
https://doi.org/10.1007/s00145-018-9286-z

J Cryptol (2019) 32:742–824

Leakage Resilience from Program Obfuscation

Dana Dachman-Soled∗

University of Maryland, College Park, USA

danadach@ece.umd.edu

S. Dov Gordon†

George Mason University, Fairfax, USA

crypto@dovgordon.com

Feng-Hao Liu‡

Florida Atlantic University, Boca Raton, USA

fenghao.liu@fau.edu

Adam O’Neill
Georgetown University, Washington, DC, USA

adam@cs.georgetown.edu

Hong-Sheng Zhou
Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu

Communicated by Tal Rabin.

Received 23 August 2016 / Revised 3 March 2018

Online publication 25 April 2018

Abstract. The literature on leakage-resilient cryptography contains various leakage

models that provide different levels of security. In the bounded leakage model (Akavia et

al.—TCC 2009), it is assumed that there is a fixed upper bound L on the number of bits the

attacker may leak on the secret key in the entire lifetime of the scheme. Alternatively,

in the continual leakage model (Brakerski et al.—FOCS 2010, Dodis et al.—FOCS

2010), the lifetime of a cryptographic scheme is divided into “time periods” between

which the scheme’s secret key is updated. Furthermore, in its attack the adversary is

allowed to obtain some bounded amount of leakage on the current secret key during each

time period. In the continual leakage model, a challenging problem has been to provide

security against leakage on key updates, that is, leakage that is a function of not only

the current secret key but also the randomness used to update it. We propose a modular

∗This work was done in part while the author was visiting the Simons Institute for the Theory of Computing,

supported by the Simons Foundation and by the DIMACS/Simons Collaboration in Cryptography through

NSF Grant #CNS-1523467. This work was supported in part by NSF CAREER Award #CNS-1453045 and

by a Ralph E. Powe Junior Faculty Enhancement Award.

†This work was done in part when the author was a research scientist at Applied Communication Sciences.

‡This work was done in part when the author was a postdoc at the University of Maryland. Partial effort

of the work is supported by the NSF Award #CNS-1657040.

© International Association for Cryptologic Research 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-018-9286-z&domain=pdf

Leakage Resilience from Program Obfuscation 743

approach to overcome this problem based on program obfuscation. Namely, we present

a compiler that transforms any public key encryption or signature scheme that achieves a

slight strengthening of continual leakage resilience, which we call consecutive continual

leakage resilience, to one that is continual leakage resilient with leakage on key updates,

assuming indistinguishability obfuscation (Barak et al.—CRYPTO 2001, Garg et al.—

FOCS 2013). Under stronger forms of obfuscation, the leakage rate tolerated by our

compiled scheme is essentially as good as that of the starting scheme. Our compiler

is derived by making a connection between the problems of leakage on key updates

and so-called sender-deniable encryption (Canetti et al.—CRYPTO 1997), which was

recently constructed based on indistinguishability obfuscation by Sahai and Waters

(STOC 2014). In the bounded leakage model, we give an approach to constructing

leakage-resilient public key encryption from program obfuscation based on the public

key encryption scheme of Sahai and Waters (STOC 2014). In particular, we achieve

leakage-resilient public key encryption tolerating L bits of leakage for any L from

iO and one-way functions. We build on this to achieve leakage-resilient public key

encryption with optimal leakage rate of 1−o(1) based on stronger forms of obfuscation

and collision-resistant hash functions. Such a leakage rate is not known to be achievable

in a generic way based on public key encryption alone. We then develop additional

techniques to construct public key encryption that is (consecutive) continual leakage

resilient under appropriate assumptions, which we believe is of independent interest.

Keywords. Indistinguishability obfuscation, Leakage resilience, Public key encryp-

tion, Digital signatures.

1. Introduction

1.1. Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture crypto-

graphic keys through side-channel attacks: physical measurements, such as execution

time, power consumption, and even sound waves generated by the processor. This has

prompted cryptographers to build models for these attacks and to construct leakage-

resilient schemes that remain secure in the face of such attacks. Of course, if the adver-

sary can leak the entire secret key, security becomes impossible, and so the “bounded”

leakage model was introduced (cf. [2,11,39,46]). Here, it is assumed that there is a fixed

upper bound, L on the number of bits the attacker may leak, regardless of the param-

eters of the scheme, or, alternatively, it is assumed that the attacker is allowed to leak

L = λ · |sk| total number of bits, where the amount of leakage increases as the size of

the secret key increases. Various works constructed public key encryption and signature

schemes with optimal leakage rate of λ = 1 − o(1), from specific assumptions (cf.

[11,46]). Hazay et al. [35] even constructed a leakage-resilient public key encryption

scheme in this model assuming only the existence of standard public key encryption,

although the leakage rate achieved by their scheme was not optimal.1

1In the construction of Hazay et al. [35], the secret key of the constructed scheme consists of n secret keys

of the underlying public key encryption scheme, where each underlying secret key is randomly selected from

a set of size m and m is polynomial in security parameter. The total amount of leakage that can be tolerated

is approximately n log(m) bits. Thus, the leakage rate is
n log(m)

n·s ∈ Θ(
log(m)

s), where s denotes the length of

the secret key of the underlying scheme.

744 D. Dachman-Soled et al.

Surprisingly, it is possible to do better; a strengthening of the model—the “continual”

leakage model2—allows the adversary to request unbounded leakage. This model was

introduced by Brakerski et al. [12]—who constructed continual leakage-resilient (CLR)

public key encryption and signature schemes—and Dodis et al. [21]—who constructed

CLR signature schemes. Intuitively, the CLR model divides the lifetime of the attack,

which may be unbounded, into time periods and: (1) allows the adversary to obtain the

output of a “bounded” leakage function in each time period and (2) allows the secret key

(but not the public key!) to be updated between time periods. So, while the adversary’s

leakage in each round is bounded, the total leakage is unbounded.

Note that the algorithm used by any CLR scheme to update the current secret key to

the next one must be randomized, since otherwise the adversary can obtain some future

secret key, bit by bit, via its leakage in each time period. While the CLR schemes of

[12,21] were able to tolerate a 1−o(1) leakage rate, handling leakage during the update

procedure itself —that is, produced as a function of the randomness used by the update

algorithm as well as the current secret key—proved to be much more challenging. The

first substantial progress on this problem of “leakage on key updates” was made by

Lewko et al. [43], with their techniques being considerably refined and generalized by

Dodis et al. [24]. In particular, they give encryption and signature schemes that are CLR

with leakage on key updates tolerating a constant leakage rate, using “dual-system”

techniques (cf. [48]) in bilinear groups.

1.2. Overview of Our Results

Our first main contribution is to show how to compile any public key encryption or sig-

nature scheme that satisfies a slight strengthening of CLR (which we call “consecutive”

CLR or 2CLR) without leakage on key updates to one that is CLR with leakage on key

updates. Our compiler is based on a new connection we make between the problems

of leakage on key updates and “sender deniability” [13] for encryption schemes. In

particular, our compiler uses program obfuscation—either indistinguishability obfusca-

tion (iO) [5,29] or the public-coin differing-inputs obfuscation (diO) [37]3—and adapts

and extends techniques recently developed by Sahai and Waters [47] to achieve sender-

deniable encryption. This demonstrates the applicability of the techniques of [47] to

other seemingly unrelated contexts.4 We then show that the existing CLR encryption

scheme of Brakerski et al. [12] can be extended to meet the stronger notion of 2CLR

that we require for our compiler. Additionally, we show all our results carry over to

signatures as well. In particular, we show that 2CLR PKE implies 2CLR signatures (via

2Here “continual” refers to the fact that the total amount of leakage obtained by the adversary is unbounded.

Additionally, the model is more accurately called the continual memory leakage model to contrast with schemes

constructed under an assumption that “only computation leaks” [45].

3To the best of our knowledge, no impossibility results are known for public-coin differing-inputs obfus-

cation. Indeed, the impossibility results of Garg et al. [30] do not apply to this setting. In either case, current

constructions rely on multilinear maps, whose first candidate construction was given by [28].

4We note that the techniques of [47] have been shown useful in adaptively secure two-party and multiparty

computation [14,18,31] and “only computation leaks” (OCL) circuits without trusted hardware [19]. We note

that this work precedes the work of [18].

Leakage Resilience from Program Obfuscation 745

the intermediate notion of CLR “one-way relations” of Dodis et al. [21]), and observe

that our compiler also upgrades 2CLR signatures to ones that are CLR with leakage on

updates.

Our second main contribution concerns constructions of leakage-resilient public key

encryption directly from obfuscation. In particular, we show that the approach of Sahai

and Waters to achieve public key encryption from iO and punctured pseudorandom

functions [47] can be extended to achieve leakage resilience in the bounded leakage

model. Specifically, we achieve (1) leakage-resilient public key encryption tolerating L

bits of leakage for any L from iO and one-way functions, (2) leakage-resilient public

key encryption with optimal leakage rate of 1 − o(1) based on public-coin differing-

inputs obfuscation and collision-resistant hash functions, and (3) (consecutive) CLR

public key encryption with constant (although not optimal, on the order of one over

several hundred) leakage rate from differing-inputs obfuscation (not public coin) and

standard assumptions. Extending the construction from (2) to achieve continual leakage

resilience, without these additional assumptions, is an interesting open problem.

1.3. Summary and Perspective

In summary, we provide a thorough study of the connection between program obfus-

cation and leakage resilience. We define a new notion of leakage resilience (2CLR)

and demonstrate new constructions of 2CLR-secure encryption and signature schemes

from program obfuscation. Also using program obfuscation, we construct a compiler

that lifts 2CLR-secure schemes to CLR with leakage on key updates; together with our

new constructions, this provides a unified and modular method for constructing CLR

with leakage on key updates. Under appropriate assumptions (namely the ones used by

Brakerski et al. [12] in their construction), this approach allows us to achieve a leakage

rate of 1/4 − o(1) with leakage on key updates, a large improvement over prior work,

where the best leakage rate was 1/258 − o(1) [43]. Our result nearly matches the trivial

upper bound of 1/2 − o(1).5 In the bounded leakage model, we show that it is possible

to achieve optimal-rate leakage-resilient public key encryption from obfuscation and

generic assumptions.

Comparing our results in the bounded leakage model with the work of Hazay et al.

[35], we have (1) leakage-resilient public key encryption tolerating L bits of leakage

from iO and one-way functions and (2) leakage-resilient public key encryption with

optimal leakage rate based on public-coin differing-inputs obfuscation and collision-

resistant hash functions. As we mentioned above, Hazay et al. [35] constructed bounded

leakage-resilient public key encryption in the bounded leakage model from a far weaker

generic assumption (they require only standard public key encryption). Moreover, the

leakage rate of Hazay et al. [35] is far better than the leakage rate we achieve in (1), since

in our iO-based construction, the secret key consists of an entire obfuscated program,

5Unlike the case of CLR without leakage on key updates, observe that any scheme that is CLR with leakage

on key updates can leak at most 1/2 · |sk|-bits per time period, since otherwise the adversary can recover

an entire secret key. As a consequence, the optimal leakage rate for a scheme that is CLR with leakage on

key updates is at most
1/2·|sk|

|sk|+|rup | < 1/2, where |sk| is the secret key length and |rup | is the length of the

randomness needed by the update algorithm.

746 D. Dachman-Soled et al.

which will be extremely large. Thus, the work of Hazay et al. [35] completely subsumes

(1). On the other hand, the leakage rate we achieve in (2) is optimal and so in this case,

our leakage rate improves upon the rate of Hazay et al. [35], though we require the far

stronger assumption of public-coin differing-inputs obfuscation for our result.

Finally, we discuss our result in the continuous leakage model on (3) (consecutive)

CLR public key encryption with constant leakage rate from differing-inputs obfuscation

and standard assumptions. When instantiating our construction in (3), the assumptions

and parameters achieved are inferior to those of the Brakerski et al. [12] scheme (which

we adapt to our setting). Our intention in (3) is therefore to explore what can be done from

generic assumptions, ideally showing that (consecutive) CLR public key encryption can

be constructed from any PKE scheme and diO. Unfortunately, we fall somewhat short,

requiring that the underlying encryption scheme posses various additional properties.

Given the above discussion, we feel that the main value of our results in the bounded

leakage model is that they provide direct insight into the connection between obfuscation

and leakage resilience. We are also hopeful that our techniques in the continual model

might lead to future improvements in rate as well as a better understanding of the

relationship between obfuscation and continual leakage resilience.

1.4. Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of continual

leakage resilience (CLR) [12,21] for public key encryption or signature schemes, the

secret key can be updated periodically (according to some algorithm Update) and the

adversary can obtain bounded leakage between any two updates. Our compiler applies

to schemes that satisfy a slight strengthening of CLR we call consecutive CLR, where

the adversary can obtain bounded leakage as a joint function of any two consecutive

keys. More formally, let sk0, sk1, sk2, . . . , skt , . . . be the secret keys at each time

period, where ski = Update(ski−1, ri), and each ri denotes fresh random coins used

at that round. For leakage functions f1, . . . , ft , . . . (chosen adaptively by the adversary),

consider the following two leakage models:

(1) For consecutive CLR (2CLR), the adversary obtains leakage

f1(sk0, sk1), f2(sk1, sk2), . . . , ft (skt−1, skt),

(2) For CLR with leakage on key updates, the adversary obtains leakage

f1(sk0, r1), f2(sk1, r2), . . . , ft (skt−1, rt),

Our compiler from 2CLR to CLR with leakage on key updates produces a slightly

different Update algorithm for the compiled scheme depending on whether we assume

indistinguishability obfuscation (iO) [5,29] or public-coin differing-inputs obfuscation

[37]. In both cases, if we start with an underlying scheme that is consecutive two-key

CLR while allowing μ-bits of leakage, then our compiled scheme is CLR with leakage

on key updates with leakage rate

μ

|sk| + |rup|
,

Leakage Resilience from Program Obfuscation 747

where |rup| is the length of the randomness required by Update. When using iO, we

obtain |rup| = 5|sk|, where |sk| is the secret key length for the underlying 2CLR scheme,

whereas using public-coin differing-inputs obfuscation we obtain |rup| = |sk|. Thus:

– Assuming iO, the compiled scheme is CLR with leakage on key updates with

leakage rate
μ

6·|sk| .
– Assuming public-coin differing-inputs obfuscation, the compiled scheme is CLR

with leakage on key updates with leakage rate
μ

2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of leakage

(≈ 1/2 · |sk|), then our resulting public-coin differing-inputs-based scheme achieves

leakage rate 1/4 − o(1).

Our compiler is obtained by adapting and extending the techniques developed by

[47] to achieve sender-deniable PKE from any PKE scheme. In sender-deniable PKE,

a sender, given a ciphertext and any message, is able to produce coins that make it

appear that the ciphertext is an encryption of that message. Intuitively, the connection

we make to leakage on key updates is that the simulator in the security proof faces a

similar predicament to the coerced sender in the case of deniable encryption; it needs

to come up with some randomness that “explains” a current secret key as the update of

an old one. Our compiler makes any two such keys explainable in a way that is similar

to how Sahai and Waters make any ciphertext and message explainable. Intuitively, this

is done by “encoding” a secret key in the explained randomness in a special way that

can be detected only by the (obfuscated) Update algorithm. Once detected, the Update

algorithm outputs the encoded secret key, instead of running the normal procedure.

However, in our context, naïvely applying their techniques would result in the ran-

domness required by our Update algorithm being very long, which, as described above,

affects the leakage rate of our resulting CLR scheme with leakage on key updates in a

crucial way (we would not even be able to get a constant leakage rate). We decrease the

length of this randomness in two steps. First, we note that the sender-deniable encryption

scheme of Sahai and Waters encrypts a message bit by bit and “explains” each message

bit individually. This appears to be necessary in their context in order to allow the adver-

sary to choose its challenge messages adaptively depending on the public key. For our

setting, this is not the case, since the secret key is chosen honestly (not by the adver-

sary), so “non-adaptive” security is in fact sufficient in our context and we can “explain”

a secret key all at once. This gets us to |rup| = 5 · |sk| and thus 1/12 − o(1) leakage

rate assuming the underlying 2CLR scheme can tolerate the optimal leakage. Second,

we observe that by switching assumptions from iO to the public-coin differing-inputs

obfuscation we can replace some instances of sk in the explained randomness with its

value under a collision-resistant hash, which gets us to |rup| = sk and thus 1/4 − o(1)

leakage rate in this case.

A natural question is whether the upper bound of 1/2 − o(1) leakage rate for CLR

with leakage on key updates, can be attained via our techniques (if at all). We leave this

as an intriguing open question, but note that the only way to do so would be to further

decrease |rup| so that |rup| < |sk|.
Part II: Constructions against Two-key Consecutive Continual Leakage. We revisit

the existing CLR public key encryption scheme of [12] and show that a suitable mod-

748 D. Dachman-Soled et al.

ification of it achieves 2CLR6 with optimal 1/4 − o(1) leakage rate,7 under the same

assumption used by [12] to achieve optimal leakage rate in the basic CLR setting (namely

the symmetric external Diffie–Hellman (SXDH) assumption in bilinear groups; smaller

leakage rates can be obtained under weaker assumptions). Our main technical tool here

is a new generalization of the Crooked Leftover Hash Lemma [6,26] that generalizes the

result of [12], which shows that “random subspaces are leakage resilient,” showing that

random subspaces are in fact resilient to “consecutive leakage.” Our claim also leads to

a simpler analysis of the scheme than appears in [12].

Finally, we also show (via techniques from learning theory) that 2CLR public key

encryption generically implies 2CLR one-way relations. Via a transformation of Dodis

et al. [21], this then yields 2CLR signatures with the same leakage rate as the starting

encryption scheme. Therefore, all the above results translate to the signature setting as

well. We also show a direct approach to constructing 2CLR one-way relations following

[21] based on the SXDH assumption in bilinear groups, although we are not able to

achieve as good of a leakage rate this way (only 1/8 − o(1)).

Part III: Exploring the relationship between (bounded and continual) leakage

resilience and obfuscation. Note that, interestingly, even the strong notion of virtual

black-box (VBB) obfuscation does not immediately lead to constructions of leakage-

resilient public key encryption. In particular, if we replace the secret key of a public key

encryption scheme with a VBB obfuscation of the decryption algorithm, it is not clear

that we gain anything: For example, the VBB obfuscation may output a circuit of size

|C |, where only
√

|C | number of the gates are “meaningful” and the remaining gates are

simply “dummy” gates, in which case we cannot hope to get a leakage bound better than

L =
√

|C |, and a leakage rate of 1/
√

|C |. Nevertheless, we are able to show that the PKE

scheme of Sahai and Waters (SW) [47], which is built from iO and “punctured pseudo-

random functions (PRFs),” can naturally be made leakage resilient. To give some brief

intuition, a ciphertext in our construction is of the form (r, w, Ext(PRF(k; r), w)⊕ m),

where Ext is a strong extractor, r and w are random values,8 and the PRF key k is

embedded in obfuscated programs that are used in both encryption and decryption. In

the security proof, we “puncture” the key k at the challenge point, t∗, and hardcode the

mapping t∗ → y, where y = PRF(k; t∗), in order to preserve the input/output behav-

ior. As in SW, we switch the mapping to t∗ → y∗ for a random y∗ via security of the

puncturable PRF. But now observe we have that the min-entropy of y∗ is high even after

leakage, so the output of the extractor is close to uniform. To achieve optimal leakage

rate, we further modify the scheme to separate t∗ → y∗ from the obfuscated program

and store only an encryption of t∗ → y∗ in the secret key.

Note that the last change lends itself to achieving (consecutive) CLR, since the secret

key can be refreshed by re-randomizing the encryption. However, the information theo-

6Note that [12] also constructs such a signature scheme, but, as discussed below, such a signature scheme

can in fact be generically obtained, and therefore, for simplicity we do not consider their direct construction

here.

7In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the optimal rate is roughly
1/2·|sk|
|sk|+|sk| = 1/4.

8Technically, we actually use pseudorandom value r , just as SW do. We omit this here to make the

explanation a little more clear.

Leakage Resilience from Program Obfuscation 749

retic argument above about the entropy remaining in y∗ no longer holds, since additional

entropy is lost in every round, and, eventually, y∗ might be recovered in full. To address

this issue, we must prevent the attacker from directly leaking on y∗ in each round. Instead

of embedding an encryption of t∗ → y∗ in the secret key, we embed an encryption of

a tuple (si , αi , H(t∗)) → y∗ using a fresh si in each round i , subject to the constraint

that αi = 〈si , t∗〉. In order to determine whether to output y∗ on some input t , our

obfuscated circuit decrypts and checks whether H(t∗) = H(t) ∧ 〈si , t〉 = αi , where

H is a collision-resistant hash function. We rely on the following facts to ensure that

y∗ remains indistinguishable from random given the adversary’s view: a) the adversary

must form his leakage queries before learning t∗, b) very little information about t∗ is

contained in the secret key, and c) due to the previous facts, and since the inner product

is a good two-source extractor, 〈si , t∗〉 remains very close to uniform, even under the

leakage. It follows that we can switch, even under leakage, to a random α∗, uncorrelated

with si , t∗. Since it is now hard to find inputs satisfying H(t∗) = H(t) ∧ 〈si , t〉 = α∗,

we can, using security of the diO, ignore this conditional statement and replace y∗, with

a 0 string in the secret key, while still using y∗ in the challenge ciphertext.

In the above discussion, we omitted some additional technical challenges due to lack

of space. Most notably, we also require that the encryption scheme used for encrypt-

ing the tuple in the secret key satisfies a notion of “diO-compatible RCCA-secure re-

randomizability,” which we introduce (see Sect. A.2), and show that the “controlled-

malleable” RCCA-secure PKE due to Chase et al. [17] based on the Decision-Linear

assumption in bilinear groups schemes satisfies it, giving us a constant leakage rate for

our (2)CLR scheme. For an in-depth technical overview and complete proof, see Sect. A.

1.5. Related Work

Leakage-Resilient Cryptography. We discuss various types of memory leakage attacks

that have been studied in the literature. Memory attacks are a strong type of attack,

where all secrets in memory are subject to leakage, whether or not they are actively

being computed on. Memory leakage attacks are motivated by the cold-boot attack of

Halderman et al. [34], who showed that for some time after power is shut down, partial

data can be recovered from random access memory (DRAM and SRAM). Akavia et al. [2]

introduced the model of bounded memory attacks, where arbitrary leakage on memory is

allowed, as long as the output size of the leakage function is bounded. Additional models

introduced by [16,27] and [23] allow unbounded-length noisy leakage, unbounded-

length leakage under restricted leakage functions, or unbounded-length hard-to-invert

leakage, respectively. The works of [12] and [21] introduced the notion of “continual

memory leakage” for public key primitives where the secret key is updated while the

public key remains the same. This model allows bounded memory leakage between key

refreshes. Finally, [12,21,24,43] considered the model of continual memory leakage

with leak on update, where leakage can occur while the secret key is being updated.

In this work, we consider bounded memory attacks, continual memory leakage and

continual memory leakage with leak on update.

750 D. Dachman-Soled et al.

There is a long line of constructions of leakage-resilient cryptographic primitives,

including public key encryption that are leakage resilient (LR) against bounded memory

attacks [2,46]; public key encryption that is continual leakage resilient (CLR) without

leak on update [12]; public key encryption that is CLR with leak on update [43]; digital

signature schemes that are leakage resilient (LR) against bounded memory attacks [39];

digital signature schemes that are LR against bounded memory attacks on both secret

key and random coins for signing [11,39,44]; digital signature schemes that are CLR

without leak on update [21]; digital signature schemes that are CLR with leak on update

[43].

Obfuscation and Its Applications. Since the breakthrough result of Garg et al. [29],

demonstrating the first candidate of indistinguishability obfuscation (iO) for all circuits,

a myriad of uses for iO in cryptography have been found. Among these results, the

puncturing methodology by Sahai and Waters [47] has been found very useful. Related

notions such as differing-inputs obfuscation (diO) [4] have been studied [3,9,37]. Please

refer to [49,50] for new constructions, applications, and limitations of obfuscation.

1.6. Organization

We present definitions and preliminaries in Sect. 2. In Sect. 3, we present our compiler

from 2CLR public key encryption/signatures to CLR public key encryption/signatures

with leakage on key update. In Sect. 4, we prove that the public key encryption scheme

of Brakerski et al. [12] achieves 2CLR. In Sect. 5, we present constructions of leakage-

resilient public key encryption (in the non-continual setting) from obfuscation and

generic assumptions. In Sect. 6, we define 2CLR security for one-way relations and

prove that the construction of Dodis et al. [21] achieves the 2CLR notion. In Sect. 7,

we present a construction of 2CLR signatures from 2CLR one-way relations. Finally, in

Appendix A, we address the question of constructing 2CLR public key encryption from

obfuscation and generic assumptions.

2. Definitions and Preliminaries

Statistical Indistinguishability. The statistical distance between two random variables

X, Y is defined by

Δ(X, Y) = 1

2

∑

x

|Pr[X = x] − Pr[Y = x]|

We write X
s
≈ Y to denote that the statistical distance is negligible in the security

parameter, and we say that X, Y are statistically indistinguishable.

2.1. Security Definitions for Leakage-Resilient Public Key Encryption

In this subsection, we present the definitions of various leakage-resilient public key

encryption schemes. These definitions are from the literature. In Subsect. 2.2, we present

Leakage Resilience from Program Obfuscation 751

the definitions for leakage-resilient signature schemes. Jumping ahead, in Subsect. 3.1,

we start to present our new definition for consecutive continual leakage resilience

(2CLR).

We present definitions for obfuscation and puncturable PRFs in Subsects. 2.3 and 2.4.

2.1.1. One-Time Leakage Model

A public key encryption scheme PKE consists of three algorithms: PKE.Gen, PKE.Enc,

and PKE.Dec.

– PKE.Gen(1κ) → (pk, sk). The key generation algorithm takes in the security

parameter κ and outputs a public key pk and a secret key sk.

– PKE.Enc(pk, m) → c. The encryption algorithm takes in a public key pk and a

message m. It outputs a ciphertext c.

– PKE.Dec(sk, c) → m. The decryption algorithm takes in a ciphertext c and a

secret key sk. It outputs a message m.

Correctness. The PKE scheme satisfies correctness if PKE.Dec(sk, c) = m with all

but negligible probability whenever (pk, sk) is produced by PKE.Gen and c is produced

by PKE.Enc(pk, m).

Security. We define one-time leakage-resilient security for PKE schemes in terms of

the following game between a challenger and an attacker. (This extends the usual notion

of semantic security to our leakage setting.) We let κ denote the security parameter, and

the parameter μ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls

PKE.Gen(1κ) to create the initial secret key sk and public key

pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function

f , whose output is at most μ bits. The challenger returns f (sk) to

the attacker. We sometimes refer to the challenger as a stateful,

“leakage oracle,” denoted O, during the query phase of the security

experiment.

Challenge Phase. The attacker chooses two messages m0, m1 which it gives to

the challenger. The challenger chooses a random bit b ∈ {0, 1},
encrypts mb, and gives the resulting ciphertext to the attacker. The

attacker then outputs a guess b′ for b. The attacker wins the game

if b = b′. We define the advantage of the attacker in this game as

| 1
2

− Pr[b′ = b]|.

Definition 1. (One-time Leakage Resilience) We say a public key encryption scheme

is μ-leakage resilient against one-time key leakage if any probabilistic polynomial-time

attacker only has a negligible advantage (negligible in κ) in the above game.

2.1.2. Continual Leakage Model

In the continual leakage setting, we require an additional algorithm PKE.Update which

updates the secret key. Specifically, the update algorithm takes in a secret key ski−1

and some randomness ri , and produces a new secret key ski for the same public key.

752 D. Dachman-Soled et al.

Thus, scheme PKE consists of four algorithms: PKE.Gen, PKE.Enc, PKE.Dec, and

PKE.Update.

– PKE.Gen(1κ) → (pk, sk0). The key generation algorithm takes in the security

parameter and outputs a public key pk and a secret key sk0.

– PKE.Enc(pk, m) → c. The encryption algorithm takes in a public key pk and a

message m. It outputs a ciphertext c.

– PKE.Dec(ski , c) → m. The decryption algorithm takes in a ciphertext c and a

secret key ski . It outputs a message m.

– PKE.Update(ski−1) → ski . The update algorithm takes in a secret key ski−1 and

produces a new secret key ski for the same public key. Here some randomness ri

is used in the update algorithm.

Correctness. The PKE scheme satisfies correctness if PKE.Dec(ski , c) = m with

all but negligible probability whenever pk and sk are produced by PKE.Gen, ski is

obtained by calls to PKE.Update on previously obtained secret keys (starting with

sk0), and c is produced by PKE.Enc(pk, m).

Security. We define continual leakage-resilient security for PKE schemes in terms of

the following game between a challenger and an attacker. (This extends the usual notion

of semantic security to our leakage setting.) We let κ denote the security parameter, and

the parameter μ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls

PKE.Gen(1κ) to create the initial secret key sk0 and public key

pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leak-

age queries. Each time, say in the i th query, the attacker provides

an efficiently computable leakage function fi whose output is at

most μ bits, and the challenger chooses randomness ri , updates

the secret key from ski−1 to ski , and gives the attacker the leakage

response ℓi . In the regular continual leakage model, the leakage

attack is applied on a single secret key, and the leakage response

ℓi = fi (ski−1). In the continual leak-on-update model, the leak-

age attack is applied on the current secret key and the randomness

used for updating the secret key, i.e., ℓi = fi (ski−1, ri). We some-

times refer to the challenger as a stateful, “leakage oracle,” denoted

O, during the query phase of the security experiment.

Challenge Phase. The attacker chooses two messages m0 and m1 which it gives to

the challenger. The challenger chooses a random bit b ∈ {0, 1},
encrypts mb, and gives the resulting ciphertext to the attacker. The

attacker then outputs a guess b′ for b. The attacker wins the game

if b = b′. We define the advantage of the attacker in this game as

| 1
2

− Pr[b′ = b]|.

Definition 2. (Continual Leakage Resilience) We say a public key encryption scheme

is μ-CLR secure (respectively, μ-CLR secure with leakage on key updates) if any ppt

attacker only has a negligible advantage (negligible in κ) in the above game.

Leakage Resilience from Program Obfuscation 753

2.2. Leakage-Resilient Signatures

A digital signature scheme SIG consists of three algorithms: SIG.Gen, SIG.Sign,

and SIG.Verify. In the continual leakage setting, we require an additional algorithm

SIG.Update which updates the secret keys. Note that the verification key remains

unchanged.

– SIG.Gen(1κ) → (vk, sk0). The key generation algorithm takes in the security

parameter κ , and outputs a secret key sk0 and a public verification key vk.

– SIG.Sign(m, ski) → σ . The signing algorithm takes in a message m and a secret

key ski , and outputs a signature σ .

– SIG.Verify(vk, σ, m) → {0, 1}. The verification algorithm takes in the verification

key vk, a signature σ , and a message m. It outputs either 0 or 1.

– SIG.Update(ski−1) → ski . The update algorithm takes in a secret key ski−1 and

produces a new secret key ski for the same verification key.

Correctness. The signature scheme satisfies correctness if SIG.Verify(vk, σ, m)

outputs 1 whenever vk, sk0 is produced by SIG.Gen, and σ is produced by

SIG.Sign(m, ski) for some ski obtained by calls to SIG.Update, starting with sk0.

(If the verification algorithm is randomized, we may relax this requirement to hold with

all but negligible probability.)

Security. We define continual leakage security for signatures in terms of the following

game between a challenger and an attacker. (This extends the usual notion of existential

unforgeability to our leakage setting.) The game is parameterized by two values: the

security parameter κ , and the parameter μ which controls the amount of leakage allowed.

For the sake of simplicity, we assume that the signing algorithm calls the update algorithm

on each invocation. Since updates in our scheme do occur with each signature, we find

it more convenient to work with the simplified definition given below.

Setup Phase The game begins with a setup phase. The challenger calls Gen(1κ)

to create the signing key, sk0, and the verification key, vk. It gives

vk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of sign-

ing queries and leakage queries. Each time, say in the i th query,

the attacker specifies a message mi and provides an efficiently

computable leakage function fi whose output is at most μ bits,

and the challenger chooses randomness ri , updates the secret key

from ski−1 to ski , and gives the attacker the corresponding sig-

nature for message mi as well as the leakage response ℓi . In the

CLR model, the leakage attack is applied on a single secret key,

and the leakage response ℓi = fi (ski−1). In the CLR with leak-

age on key updates, the leakage attack is applied on the current

secret key and the randomness used for updating the secret key,

i.e., ℓi = fi (ski−1, ri).

Forgery Phase The attacker gives the challenger a message, m∗, and a signature

σ ∗ such that m∗ has not been previously queried. The attacker

wins the game if (m∗, σ ∗) passes the verification algorithm using

vk.

754 D. Dachman-Soled et al.

Definition 3. (Continual Leakage Resilience) We say a Digital Signature scheme is

μ-CLR secure (respectively, μ-CLR secure with leakage on key updates) if any ppt

attacker only has a negligible advantage (negligible in κ) in the above game.

2.3. Obfuscation

Indistinguishability Obfuscation. A uniform ppt machine iO is called an indistinguish-

able obfucastor [4,5,29,33], for a circuit family {Cκ}, if the following conditions hold:

– (Correctness) For all κ ∈ N, for all C ∈ Cκ , for all inputs x , we have

Pr
[
C ′(x) = C(x) : C ′ ← iO(κ, C)

]
= 1

– For any uniform or non-uniform ppt distinguisher D, for all security parameter

κ ∈ N, for all pairs of circuits C0, C1 ∈ Cκ such that C0(x) = C1(x) for all inputs

x , then

∣∣Pr
[
D(iO(κ, C0)) = 1

]
− Pr
[
D(iO(κ, C1)) = 1

]∣∣ ≤ negl(κ)

For simplicity, when the security parameter κ is clear, we write iO(C) in short.

Public-Coin Differing-inputs Obfuscation for Circuits. Barak et al. [4,5] defined the

notion of differing-inputs obfuscation, which was later re-formulated in the works of

Ananth et al. and Boyle et. al [3,9]. In our work, we use a weaker notion known as public-

coin differing-inputs obfuscation, due to Ishai et al. [37]. To the best of our knowledge,

unlike the case of differing-inputs obfuscation, there are no impossibility results for

public-coin differing-inputs obfuscation. Below, we closely follow the definitions pre-

sented in [37].

Definition 4. (Public-Coin Differing-Inputs Sampler for Circuits) An efficient non-

uniform sampling algorithm Samp = {Sampκ} is called a public-coin differing-inputs

sampler for the parameterized collection of circuits C = {Cκ} if the output of Sampκ is

distributed over Cκ × Cκ and for every efficient non-uniform algorithm A = {Aκ} there

exists negligible function negl such that for all κ ∈ N:

Pr
r
[C0(x) �= C1(x) : (C0, C1) ← Sampκ(r), x ← Aκ(r)] ≤ negl(κ).

Note that in the above definition the sampler and attacker circuits both receive the

same random coins as input.

Definition 5. (Public-Coin Differing-inputs Obfuscator for Circuits) A uniform ppt

machine diO is called a public-coin differing-inputs obfuscator for the parameterized

collection of circuits C = {Cκ} if the following conditions are satisfied:

– (Correctness): For all security parameter κ , all C ∈ Cκ , all inputs x , we have

Pr[C ′(x) = C(x) : C ′ ← diO(κ, C)] = 1.

Leakage Resilience from Program Obfuscation 755

– (Differing-inputs): For every public-coin differing-inputs samplers Samp =
{Sampκ} for the collection C, for every (not necessarily uniform) ppt distinguisher

D, there exists a negligible function negl such that for all security parameters κ:

∣∣∣∣
Pr[Dκ(r, C ′) = 1 : (C0, C1) ← Sampκ(r), C ′ ← diO(κ, C0)]−

Pr[Dκ(r, C ′) = 1 : (C0, C1) ← Sampκ(r), C ′ ← diO(κ, C1)]

∣∣∣∣
≤ negl(κ),

where the probability is taken over r and the coins of diO.

2.4. Puncturable Pseudorandom Functions

Puncturable family of PRFs are a special case of constrained PRFs [8,10,41], where the

PRF is defined on all input strings except for a set of size polynomial in the security

parameter. Below we recall their definition, as given by [47].

A puncturable family of PRFs PRF is defined by a tuple of efficient algorithms

(Gen, Eval, Punct) and a pair of polynomials n() and m():

– Key Generation Gen(1κ) is a ppt algorithm that takes as input the security param-

eter κ and outputs a PRF key K .

– Punctured Key Generation Punct(K , S) is a ppt algorithm that takes as input a

PRF key K , a set S ⊂ {0, 1}n(κ) and outputs a punctured key KS .

– Evaluation Eval(K , x) is a deterministic algorithm that takes as input a key K

(punctured key or PRF key), a string x ∈ {0, 1}n(κ) and outputs y ∈ {0, 1}m(κ)

Definition 6. A family of PRFs (Gen, Eval, Punct) is puncturable if it satisfies the

following properties

– Functionality preserved under puncturing. Let K ← Gen(1κ) and KS ←
Punct(K , S). Then for all x �∈ S, Eval(K , x) = Eval(KS, x).

– Pseudorandom at (non-adaptively) punctured points. For every ppt adversary

(A1,A2) such that A1() outputs a set S ⊂ {0, 1}n(κ) and x ∈ S, consider an

experiment K ← Gen(1κ) and KS ← Punct(K , S). Then

∣∣Pr[A2(KS, x, Eval(K , x)) = 1] − Pr[A2(KS, x, Um(κ)) = 1]
∣∣ ≤ negl(κ)

where Um(κ) denotes the uniform distribution over m(κ) bits. Note that the set S is

chosen non-adaptively, before the key K is generated.

Theorem 1. [8,10,32,41] If one-way functions exist, then for all polynomial n() and

m(), there exists a puncturable PRF family that maps n() bits to m() bits.

Next we consider families of PRFs that are with high probability injective:

Definition 7. A statistically injective (puncturable) PRF family with failure probability

ǫ() is a family of (puncturable) PRFs such that with probability 1−ǫ(κ) over the random

choice of key K ← Gen(1κ), we have that Eval(K , ·) is injective.

756 D. Dachman-Soled et al.

If the failure probability function ǫ() is not specified, then ǫ() is a negligible function.

Theorem 2. [47] If one-way functions exist, then for all efficiently computable func-

tions n(κ), m(κ), and e(κ) such that m(κ) > 2n(κ) + e(κ) here exists a puncturable

statistically injective PRF family with failure probability 2−e(κ) that maps n(κ) bits to

m(κ) bits.

Finally, we consider PRFs that are also (strong) extractors over their inputs:

Definition 8. An extracting (puncturable) PRF family with error ǫ() for min-entropy

k(κ) is a family of (puncturable) PRFs mapping n(κ) bits to m(κ) bits such that for all

κ , if X is any distribution over n(κ) bits with min-entropy greater than k(κ) then the

statistical distance between (K ← Gen(1κ), Eval(K , X)) and (K ← Gen(1κ), Um(κ))

is at most ǫ(κ), where Uℓ denotes the uniform distribution over ℓ bit strings.

Theorem 3. [47] If one-way functions exist, then for all efficiently computable func-

tions n(κ), m(κ), k(κ) and e(κ) such that n(κ) > k(κ) > m(κ)+ 2e(κ)+ 2 there exists

an extracting puncturable PRF family that maps n(κ) bits to m(κ) bits with error 2−e(κ)

for min-entropy k(κ)

For ease of presentation, for a puncturable family of PRFs PRF, we often write

PRF(K , x) to represent PRF.Eval(K , x).

3. Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key encryption

(PKE) or digital signature (SIG), that is, consecutive two-key leakage resilient, into one

that is secure against leakage on update. We first introduce a notion of explainable update

transformation, which is a generalization of the idea of universal deniable encryption by

Sahai and Waters [47]. We show how to use such a transformation to upgrade a scheme

(PKE or SIG) that is secure in the consecutive two-key leakage model to one that is

secure in the leak-on-update model (Sect. 3.2). Finally, we show two instantiations of

the explainable update transformation: one based on indistinguishability obfuscation

and the other on differing-inputs obfuscation (Sect. 3.3). For clarity of exposition, the

following sections will focus on constructions of PKE. In Sect. 3.4, we show that the

result can be translated to SIG.

3.1. Consecutive Continual Leakage Resilience (2CLR)

In this subsection, we present a new notion of consecutive continual leakage resilience

for public key encryption (PKE). We remark that this notion can be easily extended

to different cases, such as signatures or leakage-resilient one-way relations [21]. For

simplicity and concreteness, we only present the PKE version. Let κ denote the

security parameter and μ be the leakage bound between two updates. Let PKE =
{Gen, Enc, Dec, Update} be an encryption scheme with update.

Leakage Resilience from Program Obfuscation 757

Setup Phase. The game begins with a setup phase. The challenger calls

PKE.Gen(1κ) to create the initial secret key sk0 and public key

pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage func-

tion f1, whose output is at most μ bits. The challenger updates

the secret key (changing it from sk0 to sk1), and then gives the

attacker f1(sk0, sk1). The attacker then repeats this a polynomial

number of times, each time supplying an efficiently computable

leakage function fi whose output is at most μ bits. Each time, the

challenger updates the secret key from ski−1 to ski according to

Update(·) and gives the attacker fi (ski−1, ski).

Challenge Phase. The attacker chooses two messages m0, m1 which it gives to

the challenger. The challenger chooses a random bit b ∈ {0, 1},
encrypts mb, and gives the resulting ciphertext to the attacker.

The attacker then outputs a guess b′ for b. The attacker wins the

game if b = b′. We define the advantage of the attacker in this

game as | 1
2

− Pr[b′ = b]|.

Definition 9. (Continual Consecutive Leakage Resilience) We say a public key encryp-

tion scheme is μ-leakage resilient against consecutive continual leakage (or μ-2CLR) if

any probabilistic polynomial-time attacker only has a negligible advantage (negligible

in κ) in the above game.

3.2. Explainable Key Update Transformation

Now we introduce a notion of explainable key update transformation and show how it

can be used to upgrade security of a PKE scheme from 2CLR to CLR with leakage on

key updates. Informally, an encryption scheme has an “explainable” update procedure

if given both ski−1 and ski = Update(ski−1, ri), there is an efficient way to come up

with some explained random coins r̂i such that no adversary can distinguish the real

coins ri from the explained coins r̂i . Intuitively, this gives a way to handle leakage on

random coins given just leakage on two consecutive keys.

We start with any encryption scheme PKE that has some key update procedure, and

we introduce a transformation that produces a scheme PKE′ with an explainable key

update procedure.

Definition 10. (Explainable Key Update Transformation) Let PKE = PKE.{Gen,

Enc, Dec, Update} be an encryption scheme with key update. An explainable key

update transformation for PKE is a ppt algorithm TransformGen that takes input secu-

rity parameter 1κ , an update circuit CUpdate (that implements the key update algo-

rithm PKE.Update(1κ , ·; ·)), a public key pk of PKE, and outputs two programs

Pupdate,Pexplain with the following syntax:

Let (pk, sk) be a pair of public and secret keys of the encryption scheme

– Pupdate takes inputs sk, random coins r , and Pupdate(sk; r) outputs an updated

secret key sk′;

758 D. Dachman-Soled et al.

– Pexplain takes inputs (sk, sk′), random coins v̄, and Pexplain(sk, sk′; v̄) outputs a

string r .

Given a polynomial ρ(·) and a public key pk, we define Πpk =
⋃ρ(κ)

j=0 Π j , where

Π0 = {sk : (pk, sk) ∈ PKE.Gen},Πi = {sk : ∃sk′ ∈ Πi−1, sk ∈ Update(sk′)} for

i = 1, 2, . . . , ρ(κ). In words, Πpk is the set of all secret keys sk such that either (pk, sk)

is in the support of PKE.Gen or sk can be obtained by the update procedure Update

(up to polynomially many times) with an initial (pk, sk′) ∈ PKE.Gen.

We say the transformation is secure if:

(a) For any polynomial ρ(·), any pk, all sk ∈ Πpk, any Pupdate ∈ TransformGen(1κ ,

PKE.Update, pk), the following two distributions are statistically close: {Pupdate

(sk)} ≈ {PKE.Update(sk)}. Note that the circuit Pupdate and the update algo-

rithm PKE.Update might have different spaces for random coins, but the distri-

butions can still be statistically close.

(b) For any public key pk and secret key sk ∈ Πpk, the following two distributions

are computationally indistinguishable:

{(Pupdate,Pexplain, pk, sk, u)} ≈ {(Pupdate,Pexplain, pk, sk, e)},

where (Pupdate,Pexplain) ← TransformGen(1κ , PKE.Update, pk), u ←
Upoly(κ), sk′ = Pupdate(sk; u),

e ← Pexplain(sk, sk′), and Upoly(κ) denotes the uniform distribution over a poly-

nomial number of bits.

Let PKE = PKE.{Gen, Enc, Dec, Update} be a public key encryption scheme and

TransformGen be an explainable key update transformation for PKE as above. We

define the following transformed scheme PKE′ = PKE′.{Gen, Enc, Dec, Update} as

follows:

– PKE′.Gen(1κ): compute (pk, sk) ← PKE.Gen(1κ).

Then compute (Pupdate,Pexplain) ← TransformGen(1κ , PKE.Update, pk).

Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– PKE′.Enc(pk′, m): parse pk′ = (pk,Pupdate,Pexplain). Then output c ←
PKE.Enc(pk, m).

– PKE′.Dec(sk′, c): output m = PKE.Dec(sk′, c).

– PKE′.Update(sk′): output sk′′ ← Pupdate(sk′).

Then we are able to show the following theorem for the upgraded scheme PKE′.

Theorem 4. Let PKE = PKE.{Gen, Enc, Dec, Update} be a public key encryp-

tion scheme that is μ-2CLR (without leakage on update), and TransformGen a

secure explainable key update transformation for PKE. Then the transformed scheme

PKE′ = PKE′.{Gen, Enc, Dec, Update} described above is μ-CLR with leakage on

key updates.

Proof. Assume toward contradiction that there is a ppt adversary A and a non-

negligible ǫ(·) such that for infinitely many values of κ, AdvA,PKE′ ≥ ǫ(κ) in the leak-

Leakage Resilience from Program Obfuscation 759

on-update model. Then we show that there exists B that breaks the security of the under-

lying PKE (in the consecutive two-key leakage model) with probability ǫ(κ)−negl(κ).

This is a contradiction.

For notional simplicity, we will use AdvA,PKE′ to denote the advantage of the adver-

sary A attacking the scheme PKE′ (according to leak-on-update attacks), and AdvB,PKE

to denote the advantage of the adversary B attacking the scheme PKE (according to con-

secutive two-key leakage attacks).

We define B in the following way: B internally instantiates A and participates exter-

nally in a continual consecutive two-key leakage experiment on public key encryption

scheme PKE′. Specifically, B does the following:

– Upon receiving pk∗ externally, B runs (Pupdate,Pexplain) ← TransformGen(1κ ,

PKE.Update, pk∗). Note that by the properties of the transformation, this can be

done given only pk∗. B sets pk′ = (pk∗,Pupdate, Pexplain) to be the public key for

the PKE′ scheme and forwards pk′ to A.

– When A asks for a leakage query f (sk′
i−1, ri),B asks for the following leakage

query on (ski−1, ski): f ′(ski−1, ski) = f (ski−1,Pexplain(ski−1, ski)) and for-

wards the response to A. Note that the output lengths of f and f ′ are the same.

– At some point, A submits m0, m1 and B forwards them to its external experiment.

– Upon receiving the challenge ciphertext c∗,B forwards it to A and outputs whatever

A outputs.

Now we would like to analyze the advantage of B. It is easy to see that B has the

same advantage as A; however, there is a subtlety such that A does not necessarily have

advantage ǫ(κ): The simulation of leakage queries provided by B is not identical to the

distribution in the real game that A would expect. Recall that in the security experiment

of the scheme PKE′, the secret keys are updated according to Pupdate. In the above

experiment (where B set up), the secret keys were updated using the Update externally,

and the random coins were simulated by the Pexplain algorithm.

Our goal is to show that actually A has essentially the same advantage in this modified

experiment as in the original experiment. We show this by the following lemma:

Lemma 1. For any polynomial n, the following two distributions are computationally

indistinguishable.

D1 ≡ (Pupdate,Pexplain, pk, sk0, r1, sk1, . . . , skn−1, rn, skn) ≈
D2 ≡ (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝkn−1, r̂n, ŝkn),

where the initial pk, sk0 and TransformGen(1κ , pk) are sampled identically in both

experiment; in D1, ski+1 = Pupdate(ski ; ri+1), and ri+1’s are uniformly random; in

D2, ŝki+1 ← Update(ŝki), r̂i+1 ← Pexplain(ŝki , ŝki+1). (Note ŝk0 = sk0.)

Proof. To show the lemma, we consider the following hybrids: for i ∈ [n] define

760 D. Dachman-Soled et al.

H (i) = (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝki−1,

ri , ski , ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to D2 for up to ŝki−1. Then it samples a uniformly

random ri , sets ski = Pupdate(ŝki−1; ri), and proceeds as D1.

H (i.5) = (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . ,

ŝki−1, r̂i , ski , ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to H (i) for up to ŝki−1, and then, it samples ski ←
Pupdate(ŝki−1), and r̂i ← Pexplain(ŝki−1, ski). The experiment is identical to D1 for

the rest.

Then we establish the following lemmas, and the lemma follows directly.

Lemma 2. For i ∈ [n − 1], H (i.5) is statistically close to H (i+1).

Lemma 3. For i ∈ [n], H (i) is computationally indistinguishable from H (i.5).

This first lemma follows directly from the property (a) of Definition 10. We now prove

Lemma 3.

Proof. Suppose there exists a (poly-sized) distinguisher D that distinguishes H (i) from

H (i.5) with non-negligible probability, then there exist pk∗, sk∗, and another D′ that can

break the property (b).

From the definition of the experiments, we know that Pupdate,Pexplain are independent

of the public key and the first i secret keys, i.e., p = (pk, sk0, ŝk1, . . . , ŝki−1). By an

average argument, there exists a fixed

p∗ = (pk∗, sk∗
0, ŝk

∗
1, . . . , ŝk

∗
i−1)

such that D can distinguish H (i) from H (i.5) conditioned on p∗ with non-negligible prob-

ability. (The probability is over the randomness of the rest experiment.) Then we are going

to argue that there exist a poly-sized distinguisher D′, a key pair pk′, sk′ such that D′ can

distinguish (Pupdate,Pexplain, pk′, sk′, u) from (Pupdate,Pexplain, pk′, sk′, e) where u

is from the uniform distribution, sk′′ = Pupdate(sk′; u), and e ← Pexplain(sk′, sk′′).

Let pk′ = pk∗, sk′ = ŝk
∗
i−1, and we define D′ (with the prefix p∗ hardwired) who

on the challenge input (Pupdate,Pexplain, pk′, sk′, z) does the following:

– For j ∈ [i − 1],D′ samples r̂ j = Pexplain(sk∗
j−1, sk∗

j).

– Set ski−1 = sk′ and ri = z, ski = Pupdate(ski−1, z).

– For j ≥ i + 1,D′ samples r j from the uniform distribution and sets sk j =
Pupdate(sk j−1; r j).

– Finally, D′ outputs D(Pupdate,Pexplain, pk′, sk∗
0, r̂1, sk∗

1, . . . , ski−1, ri , ski , ri+1,

. . . , skn).

Leakage Resilience from Program Obfuscation 761

Clearly, if the challenge z was sampled according to uniformly random (as u), then

D′ will output according to D(H (i)| p∗). On the other hand, suppose it was sampled

according to Pexplain (as e), then D′ will output according to D(H i.5| p∗). This completes

the proof of the lemma. �

Remark 1. The non-uniform argument above is not necessary. We present in this way

for simplicity. The uniform reduction can be obtained using a standard Markov type

argument, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE′;D as

the advantage of A in the experiment where the leakage queries are answered according

to the distribution D. By assumption, we know that AdvA,PKE′;D1
= ǫ(κ), and by

definition the leakage queries are answered according to D1. By the above lemma,

we know that |AdvA,PKE′;D1
− AdvA,PKE′;D2

| ≤ negl(κ); otherwise, D1 and D2 are

distinguishable. Thus, we know AdvA,PKE′;D2
≥ ǫ(κ)−negl(κ). It is not hard to see that

AdvB,PKE = AdvA,PKE′;D2
, since B answers A’s the leakage queries exactly according

the distribution D2. Thus, AdvB,PKE ≥ ǫ(κ) − negl(κ), which is a contradiction. This

completes the proof of the theorem. �

3.3. Instantiations via Obfuscation

In this section, we show how to build an explainable key update transformation from

program obfuscation. There are two variants of our construction: one from the weaker

notion of indistinguishability obfuscation (iO) [5,29] and one from the stronger notion

of public-coin differing-inputs obfuscation (public-coin diO) [37]. Since our best param-

eters are achieved using public-coin diO, we present the public-coin diO variant of our

construction/proof and indicate the points in the construction/proof where the iO variant

differs.

Let PKE = (Gen, Enc, Dec, Update) be a public key encryption scheme (or a

signature scheme with algorithms Verify, Sign) with key update, and diO(resp. iO) be a

public-coin differing-inputs obfuscator (resp. indistinguishability obfuscator) for some

class defined later. Let κ be a security parameter. Let Lsk be the length of secret keys

in PKE and Lr be the length of randomness used by Update. For ease of notation,

we suppress the dependence of these lengths on κ . We note that in the 2CLR case,

it is without loss of generality to assume Lr << Lsk, because we can always use

pseudorandom coins (e.g., the output of a PRG) to do the update. Since only the two

consecutive keys are leaked (not the randomness, e.g., the seed to the PRG), the update

with the pseudorandom coins remains secure, assuming the PRG is secure.

Let H be a family of public-coin collision-resistant hash functions, as well as a family

of (2κ, ǫ)-good extractor,9 mapping 2Lsk + 2κ bits to κ bits. Let F1 and F2 be families

of puncturable pseudorandom functions, where F1 has input length 2Lsk + 3κ bits and

9The description of the hash function is the seed. On input seed and source, the extractor outputs a

distribution that is ǫ close to the uniform distribution if the source has min-entropy 2κ . Here we set ǫ to be

some negligible. The hash function is chosen from a family of functions, and once chosen, it is a deterministic

function.

762 D. Dachman-Soled et al.

Internal (hardcoded) state: Public key pk, keys K1, K2, and h.

On input secret key sk1; randomness u = (u1, u2).

– If F2(K2, u1) ⊕ u2 = (sk2, r
′) for (proper length) strings sk2, r

′ and u1 =
h(sk1, sk2, r

′), then output sk2.
– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1; x).

Fig. 1. Program update.

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 2. Program explain.

output length Lr bits, and it is as well an (Lr + κ, ǫ)-good unseeded extractor; F2 has

input length κ and output length Lsk+2κ . Here |u1| = κ and |u2| = Lsk+2κ, |r ′| = 2κ .

Define the algorithm TransformGen(1κ , pk) that on input the security parameter, a

public key pk and a circuit that implements PKE.Update(·) as follows:

– TransformGen samples K1, K2 as keys for the puncturable PRF as above, and

h ← H. Let P1 be the program as Fig. 1, and P2 as Fig. 2.

– Then it samples Pupdate ← diO(P1), and Pexplain ← diO(P2). It outputs

(Pupdate,Pexplain).

The iO variant. Essentially, the difference between the construction based on iO versus

public-coin diO is that the hash function H is replaced with an injective, puncturable

PRF, F3 : {0, 1}κ ×{0, 1}2Lsk+κ → {0, 1}4Lsk+3κ , which can be constructed from OWF

(see [47]). The iO-based construction is a simplified version of the deniable encryption

of the work [47], where our construction does not use a PRG in the Explain program. The

security proof relies directly on the puncturing technique on the key K3 with a condition

check. We elaborate on the details below.

– Instead of sampling a hash function h ← H, TransformGen samples an additional

PRF key K3 ← F.Gen(1κ).

– We modify program P1 in Fig. 1 by embedding an additional key, K3, and checking

whether u1 = F3(K3, sk1, sk2, r ′).
– We modify program P2 in Fig. 2, by embedding an additional key, K3, and setting

u1 = F3(K3, sk1, sk2, r).

– All input/output lengths of the programs and pseudorandom functions are adjusted

to be consistent with the fact that u1 now has length 4Lsk +3κ (whereas previously

it had length κ).

We now establish the following theorem.

Theorem 5. Let PKE be any public key encryption scheme with key update. Assume

diO (resp. iO) is a secure public-coin differing-inputs indistinguishable obfuscator

Leakage Resilience from Program Obfuscation 763

(resp. indistinguishable obfuscator) for the circuits required by the construction, F1, F2

are puncturable pseudorandom functions as above, and H is a family of public-coin

collision-resistant hash functions as above. Then the transformation TransformGen

(resp. TransformGen′) defined above is a secure explainable update transformation

for PKE as defined in Definition 10, which takes randomness u = (u1, u2) of length

L1 + L2, where L1 := κ, L2 := Lsk + 2κ (resp. L1 := 4Lsk + 3κ, L2 := Lsk + 2κ).

Looking at the big picture, recall that the entire secret state required for continually

updating the secret key consists of the current secret state, sk, and randomness, u =
(u1, u2), which together have total length Lsk + L1 + L2. Thus, when plugging in our

public-coin diO-based construction, we ultimately achieve leakage rate of
μ

2Lsk+2κ
=

μ
2Lsk

− o(1), where μ is the leakage rate of the underlying 2CLR public key encryption

scheme. On the other hand, when plugging in our iO-based construction, we achieve

leakage rate of
μ

6Lsk+5κ
= μ

6Lsk
− o(1).

Proof. Recall that to show that TransformGen satisfies property (a) of Definition 10,

we need to demonstrate that for any polynomial ρ(·), any pk, all sk ∈ Πpk, any Pupdate ∈
TransformGen(1κ , PKE.Update, pk), the following two distributions are statistically

close: {Pupdate(sk)} ≈ {PKE.Update(sk)}. Inspecting program Pupdate(sk), the above

follows in a straightforward manner from the following: (1) When u is chosen uniformly

at random, the probability that F2(K2, u1) ⊕ u2 = (sk2, r ′) and u1 = h(sk1, sk2, r ′)
is negligible and (2) when u is chosen uniformly at random, then x = F1(K1, (sk1, u))

is statistically close to uniform. For the analysis showing that (1) holds, see the analysis

of Hybrid 1. (2) holds since F1 is an (Lr + κ, ǫ)-good unseeded extractor.

Recall that to show that TransformGen satisfies property (b) of Definition 10, we

need to demonstrate that for any public key pk∗ and secret key sk∗ ∈ Πpk, the following

two distributions are computationally indistinguishable:

{(Pupdate,Pexplain, pk∗, sk∗, u∗)} ≈ {(Pupdate,Pexplain, pk∗, sk∗, e∗)},

where these values are generated by

1. (Pupdate,Pexplain) ← TransformGen(1κ , PKE.Update, pk∗),
2. u∗ = (u∗

1, u∗
2) ← {0, 1}Lsk+3κ (in the iO variant, u∗ = (u∗

1, u∗
2) ← {0, 1}3Lsk+4κ),

3. Set x∗ = F1(K1, sk∗||u∗), sk′ = Pupdate(sk∗; u∗). Then choose uniformly

random r∗ of length κ , and set e∗
1 = h(sk∗, sk′, r∗) (in the iO variant, e∗

1 =
F3(K3, sk∗, sk′, r∗)) and e∗

2 = F2(K2, e∗
1) ⊕ (sk′, r∗).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead of

computing sk′ = Pupdate(sk∗; u∗), we compute sk′ = PKE.Update(pk∗, sk∗; x∗):

1. (Pupdate,Pexplain) ← TransformGen(1κ , PKE.Update, pk∗),
2. u∗ = (u∗

1, u∗
2) ← {0, 1}Lsk+3κ (in the iO variant, u∗ = (u∗

1, u∗
2) ← {0, 1}3Lsk+4κ),

3. Set x∗ = F1(K1, sk∗||u∗), sk′ = PKE.Update(pk∗, sk∗; x∗), and choose uni-

formly random r∗ of length κ . Then, e∗
1 = h(sk∗, sk′, r∗) (in the iO variant,

e∗
1 = F3(K3, sk∗, sk′, r∗)) and e∗

2 = F2(K2, e∗
1) ⊕ (sk′, r∗).

764 D. Dachman-Soled et al.

Note that the only time in which this changes the experiment is when the values

(u∗
1, u∗

2) ← {0, 1}Lsk+3κ happen to satisfy F2(K2, u∗
1) ⊕ u∗

2 = (sk′, r ′) such that

u∗
1 = h(sk∗, sk′, r ′). For any fixed u∗

1, sk∗, sk′, and a random u2∗ , we know the

marginal probability of r ′ is still uniform given u∗
1, sk∗, sk′. Therefore, we have

Pru2∗[h(sk∗, sk′, r ′) = u∗
1] = Prr ′ [h(sk∗, sk′, r ′) = u∗

1] < 2−κ + ǫ. This is because

h is a (2κ, ǫ)-extractor, so the output of h is ǫ-close to uniform over {0, 1}κ , and a uni-

form distribution hits a particular string with probability 2−κ . Since we set ǫ to be some

negligible, the two distributions are only different with the negligible quantity.

The iO variant. We make the same modification as in the public-coin diO case and set

sk′ = PKE.Update(pk∗, sk∗; x∗). However, the analysis of the hybrid changes, as we

now describe: In the iO setting, the only time in which the above modification changes

the output of the experiment is when the values (u∗
1, u∗

2) ← {0, 1}3Lsk+4κ happen to

satisfy F2(K2, u∗
1) ⊕ u∗

2 = (sk′, r ′) such that u∗
1 = F3(K3, sk∗, sk′, r ′). The only way

the above can be satisfied is if u∗
1 is in the range of F3(K3, ·). Note that the range of

F3(K3, ·) has size 24Lsk+3κ , while u∗
1 is chosen independently and uniformly at random

from a domain of size 2Lsk + 2κ . This means that the probability that u∗
1 is in the range

of F3(K3, ·) is at most 22Lsk+κ

24Lsk+3κ = 2−2Lsk−2κ , which is negligible.

Hybrid 2: In this hybrid step, we modify the program in Fig. 1, puncturing key

K1 at points {sk∗||u∗} and {sk∗||e∗}, and adding a line of code at the beginning of the

program to ensure that the PRF is never evaluated at these two points. See Fig. 3. We

claim that with overwhelming probability over the choice of u∗, this modified pro-

gram has identical input/output as the program that was used in Hybrid 1 (Fig. 1). Note

that on input (sk∗, e∗) the output of the original program was already sk′ as defined

in Hybrid 1, so the outputs of the two programs are identical on this input. (This fol-

lows because e∗ anyway encodes sk′, so when the “If”-statement is triggered in the

program of Fig. 1, the output is sk′.) As long as u∗
1 and u∗

2 do not have the property

that F2(K2, u∗
1) ⊕ u∗

2 = (sk′, r ′) such that u∗
1 = h(sk∗, sk′, r ′), then the programs

have identical output on input (sk∗, u∗) as well. (This follows because sk′ is defined as

sk′ = Pupdate(sk∗; F1(K1, sk∗||u∗)) in the challenge game, which is also the output

of the program in Fig. 1 when u∗
1 and u∗

2 fail this condition.) As we argued in Hybrid

1, with very high probability, u∗ does not have this property. (We stress that u∗ is fixed

before we construct the obfuscated program described in Fig. 3, so with overwhelming

probability over the choice of u∗, the two programs have identical input output behav-

ior.) Indistinguishability of Hybrids 1 and 2 follows from the security of the obfuscation.

Note that this hybrid requires only the weaker notion of indistinguishability obfuscation.

The iO variant. The modification and security argument are identical, with the exception

that we require that u∗
1 and u∗

2 do not have the property that F2(K2, u∗
1)⊕ u∗

2 = (sk′, r ′)
such that u∗

1 = F3(K3, sk∗, sk′, r ′). We invoke the argument from the previous hybrid

to show that this is true with overwhelming probability over choice of u∗.

Hybrid 3: In this hybrid, we change the challenge game to use truly random x∗

when computing sk′ = PKE.Update(pk∗, sk∗; x∗) (instead of x∗ = F1(K1; sk∗||u∗)).
Security holds by a reduction to the pseudorandomness of F1 at the punctured point

(sk∗, u∗). More specifically, given an adversary A that distinguishes Hybrid 2 from

Hybrid 3 on values pk∗, sk∗, we describe an reduction B that attacks the security of the

Leakage Resilience from Program Obfuscation 765

Internal (hardcoded) state: Public key pk∗, keys

K̃1 = PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K2, sk′ (as defined in Hybrid 1)
and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output the value sk′.
– Else If F2(K2; u1)⊕u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1; x).

Fig. 3. Program update, as used in Hybrid 2.

Internal (hardcoded) state: Public key pk∗, keys K̃1 =

PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), K̃2 = PRF.Punct(K2, {u∗
1}, {e∗

1}), sk′ (as
defined in Hybrid 3) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output value sk′.
– Else If u1 = u∗

1 or u1 = e∗
1, let x = F1(K̃1, sk1||u). Output

sk2 = PKE.Update(pk∗, sk1; x).
– Else

– If F2(K2; u1) ⊕ u2 = (sk2, r
′) such that u1 = h(sk1, sk2, r

′), then output sk2.
– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1; x).

Fig. 4. Program update, as used in Hybrid 4.

puncturable PRF, F1. B generates u∗ at random and submits (sk∗, u∗) to his challenger.

He receives K̃1 = PRF.Punct(K1, {sk∗||u∗}), and a value x∗ as a challenge. B com-

putes sk′ = PKE.Update(pk∗, sk∗; x∗), chooses r∗ at random, and computes e∗ as in

the original challenge game. He creates Pupdate using K̃1 and sampling K2 honestly.

The same K2 is used for creating Pexplain. B obfuscates both circuits, which completes

the simulation of A’s view.

The iO variant. The modification and security argument are identical for the iO setting.

Hybrid 4: In this hybrid, we puncture K2 at both u∗
1 and e∗

1 , and modify the Update

program to output appropriate hardcoded values on these inputs. (See Fig. 4.) To prove

that Hybrids 3 and 4 are indistinguishable, we rely on security of public-coin differing-

inputs obfuscation and public-coin collision-resistant hash function. In particular, we

will show that suppose the hybrids are distinguishable, then we can break the security

of the collision-resistant hash function.

Consider the following sampler Samp(1κ) : outputs C0, C1 as the two update pro-

grams as in Hybrids 3 and 4, respectively, and it outputs an auxiliary input aux =
(pk∗, sk∗, sk′, u∗, e∗, K2, h, r∗) sampled as in the both hybrids. Note that aux includes

all the random coins of the sampler. Suppose there exists a distinguisher D for the two

hybrids, then there exists a distinguished D′ that distinguishes (diO(C0), aux) from

(diO(C1), aux). This is because given the challenge input, D′ can complete the rest of

the experiment either according to Hybrid 3 or Hybrid 4. Then by security of the diO,

we know there exists an adversary (extractor) B that given (C0, C1, aux) finds an input

766 D. Dachman-Soled et al.

such that C0 and C1 evaluate differently. However, this contradicts the security of the

public-coin collision-resistant hash function. We establish this by the following lemma.

Lemma 4. Assume h is sampled from a family of public-coin collision-resistant hash

function, (and (2κ, ǫ)-extracting) as above. Then for any ppt adversary, the probability

is negligible to find a differing-inputs given (C0, C1, aux) as above.

Proof. By examining the two circuits, we observe that the differing-inputs have the

following two forms: (s̄k, u∗
1, ū2) such that u∗

1 = h(s̄k, F2(K2; u∗
1) ⊕ ū2), (s̄k, ū2) �=

(sk∗, u∗
2); or (s̄k, e∗

1, ē2) such that e∗
1 = h(s̄k, F2(K2; e∗

1) ⊕ ē2), (s̄k, ē2) �= (sk∗, e∗
2).

This is because they will run enter the first Else IF in Hybrid 3 (Fig. 3), but enter the

modified line (the first Else IF) in Hybrid 4 (Fig. 4). We argue that both cases happen

with negligible probability; otherwise, security of the hash function can be broken.

For the first case, we observe that the collision resistance and (2κ, ǫ) extracting guar-

antee that the probability of finding an pre-image of a random value u∗
1 is small, even

given aux; otherwise, there is an adversary who can break collision resistance. For

the second case, we know that e∗
1 = h(sk∗, sk′, r∗) = h(s̄k, F2(K2; e∗

1) ⊕ ē2) =
h(s̄k, e∗

2 ⊕ (sk′, r∗)⊕ ē2). Since we know that (s̄k, ē2) �= (sk∗, e∗
2), we find a collision,

which again remains hard even given aux.

Thus, suppose there exists a differing-inputs finder A, we can define an adversary

B to break the collision-resistant hash function: On input h,B simulates the sampler

Samp with the h. Then it runs A to find a differing-inputs. Then according to the above

argument, either of the two cases will lead to finding a collision. �

The iO variant. The hybrid proceeds identically to the diO variant. To prove that Hybrids

3 and 4 are indistinguishable, we rely on the security of the indistinguishability obfus-

cator. In particular, we will show that the functionality of program update is identical

in the two hybrids. By examining the two circuits, we must show that if the event

(u1 = u∗
1 ∨u1 = e∗

1)∧ F2(k2; u1)⊕u2 = (sk2, r ′) such that u1 = F3(K3, sk1, sk2, r ′)
occurs then sk2 = PKE.Update(pk∗, sk1; x), where x = F1(K̃1, sk1||u). Indeed,

this is the only case where we enter the first Else IF in Hybrid 3 (Fig. 3), but enter

the modified line (the first Else IF) in Hybrid 4 (Fig. 4). To see that the above holds,

we consider two cases: u1 = u∗
1 and u1 = e∗

1 . First, if u1 = u∗
1 then, as argued

above, u1 is not in the range of F3(K3, ·) (with overwhelming probability over the

choice of u∗
1) and so the event cannot occur. Second, note that if u1 = e∗

1 then

u1 = F3(K3, sk∗, sk′, r∗). Since F3(K3, ·) is injective, if the above event occurs,

it means that sk1 = sk∗ and u2 = (sk′, r∗) ⊕ F2(k2; u1) = e∗
2 . This in turn

means that x = F1(K̃1, sk∗||e∗) = x∗. Therefore, by definition of sk′, we have that

sk2 = sk′ = PKE.Update(pk∗, sk∗; x∗) = PKE.Update(pk∗, sk1; x), as desired.

Hybrid 5: In this hybrid, we puncture K2 at both u∗
1 and e∗

1 , and modify the Explain

program to output appropriate hardcoded values on these inputs. (See Fig. 5.) Similar to

the argument for the previous hybrids, we argue that Hybrids 4 and 5 are indistinguishable

by security of the public-coin differing-inputs obfuscation and public-coin collision-

resistant hash function. Consider a sampler Samp(1κ): outputs C0, C1 as the two explain

programs as in Hybrids 4 and 5, respectively, and it outputs an auxiliary input aux =

Leakage Resilience from Program Obfuscation 767

Internal (hardcoded) state: key K̃2 = PRF.Punct(K2, {u∗
1}, {e∗

1}), u∗, e∗.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– If u∗
1 = h(sk1, sk2, r), output u∗. Else If e∗

1 = h(sk1, sk2, r), output e∗.
– Else, set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 5. Program explain, as used in Hybrid 5.

(pk∗, sk∗, sk′, u∗, e∗, K2, h, r∗) sampled as in the both hybrids (note that aux includes

all the random coins of the sampler). Similar to the above argument, suppose there exists a

distinguisher D that distinguishes Hybrids 4 and 5, then we can construct a distinguisher

D′ that distinguishes (diO(C0), aux) from (diO(C1), aux). This is because given the

challenging input, D′ can simulate the hybrids. Then by security of the diO, there exists

an adversary (extractor) B that can find differing-inputs. Now we want to argue that

suppose the h comes from a public-coin collision-resistant hash family, then no ppt

adversary can find differing-inputs. This leads to a contradiction.

Lemma 5. Assume h is sampled from a family of public-coin collision-resistant hash

function, (and (2κ, ǫ)-extracting) as above. Then for any ppt adversary, the probability

is negligible to find a differing-inputs given (C0, C1, aux) as above.

Proof. The proof is almost identical to that of Lemma 4. We omit the details. �

The iO variant. Program explain is modified with the following line: If

u∗
1 = F3(K3, sk1, sk2, r), output u∗. Else If e∗

1 = F3(K3, sk1, sk2, r), output e∗. The

proof is almost identical to that of the previous hybrid.

Hybrid 6: In this hybrid, we change both e∗
1 and e∗

2 to uniformly random. Hybrids

5 and 6 are indistinguishable by the security of the puncturable PRF F2, and by

the fact that h is (2κ, ǫ)-extracting. Clearly in this hybrid, the distributions of

{(Pupdate,Pexplain, pk∗, sk∗, u∗)} and {(Pupdate,Pexplain, pk∗, sk∗, e∗)} are identical.

From the indistinguishable arguments that the original game and Hybrid 6 are indistin-

guishable, we can argue that the distributions in the original game are indistinguishable.

This concludes the proof.

The iO variant. We must first puncture K3 at (sk∗, sk′, r∗). and modify both Update

and Explain so that whenever we check whether u1 = F3(K3, sk∗, sk′, r∗), we instead

check whether u1 = e∗
1 . Once we have done this, we can now proceed as in the diO

variant and switch both e∗
1 and e∗

2 to uniformly random. �

3.4. Extension to Digital Signatures

We have already demonstrated a compiler that upgrades any 2CLR public key encryption

scheme into one that is secure against leakage on update. The same results can be

translated to digital signature scheme.

768 D. Dachman-Soled et al.

Continual Consecutive Leakage Resilience for Digital Signature. Following the pre-

sentation in Subsect. 3.1, we can modify the security game and define continual consec-

utive leakage resilience for digital signature schemes. We say a digital signature scheme

is μ-leakage resilient against consecutive continual leakage (or μ-2CLR) if any proba-

bilistic polynomial-time attacker only has a negligible advantage (negligible in κ) in the

modified game.

Explainable Key-Update Transformation for Digital Signature Scheme. Follow-

ing the presentation in Subsect. 3.2, we can define explainable key update trans-

formation for digital signature scheme. We start with any digital signature scheme

SIG = SIG.{Gen, Sign, Verify, Update} that has some key update procedure. Then

we can follow Definition 10, and introduce a transformation (Pupdate,Pexplain) ←
TransformGen(1κ , SIG.Update, pk). This transformation will help us define a scheme

SIG′ = SIG′.{Gen, Sign, Verify, Update} with an explainable key update procedure.

– SIG′.Gen(1κ): compute (pk, sk) ← SIG.Gen(1κ).

Then compute (Pupdate,Pexplain) ← TransformGen(1κ , SIG.Update, pk).

Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– SIG′.Sign(sk′, m): output σ = SIG.Sign(sk′, m).

– SIG′.Verify(pk′, m, σ): parse pk′ = (pk,Pupdate,Pexplain). Then output b ←
SIG.Verify(pk, m, σ).

– SIG′.Update(sk′): output sk′′ ← Pupdate(sk′).

Similarly, we can show a theorem for the upgraded scheme SIG′.

Theorem 6. Let SIG = SIG.{Gen, Sign, Verify, Update} be a digital signature

scheme that is μ-2CLR (without leakage on update), and TransformGen a secure

explainable key update transformation for SIG. Then the transformed scheme SIG′ =
SIG′.{Gen, Sign, Verify, Update} described above is μ-CLR with leakage on key

updates.

The poof of the above theorem can exactly follow the proof of Theorem 4 and so we

omit the proof.

Instantiations. Finally, as in Subsect. 3.3, we can instantiate the explainable update

transformation via indistinguishability obfuscation or differing-inputs obfuscation, and

establish the same theorem for digital signature schemes.

Theorem 7. Let SIG be any digital signature scheme with key update. Assume

diO (resp. iO) is a secure public-coin differing-inputs indistinguishable obfuscator

(resp. indistinguishable obfuscator) for the circuits required by the construction, F1, F2

are puncturable pseudorandom functions as above, and H is a family of public-coin

collision-resistant hash functions as above. Then the transformation TransformGen

(resp. TransformGen′) defined above is a secure explainable update transformation for

SIG which takes randomness u = (u1, u2) of length L1 + L2, where L1 := κ, L2 :=
Lsk + 2κ (resp. L1 := 4Lsk + 3κ, L2 := Lsk + 2κ).

Leakage Resilience from Program Obfuscation 769

4. 2CLR from “Leakage-Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [12] (BKKV), which has been proved

CLR, can achieve 2CLR (with a slight adjustment in the scheme’s parameters). We note

that our focus on PKE here is justified by the fact that we show generically that any CLR

(resp. 2CLR) PKE scheme implies a CLR “one-way relation” (OWR) [21]; to the best of

our knowledge, such an implication was not previously known. Therefore, by the results

of Dodis et al. [21], this translates all our results about PKE to the signature setting as

well. We show that the approach of Dodis et al. [21] for constructing CLR OWRs can

be extended to 2CLR one-way relations, but we achieve weaker parameters this way.

Recall that in the work [12], to prove that their scheme is CLR, they show “ran-

dom subspaces are leakage resilient”. In particular, they show that for a random sub-

space X , the statistical difference between
(
X, f (v)

)
and
(
X, f (u)

)
is negligible, where

f is an arbitrary length-bounded function, v is a random point in the subspace, and

u is a random point in the whole space. Then by a simple hybrid argument, they

show that
(
X, f1(v0), f2(v1), . . . , ft (vt−1)

)
and
(
X, f1(u0), f2(u1), . . . , ft (ut−1)

)

are indistinguishable, where f1, . . . , ft are arbitrary and adaptively chosen length-

bounded functions, v0, v1, . . . , vt−1 are independent random points in the subspace,

and u0, u1, . . . , ut−1 are independent random points in the whole space. This lemma

plays the core role in their proof.

In order to show that their scheme satisfies the 2CLR security, we consider random

subspaces under “consecutive” leakage. That is, we want to show:

(
X, f1(v0, v1), f2(v1, v2), . . . , ft (vt−1, vt)

)

≈
(
X, f1(u0, u1), f2(u1, u2), . . . , ft (ut−1, ut)

)
,

for arbitrary and adaptively chosen fi ’s, i.e., each fi can be chosen after seeing the pre-

vious leakage values f1, . . . , fi−1. However, this does not follow by a hybrid argument

of
(
X, f (v)

)
≈
(
X, f (u)

)
, because in the 2CLR case each point is leaked twice. It is

not clear how to embed a challenging instance of (X, f (z)) into the larger experiment

while still being able to simulate the rest.

To handle this technical issue, we establish a new lemma showing random subspaces

are “consecutive” leakage resilient. With the lemma and a hybrid argument, we can

show that the above experiments are indistinguishable. Then we show how to use this

fact to prove that the scheme of BKKV is 2CLR.

Lemma 6. Let t, n, ℓ, d ∈ N, n ≥ ℓ ≥ 3d, and q be a prime. Let (A, X) ← Z
t×n
q ×

Z
n×ℓ
q such that A · X = 0, T, T ′ ← Rkd(Zℓ×d

q), U ← Z
n×d
q such that A · U = 0, (i.e.,

U is a random matrix in Ker(A)), and f : Z
t×n
q ×Z

n×2d
q → W be any function.10 Then

we have:

Δ
((

A, X, f (A, XT, XT ′), XT ′),
(

A, X, f
(

A, U, XT ′), XT ′)) ≤ ǫ,

10Note: Rk denotes rank. Here we use n as the dimension (different from [12] who used m) to avoid

overloading notation.

770 D. Dachman-Soled et al.

as long as |W | ≤ (1 − 1/q) · qℓ−3d+1 · ǫ2.

Proof. We will actually prove something stronger, namely we will prove, under the

assumptions of Lemma 6, that

Δ

((
A, X, f (A, X · T, X · T ′), X · T ′, T ′

)
,

(
A, X, f (A, U, X · T ′), X · T ′, T ′

))

≤ 1

2

√
3|W |

(1 − 1/q)qℓ−3d+1
< ǫ .

Note that this implies the lemma by solving for ǫ, after noting that ignoring the last

component in each tuple can only decrease statistical difference.

For the proof, we will apply Lemma 7 as follows. We will take hash function H to

be H : Z
n×ℓ
q × Z

ℓ×d
q → Z

n×d
q where HK (D) = K D (matrix multiplication), and take

the set Z to be Z
n×ℓ
q × Z

ℓ×d
q . Next we take random variable K to be uniform on Z

n×ℓ
q

(denoted as the matrix X), D to be uniform on Rkd(Zℓ×d
q), and finally Z = (A, XT ′, T ′)

where A is uniform conditioned on AX = 0, T ′ ∈ Rkd(Zℓ×d
q) is independent uniform.

We define U|Z as the uniform distribution such that AU = 0. This also means that U is

a random matrix in the kernel of A.

It remains to prove under these settings that

Pr
[
(D, D′, Z) ∈ BAD

]
≤ 1

(1 − 1/q)qℓ−3d+1

with BAD defined as in Lemma 7. For this, let us consider

Δ
(
(HK |Z

(T1), HK |Z
(T2)), (U|Z , U ′

|Z)
)

where Z = (A, XT ′, T ′) as defined above. The above statistical distance is zero as long

as the outcomes of T1, T2, T ′ are all linearly independent. This is so because ℓ ≥ 3d.

Now, by a standard formula the probability that T1, T2, T ′ have a linear dependency is

bounded by 1
(1−1/q)qℓ−3d+1 , and we are done. �

We note that this lemma is slightly different that the original lemma in the work [12]:

the leakage function considered here also takes in a public matrix A, which is used as

the public key in the system. We observe that both our work and [12] need this version

of the lemma to prove security of the encryption scheme.

We actually prove Lemma 6 as a consequence of a new generalization of the Crooked

Leftover Hash Lemma (LHL) [6,26] we introduce (to handle hash functions that are

only pairwise independent if some bad event does not happen), as follows.

Lemma 7. Let H : K × D → R be a hash function and (K , Z) be joint random

variables over (K,Z) for the set K and some set Z . Define the following set

Leakage Resilience from Program Obfuscation 771

BAD =
{(

d, d ′, z
)

∈ D × D × Z : Δ
(
(HK |Z=z

(d), HK |Z=z
(d ′)),

(U|Z=z, U ′
|Z=z)
)

> 0
}
, (1)

where U|Z=z, U ′
|Z=z denote two independent uniform distributions over R conditioned

on Z = z, and K |Z=z is the conditional distribution of K given Z = z. We note that

R might depend on z, so when we describe a uniform distribution over R, we need to

specify the condition Z = z.

Suppose D and D′ are i.i.d. random variables over D, (K , Z) are random variables

over K × Z satisfying Pr
[
(D, D′, Z) ∈ BAD

]
≤ ǫ′. Then for any set S and function

f : R × Z → S it holds that

Δ((K , Z , f (HK (D), Z)), (K , Z , f (U|Z , Z))) ≤ 1

2

√
3ǫ′ |S| .

Proof. The proof is an extension of the proof of the Crooked LHL given in [6]. First,

using Cauchy–Schwarz and Jensen’s inequality we have

Δ((K , Z , f (HK (D), Z)), (K , Z , f (U|Z , Z)))

≦
1

2

√√√√|S| Ek,z

[∑

s

(Pr [f (Hk(D), z) = s] − Pr
[

f (U|Z=z, z) = s
]
)2

]
,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over (k, z)

drawn from (K , Z). Thus, to complete the proof it suffices to prove the following lemma.

Lemma 8.

Ek,z

[∑

s

(
Pr [f (Hk(D), z) = s] − Pr

[
f (U|Z=z, z) = s

])2
]

≤ 3ǫ′ . (2)

Proof. By the linearity of expectation, we can express Eq. 2 as:

Ek,z

∑

s

Pr [f (Hk(D), z) = s]2

−2Ek,z

∑

s

Pr [f (Hk(D), z) = s]Pr
[

f (U|Z=z, z) = s
]

+EzCol(f (U|Z=z, z)), (3)

where U|Z=z is uniform on R conditioned on Z = z, and Col is the collision probability

of its input random variable. Note that since f (U|Z=z, z) is independent of k, we can

drop it in the third term. In the following, we are going to calculate bounds for the first

two terms.

772 D. Dachman-Soled et al.

For any s ∈ S, we can write Pr [f (Hk(D), z) = s] =
∑

d Pr [D = d]δ f (Hk (d),z),s

where δa,b is 1 if a = b and 0 otherwise, and thus

∑

s

Pr [f (Hk(D), z) = s]2 =
∑

d,d ′
Pr [D = d]Pr

[
D = d ′]δ f (Hk (d),z), f (Hk (d

′),z) .

So we have

Ek,z

∑

s

Pr [f (Hk(D), z) = s]2

= Ek,z

⎡
⎣∑

d,d ′
Pr [D = d]Pr

[
D = d ′]δ f (Hk(d),z), f (Hk (d

′),z)

⎤
⎦

= Ez

⎡
⎣∑

d,d ′
Pr [D = d]Pr

[
D = d ′]Ek

[
δ f (Hk(d),z), f (Hk (d

′),z)
]
⎤
⎦

≤
∑

z,d,d ′ /∈BAD

Pr [Z = z]Pr [D = d]Pr
[

D = d ′]Ek

[
δ f (Hk (d),z), f (Hk(d

′),z)
]
+ ǫ′

= Ez

[
Col(f (U|Z=z, z))

]
+ ǫ′, (4)

where BAD is defined as in Eq. (1) from Lemma 7. The inequality holds because, by

our definition of BAD, if (z, d, d ′) /∈ BAD, (Hk(d), Hk(d
′)) are distributed exactly as

two uniformly chosen elements (conditioned on Z = z), and because Pr[(z, d, d ′) ∈
BAD] ≤ ǫ′.

By a similar calculation, we have:

Ek,z

∑

s

Pr [f (Hk(D), z) = s]Pr
[

f (U|Z=z, z) = s
]

≥ Ez

[
Col(f (U|Z=z, z))

]
− ǫ′ . (5)

For the same reason, Hk(D) is uniformly random except for the bad event, whose

probability is bounded by ǫ′.
Putting things together, the inequality in Eq. 2 follows immediately by plugging the

bounds in Eqs. 4 and 5. This concludes the proof. �

Here we describe the BKKV encryption scheme and show it is 2CLR secure. We begin

by presenting the main scheme in BKKV, which uses the weaker linear assumption in

bilinear groups, but achieves a worse leakage rate (that can tolerate roughly 1/8 · |sk| −
o(κ)). In that work [12], it is also pointed out that under the stronger SXDH assumption

in bilinear groups, the rate can be improved to tolerate roughly 1/4 · |sk| − o(k), with

essentially the same proof. The same argument also holds in the 2CLR setting. To avoid

repetition, we just describe the original scheme in BKKV and prove that it is actually

2CLR under the linear assumption in bilinear groups.

Leakage Resilience from Program Obfuscation 773

– Parameters. Let G, GT be two groups of prime order p such that there exists a

bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a

generator of GT). An additional parameter ℓ ≥ 7 is polynomial in the security

parameter. (Setting different ℓ will enable a trade-off between efficiency and the

rate of tolerable leakage). For the scheme to be secure, we require that the linear

assumption holds in the group G, which implies that the size of the group must be

super-polynomial, i.e., p = κω(1).

– Key generation. The algorithm samples A ← Z
2×ℓ
p , and Y ← Ker2(A), i.e.,

Y ∈ Z
ℓ×2
p can be viewed as two random (linearly independent) points in the kernel

of A. Then it sets pk = g A, sk = gY . Note that since A is known, Y can be sampled

efficiently.

– Key update. Given a secret key gY ∈ Gℓ×2, the algorithm samples R ←
Rk2(Z

2×2
p) and then sets sk′ = gY ·R .

– Encryption. Given a public key pk = g A, to encrypt 0, it samples a random r ∈ Z
2
p

and outputs c = gr T ·A. To encrypt 1, it just outputs c = guT
where u ← Z

ℓ
p is a

uniformly random vector.

– Decryption. Given a ciphertext c = gvT
and a secret key sk = gY , the algorithm

computes e(g, g)v
T ·Y . If the result is e(g, g)0, then it outputs 0, otherwise 1.

Then we are able to achieve the following theorem:

Theorem 8. Under the linear assumption, for every ℓ ≥ 7, the encryption scheme

above is μ-bit leakage resilient against two-key continual and consecutive leakage,

where μ = (ℓ−6)·log p
2

− ω(κ). Note that the leakage rate would be
μ

|sk|+|sk| ≈ 1/8, as

ℓ is chosen sufficiently large.

Proof. The theorem follows directly from the following lemma:

Lemma 9. For any t ∈ poly(κ), r ← Z
2
p, A ← Z

2×ℓ
p , random Y ∈ Ker2(A), and

polynomial sized functions f1, f2, . . . , ft where each fi : Z
ℓ×2
p × Z

ℓ×2
p → {0, 1}μ

and can be adaptively chosen (i.e., fi can be chosen after seeing the leakage values of

f1, . . . , fi−1), the following two distributions, D0 and D1, are computationally indis-

tinguishable:

D0 = (g, g A, gr T ·A, f1(sk0, sk1), . . . ft (skt−1, skt))

D1 = (g, g A, gu, f1(sk0, sk1), . . . ft (skt−1, skt)),

where sk0 = gY and ski+1 is the updated key from ski using random coins Ri ←
Rk2(Z

2×2
p) as defined in the key update procedure.

Basically, the distribution D0 is the view of the adversary when given an encryption

of 0 as the challenge ciphertext and continual leakage of the secret keys; D1 is the

same except the challenge ciphertext is an encryption of 1. Our goal is to show that no

polynomial sized adversary can distinguish between them.

We show the lemma in the following steps:

774 D. Dachman-Soled et al.

1. We first consider two modified experiment D′
0 and D′

1 where in these experiments,

all the secret keys are sampled independently, i.e., sk′
i+1 ← Ker2(A). In other

words, instead of using a rotation of the current secret key, the update procedure

re-samples two random (linearly independent) points in the kernel of A. Denote

D′
b = (g, g A, gz, f1(sk′

0, sk′
1), . . . ft (sk′

t−1, sk′
t)) for gz is sampled either from

gr T ·A or gu depending on b ∈ {0, 1}. Intuitively, the operations are computed in the

exponent, so the adversary cannot distinguish between the modified experiments

from the original ones. We formally prove this using the linear assumption.

2. Then we consider the following modified experiments: for b ∈ {0, 1}, define

D′′
b = (g, g A, gz, f1(g

u0 , gu1), f2(g
u1 , gu2), · · · , ft (g

ut−1, gut)),

where the distribution samples a random X ∈ Z
ℓ×(ℓ−3)
p such that A · X = 0; then

it samples each ui = X · Ti for Ti ← Rk2(Z
(ℓ−3)×2
p); finally, it samples z either as

r T · A or uniformly random as in D′
b. We then show that D′′

b is indistinguishable

from D′
b using the new geometric lemma.

3. Finally, we show that D′′
0 ≈ D′′

1 under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10. For b ∈ {0, 1}, Db is computationally indistinguishable from D′
b.

To show this lemma, we first establish a lemma:

Lemma 11. Under the linear assumption, (g, g A, gY , gY ·U) ≈ (g, g A, gY , gY ′
),

where A ← Z
2×ℓ
p , Y, Y ′ ← Ker2(A), and U ← Rk2(Z

2×2
p).

Suppose there exists a distinguisher A that breaks the above statement with non-

negligible probability, then we can construct B that can break the linear assumption (the

matrix form). In particular, B distinguishes (g, gC , gC ·U) from (g, gC , gC ′
) where C

and C ′ are two independent and uniformly random samples from Z
(ℓ−2)×2
p , and U is

uniformly random matrix from Z
2×2
p . Note that when p = κω(1) (this is required by

the linear assumption), then with overwhelming probability, (C ||C ′) is a rank 4 matrix,

and (C ||C · U) is a rank 2 matrix. The linear assumption is that no polynomial-time

adversary can distinguish the two distributions when given in the exponent.

B does the following on input (g, gC , gZ), where Z is either C · U or a uniformly

random matrix C ′:

– B samples a random rank 2 matrix A ∈ Z
2×ℓ
p . Then B computes an arbitrary basis

of Ker(A) (note that Ker(A) = {v ∈ Z
ℓ
p : A · v = 0}), denoted as X . By the

rank-nullity theorem (see any linear algebra textbook), the dimension of Ker(A)

plus Rk(A) is ℓ. So we know that X ∈ Z
ℓ×(ℓ−2)
p , i.e., X contains (ℓ − 2) vectors

that are linearly independent.

– B computes gX ·C and gX ·Z . This can be done efficiently given (gC , gZ) and X in

the clear.

– B outputs A(g, g A, gX ·C , gX ·Z).

Leakage Resilience from Program Obfuscation 775

We observe that when p = κω(1), the distribution of A is statistically close to a

random matrix, and U is statistically close to a random rank 2 matrix. Then it is not hard

to see that gX ·C is identically distributed to gY , and gX ·Z is distributed as g(X ·C)·U if

Z = C · U , and otherwise as gY ′
. So B can break the linear assumption with probability

essentially the same as that of A. This completes the proof of the lemma.

Then Lemma 10 can be proved using the lemma via a standard hybrid argument.

We show that D0 ≈ D′
0 and the other one can be shown by the same argument. For

i ∈ [t + 1], define hybrids Hi as the experiment as D0 except the first i secret keys

are sampled independently, as D′
0; the rest are sampled according to rotations, as D0.

It is not hard to see that H1 = D0, Ht+1 = D′
0, and Hi ≈ Hi+1 using the lemma. The

argument is obvious and standard, so we omit the detail.

Then we recall the modified distribution D′′
b : for b ∈ {0, 1},

D′′
b = (g, g A, gz, f1(g

u0 , gu1), f2(g
u1 , gu2), · · · , ft (g

ut−1, gut)),

where the distribution samples a random X ∈ Z
ℓ×(ℓ−2)
p such that A · X = 0; then it

samples each ui = X · Ti for Ti ← Rk2(Z
(ℓ−2)×2
p), and z is sampled either r T · A or

uniformly random. We then establish the following lemma.

Lemma 12. For b ∈ {0, 1}, D′
b is computationally indistinguishable from D′′

b .

We prove the lemma using another hybrid argument. We prove that D′
0 ≈ D′′

0 , and

the other follows from the same argument. We define hybrids Qi for i ∈ [t] where in

Qi , the first i secret keys (the exponents) are sampled randomly from Ker2(A) (as D′
0),

and the rest secret keys (the exponents) are sampled as X · T (as D′′
0). Clearly, Q0 = D′′

0

and Qt+1 = D′
0. Then we want to show that Qi is indistinguishable from Qi+1 using

the extended geometric lemma (Lemma 6).

For any i ∈ [t +1], we argue that suppose there exists an (even unbounded) adversary

that distinguishes Qi from Qi+1 with probability better than ǫ, then there exist a leakage

function L and an adversary B such that B can distinguish
(

A, X, L(A, X ·T, X ·T ′), X ·

T ′
)

from
(

A, X, L(A, U, X · T ′), X · T ′
)

in Lemma 6 with probability better than

ǫ − negl(κ) (dimensions will be set later). We will set the parameters of Lemma 6 such

that the two distributions have negligible statistical difference; thus ǫ can be at most a

negligible quantity.

Now we formally set the dimensions: let X be a random matrix in Z
ℓ×(ℓ−3); T, T ′

be two random rank 2 matrices in Z
(ℓ−3)×2
p , i.e., Rk2

(
Z

(ℓ−3)×2
p

)
; L : Z

ℓ×2
p × Z

ℓ×2
p →

{0, 1}2μ; recall that 2μ = (ℓ − 6) · log p − ω(κ), and thus |L| ≤ pℓ−6 · κ−ω(1). By

Lemma 6, for any (even computationally unbounded) L , we have

Δ

((
A, X, L(A, X · T, X · T ′), X · T ′

)
,

(
A, X, L(A, U, X · T ′), X · T ′

))
< κ−ω(1) = negl(κ).

776 D. Dachman-Soled et al.

Let g be a random generator of G, and ω is some randomness chosen uniformly. We

define a particular function L∗, with g, ω hardwired, as follows: L∗(A, w, v) on input

A, w, v does the following:

– It first samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets

sk j = gY j for j ∈ [i − 1].
– It simulates the leakage functions, adaptively, obtains the values

f1(sk0, sk1), . . . , fi−1(ski−2, ski−1), and obtains the next leakage function fi .

– It computes fi (ski−1, gw), and then obtains the next leakage function fi+1.

– Finally it outputs fi (ski−1, gw)|| fi+1(g
w, gv).

Recall that fi , fi+1 are two leakage functions with μ bits of output, so L∗ has 2μ bits

of output. Now we construct the adversary B as follows:

– Let g be the random generator, ω be the random coins as stated above, and L∗ be the

function defined above. Then B gets input (A, X, L∗(A, Z , X · T ′), X · T ′) where

Z is either uniformly random or X · T .

– B samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets sk j =
gY j for j ∈ [i−1]. We note that the secret keys (in the first i−1 rounds) are consistent

with the values used in the leakage function for they use the same randomness ω.

– B sets ski+2 = gX ·T ′
.

– B samples Ti+3, . . . , Tt+1 ← Rk2(Z
(ℓ−3)×2
p) and sets sk j = gX ·T j for j ∈ {i +

3, . . . , t + 1}.
– B outputs A

(
g A, gz, f1(sk0, sk1), f2(sk1, sk2), · · · , fi−1(ski−2, ski−1),

L∗(Z , X · T ′), fi+2(ski+2, sk′
i+3), . . . , ft (sk′

t , sk′
t+1)

)
.

Then it is not hard to see that if Z comes from the distribution XT , then the simulation

of B and L∗ distributes as Qi , and otherwise Qi−1. Thus, suppose A can distinguish Qi

from Qi+1 with non-negligible probability ǫ, then B can distinguish the two distributions

with a non-negligible probability. This contradicts Lemma 6.

Finally, we show that D′′
0 is computationally indistinguishable from D′′

1 under the

linear assumption.

Lemma 13. Under the linear assumption, the distributions D′′
0 and D′′

1 are computa-

tionally indistinguishable.

We use the same argument as the work [12]. In particular, we will prove that suppose

there exists an adversary A that distinguishes D′′
0 from D′′

1 , then there exists an adversary

B that distinguishes the distributions {gC : C ← Z
3×3
p } and {gC : C ← Rk2(Z

3×3
p)}.

We assume that the second distribution samples two random rows, and then sets the third

row as a random linear combination of the first two rows. As argued in the work [12],

this assumption is without loss of generality.

Now we describe the adversary B. B on input gC does the following.

– B samples a random matrix X ← Z
ℓ×(ℓ−3)
p , and a random matrix B ← Z

3×ℓ
p such

that B · X = 0.

– B computes gC B , and sets its first two rows as g A and the last row as gz .

– B samples T1, . . . , Tt ← Rk2(Z
(ℓ−3)×2
p), and sets ski = gXTi for i ∈ [t].

Leakage Resilience from Program Obfuscation 777

– B outputs A(g, g A, gz, f1(sk0, sk1), . . . , ft (skt−1, skt)).

As argued in the work [12], if C is uniformly random, then (A, z) is distributed

uniformly as D′′
1 . If C is of rank 2, then (A, z) is distributed as (A, r T A) for some

random r ∈ Z
2
p as D′′

0 . Thus, suppose A can distinguish D′′
0 from D′′

1 with non-negligible

probability, then B breaks the linear assumption with non-negligible probability.

Lemma 9 (D0 ≈ D1) follows directly from Lemmas 10, 12, and 13. This suffices to

prove the theorem. We present the proofs of Lemmas 10, 12, and 13.

5. Leakage-Resilient PKE from Obfuscation

5.1. Making Sahai–Waters PKE Leakage-Resilient

We show that by modifying the Sahai–Waters (SW) public key encryption scheme [47]

in two simple ways, the scheme already becomes non-trivially leakage resilient in the

one-time, bounded setting. Recall that in this setting, the adversary, after seeing the

public key and before seeing the challenge ciphertext, may request a single leakage

query of length L bits. We require that semantic security hold, even given this leakage.

Our scheme can tolerate an arbitrary amount of one-time leakage. Specifically, for

any L = L(κ) = poly(κ), we can obtain a scheme which is L-leakage resilient by

setting the parameter ρ in Fig. 6 depending on L . However, our leakage rate is far from

optimal, since the size of the secret key, sk, grows with L . Indeed, the result of this

section is subsumed by the work of Hazay et al. [35]. We view this section as a warm-

up; in Sect. 5.2, we will show how to further modify the construction to achieve optimal

leakage rate, though, we rely upon much stronger assumptions than those of Hazay et

al. [35].

At a high-level, we modify SW in the following ways: (1) Instead of following the

general paradigm of encrypting a message m by xoring with the output of a PRF, we

first apply a strong randomness extractor Ext to the output of the PRF and then xor

with the message m; (2) we modify the secret key of the new scheme to be an iO of

the underlying decryption circuit. Recall that in SW, decryption essentially consists of

evaluating a puncturable PRF. In our scheme, sk consists of an iO of the puncturable

PRF, padded with poly(L) bits.

We show that, even given L bits of leakage, the attacker cannot distinguish Ext(y)

from random, where y is the output of the PRF on a fixed input t∗. This will be sufficient

to prove security. We proceed by a sequence of hybrids: First, we switch sk to be an

obfuscation of a circuit which has a PRF key punctured at t∗ and a point function t∗ → y

hardcoded. On input t �= t∗, the punctured PRF is used to compute the output, whereas on

input t∗, the point function is used. Since the circuits compute the same function and—

due to appropriate padding—they are both the same size, security of the iO implies that

an adversary cannot distinguish the two scenarios. Next, just as in SW, we switch from

t∗ → y to t∗ → y∗, where y∗ is uniformly random of length L + Lmsg + 2 log(1/ǫ)

bits; here, we rely on the security of the punctured PRF. Now, observe that since y∗ is

uniform and since Ext is a strong extractor for inputs of min-entropy Lmsg + 2 log(1/ǫ)

and output length Lmsg, Ext(y∗) looks random, even under L bits of leakage (Figs. 7,

8).

778 D. Dachman-Soled et al.

Encryption scheme E = (E .Gen, E .Enc, E .Dec) using obfuscator iO and PRG

G.

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute k ← PRF.Gen(1κ), where PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ. Let Ck be
the circuit described in Figure 7, and let CEnc ← iO(Ck).
Let Ck,κ+ρ be the circuit described in Figure 8, and let CDec ← iO(Ck,κ+ρ).
Output pk = (CEnc) and sk = (CDec).

Encryption: c ← E .Enc(pk, m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w, Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and
Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(t).
If y �= ⊥, output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥.

Fig. 6. One-time, bounded leakage encryption scheme, E.

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k, G(r)), where G is the same PRG used in E .Enc.

Fig. 7. This program Ck is obfuscated using iO and placed in the public key to be used for encryption.

Internal (hardcoded) state: k.

On input: t

– Output z = PRF.Eval(k, t).

Fig. 8. The circuit above is padded with poly(κ + ρ) dummy gates to obtain the circuit Ck,κ+ρ . Ck,κ+ρ is

then obfuscated using iO and placed in the secret key.

Theorem 9. Assume

– PRG G : {0, 1}κ → {0, 1}ρ is a pseudorandom generator with output length

ρ ≥ 2κ .

– PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ is a puncturable pseudorandom function.

– iO is indistinguishability obfuscator for circuits in this scheme.

– Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg is a (Lmsg + 2 log(1/ǫ), ǫ)-strong extractor,

where ǫ = negl(κ).

Then E is L-leakage resilient against one-time key leakage where

L = ρ − 2 log(1/ǫ) − Lmsg

Note that in the above theorem statement, ρ can be increased arbitrarily while all

other parameters remain fixed. Therefore, to achieve an arbitrary amount, L , of leakage,

Leakage Resilience from Program Obfuscation 779

we fix Lmsg and ǫ and then set ρ := L + 2 log(1/ǫ) + Lmsg. Additionally, note that

extractors that satisfy the requirements of Theorem 9 can be constructed via the Leftover

Hash Lemma (c.f. [36]).

In order to prove Theorem 9, we prove (in Lemma 14) that even under leakage, it is

hard for any ppt adversary A to distinguish the output of the extractor, Ext from uniform

random. Given this, Theorem 9 follows immediately.

Lemma 14. For every ppt leaking adversary A, who is given oracle access to a leakage

oracle O and may leak at most ρ − 2 log(1/ǫ) − Lmsg bits of the secret key, there exist

random variables pk′, s̃k such that:

(
pk, t, w, Ext(y, w), f (sk) ← A

O(·)(pk)

)

c
≈
(
pk′, Uρ, w, ULmsg , f (s̃k) ← A

O(·)(pk′)
)

where y = CDecctdummy, (t = G(r)) and the distributions are taken over coins of A

and choice of (pk, sk) ← E .Gen(1κ), w, r and choice of pk′, s̃k, w, respectively.

We prove the lemma via the following sequence of hybrids: Note that Hybrids 1, 2 are

essentially identical to the Sahai–Waters hybrids. We differ from Sahai–Waters when

we modify the secret key in Hybrids 3 and 4.

Hybrid 0: This hybrid is identical to the real game.

Let DA
H0

denote the distribution (pk, t, w, Ext(y, w), f (sk) ← AO(·)(pk)) as in the

left side of Lemma 14.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom

t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ .

Let DA
H1

denote the distribution (pk, t∗, w, Ext(y, w), f (sk) ← AO(·)(pk)) where

y = CDec(t
∗) and the distribution is taken over coins of A, choice of (pk, sk), w, t∗ as

described above (Fig. 9).

Claim 1. For every ppt adversary A,

D
A
H0

c
≈ D

A
H1

.

Proof. The proof is by reduction to the security of the pseudorandom generator G.

Assume toward contradiction that there exists a ppt adversary A, a corresponding ppt

distinguisher D and a polynomial p(·) such that for infinitely many κ, D distinguishes

DA
H0

and DA
H1

with probability at least 1/p(κ). We construct a ppt adversary S that

distinguishes the output of the PRG from uniform random with probability at least

1/p(κ), for infinitely many κ . S does the following: S runs E .Gen(1κ) honestly to

generate (pk, sk). S hands pk to A and responds to leakage query f by applying the

leakage function directly to sk to compute f (sk). Upon receiving its challenge t ′ as

the external PRG challenge, S sets y = CDec(t
′), hands (pk, t ′, w, Ext(y, w), f (sk))

780 D. Dachman-Soled et al.

Internal (hardcoded) state: k̃ = PRF.Punct(k, t∗).

On input: r

– Output z = PRF.Eval(k, G(r)), where G is the same PRG used in E .Enc.

Fig. 9. Program Ck̃ . This program replaces Ck . It is obfuscated and placed in the public key to be used for

encryption.

to the distinguisher D, and outputs whatever D does. The reader can verify that S’s

distinguishing advantage is the same as D’s. �

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in CEnc

with a punctured key, k̃ = PRF.Punct(k, t∗), and denote it as C ′
Enc.

We denote the resulting public key by pk′.
Let DA

H2
denote the distribution

(
pk′, t∗, w, Ext(y, w), f (sk) ← AO(·)(pk′)

)
where

y = CDec(t
∗) and the distribution is taken over coins of A, and choice of (pk′, sk), w, t∗

as described above.

Claim 2. For every ppt adversary A,

D
A
H1

c
≈ D

A
H2

.

Proof. The proof is by a reduction to the security of the indistinguishability obfuscation.

The main observation is that with all but negligible probability, t∗ is not in the range

of the PRG , in which case CEnc and the modified circuit C ′
Enc used in Hybrid 2 have

identical behavior. Thus, with high probability for all inputs neither program can call

on PRF.Punct(k, t∗). Therefore, puncturing t∗ out from the key k will not effect the

input/output behavior. Therefore, if there is a difference in advantage, we can create an

algorithm B that breaks the security of indistinguishability obfuscation.

B runs as the challenger, but where t∗ is chosen at random. When it is to create

the obfuscated program, it submits both programs C0 = Ck and C1 = Ck̃ to an iO

challenger. If the iO challenger chooses the first, then we are in Hybrid 1. If it chooses

the second, then we are in Hybrid 2. Any adversary with non-negligible advantages in

the two hybrids leads to B as an attacker on iO security. �

Hybrid 3: This hybrid is the same as Hybrid 2 except we replace CDec = iO(Ck,κ+ρ)

with C ′
Dec = iO(C ′

k̃
), where C ′

k̃
is specified in Fig. 10. Note that we puncture k at the

challenge point t∗. We denote by sk′ the resulting secret key.

Let DA
H3

denote the distribution
(
pk′, t∗, w, Ext(y, w), f (sk′) ← AO(·)(p̂k)

)
where

y = C ′
Dec(t∗) and the distribution is taken over coins of A, and choice of (pk, sk′), w, t∗

as described above.

Claim 3. For every ppt adversary A,

D
A
H2

c
≈ D

A
H3

.

Leakage Resilience from Program Obfuscation 781

Internal (hardcoded) state: (t∗, β = PRF.Eval(k, t∗)), k̃ = PRF.Punct(k, t∗).

On input: t

– If t = t∗, output β.
– Otherwise, output PRF.Eval(k, t).

Fig. 10. Program C ′
k̃
. This program replaces Ck,κ+ρ . It is obfuscated and placed in the secret key.

Proof. The proof is by a reduction to the security of the indistinguishability obfus-

cation. The main observation is that the size of the circuit does not change since the

description of Ck,κ+ρ is padded with poly(κ + ρ) gates (for appropriate poly). Thus,

Ck,κ+ρ and C ′
k̃

are the same size. Moreover, puncturing t∗ out from the key k will

not effect the input/output behavior since on input t∗ we output the hardcoded value

β = PRF.Eval(k, t∗). Therefore, if there is a difference in advantage, we can create an

algorithm B that breaks the security of indistinguishability obfuscation.

B runs as the challenger, but where t∗ is chosen at random. When it is to create the

obfuscated program it submits both programs C0 = Ck,κ+ρ and C1 = C ′
k̃

to an iO

challenger. If the iO challenger chooses the first then we are in Hybrid 1. If it chooses

the second then we are in Hybrid 2. Any adversary with non-negligible advantages in

the two hybrids leads to B as an attacker on iO security. �

Hybrid 4: This hybrid is the same as Hybrid 3 except we replace the hardcoded β with

y∗, where y∗ is uniformly random. We denote by s̃k the resulting secret key. Note that

the public key pk′ remains the same.

Let DA
H4

denote the distribution
(
pk′, t∗, w, Ext(y∗, w), f (s̃k) ← AO(·)(pk′)

)
where

y∗ = C ′
Dec(t

∗) and the distribution is taken over coins of A, and choice of

(pk′, s̃k), w, t∗ as described above.

Claim 4. For every ppt adversary A,

D
A
H3

c
≈ D

A
H4

.

Proof. The proof is through a reduction to the security of the puncturable PRF. Recall,

the security notion of puncturable PRFs states that, given PRF.Punct(k, t∗), an adver-

sary cannot distinguish PRF.Eval(k, t∗) from random. The reduction is straightforward:

to break the security of the PRF,S generates t∗ at random and submits it to his chal-

lenger. He receives PRF.Punct(k, t∗), along with either y∗ = PRF.Eval(k, t∗) or

y∗ ← {0, 1}ρ as a challenge. He uses y∗, and samples all the remaining necessary

keys for simulating p̂k and ŝk. He chooses w at random and computes Ext(y∗, w). He

answers leakage queries on s̃k honestly. The reader can verify that S’s advantage is the

same as A’s advantage in distinguishing the two hybrids. �

Claim 5.

D
A
H4

s
≈
(
pk′, Uρ, w, ULmsg , f (s̃k) ← A

O(·)(p̃k)

)

Note that the right side above is the same as the right side of Lemma 14

782 D. Dachman-Soled et al.

Proof. We claim that the min-entropy of y∗ conditioned on pk′, f (s̃k) is at least Lmsg+
2 log(1/ǫ). Note that y∗ initially has min-entropy ρ since it is chosen uniformly at

random. Thus, leaking ρ − 2 log(1/ǫ) − Lmsg number of bits of the secret key reduces

y∗’s min-entropy by at most ρ − 2 log(1/ǫ) − Lmsg. Therefore, y∗ maintains min-

entropy at least Lmsg + 2 log(1/ǫ). and so the claim follows by the properties of the

strong extractor, Ext. �

This concludes the proof of Lemma 14.

5.2. Improving the Leakage Rate

In this section, we show how to modify the previous construction to achieve optimal

leakage rate. The key observation is that the leakage rate tolerated by the previous

construction is low because the entire obfuscated circuit iO(Ck,κ+ρ) must be stored in

the secret key. Ideally, since the circuit is obfuscated, we would like to put it in the public

key. However, this cannot possibly work since anyone can then decrypt the challenge

ciphertext. Therefore, we store a collision-resistant hash h(ctdummy) in the obfuscated

circuit, and include a ciphertext encrypted using a symmetric key encryption scheme,

ctdummy, in the secret key: the circuit will only decrypt if the user provides a proper

pre-image to the hardcoded value h(ctdummy). This scheme seems to preserve semantic

security, but we must prove security in the LR setting. Specifically, we must show that

even when leaking 1 − o(1)-fraction of ctdummy, the adversary cannot find a valid input

to the obfuscated circuit. To prove this, the idea is that in the hybrids, we switch ctdummy

from a “dummy input” to an encryption of the point function t∗ → y∗, where y∗ is

random. The obfuscated circuit will also be changed (as in the proof of the previous

construction) so that on input t∗, it outputs the output of the point function. Note that

even under leakage, y∗ has high min-entropy and thus Ext(y∗) will still look random.

Finally, we note that in order for the argument to work, we must now rely on public-coin

differing-inputs obfuscation, since in the hybrid arguments the obfuscated circuits in

the public key will produce different outputs on inputs ctdummy �= ct′dummy, such that

h(ct′dummy) = h(ctdummy), which are hard for an efficient adversary to find (Figs. 11,

12, 13, 14) .

Theorem 10. Assume

– E is a semantically secure symmetric key encryption scheme with ciphertexts of

length Lct(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– h is a collision-resistant hash function. with output length Lh(κ) for security param-

eter κ .

– PRG G : {0, 1}κ → {0, 1}ρ is a pseudorandom generator with output length

ρ ≥ 2κ .

– PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ is a puncturable pseudorandom function.

– diO is a public-coin, differing-inputs obfuscator for circuits in this scheme.

– Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg is a (Lmsg + 2 log(1/ǫ), ǫ)-strong extractor,

where ǫ = negl(κ).

Leakage Resilience from Program Obfuscation 783

Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk) ← E .Gen(1κ)
Compute the following:

– (skE) ← E.Gen(1κ),
– h ← H,
– k ← PRF.Gen(1κ), where PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ.
– ctdummy ← E.Enc(skE, 0κ||0ρ; r0), and h∗ = h(ctdummy).

Let Ck be the circuit described in Figure 12, and let CEnc ← diO(Ck).
Let keys = {skE, h∗}, let Ckeys be the circuit described in Figure 13, and let
CDec ← diO(Ckeys).
Output pk = (CEnc, CDec) and sk = (ctdummy).

Encryption: c ← E .Enc(pk, m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w, Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and
Ext : {0, 1}ρ × {0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(ctdummy, t).
If y �= ⊥, output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥.

Fig. 11. One-time, bounded leakage encryption scheme,E.

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k, G(r)), where G is the same PRG used in E .Enc.

Fig. 12. This program Ck is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, h∗}.

On input: ctdummy, t

– If h(ctdummy) �= h∗ output ⊥.
– Otherwise, output z = PRF.Eval(k, t).

Fig. 13. This program Ckeys is obfuscated and placed in the public key. It is used during decryption.

Internal (hardcoded) state: k̃ = PRF.Punct(k, t∗).

On input: r

– Output z = PRF.Eval(k, G(r)), where G is the same PRG used in E .Enc.

Fig. 14. Program Ck̃ . This program replaces Ck . It is obfuscated and placed in the public key to be used for

encryption.

784 D. Dachman-Soled et al.

Then E is L-leakage resilient against one-time key leakage where

L = |sk| · ρ − 2 log(1/ǫ) − Lmsg − Lh(κ)

(Lct(κ, κ + ρ))

Proof. First, note that extractors that satisfy the requirements of Theorem 10 can be

constructed via the Leftover Hash Lemma (c.f. [36]). We can choose a semantically

secure symmetric key encryption scheme with Lct(κ, κ + ρ) = O(κ) + κ + ρ, for

messages of length κ +ρ, as this is achieved by appropriate modes of operation. Finally,

choosing a collision-resistant hash function h with output length Lh(κ) = O(κ), and set-

ting ρ = ω(κ), ǫ = 2−Θ(κ), Lmsg = Θ(κ), yields an encryption scheme for messages

of length Θ(κ) with leakage rate 1 − o(1).

In order to prove Theorem 10, we prove (in Lemma 15) that even under leakage, it is

hard for any ppt adversary A to distinguish the output of the extractor, Ext from uniform

random. Given this, Theorem 10 follows immediately. �

Lemma 15. For every ppt leaking adversary A, who is given oracle access to a leakage

oracle O and may leak at most ρ − 2 log(1/ǫ) − Lmsg bits of the secret key, there exist

random variables p̃k, s̃k such that:

(
pk, t, w, Ext(y, w), f (sk) ← A

O(·)(pk)

)

c
≈
(
p̃k, Uρ, w, ULmsg , f (s̃k) ← A

O(·)(p̃k)

)

where y = CDec(ctdummy, t = G(r)) and the distributions are taken over coins of A

and choice of (pk, sk) ← E .Gen(1κ), w, r and choice of p̃k, s̃k, w, respectively.

We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.

Let DA
H0

denote the distribution (pk, w, Ext(y, w), f (sk) ← AO(·)(pk)) as in the left

side of Lemma 15.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom

t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ .

Let DA
H1

denote the distribution (pk, t∗, w, Ext(y, w), f (sk) ← AO(·)(pk)) where

y = CDec(ctdummy, t∗) and the distribution is taken over coins of A, choice of

(pk, sk), w, t∗ as described above.

Claim 6. For every ppt adversary A,

D
A
H0

c
≈ D

A
H1

.

Proof. The proof is by reduction to the security of the pseudorandom generator G.

Assume toward contradiction that there exists a ppt adversary A, a corresponding ppt

distinguisher D and a polynomial p(·) such that for infinitely many κ, D distinguishes

DA
H0

and DA
H1

with probability at least 1/p(κ). We construct a ppt adversary S that

Leakage Resilience from Program Obfuscation 785

distinguishes the output of the PRG from uniform random with probability at least

1/p(κ), for infinitely many κ . S does the following: S runs E .Gen(1κ) honestly to

generate (pk, sk). S hands pk to A and responds to leakage query f by apply the leakage

function directly to sk to compute f (sk). Upon receiving its challenge t ′ as the external

PRG challenge, S sets y = CDec(ctdummy, t ′), hands (pk, t ′, w, Ext(y, w), f (sk))

to the distinguisher D, and outputs whatever D does. The reader can verify that S’s

distinguishing advantage is the same as D’s. �

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in

CEnc with a punctured key, k̃ = PRF.Punct(k, t∗), and denote it as C ′
Enc. We denote

the resulting public key by pk′.
Let DA

H2
denote the distribution

(
pk′, t∗, w, Ext(y, w), f (sk) ← AO(·)(pk′)

)
where

y = CDec(ctdummy, t∗) and the distribution is taken over coins of A, and choice of

(pk′, sk), w, t∗ as described above.

Claim 7. For every ppt adversary A,

D
A
H1

c
≈ D

A
H2

.

Proof. The proof is by a reduction to the security of the indistinguishability obfuscation

(iO). The main observation is that with all but negligible probability, t∗ is not in the range

of the PRG, in which case CEnc and the modified circuit C ′
Enc used in Hybrid 2 have

identical behavior. Thus, with high probability for all inputs neither program can call

on PRF.Punct(k, t∗). Therefore, puncturing t∗ out from the key k will not effect the

input/output behavior. Therefore, if there is a difference in advantage, we can create an

algorithm B that breaks the security of indistinguishability obfuscation.

B runs as the challenger, but where t∗ is chosen at random. When it is to create

the obfuscated program it submits both programs C0 = Ck and C1 = Ck̃ to an iO

challenger. If the iO challenger chooses the first, then we are in Hybrid 1. If it chooses

the second, then we are in Hybrid 2. Any adversary with non-negligible advantages

in the two hybrids leads to B as an attacker on iO security. Note that since we only

require indistinguishability obfuscation (iO) for this hybrid, it is actually sufficient in our

construction to replace CEnc with CEnc ← iO(Ck), i.e., we require only iO obfuscation,

rather than diO obfuscation for this program. �

Hybrid 3: This hybrid is the same as Hybrid 2 except:

– we replace ctdummy with ct′′dummy, where ct′′dummy is an encryption of t∗||y and

y = PRF.Eval(k, t∗).
– we replace h∗ with h

′′∗ = h(ct′′dummy).

We denote the resulting public key by pk′′ and the resulting secret key by sk′′.
LetDA

H3
denote the distribution

(
pk′′, t∗, w, Ext(y, w), f (sk′′) ← AO(·)(pk′′)

)
where

y = CDec(ct′′dummy, t∗) and the distribution is taken over coins of A, and choice of

(pk′′, sk′′), w, t∗ as described above.

786 D. Dachman-Soled et al.

Internal (hardcoded) state: keys′ = {skE, k̃ = PRF.Punct(k, t∗), h
′′

∗}.

On input: ctdummy, t

– If h(ctdummy) �= h
′′

∗ output ⊥.
– Compute α||β = E.Dec(skE, ctdummy).
– If t = α, output β.
– Otherwise, output PRF.Eval(k, t).

Fig. 15. Program Ckeys′ . This program replaces Ckeys. It is obfuscated and placed in the public key. It is

used during decryption.

Claim 8. For every ppt adversary A,

D
A
H2

c
≈ D

A
H3

.

The proof is by a reduction to the semantic security of E.

Hybrid 4: This hybrid is the same as Hybrid 3 except we replace CDec = diO(Ckeys)

with C ′
Dec = diO(Ckeys′), where Ckeys′ is specified in Fig. 15. We denote by p̂k the

resulting public key.

Let DA
H4

denote the distribution
(
p̂k, t∗, w, Ext(y, w), f (sk′′) ← AO(·)(p̂k)

)
where

y = C ′
Dec(ct′′dummy, t∗) and the distribution is taken over coins of A, and choice of

(p̂k, sk′′), w, t∗ as described above.

Claim 9. For every ppt adversary A,

D
A
H3

c
≈ D

A
H4

.

Proof. We define the following sampler Samp and show that the circuit family C

associated with Samp is a differing-inputs circuit family.

Samp(1κ) does the following:

– Set keys = (k, h
′′∗) and set keys′ = (skE, k̃, h

′′∗).
– Let C0 = Ckeys and let C1 = Ckeys′ .

– Set aux = (skE, h, h
′′∗, ct′′dummy, r t∗, y), where r is the randomness used for

ct′′dummy.

– Return (C0, C1, aux).

Note that aux contains all of the random coins used by Samp.

We now show that for every ppt adversary A there exists a negligible function negl

such that

Pr[C0(x) �= C1(x) : (C0, C1, aux) ← Samp(1κ),

x ← A(1κ , C0, C1, aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversary A and a polynomial

p(·) such that for infinitely many κ,A outputs a distinguishing input with probability at

least 1/p(κ). We construct a ppt adversary S that finds a collision on h.

Leakage Resilience from Program Obfuscation 787

On input h ← H,S does the following:

– S simulates Samp by doing the following:

• Run (skE) ← E.Gen(1κ), k ← PRF.Gen(1κ).

Choose t∗ at random and set k̃ = PRF.Punct(k, t∗).
• S computes y = PRF.Eval(k, t∗) to generate ct′′dummy. It computes h∗ =

h(ct′′dummy).

• Set keys = (k, h
′′∗) and keys′ = (skE, k̃, h

′′∗).
• Let C0 = Ckeys and let C1 = Ckeys′ .

• Set aux = (skE, h, h
′′∗ ct′′dummy, r t∗, y).

– S runs A(1κ , C0, C1, aux) and receives x in return.

– S parses x as (m, t) and outputs (m).

Note that C0(ct′′dummy, ·) and C1(ct′′dummy, ·) are functionally equivalent. Furthermore,

on any input (m, t) where h(m) �= h
′′∗, both circuits output ⊥. Therefore, if A finds a

distinguishing input x = (m, t), then it must be the case that both of the following hold:

– (m �= ct′′dummy)

– h(m) = h
′′∗.

Thus, whenever A outputs a differing-inputs, S successfully finds a collision on h.

Therefore, we have that for infinitely many κ,S outputs a collision with probability at

least 1/p(κ).

Claim 9 follows from the fact that diO is a public-coin differing-inputs obfuscator

and from the fact that the circuit family C associated with Samp is a differing-inputs

family. This is the case since DA
H3

can be simulated given (diO(C0), aux) and DA
H4

can

be simulated given (diO(C1), aux). �

Hybrid 5: This hybrid is the same as Hybrid 4 except we replace ct′′dummy with c̃tdummy,

where c̃tdummy is an encryption of t∗||y∗, where y∗ is uniformly random. We denote by

s̃k the resulting secret key. We replace h∗ with h̃∗ = h(c̃tdummy) and denote by p̃k the

updated public key.

Let DA
H5

denote the distribution
(
p̃k, t∗, w, Ext(y∗, w), f (s̃k) ← AO(·)(p̃k)

)
where

y∗ = C ′
Dec(c̃tdummy, t∗) and the distribution is taken over coins of A, and choice of

(p̃k, s̃k), w, t∗ as described above.

Claim 10. For every ppt adversary A,

D
A
H4

c
≈ D

A
H5

.

Proof. The proof is through a reduction to the security of the puncturable PRF. Recall,

the security notion of puncturable PRFs states that, given PRF.Punct(k, t∗), an adver-

sary cannot distinguish PRF.Eval(k, t∗) from random. The reduction is straightforward:

to break the security of the PRF,S generates t∗ at random and submits it to his chal-

lenger. He receives PRF.Punct(k, t∗), along with either y∗ = PRF.Eval(κ, t∗) or

y∗ ← {0, 1}ρ as a challenge. He uses y∗, and samples all the remaining necessary

788 D. Dachman-Soled et al.

keys for simulating p̂k and ŝk. He chooses w at random and computes Ext(y∗, w). He

answers leakage queries on ŝk honestly. The reader can verify that S’s advantage is the

same as A’s advantage in distinguishing the two hybrids.

Claim 11.

D
A
H5

s
≈
(
p̃k, Uρ, w, ULmsg , f (s̃k) ← A

O(·)(p̃k)

)

Note that the right side above is the same as the right side of Lemma 15

Proof. We claim that the min-entropy of y∗ conditioned on p̃k, f (s̃k) is at least Lmsg +
2 log(1/ǫ). Note that y∗ initially has min-entropy ρ since it is chosen uniformly at

random. Recall that ctdummy has length Lct(κ, κ + ρ), and h has output length Lh(κ).

Thus, conditioning on p̃k reduces y∗’s min-entropy by at most Lh(κ) (since only h̃∗

contains information about y∗). Moreover, leaking anotherρ−2 log(1/ǫ)−Lmsg−Lh(κ)

number of bits of ctdummy reduces y∗’s min-entropy further by at most ρ −2 log(1/ǫ)−
Lmsg. Therefore, y∗ maintains min-entropy at least Lmsg + 2 log(1/ǫ), and the claim

follows by the properties of the strong extractor, Ext. �

This concludes the proof of Lemma 15. �

6. Continual Leakage Resilience for One-Way Relations

Dodis et al. [21] defined one-way relation (OWR) in the regular continual leakage

resilience setting, and present a construction based on a simpler primitive – leakage-

indistinguishable re-randomizable relation (LIRR). In this section, we first extend their

definition to 2CLR and CLR with leakage on key updates. Then we prove their LIRR-

based construction actually achieves the 2CLR security. By using our generic transfor-

mation from Sect. 3, we can have a construction for achieving CLR with leakage on key

updates. Additionally, we give a new construction of 2CLR OWR based on 2CLR PKE,

which can be obtained from the previous sections.

6.1. Continual Leakage Model

A one-way relation scheme OWR consists of two algorithms: OWR.Gen and

OWR.Verify. In the continual leakage setting, we require an additional algorithm

OWR.Update which updates the secret keys. Note that the public key remains

unchanged.

– OWR.Gen(1κ) → (pk, sk0). The key generation algorithm takes in the security

parameter κ , and outputs a secret key sk0 and a public key pk.

– OWR.Verify(pk, sk) → {0, 1}. The verification algorithm takes in the public key

pk, a secret key sk, and outputs either 0 or 1.

– OWR.Update(ski−1) → ski . The update algorithm takes in a secret key ski−1

and produces a new secret key ski for the same public key.

Leakage Resilience from Program Obfuscation 789

Correctness. The OWR scheme satisfies correctness if for any polynomial q = q(κ),

it holds that for all i ∈ {0, 1, . . . , q}, OWR.Verify(pk, ski) = 1, where (pk, sk0) ←
OWR.Gen(1κ), and ski+1 ← OWR.Update(ski).

Security. We define continual leakage security for one-way relations in terms of the

following game between a challenger and an attacker. We let κ denote the security

parameter, and the parameter μ controls the amount of leakage allowed.

Setup Phase. The game begins with a setup phase. The challenger calls

OWR.Gen(1κ) to create the initial secret key sk0 and public key

pk. It gives pk to the attacker. No leakage is allowed in this phase.

Query Phase. In this phase, the attacker launches a polynomial number of leak-

age queries. Each time, say in the i th query, the attacker provides

an efficiently computable leakage function fi whose output is at

most μ bits, and the challenger chooses randomness ri , updates

the secret key from ski−1 to ski , and gives the attacker the leak-

age response ℓi . In the CLR model, the leakage attack is applied

on a single secret key, and the leakage response ℓi = fi (ski−1).

In the 2CLR model, the leakage attack is applied on consecutive

two secret keys, i.e., ℓi = fi (ski−1, ski). In the model of CLR

with leakage on key updates, the leakage attack is applied on the

current secret key and the randomness used for updating the secret

key, i.e., ℓi = fi (ski−1, ri).

Recovery Phase. The attacker outputs some sk∗. The attacker wins the game if

OWR.Verify(pk, sk∗) = 1. We define the success probability of

the attacker in this game as Pr[OWR.Verify(pk, sk∗) = 1].

Definition 11. (Continual Leakage Resilience) We say a one-way relation scheme

is μ-CLR secure (respectively, μ-2CLR secure, or μ-CLR secure with leakage on key

updates) if any ppt attacker only has a negligible advantage (negligible in κ) in the above

game.

6.2. Construction Based on LIRR

Leakage-Indistinguishable Re-randomizable Relation

In [21], Dodis et al introduce a new primitive, leakage-indistinguishable re-randomizable

relation (LIRR), and show that this primitive can be used to construct OWR in the

CLR model where the adversary is allowed to leak on the secret key in each round

of leakage attack. LIRR allows one to sample two types of secret keys: “good” keys

and “bad” keys. Both types of keys look valid and are acceptable by the verification

procedure, but they are produced in very different ways. In fact, given the ability to

produce good keys, it is hard to produce any bad key and vice-versa. On the other hand,

even though the two types of keys are very different, they are hard to distinguish from

each other. More precisely, given the ability to produce both types of keys, and μ bits

of leakage on a “challenge” key of an unknown type (good or bad), it is hard to come

up with a new key of the same type. More formally, a LIRR consists of ppt algorithms

(Setup, SampG, SampB, Update, Verify, isGood) with the following syntax:

790 D. Dachman-Soled et al.

– (pk, sG , sB, dk) ← Setup(1κ): This algorithm returns a public key pk, a “good”

sampling key sG , a “bad” sampling key sB , and a distinguishing trapdoor dk.

– skG ← SampGpk(sG) and skB ← SampBpk(sB): These algorithms sample

good/bad secret keys using good/bad sampling keys, respectively. We omit the

subscript pk when clear from context.

– b ← isGood(pk, sk, dk): This algorithm uses dk to distinguish good secret keys

sk from bad ones.

– ski ← Update(ski−1) and b ← Verify(pk, sk): These two algorithms have the

same syntax as in the definition of OWR in the CLR model.

Definition 12. We say (Setup, SampG, SampB, Update, Verify, isGood) is a μ

leakage-indistinguishable re-randomizable relation (LIRR) if it satisfies the following

properties:

Correctness: If (pk, sG , sB, dk) ← Setup(1κ), skG ← SampG(sG), skB ←
SampB(sB) then Pr

[
Verify(pk, skG) = 1

∧
isGood(pk, skG , dk) = 1∧

Verify(pk, skB) = 1
∧

isGood(pk, skB, dk) = 0

]

= 1 − negl(κ)

Re-Randomization: We require that (pk, sG, sk0, sk1)
c
≈ (pk, sG , sk0, sk′

1)

where (pk, sG, sB, dk) ← Setup(), sk0 ← SampG(sG) and sk1 ← Update

(sk0), sk′
1 ← SampG(sG)

Hardness of Bad Keys: Given sG , it is hard to produce a valid “bad key”. Formally,

for any ppt A,

Pr

[
(pk, sG , sB, dk) ← Setup(1κ), sk∗ ← A(pk, sG) :

Verify(pk, sk∗) = 1
∧

isGood(pk, sk∗, dk) = 0

]
≤ negl(κ)

Hardness of Good Keys: Given sB , it is hard to produce a valid “good key".

Formally, for any ppt A,

Pr

[
(pk, sG , sB, dk) ← Setup(1κ), sk∗ ← A(pk, sB) :

isGood(pk, sk∗, dk) = 1

]
≤ negl(κ)

μ Leakage Indistinguishability: Given both sampling keys sG , sB , and μ bits of

leakage on a secret key sk (which is either good or bad), it is hard to produce a

secret key sk∗ which is in the same category as sk. Formally, for any ppt adversary

A, we have | Pr[A wins] − 1/2| ≤ negl(κ) in the following game:

– The challenger chooses (pk, sG , sB, dk) ← Setup(1κ) and gives pk, sG , sB to

A. The challenger chooses a random bit b ∈ {0, 1}. If b = 1, then it samples

sk ← SampG(sG), and otherwise, it samples sk ← SampB(sB).

– The adversary A can make up to q queries in total to the leakage oracle

– The adversary outputs sk∗ and wins if isGood(pk, sk∗, dk) = b.

6.2.1. Construction

A μ LIRR can be used to construct a μ-2CLR-secure OWR, as follows:

Leakage Resilience from Program Obfuscation 791

– Gen(1κ): Sample (pk, sG , ·, ·) ← Setup(1κ), sk ← SampG(sG) and output

(pk, sk)

– Update(·), Verify(·, ·): Same as for LIRR

Note that the CLR-OWR completely ignores the bad sampling algorithm SampB, the

“bad” sampling key sB , the distinguishing algorithm isGood, and the distinguishing key

dk of the LIRR. These are only used in the argument of security. Moreover, the “good”

sampling key sG is only used as an intermediate step during key generation to sample

the secret key sk, but is never explicitly stored afterward.

Theorem 11. Given any 2μ-LIRR scheme, the construction above is a μ-2CLR-secure

OWR.

Proof. The proof is very similar to that in [21]. To prove the theorem statement, we

develop a sequence of games. �

Game H0: This is the original μ-2CLR Game as Definition 11. The adversary is allowed

to apply leakage function on consecutive two secret keys in each round of leakage attack.

Games H0.i - H1: Let q be the total number of leakage rounds for which A runs. We

define the Games H0.i for i = 0, 1, . . . , q as follows. The challenger initially samples

(pk, sG , sB, dk) ← Setup(1κ), and sk0 ← SampG(sG) and gives pk to A. The game

then proceeds as before with many leakage rounds, except that the secret keys in rounds

j ≤ i are generated as sk j ← SampG(sG), independently of all previous rounds, and

in the rounds j > i , they are generated as sk j ← Update(sk j−1). Note that Game

H0.0 is the same as Game H0, and we define Game H1 to be the same as Game H0.q .

Claim 12. For i = 1, . . . , q, it holds that | Pr[A wins |H0.(i−1)]−Pr[A wins |H0.i]| ≤
negl(κ)

Proof. We use the re-randomization property to argue that, for i = 1, . . . , q, the

winning probability of A is the same in Game H0.(i−1) as in Game H0.i , up to

negligible factors. We construct a reduction B, with input (pk, sG , sk′, sk′′). Here

sk′ ← SampG(sG), and sk′′ is sampled based on randomly chosen b: if b = 1,

then sk′′ ← SampG(sG) and if b = 0, then sk′′ ← Update(sk′).
More concretely, the reduction B emulates a copy of A internally. In addition, B

emulates the view for A: For all j < i,B generates sk j ← SampG(sG), and for all

j > i + 1,B generates sk j ← Update(sk j−1); B sets ski := sk′ and ski+1 := sk′′.
Upon receiving a leakage query f j from A, the reduction B returns f j (sk j−1, sk j) to A.

If B’s challenger uses sk′′ which is generated through SampG then that corresponds

to the view of A in Game H0.i and if sk′′ is generated through Update, then corresponds

to Game H0.(i−1). Therefore, if A is able to distinguish the two worlds, then B is able

to break the re-randomization property. �

Game H2: Game H2 is the same as Game H1, except the winning condition: Now the

adversary only wins if, at the end, it outputs sk∗ such that isGood(pk, sk∗, dk) = 1.

Claim 13. | Pr[A wins |H1] − Pr[A wins |H2]| ≤ negl(κ)

792 D. Dachman-Soled et al.

Proof. The winning probability of A in Game H2 is at least that of Game H1 minus the

probability that sk∗ satisfies Verify(pk, sk∗) = 1∧isGood(pk, sk∗, dk) = 0. However,

since the entire interaction between the challenger and the adversary in games H1,H2

can be simulated using (pk, sG), we can use the “hardness of bad keys” property to argue

that the probability of the above happening is negligible. Therefore, the probability of

A winning in Game H2 is at least that of Game H1, up to negligible factors. �

Games H2.i - H3: Let q be the total number of leakage rounds for which A runs.

We define the Games H2.i for i = 0, 1, . . . , q as follows. The challenger initially

samples (pk, sG , sB, dk) ← Gen(1κ) and gives pk to A. The game then proceeds

as before with many leakage rounds, except that the secret keys in rounds j ≤ i are

generated as sk j ← SampB(sB), and in the rounds j > i , they are generated as

sk j ← SampG(sG). Note that Game H2.0 is the same as Game H2, and we define

Game H3 to be the same as Game H2.q .

Claim 14. For i = 1, . . . , q, it holds that | Pr[A wins |H2.(i−1)]−Pr[A wins |H2.i]| ≤
negl(κ).

Proof. We use the 2μ-leakage indistinguishability property to argue that, for i =
1, . . . , q, the winning probability of A is the same in Game H2.(i−1) as in Game H2.i ,

up to negligible factors. We construct a reduction B, with input (pk, sG , sB) and with

leakage access to sk. Here sk is sampled based on randomly chosen b: if b = 1, then

sk ← SampG(sG) and if b = 0, then sk ← SampB(sB).

More concretely, the reduction B emulates a copy of A internally. In addition,

B emulates the view for A: In each leakage round j < i,B uses sB to generate

sk j ← SampB(sB); and in round j > i , B uses sG to generate sk j ← SampG(sG).

Upon receiving a leakage query f j from A in leakage round j , if j < i − 1,B returns

f j (sk j−1, sk j) to A; if j = i −1,B defines f̂ j = f j (sk j−1, ·), and then applies f̂ j on sk,

and returns f̂ j (sk) to A; if j = i,B defines f̂ j = f j (sk j , ·), and then applies f̂ j on sk, and

returns f̂ j (sk) to A; if j > i,B returns f j (sk j−1, sk j) to A. At the end, B outputs the

value sk∗ output by A. Note that B made queries f̂i−1 and f̂i , which are 2μ bits in total.

If B’s challenger uses a good key then that corresponds to the view of A in Game

H2.i and a bad key corresponds to Game H2.(i−1). Therefore, letting b be the bit used

by B’s challenger, we have:

|Pr[B wins] − 1/2| =
∣∣Pr[isGood(pk, sk∗, dk) = b] − 1/2

∣∣
= 1/2 ·

∣∣Pr[isGood(pk, sk∗, dk) = 1|b = 1]
− Pr[isGood(pk, sk∗, dk) = 1|b = 0]

∣∣
= 1/2 ·

∣∣Pr[A wins |H2.(i−1)] − Pr[A wins |H2.i]
∣∣

Claim 15. Pr[A wins |H3] ≤ negl(κ)

Proof. We now argue that probability of A winning Game H3 is negligible, by the

“hardness of good keys”. Notice that A’s view in Game H3 can be simulated entirely

just given (pk, sB). Therefore, there is a ppt algorithm which, given (pk, sB) as inputs,

Leakage Resilience from Program Obfuscation 793

Construction OWR = OWR.{Gen, Update, Verify}

Here E = E .{Gen, Enc, Dec, Update} is a PKE scheme, and p(·) is some polynomial.

Key Generation: (pk, sk0) ← OWR.Gen(1κ)
– Compute (pkE , skE

0) ← E .Gen(1κ).
– Choose p = p(κ) random messages m1, . . . , mp from the message space of

E .
– For i ∈ [p], compute a random encryption ei = E .Enc(mi).
– Output public key pk = (pkE , (m1, e1), . . . , (mp, ep)) and secret key sk0 =

skE
0 .

Key Update: ski+1 ← OWR.Update(ski)
Set ski+1 ← E .Update(ski).

Verification: b ← OWR.Verify(sk′, pk)
Upon receiving key pair (sk′, pk), parse pk = (pkE , (m1, e1), . . . , (mp, ep)).
If for all i ∈ [p], E .Dec(sk′, ei) = mi, then set b := 1; otherwise, set b := 0.

Fig. 16. Transformation of PKE to OWR.

can run Game H3 with A and output sk∗ such that isGood(pk, sk∗, dk) = 1 whenever

A wins. So the probability of A winning in Game H3 is negligible. �

By the hybrid argument, the probability of A winning in Game H0 is at most that of

A winning in Game H3, up to negligible factors. That is, Pr[A wins |H0] ≤ negl(κ).

Therefore, since the latter is negligible, the former must be negligible as well, which

concludes the proof of the theorem. �

Based on the result in [21], we have the following corollary.

Corollary 1. Fix a constant K ≥ 1, and assume that the K -linear assumption holds in

the base groups of some pairing. Then, for any constant ǫ > 0, there exists a μ-2CLR-

secure OWR scheme with relative-leakage
μ

|sk| ≥ 1
2(K+1)

− ǫ.

6.3. A Generic Construction Based on PKE

In this section, we describe a generic construction of CLR-secure OWR (resp., 2CLR

secure and CLR with leakage on key updates) from CLR secure PKE (resp., 2CLR

secure, and CLR with leakage on key updates). A OWR requires verification of the

relation to be deterministic; but a PKE does not necessarily give a OWR because there

might not be a deterministic way to check the key pair (pk, sk) of a PKE. Here we

present a way to check the key pair of a PKE deterministically, so that one can use PKE

to construct OWR.

Theorem 12. Let E be a public key encryption scheme secure in the model of CLR

(respectively, of 2CLR, and of CLR with leakage on key updates) with leakage rate ρ,

then for appropriate choice of polynomial p(·), the one-way relation scheme OWR in

Fig. 16 is secure in the model of CLR (respectively, of 2CLR, and of CLR with leakage

on key updates) with leakage rate ρ.

794 D. Dachman-Soled et al.

Proof. (Sketch.) A well-known result from learning theory known as Occam’s Razor

(see, for example, Kearns and Vazirani [40], Theorem 2.1)11 says that if a class of

circuits has size |C| and a circuit C ∈ C agrees with a target circuit C∗ ∈ C on

poly(log(|C|), 1/ǫ, log(1/δ)) number of random inputs, then with probability 1 − δ, C

agrees with C∗ over the uniform distribution with probability 1 − ǫ. In the following,

we will always set log(1/δ) ≥ κ and so δ ≤ 1/2κ .

Assume we have an adversary A breaking the security of the one-way relation, we

use it to construct an adversary A′ breaking the security of the encryption scheme E .

The class C consists of the circuits E .Dec(s̃k, ·) for all possible sk. Clearly, log(|C|) =
|sk| = poly(κ). Now, C corresponds to the circuit E .Dec(sk′, ·), where sk′ is the

secret key submitted by A such that OWR.Verify(sk′, pk) = 1. Furthermore, C∗ is

the circuit E .Dec(sk, ·), where sk is a real secret key. Note that C and C∗ agree on

p(κ) = poly(log(|C|), 1/ǫ, 1/ log(δ)) random inputs, since E .Verify(sk′, pk) = 1.

Thus, we are guaranteed that with probability 1 − δ over choice of input/output pairs

(mi , ei) in pk, sk′ decrypts correctly on a fresh random input with probability 1 − ǫ.

We are now ready to define the adversary A′.
A′ internally instantiates A, while participating externally in a leakage (resp., on con-

secutive two keys, and on both key and update) on encryption scheme E . Specifically,

A′ does the following:

– Upon receiving pkE from the external experiment, do the following:

• Choose p = p(κ) random messages m1, . . . , m p from the message space of E .

• For i ∈ [p], compute a random encryption ei = E .Enc(mi).

• Output public key pk = (pkE , (m1, e1), . . . , (m p, ep)) to the internal adversary

A. Note that secret key sk0 = skE
0 is a correctly distributed secret key for this

pk.

– Whenever A submits a leakage query f ,A′ submits the same query to its external

challenger who applies it to the secret key (resp., on consecutive two keys, and on

both key and update) and forwards the answer to A.

– Finally, A submits sk′ to A′. If there exists i ∈ [p] such that E .Dec(sk′, ei) �= mi ,

then A′ outputs random b′.
– Otherwise, A′ chooses two independent, uniformly random messages m0, m1 and

submits to its external challenger.

– A′ then receives the challenge ciphertext c∗.

– A′ computes m∗ = E .Dec(sk′, c∗). If m∗ = m0,A
′ outputs 0. Otherwise, A′

outputs 1.

Note that A′ perfectly simulates A’s view in the OWR game. Therefore, it is not hard

to see that if A succeeds with probability p1 = p1(κ) ≥ 8/2κ , then A′ succeeds with

probability 1/2 · (1 − p1) + (p1 − δ)(1 − ǫ). For ǫ ≤ 1/7, we have that (p1 − δ)(1 −
ǫ) ≥ 3p1/4. Thus, A′ succeeds with probability 1/2 + p1/4 and obtains advantage

AdvA′,E = p1/4. This, in turn, implies that A must succeed with negligible p1(κ)

probability, since otherwise we contradict the security of E . �

11We note that the statement of Occam’s Razor theorem in [40] is for the case of Boolean functions.

However, the analysis can be easily extended to the non-Boolean case.

Leakage Resilience from Program Obfuscation 795

7. Continual Leakage Resilience for Digital Signatures

In the previous section, we extended the techniques of Dodis et al. [21] to construct

μ-2CLR-secure one-way relations. Dodis et al. [21] showed how to construct contin-

ual leakage-resilient signature schemes from one-way relations secure against continual

leakage. In this section, we extend their techniques and to construct μ-2CLR-secure sig-

nature schemes fromμ-2CLR-secure one-way relations. Finally, combining our resulting

μ-2CLR-secure signature scheme with Theorems 6 and 7, we obtain a continual leakage-

resilient signature scheme with leakage on update (but no leakage on the randomness

used for signing).

See Sects. 2.2 and 3.4 for the formal definition of continual (consecutive) leakage

resilience for digital signature schemes.

7.1. NIZK and True-Simulation Extractability

Dodis et al. [21] constructed CLR-secure signature based on CLR-secure OWR and

another primitive named true-simulation extractable (tSE) NIZK. We here recall the

syntax and security properties of NIZK. We note that the definitions below are taken

from [21] for completeness.

Let R be an NP relation on pairs (y, x) with corresponding language L R =
{y | ∃x s. t. (y, x) ∈ R}. A NIZK argument for a relation R consists of four ppt algo-

rithms (Setup, Prove, Verify, Sim) with syntax:

– (crs, tk) ← Setup(1κ): Creates a common reference string (CRS) and a trapdoor

key to the CRS.

– π ← Provecrs(y, x): Creates an argument that y ∈ L R .

– Simcrs(y, tk): Creates a simulated argument that y ∈ L R .

– b ← Verifycrs(y, π): Verifies whether or not the argument π is correct.

For the sake of clarity, we write Prove, Verify, Sim without the crs in the subscript

when the crs can be inferred from the context.

Definition 13. We say that (Setup, Prove, Verify) are a NIZK argument system for

the relation R if the following three properties hold.

Completeness: For any (y, x) ∈ R, if (crs, tk) ← Setup(1κ), π ←
Prove(y, x), then V eri f y(y, π) = 1.

Soundness: For any ppt adversary A, Pr[Verify(y, π∗) = 1 ∧
y �∈ L R : (crs, tk) ← Setup(1κ), (y, π∗) ←
A(crs)] ≤ negl(1κ)

Composable Zero Knowledge: For any ppt adversary A, we have Pr[Awins]−1/2 ≤
negl(1κ) in the following game:

– The challenger samples (crs, tk) ← Setup(1κ) and gives (crs, tk) to A.

– The adversary A chooses (y, x) ∈ R and gives these to the challenger.

– The challenger samples π0 ← Prove(y, x), π1 ← Sim(y, tk), b ← {0, 1} and

gives πb to A.

– The adversary A outputs a bit b′ and wins if b′ = b.

796 D. Dachman-Soled et al.

Definition 14. (True-Simulation Extractability [22]) Let NIZK = (Setup, Prove,

Verify, Sim) be an NIZK argument for an NP relation R, satisfying the complete-

ness, soundness and zero-knowledge properties. We say that NIZK is true-simulation

extractable (tSE), if:

– Apart from outputting a CRS and a trapdoor key, Setup also outputs an extraction

key: (crs, tk, ek) ← Setup(1κ).

– There exists a ppt algorithm Extek such that for all A we have Pr[Awins] ≤
negl(1κ) in the following game:

1. The challenger runs (crs, tk, ek) ← Setup(1κ) and gives crs to A.

2. ASIMtk() is given access to a simulation oracle SIMtk(), which it can adap-

tively access. A query to the simulation oracle consists of a pair (y, x). The

oracle checks if (y, x) ∈ R. If true, it ignores x and outputs a simulated argu-

ment Simtk(y). Otherwise, the oracle outputs ⊥.

3. A outputs a pair (y∗, σ ∗), and the challenger runs x∗ ← Extek(y∗, σ ∗).

A wins if (y, x∗) �∈ R, Verify(y∗, σ ∗) = 1, and y∗ was not part of a query to the

simulation oracle.

7.2. CLR Signatures with Leakage on Key Updates from OWR

Next we recall Dodis et al’s construction and then show that actually their construction

is 2CLR secure if the underlying OWR is 2CLR secure. We then combine the above with

our generic transformation from Sect. 3 to obtain CLR-secure signatures with leakage

on key updates.

In the following, OWR := (OWR.Gen(1κ), OWR.Update(sk)) is a 2CLR-secure

one-way relation and NIZK := (NIZK.Setup, NIZK.Prove, NIZK.Verify) is a is tSE-

NIZK for the relation

R = {(y, x) | y = (pk, m), x = sk s.t. Verify(pk, sk) = 1}.

Although input m seems useless in the above relation, looking ahead, m will play the

role of the message to be signed. Note that we have the important property that when

the message m changes, the statement y = (pk, m) also changes.

– SIG.Gen(1κ) :Output (vk, sk)where vk = (pk, crs), (pk, sk) ← OWR.Gen(1κ)

and crs ← NIZK.Setup(1κ).

– SIG.Signsk(m): Output σ ← NIZK.Prove((pk, m), sk).

– SIG.Verifyvk(m, σ): Output b := NIZK.Verify(pk, m), σ).

– SIG.Update(sk): Output OWR.Update(sk).

Theorem 13. If one-way relation OWR is μ-2CLR secure and NIZK is true-simulation

extractable, then the above signature scheme is μ-2CLR secure.

Proof. The proof here is very similar to that in [21]. We prove the above theorem

through a sequence of games. �

Leakage Resilience from Program Obfuscation 797

Game H0: This is the original μ-2CLR game described in Definition 3, in which signing

queries are answered honestly by running σ ← NIZK.Prove((pk, m), sk) and A wins

if she produces a valid forgery (m∗, σ ∗).

Game H1: In this game, the signing queries are answered by generating simulated

arguments, i.e., σ ← NIZK.Simtk(pk, m). Games H0 and H1 are indistinguishable

by the zero-knowledge property of NIZK. Here the simulated arguments given to A as

answers to signing queries are always of true statements.

Game H2: In this game, we modify the winning condition so that the adversary only

wins if it produces a valid forgery (m∗, σ ∗) and the challenger is able to extract a valid

secret key sk∗ for pk from (m∗, σ ∗). That is, A wins if both SIG.Verify(m∗, σ ∗) = 1

and OWR.Verify(pk, sk∗) = 1, where sk∗ ← NIZK.Extek((pk, m∗), σ ∗). The win-

ning probability of A in Game H2 is at least that of Game H1 minus the probability that

NIZK.Verify((pk, m∗), σ ∗) = 1 and OWR.Verify(pk, sk∗) = 0. By the true-simulation

extractability of the argument NIZK, we know that this probability is negligible. There-

fore, the winning probability of A in Game H2 differs from that in Game H1 by a

negligible amount.

We have shown that the probability that A wins in Game H0 is the same as that in Game

H2, up to negligible factors. We now argue that the probability that A wins in Game H2

is negligible, which proves that the probability that A wins in Game H0 is negligible

as well. To prove that the probability that A wins in Game H2 is negligible, we assume

otherwise and show that there exists a ppt algorithm B that breaks the μ-2CLR security

of OWR. On input pk,B generates (crs, tk, ek) ← NIZK.Setup(1κ) and emulates A

on input vk = (crs, pk). In each leakage round, B answers A’s leakage queries using

the leakage oracle and answers signing queries mi by creating simulated arguments

σi ← NIZK.Simtk(pk, mi). When A outputs her forgery (m∗, σ ∗),B runs sk∗ ←
NIZK.Extek((pk, m∗), σ ∗) and outputs sk∗. Notice that Pr[B wins] = Pr[A wins], so

that if Pr[A wins] is non-negligible then B breaks the μ-consecutive two-key security of

OWR. We therefore conclude that the probability that A wins in Game H2 is negligible.

This concludes the proof of the theorem. �

Based on the result in [21], we have the following corollary.

Corollary 2. Fix a constant K ≥ 1, and assume that the K -linear assumption holds in

the base groups of some pairing. Then, for any constant ǫ > 0, there exists a μ-2CLR-

secure signature scheme with relative-leakage
μ

|sk| ≥ 1
2(K+1)

− ǫ.

Acknowledgements

We thank the anonymous reviewers for their insightful comments, which greatly

improved the presentation of this work.

798 D. Dachman-Soled et al.

A. The Connection Between CLR and Obfuscation

In Sects. 5.1 and 5.2, we demonstrated that we can use obfuscation to fortify any public

key encryption scheme with leakage resilience, if the leakage is one-time and bounded.

Here, we seek to generalize the approach, using obfuscation to achieve security against

continual leakage. As compared with the result of Sect. 4, where we show that program

obfuscation can strengthen one specific encryption scheme to provide leakage resilience,

the intention here is to explore what can be done generically. That is, our aim is to achieve

continual leakage resilience starting from any PKE scheme and diO. Unfortunately, we

fall somewhat short, requiring that the underlying encryption scheme posses certain

specific properties, which we describe below. Although we demonstrate an instantiation

of such a scheme from the Decision-Linear assumption [7], we believe that the most

interesting open question left by our study of the relationship between leakage resilience

and program obfuscation is to construct such an encryption scheme directly from any

PKE scheme and diO. We include this section, in large part, with the hope of highlighting

the missing piece.

Recall that in the previous construction, the secret key consists of a dummy cipher-

text. An initial idea for how to achieve (consecutive) CLR is to refresh the secret key

by re-randomizing the ciphertext. Specifically, in the real construction, the ciphertext

in the secret key just encrypts zeros and is re-randomized, but in the proof it contains

the PRF output and the underlying plaintext is refreshed from round to round. How-

ever, since the underlying plaintext changes from round to round, we run into some

technical difficulties. Specifically, an adversary who knows the underlying secret key

for the ciphertext embedded in the construction’s secret key will be able to distinguish

consecutive hybrids. On the other hand, an adversary who does not know the secret key

for the ciphertext will not be able to produce a correctly distributed obfuscated circuit

to be placed in the public key. To resolve this, the idea is to use an encryption scheme

with special properties: The challenge ciphertext remains semantically secure while at

the same time, the adversary can efficiently simulate a decryption oracle which either

successfully decrypts the submitted ciphertext, or indicates that the submitted ciphertext

is a re-randomization of the challenge ciphertext. Note that this notion is a strengthening

of the notion of re-randomizable RCCA (relaxed CCA) security. Specifically, we define

a new special “diO-compatible” notion of “relaxed” [15] or “controlled” malleability

CCA security for re-randomizable encryption [17]. We then show how to realize our

new notion from the Decision-Linear (DLIN) assumption in bilinear groups, following

[17]. Our resulting continual leakage-resilient scheme presented in Sect. A.4 combines

this assumption with diO.

A.1. Re-randomizable Encryption

A re-randomizable encryption scheme is a tuple of algorithms RPKE = (Gen, Enc,

Dec, ReRand) defined as follows. First, the triple (Gen, Enc, Dec) is a standard

encryption scheme. Second,

(pk, sk, c1, c2) ≈c (pk, sk, c1, c′
2)

where

Leakage Resilience from Program Obfuscation 799

(pk, sk) ← Gen(1κ) ; c1 ← Enc(pk, m),

c2 ← Enc(pk, m) ; c′
2 ← ReRand(pk, c) .

A.2. diO-Compatible RCCA Encryption

Intuitively, an RCCA encryption scheme [15] is like a CCA-secure encryption scheme

that allows replay attacks. We define a special type of RCCA encryption scheme that we

call diO compatible, inspired by the definition of controlled malleability of Chase et al.

[17]. The intuition for diO-compatible RCCA encryption is that the security proof allows

for placing the secret key of the encryption scheme in an obfuscation, while arguing about

semantic security of a challenge ciphertext. Specifically, the way this is achieved is by

requiring that the diO-compatible RCCA encryption have a specific hybrid structure

for proving security. In each hybrid, there is an efficient algorithm which simulates the

decryption oracle. Moreover, indistinguishability of consecutive hybrids reduces either

to the security of an underlying primitive, or reduces to the fact that, even given the code

of the simulated decryption oracle, the attacker cannot find a distinguishing input. A

detailed definition follows.

Syntax. A diO-compatible RCCA encryption scheme is a tuple of algorithms RCCA =
(Gen, Enc, SimEnc, Dec) where

– Algorithm Gen(1κ) outputs keys (pk, (sk1, sk2), τsim).

– Algorithm Enc(pk, m) outputs a ciphertext c.

– Algorithm SimEnc(τsim, m) outputs a ciphertext csim.

– Algorithm Dec1(sk1, c) outputs a message value in {m,⊥}.
– Algorithm Dec2(sk2, c) outputs a message value in {m,⊥, SimFlag}.

Correctness. For correctness, we require that Pr[Dec(sk1, Enc(pk, m)) = m] = 1

where (pk, (sk1, sk2), τsim) is output by Gen(1κ). (This can be relaxed to allow negli-

gible probability of failure.)

Security. Intuitively, our encryption scheme must remain secure, even when the adversary

is given an obfuscation of the decryption key (using diO security). This is hard to argue

generically, since we cannot say for sure what might be revealed about the key by such an

obfuscation. By using a two-key system and a NIZK, we enable ourselves to transition

through a sequence of hybrids that allow us to change the content of the plaintext while

still claiming indistinguishability. (A similar method appears in the work of Garg et al.

[29].) More specifically, we require three security properties that are formally described

below. The first property says that real ciphertexts are indistinguishable from simulated

ones, even when given sk1; this allows us to transition to using simulated ciphertexts,

even when the adversary is given an obfuscation containing sk1. The third property says

that, given a simulated ciphertext encrypting m, it is hard to construct a new ciphertext

that decrypts to m′ �= m under sk1, but decrypts to something other than m′ under sk2.

This allows us to switch the key in the obfuscation from sk1 to sk2 under the argument

of diO security. Finally, the second security property ensures indistinguishability of

simulated ciphertexts even when given sk2, which allows us to modify plaintext values

even while giving the adversary the obfuscated key. The formal definition follows. We

800 D. Dachman-Soled et al.

note that in the definition of simulation soundness, we use SimFlag to denote a Boolean

value, which is intended to indicate that a ciphertext was simulated. 12

– Indistinguishability of simulated ciphertexts from real ciphertexts: For any

efficient adversary A and message m

A(pk, Enc(pk, m), sk1)
c
≈ A(pk, SimEnc(τsim, m), sk1) .

– Indistinguishability of simulated ciphertexts under chosen plaintext attack:

For any efficient adversary A, and any message pair (m0, m1),

A(pk, sk2, SimEnc(τsim, m0))
c
≈ A(pk, sk2, SimEnc(τsim, m1)) .

– Simulation soundness: For any efficient A and message m the probability

that the following experiment outputs 1 is negligible: (pk, (sk1, sk2), τsim) ←
Gen(1κ) ; c ← SimEnc(τsim, m) ; c∗ ← A(sk1, sk2, c) Return 1 if either

1. Dec2(sk2, c∗) = SimFlag
∧

Dec1(sk1, c∗) �= m

2. Dec2(sk2, c∗) �= SimFlag
∧

Dec2(sk2, c∗) �= Dec1(sk1, c∗)

where the probability is taken over the randomness used in key generation, SimEnc,

and by A when computing c∗.

Re-randomizability. We say that a diO-compatible RCCA-secure encryption scheme

is re-randomizable if it has an additional algorithm ReRand defined analogously to

re-randomizable encryption.

A.3. Construction of diO-Compatible RCCA Re-randomizable PKE

In our extension to continual leakage, we need a diO-compatible RCCA-secure re-

randomizable scheme. We will show that the controlled-malleable (CM) CCA encryp-

tion scheme of Chase et al. [17] instantiates this notion based on the Decision-Linear

assumption [7]. Compared to their security analysis, we prove something stronger since

we require an RCCA scheme of a particular “diO-compatible” form, but we use the same

RCCA construction of [17] and what we require follows by observing that their scheme

possesses the additional properties we require.

We begin by defining non-interactive proof systems, non-interactive zero-knowledge

(NIZK) proofs of knowledge and malleable proof systems. We then define the additional

security properties (controlled-malleable simulation sound extractability), required for

the construction of Chase et al. [17]. Our definitions closely follow those in [17].

Definition 15. (Non-interactive proof systems) A set of algorithms (CRSSetup,P,V)

constitute a non-interactive (NI) proof system for an efficient relation R with associated

language L R if completeness and soundness below are satisfied. A NI proof system

12We note that the presented conditions only refer to single-message security, which is all that is needed

in our applications. More generally they could provide the adversary many challenge encryptions (say, via

appropriate encryption oracles).

Leakage Resilience from Program Obfuscation 801

is extractable if, in addition, the extractability property below is satisfied. A NI proof

system is zero knowledge (NIZK) if the zero-knowledge property is satisfied. A NIZK

proof system that is also extractable constitutes a non-interactive zero-knowledge proof

of knowledge (NIZKPoK) system.

1. Completeness. For all σcrs ← CRSSetup(1κ) and (x, w) ∈ R,V(σcrs, x, π) = 1

for all proofs π ← P(σcrs, x, w).

2. Soundness. For all ppt A, and for σcrs ← CRSSetup(1κ), the probability that

A(σcrs) outputs (x, π) such that x /∈ L but V(σcrs, x, π) = 1, is negligible.

3. Extractability. There exists a polynomial-time extractor algorithm E = (E1, E2)

such that E1(1
κ) outputs (σext , τext) and E2(σext , τext, x, π) outputs a value

w such that (1) a σext output by E1(1
κ) is indistinguishable from σcrs out-

put by CRSSetup(1κ); (2) for all ppt A, the probability that A(σext , τext)

(where (σext , τext) ← E1(1
κ) outputs (x, π) such that V(σext , x, π) = 1 and

R(x, E2(σext , τext, x, π)) = 0, is negligible.

4. Zero knowledge. There exists a polynomial-time simulator algorithm S = (S1, S2)

such that S1(1
κ) outputs (σsim, τsim) and S2(σsim, τsim, x) outputs a value πs such

that for all (x, w) ∈ R and ppt adversaries A, the following two interactions are

indistinguishable: in the first, we compute σcrs ← CRSSetup(1κ) and give A

σcrs and oracle access to P (where P will output ⊥ on input (x, w) such that

(x, w) /∈ R); in the second we compute (σsim, τsim) and give A σsim and oracle

access to S(σsim, τsim, ·, ·), where, on input (x, w), S outputs S2(σsim, τsim, x) if

(x, w) ∈ R and ⊥ otherwise.

Definition 16. (Malleable non-interactive proof system) Let (CRSSetup,P,V) be a

non-interactive proof system for a relation R. Let T be an allowable set of transfor-

mations for R. Then this proof system is malleable with respect to T if there exists an

efficient algorithm ZKEval that on input (σcrs, T, {xi , πi }), where T ∈ T is an n-ary

transformation, and V(σcrs, xi , πi) = 1 for all i, 1 ≤ i ≤ n, outputs a valid proof π for

the statement x = Tx ({xi }) (i.e., a proof π such that V(σcrs, x, π) = 1).

Definition 17. (Controlled-malleable simulation sound extractability) Let

(CRSSetup,P,V) be a NIZKPoK system for an efficient relation R, with a simulator

(S1, S2) and an extractor (E1, E2). Let T be an allowable set of unary transformations

for the relation R such that membership in T is efficiently testable. Let SE1 be an

algorithm that on input 1κ outputs (σcrs, τsim, τext) such that (σcrs, τsim) is distributed

identically to the output of S1. Let A be given, and consider the following game:

– Step 1. (σcrs, τsim, τext) ← SE1(1
κ).

– Step 2. (x, π) ← AS2(σcrs ,τsim,·)(σcrs, τext).

– Step 3. (w, x ′, T) ← E2(σcrs, τext, x, π).

We say that the NIZKPoK satisfies controlled-malleable simulation sound extractabil-

ity if for all ppt algorithms A there exists a negligible function negl(·) such that the

probability (over the choices of SE1,A and S2) that V(σcrs, x, π) = 1 and (x, π) /∈ Q

(where Q is the set of queried statements and their responses) and either (1) w �= ⊥
and (x, w) /∈ R; (2) (x ′, T) �= (⊥,⊥) and either x ′ /∈ Tx (x ′) or T /∈ T ; or (3)

(w, x ′, T) = (⊥,⊥,⊥) is at most negl(κ).

802 D. Dachman-Soled et al.

For simplicity, we additionally require (CRSSetup,P,V) to be “same-string” NIZK

(see [20]), which means that σcrs generated by SE1 is identically distributed to σcrs

generated by CRSSetup. We point out in the analysis below where this property is

used.

For our purposes, we require proof systems for statements of the form “I know the

message and randomness corresponding to public key and ciphertext pair (pk, c), for

an underlying re-randomizable encryption scheme.” Given a proof corresponding to a

particular (pk, c), we would like to use malleability to construct proofs for (pk, c̃),

where c̃ is a re-randomization of c. Therefore, we require an NIZKPoK with controlled

malleability (CM) with respect to the class T , where T corresponds to the set of trans-

formations that take as input (pk, c) and output (pk, c̃), where c̃ is a re-randomization

of c. We discuss instantiations of such CM-NIZK below.

Our instantiation of diO-compatible RCCA follows the construction of CM-CCA

encryption of [17]. Details follow.

The Instantiation of diO-Compatible RCCA based on [17]. We assume a re-randomizable

IND-CPA-secure encryption scheme (Gen′, Enc′, Dec′) and a cm-NIZK scheme

(CRSSetup,P,V), with simulator SE1, for the relation R such that ((pk, c), (m, r)) ∈
R iff c := Enc′(pk, m; r) and for malleability class T , where T is the set of transfor-

mations corresponding to re-randomization of the ciphertext c. For our construction we

have RCCA = (Gen, Enc, SimEnc, Dec) as follows:

– Gen(1κ): Run (pk′, sk′) ← Gen′(1κ) and (σcrs, τsim, τext) ← SE1(1
κ); set the

public key pk of the RCCA encryption scheme to pk := (pk′, σcrs), the secret key

sk1 of the RCCA encryption scheme to sk1 := (pk, sk′), and the secret key sk2 of

the RCCA encryption scheme to sk2 := (pk, τext). Output (pk, sk1, sk2, τsim).

– Enc(pk, m): Parse pk = (pk′, σcrs); then compute c′ ← Enc′(pk′, m) and π ←
P(σcrs, (pk′, c′), m) (i.e., a proof of knowledge of the value inside c′) and output

c := (c′, π).

– SimEnc(pk, τsim, m): Parse pk = (pk′, σcrs), then compute c′
sim ← Enc′(pk′, m)

and πsim ← S2(σcrs, τsim, (pk′, c′
sim)) a simulated proof of plaintext knowledge

as πsim; it outputs ciphertext c := (c′
sim, πsim).

– Dec1(sk1, c): First parse sk1 = (pk, sk′), pk := (pk′, σcrs) and c := (c′, π); now

check that V(σcrs, (pk′, c′), π) = 1. If not abort and output ⊥. Otherwise, compute

and output m = Dec′(sk′, c′).
– Dec2(sk2, c): First parse sk1 = (pk, sk′), pk := (pk′, σcrs) and c := (c′, π); now

check that

V(σcrs, (pk′, c′), π) = 1. If not abort and output ⊥. Otherwise, compute

((m, r), (pk′, c′), T) ← E2(σcrs, τext, x, π). If (m, r) = ⊥, output SimFlag. Oth-

erwise, output m.

diO Compatibility of the Scheme. We go through the required security properties and

sketch the argument for why each of them hold.

Leakage Resilience from Program Obfuscation 803

– Indistinguishability of simulated ciphertexts from real ciphertexts: For any

efficient adversary A and message m

A(pk, Enc(pk, m), sk1)
c
≈ A(pk, SimEnc(τsim, m), sk1) .

This follows from the “same-string” NIZK property of (CRSSetup,P,V) and

the fact that simulated proofs and real proofs under the cm-NIZK scheme

(CRSSetup,P,V) are indistinguishable.

– Indistinguishability of simulated ciphertexts under chosen plaintext attack:

For any efficient adversary A, and any message pair (m0, m1),

A(pk, sk2, SimEnc(τsim, m0))
c
≈ A(pk, sk2, SimEnc(τsim, m1)) .

Since S2 takes as input σcrs, τsim, (pk′, c′
sim), the output of SimEnc(τsim, mb), b ∈

{0, 1} can be computed given (σcrs, τsim, c′b
sim), where c′b

sim is an encryption of mb

under pk′. Therefore, due to the definitions of pk, sk2, it is sufficient to show that

(σcrs, τext, τsim, c′0
sim)

c
≈ (σcrs, τext, τsim, c′1

sim).

This follows from the fact that encryptions of m0 and encryptions of m1 under pk′

are indistinguishable, even given σcrs, τext, and τsim.

– Simulation soundness: For any efficient A and message m the probability

that the following experiment outputs 1 is negligible: (pk, (sk1, sk2), τsim) ←
Gen(1κ) ; c ← SimEnc(τsim, m) ; c∗ ← A(sk1, sk2, c) Return 1 if

1. Dec2(sk2, c∗) = SimFlag
∧

Dec1(sk1, c∗) �= m

2. Dec2(sk2, c∗) �= SimFlag
∧

Dec2(sk2, c∗) �= Dec1(sk1, c∗)

where the probability is taken over the randomness used in key generation, SimEnc,

and by A when computing c∗.

This follows from the controlled-malleable simulation sound extractability of the

proof system (CRSSetup,P,V), which holds even given τext (which is contained

in sk2). Specifically, parse c := (c′, π) and c∗ := (c∗′, π∗) and note that if

Dec2(sk2, c∗) = SimFlag then it must be the case that V(σcrs, (pk′, c∗′), π∗) = 1

and ((m∗, r∗), (pk′, c∗′
), T) ← E2(σcrs, τext, x, π) is such that (m∗, r∗) = ⊥. But by

the controlled-malleable simulation sound extractability of (CRSSetup,P,V), if the

above occurs then it must be the case that (pk′, c∗′) ∈ T(pk′,c′)(pk′, c∗′) and T ∈ T . This

means that c∗′ is a re-randomization of c′ and so Dec1(sk1, c∗) = Dec′(sk′, c∗′) = m.

On the other hand, if Dec2(sk2, c∗) �= SimFlag then if V(σcrs, (pk′, c∗′), π∗) = 0

both Dec2(sk2, c∗) and Dec1(sk1, c∗) output ⊥. Otherwise, it must be the case that

V(σcrs, (pk′, c∗′), π∗) = 1,

((m∗, r∗), (pk′, c∗′
), T) ← E2(σcrs, τext, x, π) is such that (m∗, r∗) �= ⊥ and

Dec2(sk2, c∗) outputs m∗. But by the controlled-malleable simulation sound extractabil-

ity of (CRSSetup,P,V), if the above occurs then it must be the case that ((m∗, r∗),

804 D. Dachman-Soled et al.

(pk′, c∗′
)) ∈ R, which means that Dec1(sk1, c∗) = Dec′(sk′, c∗′) = m∗ =

Dec2(sk2, c∗).

Concrete parameters. As in [17], the underlying re-randomizable RCCA public key

encryption scheme can be instantiated with the Decision-Linear-based encryption

scheme of Boneh, Boyen, and Shacham [7] (which is re-randomizable via exponen-

tiation). The NIZK proof system can be the same as in [17]: Combine a Groth-Sahai

proof of plaintext knowledge (which is itself re-randomizable and supports exponentia-

tion malleability of the underlying statement) along with the signature scheme from Abe

et al. [1]. A ciphertext in the resulting diO-compatible RCCA-secure re-randomizable

PKE scheme will contain a constant number of group elements, although this constant

is large. A benefit of our abstractions is that better constructions of re-randomizable

RCCA-secure public key encryption and corresponding NIZK proof system will lead to

improved parameters for our continual leakage-resilient PKE scheme.

A.4. Our 2CLR PKE Construction

To guarantee security in the presence of continual leakage, we modify our construction

in two ways. First, we strengthen the security of the encryption scheme used to encrypt

ctdummy, requiring that it provide relaxed CCA security (RCCA) [15]. Recall that such

encryption schemes allow users to re-randomize ciphertexts, while guaranteeing the

ciphertexts are otherwise secure against chosen ciphertext attacks.

The other change that we make to the scheme of Sect. 5.2 comes up in the proof

of security. Because we are leaking over multiple rounds, storing t∗ in a list no longer

suffices. After enough rounds, the value will be fully recovered by the adversary, and

he will distinguish neighboring hybrids. To fix this, we instead store random values

whose inner product yields the challenge point, along with a hash of the challenge.

In our proof of security, the most interesting hybrids are Hybrid 4, where use RCCA

security, Hybrid 5, where we reduce to diO, and Hybrid 8, where we use the fact that

inner product is a good two-source (and, therefore, strong) extractor. The other hybrids

are fairly straightforward (Figs. 17, 18, 19).

Theorem 14. Assume

– RCCA is a diO-compatible RCCA-secure re-randomizable PKE with ciphertexts

of length Lct(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– SIG is a strong existentially unforgeable digital signature scheme with signatures

of length Lsig(κ, Lmsg) for Lmsg-bit messages and security parameter κ .

– PRF is a puncturable pseudorandom function {0, 1}κ × {0, 1}ρ → {0, 1}Lmsg for

some ρ = ρ(κ) = ω(κ2).

– G is a pseudorandom generator {0, 1}κ → {0, 1}ρ .

– diO is a differing-inputs obfuscator for circuits in this scheme.

– H is a family of collision-resistant hash functions with output size κ bits.

Leakage Resilience from Program Obfuscation 805

Encryption Scheme E = (E .Gen, E .Enc, E .Dec, E .Update)

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute the following:
– (pkRCCA, skRCCA, sk2, τsim) ← RCCA.Gen(1κ),
– (vk, td) ← SIG.Gen(1κ),
– k ← PRF.Gen(1κ).
– σ ← SIG.Sign(td, 02κ+ρ+Lmsg).
– ctdummy ← RCCA.Enc(pkRCCA, σ||02κ+ρ+Lmsg ; r0), where r0 ← {0, 1}κ.

Let Ck be the circuit described in Figure 18, and compute CEnc ← diO(Ck).
Let keys = {skRCCA, k, vk}, let Ckeys be the circuit in Figure 19, and compute
CDec ← diO(Ckeys).
Output pk = (pkRCCA, CEnc, CDec) and sk0 = (ctdummy).

Encryption: c ← E .Enc(pk, m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, and output c =
(G(r), CEnc(r) ⊕ m), where G is some fixed pseudorandom generator.

Decryption: m̂ ← E .Dec(ski, c)
In round i, on input ciphertext c = (t, v), compute y := CDec(ski, t).
If y �= ⊥, output m̂ = y ⊕ v. Otherwise, output m̂ = ⊥.

Key Update: ski ← E .Update(ski−1)
In round i, on input secret key ski−1, randomly choose ri ← {0, 1}κ, compute
and output ski ← RCCA.ReRand(pkRCCA, ski−1; ri).

Fig. 17. Continual leakage-resistant encryption scheme, E.

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k, G(r)), where G is some fixed pseudorandom generator.

Fig. 18. Program Ck . This program is obfuscated and placed in the public key to be used for encryption.

Internal (hardcoded) state: keys = {k, vk, skRCCA}.

On input: ctdummy, t

– Compute (σ′, m) = RCCA.Dec1(skRCCA, ctdummy).
– If SIG.Verify(σ′, m; vk) = 0 output ⊥.
– Output z = PRF.Eval(k, t).

Fig. 19. Program Ckeys. This program is obfuscated and placed in the public key. It is used during

decryption.

Then E is L-2CLR where

L

|sk| = (1/6 − o(1))ρ

Lct

(
κ, 2κ + ρ + Lmsg + Lsig(κ, 2κ + ρ + Lmsg)

)

806 D. Dachman-Soled et al.

We choose a diO-compatible RCCA-secure re-randomizable PKE with Lct(κ, Lmsg) =
c1 · Lmsg, for some constant c1 and a signature scheme with Lsig(κ, Lmsg) = o(Lmsg).

Setting ρ = ρ(κ) = ω(κ2) yields an encryption scheme for messages of length Θ(κ)

with constant leakage rate c1/6 − o(1).

Note that a diO-compatible RCCA-secure re-randomizable PKE is achieved by the

Chase et al. [17] scheme, as argued in the previous section. Additionally, signature

schemes with the required property (that Lsig(κ, Lmsg) = o(Lmsg)) can be achieved

using the well-known “hash-and-sign” paradigm (see, for example, [38]) and can be

constructed assuming the existence of collision-resistant hash functions.

It may seem puzzling as to why the leakage rate seems to depends on the length of

the message being encrypted, Lmsg. In general, it is true that the length of the message

being encrypted should not affect the leakage rate. However, in our scheme we are using

a “one-time-pad encryption” paradigm where CEnc generates randomness (t, y) and y

is then used for a one-time-pad encryption of the message, so that the final ciphertext is

(t, v := y ⊕ m). Note that this means that the length of y is the same as the length of

the message (Lmsg). CDec then reverses this process, by taking as input the secret key

(ctdummy) and t (from the ciphertext) and returning the corresponding y. In our proof,

we use an information theoretic argument for one of the steps, which requires that, for a

fixed t∗, the output of CDec (of length Lmsg bits) is uniform random, even conditioned

on the leakage from the secret key. Clearly, in this argument, the entropy of the output of

CDec must be coming from the entropy of the secret key. The entropy of the secret key, in

turn, comes from the fact that, in the hybrid argument, we switch from an encryption of

an all-0 string to an encryption of a random string, y∗. This means that the secret key must

encrypt a message of length at least Lmsg bits (even under 0 bits of leakage) and so clearly

the length of the secret key must depend on the length of the message, Lmsg. If, instead of

using one-time-pad encryption, we used a computational variant in our construction, we

would eliminate the dependence between the secret key length and the message length.

However, this would further complicate the proof, requiring additional steps in the hybrid

argument. Therefore, for simplicity, we assume a simple one-time-pad-based encryption.

In order to prove Theorem 14, we prove (in Lemma 16) that even under leakage, it

is hard for any ppt adversary A to distinguish the output of the PRF y from uniform

random. Given this, Theorem 14 follows immediately.

In fact, we will prove a slightly stronger lemma, by allowing O to leak on two consec-

utive keys in any given round. By combining this property with the results from Sect. 3,

we prove that this construction achieves security when the adversary is allowed to leak

on updates. More specifically, in the lemma below, in round i , we allow the adversary

to specify a leakage function fi (·, ·), and O returns fi (ski−1, ski).

Lemma 16. For every ppt leaking adversary A, who is given oracle access to a leakage

oracle O and may leak at most L bits of the secret key, there exist random variables

p̃k, s̃k0, . . . , s̃kn such that:

(
pk, t∗, y, {fi (ski−1, ski)}n

i=1 ← A
O(·)(pk)

)

c
≈
(
p̃k, Uρ, ULmsg , {fi (s̃ki−1, s̃ki)}n

i=1 ← A
O(·)(p̃k)

)

Leakage Resilience from Program Obfuscation 807

where y = CDec(ctdummy, t = G(r)), n is the number of key update rounds requested

by A, and the distributions are taken over coins of A and choice of (pk, sk0) ←
E .Gen(1κ), ski ← E .Update(ski−1), r and choice of p̃k, s̃k0, . . . , s̃kn, w, respec-

tively.

Proof. We prove the lemma via the following sequence of hybrids:

Hybrid 0: This hybrid is identical to the real game.

Let DA
H0

denote the distribution (pk, t, y, {fi (ski−1, ski)}n
i=1 ← AO(·)(pk)) as in the

left side of Lemma 16.

Hybrid 1: This hybrid is the same as Hybrid 0 except we replace pseudorandom

t = G(r) in the challenge ciphertext with uniform random t∗ ← {0, 1}ρ . Let DA
H1

denote

the distribution (pk, t∗, y, {fi (ski−1, ski)}n
i=1 ← AO(·)(pk)) where y = CDec(skn, t∗)

and the distribution is taken over coins of A, choice of (pk, sk0) ← E .Gen(1κ), ski ←
E .Update(ski−1), t∗ as described above. �

Claim 16. For every ppt adversary A,

D
A
H0

c
≈ D

A
H1

.

Proof. The proof follows from the security of the PRG used in CEnc. We refer the

reader to the proof of Claim 6. We note that the reduction holds even if the adversary

were given all ski in full. �

Hybrid 2: This hybrid is the same as Hybrid 1 except we replace the key k used in

CEnc with a punctured key, k̃ = PRF.Punct(k, t∗). We denote the resulting public key

by pk′. Let DA
H2

denote the distribution
(
pk′, t∗, y, {fi (ski−1, ski)}n

i=1 ← AO(·)(pk′)
)

where y = CDec(skn, t∗) and the distribution is taken over coins of A, and choice of

(pk′, sk0, . . . , skn), t∗ as described above.

Claim 17. For every ppt adversary A,

D
A
H1

c
≈ D

A
H2

.

Proof. The proof follows from the security of the obfuscation used in CEnc. We refer

the reader to the proof of Claim 7. We note again that the reduction holds even if A is

given all ski in full. �

Hybrid 3(j): We define a sequence of n hybrids, where n is the number of key update

rounds requested by the adversary. In Hybrid 3(j), in the first j update rounds, instead

of refreshing ctdummy by computing ctdummy = RCCA.ReRand(pkRCCA, ctdummy),

we replace the secret key with a fresh ciphertext: ctdummy = RCCA.Enc(pkRCCA, σ |
|02κ+ρ+Lmsg). For rounds i > j , the secret key is still refreshed through a re-

randomization. We denote the resulting set of secret keys by {sk
(3| j)
0 , . . . , sk(3| j)

n }. Let

DA
H3| j

denote the distribution
(
pk′, t∗, y, {fi (sk

(3| j)
i−1 , sk

(3| j)
i)}n

i=1 ← AO(·)(pk′)
)

where

808 D. Dachman-Soled et al.

y = CDec(sk(3| j)
n , t∗) and the distribution is taken over coins of A, and choice of

(pk′, sk
(3| j)
0 , . . . , sk(3| j)

n), t∗ as described above.

Claim 18. For every ppt adversary A, and every j ∈ [n]

D
A
H3| j−1

c
≈ D

A
H3| j

.

Proof. The proof is through a reduction to the property that the distribution

of fresh ciphertexts and the distribution of re-randomized ciphertexts are indis-

tinguishable, even given the secret key sk j . The reduction adversary S receives

(pk, sk j) from his challenger and uses them to generate the public keys for E , along

with the secret keys {sk0 = RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg), . . . , sk j−1 =
RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg)}. He submits ciphertext sk j−1 along with the

underlying plaintext value as his challenge and receives c∗ which is either a re-

randomization sk j−1, or a fresh encryption. He computes sk j+1 by re-randomizing

his challenge ciphertext, and for i ∈ { j +1, . . . , n}, he computes ski by re-randomizing

ski−1. These ciphertexts are distributed either identically to those in Hybrid 3(j−1) or

to those in Hybrid 3(j) and can be used by S to perfectly simulate the responses to

A’s leakage queries. It follows that the advantage of S is the same as the advantage of

distinguishing DA
H3| j−1

from DA
H3| j

. �

Hybrid 4: In this hybrid step, we again change the update phase. Instead of replacing

ctdummy with a fresh encryption of σ ||02κ+ρ+Lmsg , we will replace ctdummy with a

fresh encryption of σ ′||((si , αi , H(t∗))|| y). Here si , αi , H, y, σ ′ are defined as follows:

si ← F
ρ/κ
q where q = 2κ ; H ← H where H is a family of collision-resistant hash

functions, and H(t∗) is of size κ; αi = 〈si , t∗〉 is of size κ , where t∗ is interpreted as

an element in F
ρ/κ
q , and αi is interpreted as an element in Fq ; y = PRF.Eval(k, t∗) is

of size Lmsg and σ ′ = SIG.Sign(td, ((si , αi , H(t∗))|| y)).

Let sk′′
i denote the secret key after update round i when computed as described

above. Let DA
H4

denote the distribution
(
pk′, t∗, y, {fi (sk′′

i−1, sk′′
i)}n

i=1 ← AO(·)(pk′)
)

where y = CDec(sk′′
n, t∗) and the distribution is taken over coins of A, and choice of

(pk′, sk′′
1, . . . , sk′′

n), t∗ as described above.

Claim 19. For every ppt adversary A,

D
A
H3|n

c
≈ D

A
H4

.

Proof. The proof proceeds through an iteration of sub-hybrid steps, where in the j th

iteration we change only the j th ciphertext. Let Hybrid 4(j) denote the hybrid game where

we have changed only the content of the first j ciphertexts. Let sk
(4| j)
i denote the secret

key that is generated in the i th update round of Hybrid 4(j). Let DA
H4| j

denote the distribu-

tion
(
pk′, t∗, y, {fi (sk

(4| j)
i−1 , sk

(4| j)
i)}n

i=1 ← AO(·)(pk′)
)

where y = CDec(sk(4| j)
n , t∗)

and the distribution is taken over coins of A, and choice of (pk′, sk
(4| j)
0 , . . . , sk(4| j)

n), t∗

Leakage Resilience from Program Obfuscation 809

as described above. The proof follows then from the following claim. (Note that Hybrid

4(0) is equivalent to Hybrid 3(n).) �

Claim 20. For j ∈ {0, . . . , n − 1},

D
A
H4| j

c
≈ D

A
H4| j+1

Proof. We now define the set of hybrids that allows us to prove Claim 20. We note

that, by the definitions of Hybrids 4(j) and 4(j+1) given above, for any i �= j, sk
(4| j)
i =

sk
(4| j+1)

i . Therefore, in each of the following sub-hybrids, we only need to make change

to sk
(4| j)
j .

Hybrid 4a(j): In this hybrid, we modify the update procedure in round j . Instead of

replacing ctdummy with a fresh encryption RCCA.Enc(pkRCCA, σ ||02κ+ρ+Lmsg), we

set sk
(4a| j)
j = RCCA.SimEnc(τsim, σ ||02κ+ρ+Lmsg). The other keys remain as they

are in Hybrid 4(j).

Let sk
(4a| j)

i denote the secret key that is generated in the i th update round of

Hybrid 4a(j). Let DA
H4a| j

denote the distribution (pk′, t∗, y, {fi (sk
(4a| j)
i−1 , sk

(4a| j)
i)}n

i=1 ←
AO(·)(pk′)) where y = CDec(sk(4a| j)

n , t∗) and the distribution is taken over coins of A,

and choice of (pk′, sk
(4a| j)
0 , . . . , sk(4a| j)

n), t∗ as described above. We claim the following

Claim 21. For any ppt adversary A,

D
A
H4| j

c
≈ D

A
H4a| j

Proof. The proof follows by a reduction to the RCCA property ensuring the indis-

tinguishability of simulated ciphertexts from real ciphertexts. Recall, for any efficient

adversary S

S
Enc(pkRCCA,·)(pkRCCA, sk1)
c
≈ S

SimEnc(τsim,·)(pkRCCA, sk1) .

To build the reduction, S receives keys (pkRCCA, sk1) for the RCCA scheme, which

suffices to build the pk of E . For update rounds i < j , he constructs ski by creating

a fresh encryption of σ ′||((si , αi , H(t∗))|| y) (as defined above), and for i > j , he

constructs ski by creating a fresh encryption of σ ||02κ+ρ+Lmsg . To create sk j , he submits

σ ||02κ+ρ+Lmsg to his challenger and uses the challenge ciphertext in the j th update round.

The distribution of secret keys generated by S is either identical to that in Hybrid 4(j),

or to that in Hybrid 4a(j). It follows that S’s advantage is the same as the distinguishing

advantage between DA
H4| j

and DA
H4a| j

. �

Hybrid 4b(j): In this hybrid, we modify the circuit Ckeys into Ckeys′ described in Fig. 20.

In words, the change involves using sk2 instead of sk1. If decryption under sk2 outputs a

810 D. Dachman-Soled et al.

Internal (hardcoded) state: keys′ = {k, vk, sk2}.

On input: ctdummy, t

– If RCCA.Dec2(sk2, ctdummy) = SimFlag, output z = PRF.Eval(k, t).
– If RCCA.Dec2(sk2, ctdummy) = ⊥, output ⊥.
– Else, parse RCCA.Dec2(sk2, ctdummy) as (σ′, m).
– If SIG.Verify(σ′, m; vk) = 0 output ⊥.
– Otherwise, output z = PRF.Eval(k, t).

Fig. 20. Program Ckeys′ . This program is obfuscated and placed in the public key, replacing Ckeys. It is used

during decryption.

message, we still verify the signature just as in Ckeys, and if decryption outputs SimFlag,

we proceed as though the signature has been verified. Intuitively, these circuits have

differing-inputs security because of the “simulation soundness” property of the RCCA

encryption scheme. Denote the resulting public key by pk(4b| j). Let DA
H4b| j

denote the

distribution
(
pk(4b| j), t∗, y, {fi (sk

(4a| j)

i−1 , sk
(4a| j)

i)}n
i=1 ← AO(·)(pk(4b| j))

)
where y =

CDec

(sk(4a| j)
n , t∗) and the distribution is taken over coins ofA, and choice of (pk(4b| j), sk

(4a| j)
0 ,

. . . , sk(4a| j)
n), t∗ as described above. We claim the following

Claim 22. For any efficient adversary A,

D
A
H4a| j

c
≈ D

A
H4b| j

Proof. We define the following sampler Samp and show that the circuit family C

associated with Samp is a differing-inputs circuit family.

Samp(1κ) does the following:

– Set keys = (sk1, k, vk) and set keys′ = (sk2, k, vk).

– Let C0 = Ckeys and let C1 = Ckeys′ .

– Set aux = (vk, {sk
(4a| j)
i }n

i=0, t∗, y)

– Return (C0, C1, aux).

We now show that for every ppt adversary A there exists a negligible function negl

such that

Pr[C0(x) �= C1(x) : (C0, C1, aux) ← Samp(1κ), x ← A(1κ , C0, C1, aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversary A and a polynomial

p(·) such that for infinitely many κ,A outputs a distinguishing input with probability

at least 1/p(κ). We construct a ppt adversary S that breaks the simulation soundness

property of the RCCA scheme.

Upon receiving (pkRCCA, sk1, sk2) ← Gen(1κ) from the challenger, S does the fol-

lowing:

Leakage Resilience from Program Obfuscation 811

– Run k ← PRF.Gen(1κ) and (vk, td) ← SIG.Gen(1κ). Choose t∗ at ran-

dom, compute y = PRF.Eval(k, t∗), and set keys = (sk1, k, vk) and keys′ =
(sk2, k, vk).

– Sample σ ← SIG.Sign(td, 02κ+ρ+Lmsg) and submit m∗ = (σ ||02κ+ρ+Lmsg) as a

challenge message.

– S receives challenge c∗ ← SimEnc(τsim, m∗) and simulates Samp by doing the

following:

• Let C0 = Ckeys and let C1 = Ckeys′ .

• S sets sk j = c∗. For i �= j,S uses pkRCCA to generate ski honestly, as done

in Hybrid 4a(j) above.

• Set aux = (vk, {ski }n
i=0, t∗, y)

– S runs A(1κ , C0, C1, aux) and receives x in return. He outputs x .

Note that if RCCA.Dec2(sk2, x) = SimFlag and RCCA.Dec1(sk1, x) =
m∗, then both C0 and C1 output y = PRF.Eval(k, t∗). On the other hand, if

RCCA.Dec2(sk2, x) = SimFlag and RCCA.Dec1(sk1, x) �= m∗, then x violates the

simulation soundness property of the RCCA scheme and S wins his game. Similarly, if

RCCA.Dec2(sk2, x) �= SimFlag and RCCA.Dec2(sk2, x) = RCCA.Dec1(sk1, x),

then C0 and C1 have the same output (either y or ⊥). If RCCA.Dec2(sk2, x) �= SimFlag

and RCCA.Dec2(sk2, x) �= RCCA.Dec1(sk1, x) then, again, S wins his game.

Claim 22 follows from the fact that diO is a differing-inputs obfuscator and from the

fact that the circuit family C associated with Samp is a differing-inputs family. This is

the case since DA
H4a| j

can be simulated given (diO(C0), aux) and DA
H4b| j

can be simulated

given (diO(C1), aux). �

Hybrid 4c(j): In this hybrid, we modify the update procedure in round j . Instead of

replacing ctdummy with the simulated ciphertext RCCA.SimEnc(τsim, σ ||02κ+ρ+Lmsg),

we compute

sk
(4c| j)

j = RCCA.SimEnc(τsim, σ ′||((si , αi , H(t∗))|| y))

as described in Hybrid 4. The other keys remain as they are in Hybrid 4b(j).

Let sk
(4c| j)
i denote the secret key that is generated in the i th update round of Hybrid

4c(j). Let DA
H4c| j

denote the distribution

(
pk(4b| j), t∗, y, {fi (sk

(4c| j)

i−1 , sk
(4c| j)

i)}n
i=1 ← A

O(·)(pk(4b| j))

)

where y = CDec(sk(4c| j)
n , t∗) and the distribution is taken over coins of A, and choice

of (pk(4b| j), sk
(4c| j)
0 , . . . , sk(4c| j)

n), t∗ as described above. We claim the following

Claim 23. For any efficient adversary A,

D
A
H4b| j

c
≈ D

A
H4c| j

812 D. Dachman-Soled et al.

Proof. The proof follows by a reduction to the RCCA property that ensures the indis-

tinguishability of simulated ciphertexts, even when given sk2. Recall, for any efficient

adversary S, and any message pair (m0, m1),

A
SimEnc(τsim,·)(pkRCCA, sk2, SimEnc(τsim, m0))
c
≈ A

SimEnc(τsim,·)(pkRCCA, sk2, SimEnc(τsim, m1)) .

To build the reduction, S receives keys (pkRCCA, sk2) for the RCCA scheme, which

suffices to build the pk of E . For update rounds i < j , he constructs ski by creating a

fresh encryption RCCA.Enc(pkRCCA, σ ′||((si , αi , H(t∗))|| y)) (as defined above), and

for i > j , he constructs ski by creating a fresh encryption of σ ||02κ+ρ+Lmsg . To create

sk j , he submits challenge plaintext pair: (σ ||02κ+ρ+Lmsg), (σ ′||((si , αi , H(t∗))|| y)) to

his challenger and uses the challenge ciphertext in the j th update round. The distribution

of secret keys generated by S is either identical to that in Hybrid 4b(j), or to that in Hybrid

4c(j). It follows that S’s advantage is the same as the distinguishing advantage between

DA
H4b| j

and DA
H4c| j

. �

Hybrid 4d(j) In this hybrid, we modify Ckeys′ back to the circuit Ckeys used in the real

world. That is, we return to using sk1. Denote the resulting public key by pk(4d| j). Let

DA
H4d| j

denote the distribution

(
pk(4d| j), t∗, y, {fi (sk

(4c| j)

i−1 , sk
(4c| j)

i)}n
i=1 ← A

O(·)(pk(4d| j))

)

where y = CDec(sk(4c| j)
n , t∗) and the distribution is taken over coins of A, and choice

of (pk(4d| j), sk
(4c| j)
0 , . . . , sk(4c| j)

n), t∗ as described above. We claim the following

Claim 24. For any efficient adversary A,

D
A
H4c| j

c
≈ D

A
H4d| j

Proof. The proof follows from the security of diO. The proof is nearly identical to the

proof of Claim 22, so we omit it. �

Hybrid 4e(j): In this hybrid, we modify the update procedure in round j . Instead of

replacing ctdummy with a simulated ciphertext, we return to using a real ciphertext by

computing

sk
(4e| j)
j = RCCA.Enc(σ ′||((si , αi , H(t∗))|| y))

The other keys remain as they are in hybrid 4d(j). Let sk
(4e| j)
i denote the secret key that

is generated in the i th update round of hybrid 4e(j). Let DA
H4e| j

denote the distribution

(
pk(4d| j), t∗, y, {fi (sk

(4e| j)
i−1 , sk

(4e| j)
i)}n

i=1 ← A
O(·)(pk(4d| j))

)

Leakage Resilience from Program Obfuscation 813

Internal (hardcoded) state: keys′′ = {k∗ = PRF.Punct(k, t∗), vk, sk1, H}.

On input: ctdummy, t

– Compute (σ′, (s, α, H(t′)|| y)) = RCCA.Dec1(sk1, ctdummy).
– If SIG.Verify(σ′, (s, α, H(t′)|| y); vk) = 0 output ⊥.
– If 〈s, t〉 = α H(t) = H(t′), output y.
– Else, output PRF.Eval(k∗, t).

Fig. 21. Program Ckeys′′ . This program replaces Ckeys. Recall it is obfuscated and placed in the public key.

It is used during decryption.

where y = CDec(sk(4e| j)
n , t∗) and the distribution is taken over coins of A, and choice

of (pk(4d| j), sk
(4e| j)
0 , . . . , sk(4e| j)

n), t∗ as described above. We claim the following

Claim 25. For any efficient adversary A,

D
A
H4d| j

c
≈ D

A
H4e| j

Proof. The proof is again by the indistinguishability of a simulated ciphertext from a

real ciphertext given sk1. The proof proceeds identically to the proof of Claim 21, so

we omit it. �

We note that Hybrid 4e(j) is identical to Hybrid 4(j+1), so this concludes the proofs

of Claims 19 and 20.

Hybrid 5: In this hybrid game, we replace: CDec = diO(Ckeys) with C ′′
Dec =

diO(Ckeys′′), where Ckeys′′ is the circuit described in Fig. 21. The difference between

keys and keys′′ is that we puncture k at the challenge point t∗ in keys′′. The dif-

ference between Ckeys′′ and Ckeys is that Ckeys′′ will attempt to use the point obfus-

cation before turning to the PRF key. See Fig. 21 for details. Denote the result-

ing public key by pk(5), and let sk
(5)
i denote the secret key after the i th round of

update, computed as described in the previous hybrid. Let DA
H5

denote the distribu-

tion
(
pk(5), t∗, y, {fi (sk

(5)
i−1, sk

(5)
i)}n

i=1 ← AO(·)(pk(5))

)
where y = C ′′

Dec(sk(5)
n , t∗)

and the distribution is taken over coins of A, and choice of (pk(5), sk
(5)
0 , . . . , sk(5)

n), t∗

as described above. We claim the following

Claim 26. For any efficient adversary A,

D
A
H4

c
≈ D

A
H5

Proof. The proof follows from the security of diO, and from the collision resistance

of H and the security of the signature scheme. We define the following sampler Samp

and show that the circuit family C associated with Samp is a differing-inputs circuit

family. �

814 D. Dachman-Soled et al.

Samp(1κ) does the following:

– Set keys = (sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).

– Let C0 = Ckeys and let C1 = Ckeys′′ .

– Set aux = (vk, {sk
(5)
i }n

i=0, t∗, y)

– Return (C0, C1, aux).

We now show that for every ppt adversary A there exists a negligible function negl

such that

Pr[C0(x) �=C1(x) : (C0, C1, aux)←Samp(1κ), x ←A(1κ , C0, C1, aux)] ≤ negl(κ).

Assume toward contradiction that there exists a ppt adversary A and a polynomial p(·)
such that for infinitely many κ,A outputs a distinguishing input with probability at least

1/p(κ). Denote the event that A does so by Win. We show that the value output by A

will either enable us to find a collision under H , or to break the existential unforgeability

of the signature scheme.

Let (ct′dummy, t ′) denote the output of A when given circuits and auxiliary input

sampled as described above. Let (σ ′||m′) = RCCA.Dec1(sk1, ct′dummy). Letting Coll

denote the probabilistic event that (σ ′||m′) = Dec(sk1, sk
(5)
1) = · · · = Dec(sk1, sk(5)

n)

(where the randomness is over the coins of the Samp and the coins of A), we divide

our analysis into the following two cases.

Claim 27. There exists an attacker S that finds collisions on H with probability

Pr[Win | Coll].

Proof. Upon receiving H ← H from the challenger, S does the following:

– Run (pkRCCA, sk1) ← RCCA.Gen(1κ), k ← PRF.Gen(1κ) and (vk, td) ←
SIG.Gen(1κ). Choose t∗ at random, and compute k∗ = PRF.Punct(k, t∗). Set

keys = (sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).

– S simulates Samp by doing the following:

• S samples s ← F
ρ/κ
q and computes α = 〈s, t∗〉. He computes y =

PRF.Eval(k, t∗). He uses these values, along with challenge H and signing

key td, to generate sk
(5)
i honestly.

• Set aux = (vk, {sk
(5)
i }n

i=0, t∗, y)

– S runs A(1κ , C0, C1, aux) and receives x = (ct′′dummy, t ′′) in return. He outputs t ′′

as a collision with t∗ under H .

Because we condition on event Coll, we have that RCCA.Dec1(sk1, ct′′dummy) =
σ ′′||(s, α, H(t∗)|| y), where s and t∗ are the values sampled by S when simulating

sk
(5)
i , α = 〈s, t∗〉, and SIG.Verify(σ ′′, (s, α, H(t∗)|| y)) = 1. It follows that the only

way for (ct′′dummy, t ′′) to constitute a differing-inputs is if the following condition holds:

t ′′ �= t∗
∧

PRF.Eval(k, t ′′) �= y
∧

〈s, t ′′〉 = α
∧

H(t ′′) = H(t∗)

Leakage Resilience from Program Obfuscation 815

To see why this condition is necessary, note that if t ′′ = t∗, or if PRF.Eval(k, t ′′) = y,

both circuits output y. If 〈s, t ′′〉 �= α, or H(t ′′) �= H(t∗), both circuits output

PRF.Eval(k, t ′′). Now, since t ′′ �= t∗, but H(t ′′) = H(t∗),S has succeeded in finding

a collision for function H . �

Claim 28. There exists an attacker S that finds forgeries with respect to Sign with

probability

Pr[Win | Coll].

Proof. Upon receiving vk from the challenger, S, who has the access to the signing

oracle SIG.Sign(td, ·), does the following:

– Run (pkRCCA, sk1) ← RCCA.Gen(1κ), k ← PRF.Gen(1κ). Choose t∗ at ran-

dom, and compute k∗ = PRF.Punct(k, t∗). Choose H ← H. Set keys =
(sk1, k, vk) and keys′′ = (sk1, k∗, vk, H).

– S simulates Samp by doing the following:

• S samples s ← F
ρ/κ
q and computes α = 〈s, t∗〉. He computes y =

PRF.Eval(k, t∗). He uses these values to define message m = (s, α, H(t∗)||y)

and uses his external signing oracle SIG.Sign(td, ·) to get signature σ . He

generates sk
(5)
i by repeatedly encrypting (σ, m).

• Set aux = (vk, {sk
(5)
i }n

i=0, t∗, y)

– S runs A(1κ , C0, C1, aux) and receives x = (ct′′dummy, t ′′) in return. Then he com-

putes (σ ′′, m′′) = RCCA.Dec1(sk1, ct′′dummy), and outputs (m′′, σ ′′) as a forged

signature.

Because we are conditioning on the event Coll, it follows that S never obtains (σ ′′, m′′)
through his signing oracle. Furthermore, note that if SIG.Verify(vk, m′′, σ ′′) = 0, then

both C0 and C1 output ⊥. It follows that (m′′, σ ′′) is a successful forgery, and S wins

his game. Note that we require a strongly unforgeable signature scheme, because, while

Coll states that (m′′, σ ′′) �= (m, σ), it may be that m′′ = m. �

From Claims 27 and 28, and the security of H and Sign, it follows that Pr[Win] <

negl. Claim 24 follows from the fact that diO is a differing-inputs obfuscator and from

the fact that the circuit family C associated with Samp is a differing-inputs family. This

is the case since DA
H4

can be simulated given (diO(C0), aux) and DA
H5

can be simulated

given (diO(C1), aux).

Hybrid 6: In this game, we modify the key update phase (in every round) to

use (s, α, H(t∗)|| y∗), where y∗ is chosen uniformly at random, rather than as

PRF.Eval(k, t∗). Let DA
H6

denote the distribution(
pk(6), t∗, y, {fi (sk

(6)
i−1, sk

(6)
i)}n

i=1 ← AO(·)(pk(6))

)
where y = C ′′

Dec(sk(6)
n , t∗) and

the distribution is taken over coins of A, and choice of (pk(6), sk
(6)
0 , . . . , sk(6)

n), t∗ as

described above. We claim the following

816 D. Dachman-Soled et al.

Claim 29. For any ppt adversary A,

D
A
H5

c
≈ D

A
H6

Proof. The proof is by reduction to the security of the punctured PRF. Specifically, S

attacks the PRF by submitting t∗ to his challenger and receiving (PRF.Punct(k, t∗), y∗)
as a challenge. He then generates all the other necessary keys to simulate the view of A.

And uses A’s guess to form his own. �

Hybrid 7: In this game, we replace C ′′
Dec with C ′′′

Dec by changing k∗ in C ′′
Dec in the

previous hybrid with the original k.

Claim 30. For any ppt adversary A,

D
A
H6

c
≈ D

A
H7

Proof. The proof is by a reduction to the security of the indistinguishability obfuscation.

The main observation is that if H(t ′) = H(t) and 〈s, t〉 = α, then both circuits output

y∗. If this does not hold, then C ′′
Dec returns y′′ = PRF.Eval(k∗, t), and C ′′′

Dec returns

y′′′ = PRF.Eval(k, t); note that y′′ = y′′′ on points t �= t∗. Therefore, changing k∗ into

k will not effect the input/output behavior. If there is a difference in advantage, we can

create an algorithm B that breaks the security of indistinguishability obfuscation. �

Hybrid 8(j): In this sequence of hybrids, we modify the key update procedure as follows.

Instead of replacing ctdummy with an encryption of (s, α, H(t∗)|| y∗), where 〈s, t∗〉 =
α, in the first j key update rounds we instead replace it with a fresh encryption of

(si , αi , H(t∗)|| y∗) where si ← F
ρ/κ
q and αi ← Fq . Note that the difference in this

hybrid is that αi is no longer necessarily equal to α = 〈si , t∗〉. Let DA
H8| j

denote the

distribution
(
pk(8| j), t∗, y∗, {fi (sk

(8| j)
i−1 , sk

(8| j)
i)}n

i=1 ← AO(·)(pk(8| j))

)
where y∗ ←

{0, 1}Lmsg is chosen uniformly at random, and the distribution is taken over coins of A,

and choice of (pk(8| j), sk
(8| j)
0 , . . . , sk(8| j)

n), w, and y∗ as described above. Noting that

Hybrid 8(0) is the same as Hybrid 7, We claim the following

Claim 31. For any ppt adversary A, and any j ∈ {0, . . . , n − 1}

D
A
H8| j

c
≈ D

A
H8| j+1

The heart of this proof relies on Theorem 15 which is stated and proved next. Intu-

itively, the claim in this theorem is that, for any leakage function f with bounded output

length, it is hard to tell from (t∗, f (s j , H(t∗), α j , α j+1)) whether α j = 〈s j , t∗〉. The

argument uses the fact that the inner product is a strong two-source extractor.

Lemma 17. (Strong Inner-Product Two-Source Extractor) Let X, Y , Z be correlated

variables, where X, Y have their support in F
m
q , and are independent conditioned on Z.

Leakage Resilience from Program Obfuscation 817

Let U be uniform and independent on Fq . Then

Δ((Z , Y, 〈X, Y 〉), (Z , Y, U)) ≤ 2−s

for some s ≥ 1+ 1
2
(kX +kY −(m +1) log q), where kX := H̃∞(X|Z), kY := H̃∞(Y |Z)

The worst-case version of this lemma is Theorem 1 of Lee et al. [42]. The average-case

version that we use above follows as in Wichs’ thesis [51, Lemma 4.1.4]. (Wichs does

not state his lemma for the strong extraction property but this follows readily given the

result of Lee et al. [42].)

Theorem 15. Let S1, T be random on F
m
q and U be random on Fq . Fix any s2 ∈ F

m
q

and let A2 = 〈s2, T 〉. Suppose H outputs κ bits and f outputs L ′ bits. Then

Δ ((T, f (S1, H(T), 〈S1, T 〉, A2)), (T, f (S1, H(T), U, A2))) ≤ 2−s′
, (6)

where s′ = (m log q − 3L ′ − 1 − κ − 2 log q)/3.

Thus for the statistical distance in Eq. 6 to be negligible, we need

(m log q − 3L ′ − 1 − κ − 2 log q)/3 ≥ log(1/ǫ′) ,

for some negligible ǫ′. Taking κ = log 1/ǫ′ = log q and setting m = ω(κ) such that

m · κ = ρ(κ), L ′ = ρ/3 − O(κ), we can tolerate 2CLR leakage functions of length

L = L ′/2, which we will argue later.

Proof. Let BAD be the set of ℓ such that conditioning on f (S1, H(T), U, A2) = ℓ

gives S1 too little min-entropy. That is,

BAD := {ℓ such that H∞(S1 | f (S1, H(T), U, A2) = ℓ) < m log q − L ′ − s′ − 1} .

Additionally, for fixed t, α2 = 〈s2, t〉, let S t be the set of ℓ defined as,

S
t := {ℓ such that Pr[f (S1, H(t), U, α2) = ℓ] > Pr[f (S1, H(t), 〈S1, t〉, α2) = ℓ]}.

�

We claim that

Δ ((T, f (S1, H(T), U, A2)), (T, f (S1, H(T), 〈S1, T 〉, A2)))

= Et Δ (f (S1, H(t), U, α2), f (S1, H(t), 〈S1, t〉, α2))

≤ Et

⎛
⎝ ∑

ℓ∈BAD∩S t

Pr
[
f (S1, H(t), U, α2) = ℓ

]
− Pr
[
f (S1, H(t), 〈S1, t〉, A2) = ℓ

]
⎞
⎠

+Et

(∑

ℓ∈BAD∩S t

Pr
[
f (S1, H(t), U, α2) = ℓ

]
)

818 D. Dachman-Soled et al.

≤
∑

ℓ/∈BAD

(
Et

∣∣Pr
[
f (S1, H(t), U, α2) = ℓ

]
− Pr
[
f (S1, H(t), 〈S1, t〉, α2) = ℓ

]∣∣)

+
∑

ℓ∈BAD

(
Et Pr
[
f (S1, H(t), U, α2) = ℓ

])

=
∑

ℓ/∈BAD

(
Et

∣∣Pr
[
f (S1, H(t), U, α2) = ℓ

]
− Pr
[
f (S1, H(t), 〈S1, t〉, α2) = ℓ

]∣∣)

+ Pr[f (S1, H(T), U, A2) ∈ BAD]
≤
∑

ℓ/∈BAD

(Et | Pr[f (S1, H(t), U, α2) = ℓ]

− Pr[f (S1, H(t), 〈S1, t〉, α2) = ℓ]|) + 2−s′−1 (7)

≤ 2L ′ · 2−s′−1−L ′ + 2−s′−1,

= 2−s′
. (8)

where (7) is due to Markov’s inequality and the definition of the set BAD. (8) is due to

the following claim:

Claim 32. For any ℓ /∈ BAD in the range of f ,

Et

∣∣Pr
[
f (S1, H(t), U, α2) = ℓ

]
− Pr
[
f (S1, H(t), 〈S1, t〉, α2) = ℓ

]∣∣ ≤ 2−s′−1−L ′
.

Proof. First, for fixed t, β and ĥ = H(t), we have:

Pr[f (S1, ĥ, 〈S1, t〉, α2) = ℓ ∧ 〈S1, t〉 = β]
= Pr[f (S1, ĥ, β, α2) = ℓ ∧ 〈S1, t〉 = β]
= Pr[f (S1, ĥ, β, α2) = ℓ] · Pr[〈S1, t〉 = β | f (S1, ĥ, β, α2) = ℓ]. (9)

and

Pr[f (S1, ĥ, U, α2) = ℓ ∧ U = β]
= Pr[f (S1, ĥ, β, α2) = ℓ ∧ U = β]
= Pr[f (S1, ĥ, β, α2) = ℓ] · Pr[U = β]. (10)

Now, we have that:

Et←T | Pr[f (S1, H(t), U, α2) = ℓ] − Pr[f (S1, H(t), 〈S1, t〉, α2) = ℓ]|
=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2] · E
t←T ′

| Pr[f (S1, ĥ, U, α2) = ℓ]

− Pr[f (S1, ĥ, 〈S1, t〉, α2) = ℓ]|
≤
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2]

Leakage Resilience from Program Obfuscation 819

· E
t←T ′

∑

β

| Pr[f (S1, ĥ, U, α2) = ℓ ∧ U = β]

− Pr[f (S1, ĥ, 〈S1, t〉, α2) = ℓ ∧ 〈S1, t〉 = β]| (11)

=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2]

·
∑

β

(E
t←T ′

| Pr[f (S1, ĥ, U, α2) = ℓ ∧ U = β]

− Pr[f (S1, ĥ, 〈S1, t〉, α2) = ℓ ∧ 〈S1, t〉 = β]|)
=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2]

·
∑

β

(E
t←T ′

[Pr[f (S1, ĥ, β, α2) = ℓ] · | Pr[U = β]

− Pr[〈S1, t〉 = β | f (S1, ĥ, β, α2) = ℓ]|]) (12)

≤
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2] ·
∑

β

(E
t←T ′

| Pr[U = β]

− Pr[〈S1, t〉 = β | f (S1, ĥ, β, α2) = ℓ]|) (13)

=
∑

ĥ,α2

Pr[H(T) = ĥ ∧ 〈s2, T 〉 = α2]

Δ((T ′, (〈S1, T ′〉 | f (S1, ĥ, β, α2) = ℓ)), (T ′, U))

≤ 2−s′−1−L ′
, (14)

where T ′ is uniform on the set {t | H(t) = ĥ ∧ 〈s2, t〉 = α2}, (11) follows by

triangle inequality, (12) follows from (9) and (10), (13) follows since the quantity

Pr[f (S1, ĥ, β, α2) = ℓ] is always less than or equal to 1.

To see why (14) holds, note that X :=
(
S1 | f (S1, ĥ, β, α2) = ℓ

)
and Y :=(

T | H(T) = ĥ ∧ 〈s2, T 〉 = α2

)
are independent sources. Furthermore,

kX := H̃∞
(
S1 | f (S1, ĥ, β, α2) = ℓ

)
≥ m log q − L ′ − s′ − 1

by the assumption ℓ /∈ BAD. And

kY := H̃∞
(
T | H(T) = ĥ ∧ 〈s2, T 〉 = α2

)
≥ m log q − κ − log q

by the “chain rule” for average min-entropy [25, Lemma 2.2]. Thus the last inequality

follows by Lemma 17. �

We now use theorem 15 to prove Claim 31.

Proof. We show that if A can distinguish Hybrid 8(j) from 8(j+1) with some advantage

ǫ′, then there is a distinguisher S and functions f ∗ and H with output lengths at most

820 D. Dachman-Soled et al.

Internal (hardcoded) state: rand =
{

{si, αi, r
(1)
i , r

(2)
i }j−1

i=0 , r
(1)
j , r

(2)
j , r

(1)
j+1, r

(2)
j+1, y

∗, rtape

}
,

td, pkRCCA.

On input: sj , H(t∗), αj , αj+1

– For i ∈ {0, . . . , j + 1},
– let mi = (si, H(t∗), αi||y

∗),
– let σi = SIG.Sign(td, mi ; r

(1)
i),

– let ski = RCCA.Enc(pkRCCA, σi || mi ; r
(2)
i).

– Run the code of A using random tape rrand until he has made j+1 leakage queries.
For i ∈ {1, . . . , j + 1}, reply to leakage query fi by computing fi(ski−1, ski).

– Output fj(skj−1, skj), fj+1(skj , skj+1)

Fig. 22. The function f ∗
rand,td,pkRCCA

is the leakage function sent by reduction adversary S to his chal-

lenger. In response, he receives either a sample from (T, f ∗
rand,td,pkRCCA

(S1, H(T), 〈S1, T 〉, α2)), or from

(T, f ∗
rand,td,pkRCCA

(S1, H(T), β, α2)).

L ′ = 2L bits and κ bits, respectively, such that S distinguishes the two distributions

(T, f ∗(S1, H(T), 〈S1, T 〉, A2)) and (T, f ∗(S1, H(T), U, A2)) from one another with

the same advantage. Since this violates the assertion in Theorem 15, the claim follows

directly.

S simulates the view of A as follows. He samples (pkRCCA, sk1, sk2) ←
RCCA.Gen(1κ), (vk, td) ← SIG.Gen(1κ), k ← PRF.Gen(1κ), and constructs CDec

and CEnc as described in the previous hybrid. Then, to simulate the replies to A’s leakage

queries, S acts as follows. For i ∈ {0, . . . , j − 1}, he samples si ← F
ρ/κ
q , and αi ← Fq .

For i ∈ {0, . . . , j + 1} he samples randomness r
(1)
i to be used in signing the necessary

plaintext values, and r
(2)
i to be used in encrypting the necessary values. Finally, he sam-

ples rtape to be used as A’s random tape, and y∗ ← {0, 1}Lmsg . We denote the union

of these sets of random values by rand. He then submits function f ∗
rand,td,pkRCCA

to his

challenger, where f ∗
rand,td,pkRCCA

is defined as in Fig. 22.

S receives challenge value (t∗, f j−1(sk j−2, sk j−1), f j (sk j−1, sk j), α j+1). Once he

knows t∗, we note that S has all the information needed to simulate A’s view for the

first j − 2 leakage queries. He does so precisely as was done by his challenger when

running f ∗
rand,td,pkRCCA

, using identical random values, and eliciting identical leakage

queries. To simulate the replies to leakage queries f j−1 and f j he uses the two outputs

of f ∗
rand,td,pkRCCA

.

By our setting of parameters, output size of f is L , and output size of f ∗ is L ′ = 2L .

To simulate the replies to query f j+1,S computes α j+1 = 〈s j+1, t∗〉, where, recall, s j+1

was fixed prior to his challenge query. He simulates sk
(8| j)
j+1 by signing and encrypt-

ing (s j+1, H(t∗), α j+1||y∗) with random coins r
(1)
j+1, r

(2)
j+1. For j + 1 < i < n, he

constructs sk
(8| j)
i by sampling si ← F

ρ/κ
q , computing αi = 〈si , t∗〉, and then signing

and encrypting (si , H(t∗), αi ||y∗) using uniformly chosen coins. He simulates leakage

queries f j+1, . . . , fn using the sk
(8| j)

j+1 , . . . , sk(8| j)
n .

Leakage Resilience from Program Obfuscation 821

The above simulation is distributed exactly as Hybrid 8(j) when S’s challenge

comes from (T, f ∗
rand,td,pkRCCA

(S j , H(T), 〈S j , T 〉, α j+1)), and it is distributed exactly as

Hybrid 8(j+1) when S’s challenge comes from (T, f ∗
rand,td,pkRCCA

(S j , H(T), β, α j+1)),

which concludes the proof. �

Hybrid 9: In this hybrid, we change the circuit CDec such that after decrypting ctdummy,

it verifies the signature, but otherwise ignores the content. Note that by the end of Hybrid

8 sequence, the inner-product relationship has been “broken”, so with all but negligible

probability over the choices of si , αi , we are already ignoring the plaintext values anyway.

Let C
(9)

keys denote the resulting circuit, and let pk(9) denote the modified public

key that results from obfuscating the updated circuit. Let DA
H9

denote the distri-

bution
(
pk(9), t∗, y∗, {fi (sk

(9)
i−1, sk

(9)
i)}n

i=1 ← AO(·)(pk(9))

)
where y∗ is chosen uni-

formly at random, and the distribution is taken over coins of A, and choice of

(pk(8), sk
(8)
0 , . . . , sk(8)

n), y∗ as described above. We claim the following

Claim 33. For any ppt adversary A,

D
A
H8|n

c
≈ D

A
H9

Proof. The proof follows from a reduction to the security of the diO scheme. The

argument that these two circuits have differing-inputs security follows almost identically

as in the proof of Claim 26, with a reduction to the either the security of the signature

scheme, or the collision resistance of H . We omit repeating the proof. �

Hybrid 10: In this hybrid, we replace the content of ctdummy with a fresh encryp-

tion of σ ||02κ+ρ+Lmsg , where σ is a signature on 02κ+ρ+Lmsg . Let sk
(10)
i denote

the resulting secret key in update round i . Let pk(10) denote the public key (which

is generated in the same fashion as in Hybrid 9.). Let DA
H10

denote the distribu-

tion (pk(10), t∗, y∗, {fi (sk
(10)
i−1 , sk

(10)
i)}n

i=1 ← AO(·)(pk(10))) where y∗ is chosen uni-

formly at random, and the distribution is taken over coins of A, and choice of

(pk(10), sk
(10)
0 , . . . , sk(10)

n), y∗ as described above. We claim the following

Claim 34. For any ppt adversary A,

D
A
H9

c
≈ D

A
H10

Proof. The proof follows from the security of the RCCA scheme. We transition through

a sequence of hybrids (and sub-hybrids), changing one plaintext value at a time, just as

we did in Claim 20. Note that, just as in that claim, our circuit only verifies the signature

on the plaintext, and makes no use of the value otherwise. Since we only need to verify the

signature, we can replace decryption with sk1 by a check for SimFlag after decrypting

with sk2, and use diO security, as we did previously. We omit the details of the proof.

822 D. Dachman-Soled et al.

Finally, we have the following claim, where the right-hand side is the same as in

Lemma 16.

Claim 35.

D
A
H10

s
≈
(
p̃k, Uρ, ULmsg , {fi (s̃ki−1, s̃ki)}n

i=1 ← A
O(·)(p̃k)

)

Proof. Note that pk(10) and sk
(10)
0 , . . . , sk(10)

n contain no information about y∗. �

This concludes the proof of Lemma 16. �

References

[1] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Constant-size structure-

preserving signatures: Generic constructions and simple assumptions. In X. Wang and K. Sako, editors,

ASIACRYPT 2012, vol. 7658 of LNCS (Springer, Berlin, 2012), pp. 4–24.

[2] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptography against

memory attacks. In O. Reingold, editor, TCC 2009, vol. 5444 of LNCS. (Springer, Berlin, 2009), pp.

474–495.

[3] P. Ananth, D. Boneh, S. Garg, A. Sahai, M. Zhandry. Differing-inputs obfuscation and applications.

Cryptology ePrint Archive, Report 2013/689, 2013. http://eprint.iacr.org/2013/689.

[4] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the

(im)possibility of obfuscating programs. In J. Kilian, editor, CRYPTO 2001, vol. 2139 of LNCS. (Springer,

Berlin, 2001), pp. 1–18.

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the

(im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[6] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient

constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, vol. 5157 of LNCS. (Springer,

Berlin, 2008), pp. 335–359.

[7] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor, CRYPTO 2004,

volume 3152 of LNCS (Springer, Berlin, 2004), pp. 41–55.

[8] D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In K. Sako and

P. Sarkar, editors, ASIACRYPT 2013, Part II, vol. 8270 of LNCS (Springer, Berlin, 2013), pp. 280–300.

[9] E. Boyle, K.-M. Chung, R. Pass. On extractability obfuscation. In Y. Lindell, editor, TCC 2014, vol.

8349 of LNCS (Springer, Berlin, 2014), pp. 52–73.

[10] E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In H. Krawczyk,

editor, PKC 2014, vol. 8383 of LNCS (Springer, Berlin, 2014), pp. 501–519.

[11] E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In K. G. Paterson, editor, EURO-

CRYPT 2011, vol. 6632 of LNCS (Springer, Berlin, 2011), pp. 89–108.

[12] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the bucket: Public-

key cryptography resilient to continual memory leakage. In 51st FOCS, pp. 501–510. IEEE Computer

Society Press, (2010).

[13] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. Deniable encryption. In B. S. Kaliski Jr., editor,

CRYPTO’97, volume 1294 of LNCS. (Springer, Berlin, 1997), pp. 90–104.

[14] R. Canetti, S. Goldwasser, and O. Poburinnaya. Adaptively secure two-party computation from indistin-

guishability obfuscation. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS

(Springer, Berlin, 2015), pp. 557–585.

[15] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. In D. Boneh, editor,

CRYPTO 2003, vol. 2729 of LNCS (Springer, Berlin, 2003), pp. 565–582.

[16] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards sound approaches to counteract power-analysis

attacks. In M. J. Wiener, editor, CRYPTO’99, vol. 1666 of LNCS. (Springer, Berlin, 1999)

http://eprint.iacr.org/2013/689

Leakage Resilience from Program Obfuscation 823

[17] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn. Malleable proof systems and applications.

In D. Pointcheval and T. Johansson, editors, EUROCRYPT 2012, vol. 7237 of LNCS (Springer, Berlin,

2012), pp. 281–300

[18] D. Dachman-Soled, J. Katz, and V. Rao. Adaptively secure, universally composable, multiparty compu-

tation in constant rounds. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS

(Springer, Berlin, 2015), pp. 586–613

[19] D. Dachman-Soled, F.-H. Liu, and H.-S. Zhou. Leakage-resilient circuits revisited - optimal number

of computing components without leak-free hardware. In E. Oswald and M. Fischlin, editors, EURO-

CRYPT 2015, Part II, vol. 9057 of LNCS, (Springer, Berlin, 2015), pp. 131–158.

[20] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive zero

knowledge. In J. Kilian, editor, CRYPTO 2001, vol. 2139 of LNCS (Springer, Berlin, 2001), pp. 566–598

[21] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Cryptography against continuous memory

attacks. In 51st FOCS, IEEE Computer Society Press, 2010, pp. 511–520.

[22] Y. Dodis, K. Haralambiev, A. López-Alt, and D. Wichs. Efficient public-key cryptography in the presence

of key leakage. In M. Abe, editor, ASIACRYPT 2010, vol. 6477 of LNCS (Springer, Berlin, 2010), pp.

613–631.

[23] Y. Dodis, Y. T. Kalai, and S. Lovett. On cryptography with auxiliary input. In M. Mitzenmacher, editor,

41st ACM STOC (ACM Press, 2009), pp. 621–630.

[24] Y. Dodis, A. B. Lewko, B. Waters, and D. Wichs. Storing secrets on continually leaky devices. In

R. Ostrovsky, editor, 52nd FOCS, pp. 688–697. IEEE Computer Society Press, 2011.

[25] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong keys from

biometrics and other noisy data. SIAM J. Comput., 38(1):97–139, 2008.

[26] Y. Dodis and A. Smith. Correcting errors without leaking partial information. In H. N. Gabow and

R. Fagin, editors, 37th ACM STOC (ACM Press, 2005), pp. 654–663.

[27] S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting circuits from leakage: the

computationally-bounded and noisy cases. In H. Gilbert, editor, EUROCRYPT 2010, vol. 6110 of LNCS

(Springer, Berlin, 2010), pp. 135–156.

[28] S. Garg, C. Gentry, and S. Halevi. Candidate multilinear maps from ideal lattices. In T. Johansson and

P. Q. Nguyen, editors, EUROCRYPT 2013, vol. 7881 of LNCS (Springer, Berlin, 2013), pp. 1–17.

[29] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguishability

obfuscation and functional encryption for all circuits. in 54th FOCS, pp. 40–49. IEEE Computer Society

Press, 2013.

[30] S. Garg, C. Gentry, S. Halevi, and D. Wichs. On the implausibility of differing-inputs obfuscation

and extractable witness encryption with auxiliary input. In J. A. Garay and R. Gennaro, editors,

CRYPTO 2014, Part I, volume 8616 of LNCS, (Springer, Berlin, 2014), pp. 518–535.

[31] S. Garg and A. Polychroniadou. Two-round adaptively secure MPC from indistinguishability obfusca-

tion. In Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS (Springer, Berlin,

2015), pp. 614–637.

[32] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 33(4):792–807,

Aug. 1986.

[33] S. Goldwasser and G. N. Rothblum. On best-possible obfuscation. In S. P. Vadhan, editor, TCC 2007,

volume 4392 of LNCS (Springer, Berlin 2007), pp. 194–213

[34] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calandrino, A. J. Feldman,

J. Appelbaum, and E. W. Felten. Lest we remember: Cold boot attacks on encryption keys, in USENIX

Security Symposium, pp. 45–60 (2008)

[35] C. Hazay, A. López-Alt, H. Wee, and D. Wichs. Leakage-resilient cryptography from minimal assump-

tions. In T. Johansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, (Springer,

Berlin, 2013), pp. 160–176.

[36] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions (extended

abstracts). In 21st ACM STOC (ACM Press, 1989), pp. 12–24.

[37] Y. Ishai, O. Pandey, and A. Sahai. Public-coin differing-inputs obfuscation and its applications. In

Y. Dodis and J. B. Nielsen, editors, TCC 2015, Part II, vol. 9015 of LNCS, (Springer, Berlin, 2015), pp.

668–697.

[38] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press, 2014.

824 D. Dachman-Soled et al.

[39] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In M. Matsui, editor,

ASIACRYPT 2009, vol. 5912 of LNCS, (Springer, Berlin, 2009), pp. 703–720

[40] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. Massachusetts

Institute of Technology (1994)

[41] A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom functions

and applications. In A.-R. Sadeghi, V. D. Gligor, and M. Yung, editors, ACM CCS 13, (ACM Press,

2013), pp. 669–684.

[42] C.-J. Lee, C.-J. Lu, S.-C. Tsai, and W.-G. Tzeng. Extracting randomness from multiple independent

sources. IEEE Transactions on Information Theory, 51(6):2224–2227, 2005.

[43] A. B. Lewko, M. Lewko, and B. Waters. How to leak on key updates. In L. Fortnow and S. P. Vadhan,

editors, 43rd ACM STOC (ACM Press, 2011), pp. 725–734

[44] T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage on memory and

computation. In Y. Ishai, editor, TCC 2011, vol. 6597 of LNCS, (Springer, Berlin, 2011), pp. 89–106

[45] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In M. Naor, editor,

TCC 2004, vol. 2951 of LNCS (Springer, Berlin, 2004), pp. 278–296

[46] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In S. Halevi, editor,

CRYPTO 2009, vol. 5677 of LNCS, (Springer, Berlin, 2009), pp. 18–35

[47] A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In

D. B. Shmoys, editor, 46th ACM STOC (ACM Press, 2014), pp. 475–484

[48] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In

S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, (Springer, Berlin, 2009), pp. 619–636

[49] B. Waters. CS 395T Special Topic: Obfuscation in Cryptography. 2014. http://www.cs.utexas.edu/

~bwaters/classes/CS395T-Fall-14/outline.html

[50] B. Waters. How to use in distinguishability obfuscation, in Visions of Cryptography, 2014. Talk slides

available at http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt.

[51] D. Wichs. Cryptographic resilience to continual information leakage. Ph.D. Thesis, 2011. http://www.

ccs.neu.edu/home/wichs/thesis.pdf

http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/classes/CS395T-Fall-14/outline.html
http://www.cs.utexas.edu/~bwaters/presentations/files/how-to-use-IO.ppt
http://www.ccs.neu.edu/home/wichs/thesis.pdf
http://www.ccs.neu.edu/home/wichs/thesis.pdf

	Leakage Resilience from Program Obfuscation
	1. Introduction
	1.1. Background and Motivation
	1.2. Overview of Our Results
	1.3. Summary and Perspective
	1.4. Details and Techniques
	1.5. Related Work
	1.6. Organization
	2. Definitions and Preliminaries
	2.1. Security Definitions for Leakage-Resilient Public Key Encryption
	2.1.1. One-Time Leakage Model
	2.1.2. Continual Leakage Model

	2.2. Leakage-Resilient Signatures
	2.3. Obfuscation
	2.4. Puncturable Pseudorandom Functions

	3. Compiler from 2CLR to Leakage on Key Updates
	3.1. Consecutive Continual Leakage Resilience (2CLR)
	3.2. Explainable Key Update Transformation
	3.3. Instantiations via Obfuscation
	3.4. Extension to Digital Signatures

	4. 2CLR from ``Leakage-Resilient Subspaces''
	5. Leakage-Resilient PKE from Obfuscation
	5.1. Making Sahai–Waters PKE Leakage-Resilient
	5.2. Improving the Leakage Rate

	6. Continual Leakage Resilience for One-Way Relations
	6.1. Continual Leakage Model
	6.2. Construction Based on LIRR
	6.2.1. Construction

	6.3. A Generic Construction Based on PKE

	7. Continual Leakage Resilience for Digital Signatures
	7.1. NIZK and True-Simulation Extractability
	7.2. CLR Signatures with Leakage on Key Updates from OWR

	Acknowledgements
	A. The Connection Between CLR and Obfuscation
	A.1. Re-randomizable Encryption
	A.2. diO-Compatible RCCA Encryption
	A.3. Construction of diO-Compatible RCCA Re-randomizable PKE
	A.4. Our 2CLR PKE Construction
	References

