair agreement with our analysis in Section 1. Additionally

it was shown in Ref. [8] that one can also analyze the Fourier

distribution of SPP momentum (given by Eqs. (20) and (21)) by

defocusing the objective lens. As expected SPP rings similar to

the one of Fig. 5 were observed.

In the same context we developed in recent years a systematic

approach using far-field microscopy to analyze quantitatively

the interaction between SPPs and plasmonic devices by using

LRM. The nano-devices studied were all fabricated by electron

beam lithography (EBL) allowing the precise and reproducible

tailoring of metal and dielectric surfaces on a lateral size dimen-

sion down to 20 nm [37]. As an example we show in Fig. 8B a

LRM image obtained by using a gold ridge (50 nm height, 150

nm width) lithographed on a 50 nm thick gold film to launch

two well collimated and counter propagating SPP beams. These

beams are launched by focussing a laser beam with a micro-

scope objective (10 ×, numerical aperture NA = 0.3) on the

gold ridge. Scattering by the nanostructure gives rise to evanes-

cent waves supplying the right amount of momentum necessary

for generating a SPP wave. The optical LRM setup is sketched in

Fig. 8A. Leakage radiation emitted through the glass substrate is
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Fig. 7. (A) Principle of the experiment to generate SPP leakage radiation (LR)

using a NSOM tip. LR is collected using an immersion oil objective (not shown

here). (B) Map of SPP intensity using a charge coupled device (CCD) camera

to collect the LR emitted through the glass substrate. SPPs are launched on a

60 nm thick silver film at the optical laser wavelength λ = 633 nm. The image in

B is taken from Hecht et al. [8](© Phys. Rev. Lett., American Physical Society,

1996).

collected by an immersion oil objective (63 ×, numerical aper-

ture, NA = 1.3). Light is subsequently refocussed on a charge

coupled device (CCD) camera. The direct mapping of the SPP

intensity with this method provides a one-to-one correspondence

between the 2D SPP intensity and the image recorded on the

CCD camera. It should be observed that an incident laser beam

with diameter Dx is in the focal plane (object plane) of the objec-

tive O1 focussed into a disc of diameter w (i.e., w = beam waist)

such that

tan α =
2λ

πw
=

Dx

2f
(23)

where f is the focal length of the objective and α the divergence

angle of the laser beam focussed on the sample. The direct appli-

cation of this version of the Heisenberg relation [38] implies

that the divergence angle αSPP of the SPP beam launched on the

metal film must equal the divergence angle α of the impinging

laser beam. This result is in good agreement with the experi-

mental case shown in Fig. 8 with Dx = 2 mm, w = 8.3 �m and

α = 3.5◦. Changing the objective focal length is a straightfor-

ward means to obtain different divergence angles αSPP (see for

example Refs. [10,39,40]).

As a further improvement it is possible to modify the previous

optical setup in order to image not only the direct space informa-

tion but also the momentum corresponding to the Fourier space.

Fig. 8. (A) Principle of the experiment to generate SPP leakage radiation (LR)

using a focussed laser beam (objective O1, 10 ×, numerical aperture NA = 0.3).

LR is collected using an immersion oil objective (objective O2, 63 ×, NA = 1.3)

and refocussed on the CCD camera by using an auxiliary lens. (B) Map of

SPP intensity using a CCD camera to collect the LR emitted through the glass

substrate. SPPs are launched on a 50 nm gold film at the optical laser wavelength

λ = 800 nm from a gold ridge (50 nm height, 150 nm width) represented by a

white line. The size of the laser spot with a diameter ≃ 8 �m is represented by

the white dashed circle.

It is indeed a well known fact of Fourier optics [17,38,41] that

such a mapping of the wave vector distribution (as given by Eq.

(20)) is in principle always possible by recording the LR light

in the back focal plane F of the oil immersion objective. In the

optical setup shown in Fig. 9 [39] we realized a dual microscope

able to image SPP propagation in both the direct and Fourier

space. In particular the back focal plane F of the oil immersion

objective O2 imaged onto a CCD camera in Fig. 9. With such a

microscope it is furthermore possible to act experimentally in the

Fourier space image plane F′. First we can thereby remove the

directly transmitted laser beam by using a beam block located

on the optical axis. As an application of this method of filtering

we consider the reflection of a SPP beam by an in-plane Bragg

mirror. SPPs are launched as before from a gold ridge (50 nm

height, 150 nm width) lithographed on a 50 nm thick gold film.

The Bragg mirror [41] constitutes a one-dimensional lattice of

parallel gold ridges (50 nm height, 140 nm width) separated by a

distance P defining the period of the lattice. The period P is con-

nected to the SPP wavelength by λSPP = 2π/kSPP < λ and to

the angle of incidence reflection θSPP of the SPP beam relatively

to the (in plane) normal to the lattice by

P =
λSPP

2 cos θSPP
. (24)
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Fig. 9. Experimental scheme for LRM. SPPs are excited by laser light focused

by the microscope objective O1 (50 ×, numerical aperture, NA = 0.7) onto a

structured gold thin film on a glass substrate. LR emitted into the glass substrate

from the gold/glass interface � is collected by the immersion microscopy objec-

tive O2 (63 ×, NA = 1.25) and imaged by a CCD camera. Depending on the

lateral position of the convex lens L3 either the back focal plane or the sample

plane is imaged. BB beam block, L1–L3 convex lenses, f focal length of L1 and

L2; �, �′, sample plane and image thereof; F, F′ back focal plane and image

thereof [39].

In the present case shown in Fig. 10 the Bragg mirror is opti-

mized for λ = 800 nm (i.e., λSPP = 785 nm) and for θSPP = 45◦

incidence angle which means P ≃ 555 nm. The experimental

analysis of such a Bragg mirror when the resonance condition

(λ, θSPP) is fulfilled reveals a very high reflectivity of R ≃ 95%

(see, for example, Ref. [34] for some earlier results on SPP Bragg

mirrors studied with fluorescence microscopy). However, in the

present experiment we choose an incident angle θ = 65◦. As a

consequence the reflectivity was much lower (see Fig. 10A and

more details in Ref. [39]). This configuration reveals SPP inter-

ferences in the vicinity of the mirror (Fig. 10A). In Fig. 10B

we show the corresponding Fourier space image. The different

observed arcs of LR rings correspond to the reflected (R), and

transmitted plus incident (T) beams. The L beam is associated

with a SPP launched in the direction to the left, i.e., away from

the mirror. C is the directly transmitted laser beam distribution.

By acting in the Fourier plane image F′ of the LRM microscope

we now block the information associated with the central beam

and with the R or T beams [39]. Thereby the according SPP

beam images are erased from the image plane and consequently

weak intensity beams otherwise observed by interference can

be directly analyzed. For further analysis we extracted radial

cross-cuts along the white lines as shown in Fig. 10B [39].

Results are shown in Fig. 11A for the cross-cut along L. The

data points agree very well with a Lorentz fit given by Eqs. (20)

and (21). The FWHM of the Lorentzian distribution gives us a

SPP propagation length of LSPP = 20 �m. This value is in per-

fect agreement with the cross-cut made along the beam L in the

direct space image, Fig. 10A (see Fig. 11B). Both data agree

also with values given by the dispersion relations discussed in

Section 1(see Figs. 2B and 3B).

LRM was subsequently applied by us to many SPP in-plane

devices such as beam splitters [10], dielectric lenses, prisms [18]

and wave-guides [42]. In particular, LRM experiments were

compared to near field optical experiments (photon scanning

Fig. 10. (A) Direct space LRM imaging of two SPPs beams launched from the ridge and propagating to the lower left (L) and upper right to be partly reflected (R)

and transmitted (T) by the Bragg mirror. The image is taken with no beam block. Ridge and Bragg mirror are indicated by the dashed line and rectangle, respectively.

(B) Fourier plane LRM imaging corresponding to (A). C indicates the wave vector components of the directly transmitted laser beam C; R, L, and T have the same

meaning as in (A). (C and D) are Fourier filtered images after removing the central beam C with a beam block in F′ (see text). In (C) the reflected beam R is removed

by blocking the arc of the SPP ring R shown in (B). In (D) the transmitted beam T and the beam incident on the Bragg mirror are removed by blocking the arc of

SPP ring T in (B). Data from Ref. [39] (©, Appl. Phys. Lett., American Institute of Physics, 2006).
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Fig. 11. (A) Fourier space cross-cut along the short solid line in Fig. 10 B corre-

sponding to the L beam (see inset). Experimental data (symbols) are compared

with a Lorentz fit (solid curve). The intensity is normalized by setting the maxi-

mum intensity of L to 1. (B) Direct space cross-cut along the L beam in Fig. 10

A. Data points (symbols) are compared to an exponential fit (solid line). Data

from Ref. [39] (©, Appl. Phys. Lett., American Institute of Physics, 2006).

tunnelling microscopy) and showed good agreement in the cases

considered [18,42]. LRM appears thus in this context as a com-

plementary far-field optical method to NFO such as NSOM.

LRM was applied as well for analyzing SPP Bragg mirrors

(with high reflectivity R ≃ 90–95%), interferometers [40,43]

and SPP elliptical cavities [35] or 2D SPP microscopes [44]. In

this context we observed [40] stationary SPP waves with very

high visibility V = (Imax − Imin)/(Imax + Imin) by using LRM.

This proves directly that SPP wave coherence is conserved in

LRM and can exploited for quantitative analysis down to the

spatial resolution limit λSPP/2. Actually SPP interferometers

such as the ones described in Refs. [34,35,43] reveal clear inter-

ference pattern and oscillation characteristics of these devices.

It is thus possible to develop 2D interferometry for SPP waves

having all the advantages of current macroscopic interferometry

techniques.

We also mention the realization of plasmonic crystals (i.e.,

photonic crystals for SPPs) which were studied using LRM (see

Fig. 12). In such devices [45] rectangular 2D latices made of gold

nano-protrusions (200 nm diameter, 50 nm height) deposited

on a 50 nm thick gold film (see Fig. 12B) are used to create

photonic band gaps at specific SPP wavelengths λx ≃ 730 nm

and λy ≃ 784 nm (i.e., laser wavelengths of respectively 750 nm

and 800 nm) corresponding to the two periods of the lattice

Px = λx/
√

2 = 516 nm and Py = λy/
√

2 = 554 nm. The exis-

tence of these band gaps implies that SPP plane waves impinging

on small devices build up with such lattice will generate sta-

tionary waves in the crystal. More precisely this implies that

SPPs will be reflected in specific and different directions if their

wavelengths match the values λx or λy and if the angle of inci-

dence relatively to the normal to the Bragg planes of the crystal

(Fig. 12B and C) equals 45◦. Such devices act consequently as an

efficient in-plane wavelength demultiplexer for SPPs [45] as it

was indeed observed experimentally (see Fig. 12D and E). While

the results discussed here were achieved within the visible spec-

tral range, plasmonic crystal devices are expected to perform

even better (e.g., in terms of spectral selectivity) in the infrared

(telecom) spectral range due to significantly lower ohmic losses

[46]. In general, the use of multiplexers, splitters and tritters [45]

Fig. 12. (A) Principle of SPP in-plane wavelength demultiplexing using plas-

monic crystal. SPPs launched from a gold ridge (50 nm height, 150 nm width)

are propagating in the direction of a 2D rectangular lattice (plasmonic crystal)

as described in the text. (B) SEM images of a part of the crystal, Bragg lines

are indicated by dashed lines. Such crystals can be seen as two sets of Bragg

mirrors perpendiculary oriented to each other. (C) Sketch representing the unit

rectangular cell and the direction of the reflected SPP beam for the two different

wavelengths at which the Bragg reflections occur. (D and E) LRM images of

SPP interacting with the demultiplexer at SPP wavelengths λx ≃ 730 nm and

λy ≃ 784 nm, respectively. The gold ridge and plasmonic crystal are indicated

by the gray line and the gray box, respectively. The vector basis x, y of the latices

is indicated in A and E. Data from Ref. [45] (© Nanoletters, American Chemical

Society, 2007).
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in photonic applications might be specifically appealing due to

their small footprint in the range of 10 �m × 10 �m. Further-

more, the use as building blocks for classical [38] or quantum

[47] optical computing can be envisaged.

4. Conclusion

In this article we reviewed the field of leakage radiation

microscopy theoretically and experimentally. Theoretically we

analyzed how SPP can generate leaky wave in the glass sub-

strate by tunnelling from the air side through a thin metal film

supporting SPP waves. We showed in particular that for thick

film (D ≥ 70 nm) leakage radiation (LR) does not affect the

dispersion relation on the air/metal interface. Importantly the

angular distribution of LR is located on a cone matching the

SPP dispersion relation. We also reviewed the first experimental

results reporting the observation of LR on rough surface and

using near field optics methods. We analyzed more recent appli-

cation of LRM to SPP nano-devices fabricated by electron beam

lithography. From all these results we can conclude that LRM is

a convenient and versatile far-field optical method for analyzing

quantitatively SPP propagation on flat film and their interaction

with various nano-devices of direct practical interest. Such ver-

satility positions LRM as an appealing alternative to near field

optics for studying SPP propagation on a scale of, or larger than

the wavelength.
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