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Abstract

We construct a stream-cipher S whose implementation is
secure even if a bounded amount of arbitrary (adversarially
chosen) information on the internal state of S is leaked dur-
ing computation. This captures all possible side-channel
attacks on S where the amount of information leaked in a
given period is bounded, but overall can be arbitrary large.
The only other assumption we make on the implementation
of S is that only data that is accessed during computation
leaks information.

The stream-cipher S generates its output in chunks
K1,K2, . . . and arbitrary but bounded information leakage
is modeled by allowing the adversary to adaptively chose
a function f! : {0, 1}∗ → {0, 1}λ before K! is computed,
she then gets f!(τ!) where τ! is the internal state of S that
is accessed during the computation of K!. One notion of
security we prove for S is that K! is indistinguishable from
random when given K1, . . . ,K!−1, f1(τ1), . . . , f!−1(τ!−1)
and also the complete internal state of S after K! has been
computed (i.e. S is forward-secure).

The construction is based on alternating extraction
(used in the intrusion-resilient secret-sharing scheme from
FOCS’07). We move this concept to the computational set-
ting by proving a lemma that states that the output of any
PRG has high HILL pseudoentropy (i.e. is indistinguishable
from some distribution with high min-entropy) even if arbi-
trary information about the seed is leaked. The amount of
leakage λ that we can tolerate in each step depends on the
strength of the underlying PRG, it is at least logarithmic,
but can be as large as a constant fraction of the internal
state of S if the PRG is exponentially hard.

1. Introduction

When analyzing the security of a cryptosystem, we can
either think of the system as a mathematical object, exactly
specifying what kind of access to the functionality a poten-
tial adversary has, or try to analyze the security of an actual
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implementation. Traditionally, cryptographers have mostly
considered the former view and analyzed the security of
the mathematical object, and it is generally believed that
our current knowledge of cryptography suffices to construct
schemes that, when modeled in this way, are extremely se-
cure. On a theoretical side, we know how to construct se-
cure primitives under quite weak complexity-theoretic as-
sumptions, for example secret-key encryption can be based
on any one-way function [17]. Also from the practical per-
spective, the currently used constructions have very strong
security properties, e.g. after 30 years of intensive cryptana-
lytic efforts still the most practical attack on the DES cipher
is exhaustive key search.

Side-Channel Attacks. The picture is much more
gloomy when the security of real-life implementations is
considered. The reason is that, when considering the secu-
rity of an implementation of a cryptosystem, one must take
into account the possibility of side-channels, which refers
to leakage of any kind of information from the cryptosys-
tem during its execution which cannot be efficiently derived
from access to the mathematical object alone. In the last
decade many attacks against cryptosystems (still assumed to
by sound as mathematical objects) have been found exploit-
ing side-channels like running-time [22], electromagnetic
radiation [30, 15], power consumption [23], fault detection
[4, 3] and many more (see e.g. [29, 27]).

A typical countermeasure against this type of attacks is
to design hardware that minimizes the leakage of secret data
(e.g. by shielding any electromagnetic emissions), or to look
for an algorithm-specific solution, for example by masking
intermediate variables using randomization (see [27] for a
list of relevant papers). The problem with hardware-based
solutions is that protection against all possible types of leak-
age is very hard to achieve [1], if not impossible. On the
other hand, most algorithm-specific methods proposed so
far are only heuristic and do not offer any formal security
proof (we mention some exceptions in Sect.1.1). Moreover,
they are ad-hoc in the sense that they protect only against
some specific attacks that are known at the moment, instead
of providing security against a large well-defined class of
attacks. This raises the following, natural question: is there
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a systematic method of designing cryptographic schemes so
that already their mathematical description guarantees that
they are provably-secure, even if they are implemented on
hardware that may be subject to a side-channel attack be-
longing to a large well-defined class of attacks? Ideally,
one would like to develop a theory that (1) provides precise
definition of such a class of attacks, and (2) shows how to
construct systems that are secure in this model (under the
assumptions that are as weak as possible). This should be
viewed as moving the task of constructing cryptosystems
secure against side-channel attacks from the realm of engi-
neering or security research to cryptography, which over the
last 3 decades was extremely successful in defining security
models, and constructing cryptosystems that are provably-
secure in those models.

General Model for Leakage Resilience. We propose a
model for cryptographic computation where the class of
possible side-channel attacks is extremely broad, yet sim-
ple and natural. Models similar to ours have been pro-
posed before, in particular Micali and Reyzin [25] explicitly
stated the “only computation leaks” assumption we will use.
The only other assumption on the implementation we make
is the (trivially necessary) requirement that the amount of
leakage in each round is bounded. This approach is inspired
by the bounded-storage and bounded-retrieval models and
has to best of our knowledge never been used in this con-
text. We stress however, that the main contribution of this
paper is not the definition of the model, but the construc-
tion of an actual cryptosystem (a stream-cipher) which is
provably secure in this model. Details follow.

Consider a cryptosystems CS, let M denote its mem-
ory and M0 denote the data initially on M (i.e. the secret
key). Clearly the most general side-channel attack against
a cryptosystem CS(M0) is one in which the adversary can
choose any polynomial-time computable leakage function f
and retrieve f(M0) from the cryptographic machine.1 Of
course no security is achievable in this setting, as defining
f(M0) = M0 the adversary learns the complete random
key. Thus a necessary restriction we must make on f is that
its output range is bounded to {0, 1}λ where λ " |M0|.

We assume that the adversary can apply this attack many
times throughout the lifetime of the device. Technically,
this will be done by dividing the execution of the algorithm
implementing CS into rounds, and allowing the adversary
to evaluate a function on the internal state of CS in each
of those rounds (let fj denote the leakage function that she
chooses in the jth round, for j = 1, 2...). In particular, in
this paper we construct a stream cipher which in each round
outputs a few bits.

1Without loss of generality we can assume that the leakage function is
applied only to M0 since all the other internal variables used in computa-
tion are deterministic functions of M0.

Let q be the number of rounds we want our cryptosys-
tem CS to run, and let M0 be the secret key that is used in
the scheme. At first sight one may think that to hope for
any security we would need to assume that q · λ <

∣∣M0
∣∣,

as otherwise the adversary can learn the entire M0, by just
retrieving in every round λ different bits of it. This trivial
attack does not work any more if we consider cryptosys-
tems which occasionally update their state. For this let Mj

denote the state of CS after round j.
Unfortunately, no security is possible even if we allow

CS to update its state (i.e. when Mj is not necessarily equal
to Mj+1) if we allow any (poly-time computable) fj , to see
this let t = #|M|/λ$ and consider fj , j ≤ t where each
fj outputs different λ bits of Mt (note that the function
fj , j ≤ t can compute the future state Mt from the current
state Mj). After the tth round the adversary has learned the
complete state Mt, and no security is possible beyond this
point. We call this the key-precomputation attack.

Hence, we have to somehow restrict the leakage func-
tion if we want security even when the total amount of
leaked information is (much) larger than the internal state.
The restriction that we will use is that in each round, the
leakage function fj only gets as input the part of the state
Mj that is actually accessed in the jth round by CS. This
translates into a requirement on the implementation: we
assume that only computation leaks information, and the
“untouched memory cells” are completely secure. As illus-
trated in Fig. 1, in our construction of a stream-cipher, M
will consists of just three parts M0,M1 and O (where O
is the output tape), and in the jth round CS (and thus the
leakage function fj) will access only Mj mod 2 and O. We
give the leakage function (in the jth round) access to the
complete Mj mod 2,O, even if the computation of CS only
access a small part of it. Thus in an actual implementation,
one only must ensure that in the jth round Mj+1 mod 2 does
not leak. This requirement should easily be realizable by
an actual implementation having M0 and M1 use different
static memory cells (here “static” refers to the fact that this
memory needs not to be refreshed, and thus should not leak
any kind of radiation when not used).2

Let us mention that the above restriction is not the only
natural restriction that one could make on the leakage func-
tions to avoid the key-precomputation attack. One other op-

2Let us mention that this model also covers the case where (the not
accessed) Mj+1 mod 2 does leak in round j, as long as this leakage is
independent of the leakage of (the accessed) Mj mod 2 (i.e. when we
consider an adversary Q′ who can in round j choose two functions f ′

j

and f ′′
j and then gets f ′

j(Mj mod 2) and also f ′′
j (Mj+1 mod 2)). The

reason is that we can simulate Q′ by an adversary Q who just chooses
one function fj which outputs f ′

j(Mj mod 2) and also f ′′
j+1(Mj mod 2)

(thus Q in round j simply precomputes the information that Q′ will learn
in round j + 1 on the non-leaking part). Note that it’s not a problem that
Q′ might compute f ′′

j+1 adaptively as a function of the information leaked
in round j, as the leakage function fj has this information too, and thus
can compute the f ′′

j+1 that Q′ would have chosen.
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tion might be to allow the state to be refreshed using ex-
ternal randomness. This option might be difficult to han-
dle for many cryptosystems – including ciphers – for sev-
eral reasons. For example one must make sure that all le-
gitimate parties get the randomness in each refresh cycle,
which means that parties have to be often “online” to keep
their key valid, even if they almost never actually use it.
Another option is to require that the leakage function is in
some very weak complexity class not including the function
used for key evolution.3

Leakage Resilient Stream-Cipher. The main contribu-
tion of this paper is the construction of a stream cipher S
which is provably secure in the model described above. Let
τ! denote the data on S’s memory which is accessed in the
#th round, and let K! denote the output written by S on its
output tape O in the #th round.

The classical security notion for stream ciphers implies
that one cannot distinguish K! from a random string given
K1, . . . ,K!−1, of course our construction satisfies this no-
tion. But we prove much more, namely that K! is in-
distinguishable from random even when not only given
K0, . . . ,K!−1, but additionally Λ1, . . . ,Λ!−1 where Λj =
fj(τj) and each fj is a function with range {0, 1}λ chosen
adaptively (as a function of K1, . . . ,Kj−1,Λ1, . . . ,Λj−1)
by an adversary. If the adversary also gets Λ!, we cannot
hope that K! is indistinguishable from random any more,
as f! could for example simply output the λ first bits of K!.
The best we can hope for in this case, is that K! is unpre-
dictable (or equivalently, has high HILL-pseudoentropy), in
the full version of this paper [14] we will show that for our
construction this indeed is the case.

Forward Security. In many settings, it is not enough that
K! is indistinguishable (or unpredictable) given the view
of the adversary after round # − 1 as just described, but it
should stay indistinguishable even if S leaks some infor-
mation in the future. In our construction such “forward-
security” comes up naturally, as the key K! is almost in-
dependent (in a computational sense) from the state of S
after K! was output. Precise security definitions are given
is Sect. 2.

Our Construction. The starting point of our construction
is the concept of alternating extraction previously used in
the intrusion-resilient secret-sharing scheme from [13]. We
move this concept to the computational setting by proving a
lemma that states that the output of any PRG has high HILL

3Interestingly, that would probably be the first case of a real-life crypto-
graphic application where it makes sense to assume that the computational
power of the adversary (in some parts of the attack scenario) is smaller
than the computational power needed to execute the scheme.

pseudoentropy (i.e. is indistinguishable from some distri-
bution with high min-entropy) even if arbitrary information
about the seed is leaked. Our construction can be instanti-
ated with any pseudorandom-generator, and the amount of
leakage λ that we can tolerate in each step depends on the
strength of the underlying PRG, it is at least logarithmic, but
can be as large as a constant fraction of the internal state of
S if the PRG is exponentially secure. The impatient reader
might want to skip ahead to Section 2.2 and have a look at
the actual the definition.

On (Non-)Uniformity. Throughout, we always consider
non-uniform adversaries.4 In particular, our stream-cipher
is secure against non-uniform adversaries, and we require
the PRG used in the construction to be secure against non-
uniform adversaries. The only step in the security proof
where it matters that we are in a non-uniform setting, is
in Section 5, where we use a theorem due to Barak et al.
[2] which shows that two notions of pseudoentropy (called
HILL and metric-type) are equivalent for circuits. In [2]
this equivalence is also proved in a uniform setting, and one
could use this to get a stream-cipher secure against uniform
adversaries from any PRG secure against uniform adver-
saries. We will not do so, as for one thing the non-uniform
setting is the more interesting one in our context, and more-
over the exact security we could get in the uniform setting is
much worse (due to the security loss in the reduction from
[2] in the uniform setting).

1.1. Related work

A general theory of side-channel attacks was put forward
by Micali and Reyzin [25], who propose a number of “ax-
ioms” on which such a theory should be based. In partic-
ular they formulate and motivate the assumption that “only
computation leaks information”, used subsequently in e.g.
[16, 28] and also in this work. As mentioned in the intro-
duction, most published work on securing cryptosystems
against side-channel attacks are ad-hoc solutions trying to
prevent some particular attack or heuristics coming without
security proofs, we mention some notable exceptions below.

Exposure-resilient functions [5, 9, 20] are functions
whose output remains secure, even if an adversary can learn
the value of some input bits, this model has been extensively
investigated and very strong results have been obtained.

Ishai et al. [19, 18] consider the more general case of
making circuits provably secure [19] and even tamper resis-
tant [18] against adversaries who can read/tamper the value

4Recall that a uniform adversary can be modelled as a Turing-machine
which as input gets a security parameter, whereas (more powerful) non-
uniform adversaries will, for each security parameter, additionally get a
different polynomial-length advice string. Equivalently, we can model
non-uniform adversaries as a sequence of circuits (indexed by the secu-
rity parameter).
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of a bounded number of arbitrary wires in the circuit (and
not just the input bits). It is interesting to compare the re-
sult from this paper with the approach of Ishai et al. On one
hand, their results are generic, in the sense that they provide
a method to transform any cryptosystem given as a circuit
C into another circuit Ct that is secure against an adversary
that can read-off up to t wires, whereas we only construct
a particular primitive (a stream-cipher). On the other hand,
we prove security against any side-channel attack, whereas
Ishai et al. consider the particular case where the adversary
can read-off the values of a few individual wires. Moreover
Ishai et al. require special gates that can generate random
bits, we do not assume any special hardware.

Canetti et al. [6] consider the possibility of secure com-
putation in a setting where perfect deletion of most of the
memory is not possible. Although the goal is different,
their model is conceptually very similar to ours: non-perfect
deletion of X is modelled by giving an adversary f(X) for
a sufficiently compressing function f of its choice. In their
setting, the assumption that parts of the state can be per-
fectly erased is well motivated, unfortunately in our context
this would translate to the very unrealistic requirement that
some computations can be done perfectly leakage free.

The idea to define the set of leakage functions by re-
stricting the length of function’s output is taken from the
bounded-retrieval model [8, 11, 10, 7, 13], which in turn
was inspired by the bounded-storage model [24].5 Finally
let us mention that some constructions of ciphers secure
against general leakages were also proposed in the litera-
ture, however, their security proofs rely on very strong as-
sumptions like the ideal-cipher model [28], or one-way per-
mutations which do not leak any information at all [25].

1.2. Probability-theoretic preliminaries

We denote with Un the random variable with distri-
bution uniform over {0, 1}n. With X ∼ Y we de-
note that X and Y have the same distribution. Let
random variables X0,X1 be distributed over some set
X and let Y be a random variable distributed over Y .
Define the statistical distance between X0 and X1 as
δ(X0;X1) = 1/2

∑
x∈X |PX0(x) −PX1(x)|. Moreover

let δ(X0;X1|Y ) := d(X0, Y ;X1, Y ) be the statistical dis-

5The bounded-storage model is limited in its usability by the fact that
the secret key must be larger than the memory of a potential adversary,
which means in the range of terabytes. In the bounded-retrieval model,
the key must only be larger than the amount of data adversary can re-
trieve without being detected (say, by having a computer-virus send the
data from an infected machine), which means in the range of Mega- or
Gigabytes. Whereas in our setting the key length depends on the amount
of side-channel information that leaks (in one round) form the cryptosys-
tem considered, which (given a reasonable construction) we can assume
to be as small as a few (or a few hundred) bits. In particular, unlike the
bounded-storage and bounded-retrieval models, our keys need not to be
made artificially huge.

tance between X0 and X1 conditioned on Y . If X is dis-
tributed over {0, 1}n then let d(X) := δ(X;Un) denote the
statistical distance of X from a uniform distribution (over
{0, 1}n), and let d(X|Y ) := δ(X;Un|Y ) denote the sta-
tistical distance of X from a uniform distribution, given Y .
If d(X) ≤ ε then we will say that X is ε-close to uniform.
We will say that a variable X has min-entropy k, denoted
H∞(X) = k, if maxx Pr[X = x] = 2−k.

Definition 1 (Extractor) A function ext : {0, 1}kext ×
{0, 1}r → {0, 1}mext is an (εext, next) extractor if for any
X with H∞(X) ≥ next and K ∼ Ukext we have that
d((ext(K,X),K) ≤ εext.

2. A Leakage-Resilient Stream-Cipher

We will now formally define our security notions which
we already informally discussed and motivated in Sect. 1.

Initialization. The secret key of our stream cipher S con-
sists of the three variables A,B ∈ {0, 1}r and K0 ∈
{0, 1}k. The values A,B,K0 should be sampled uniformly
at random, but only A,B must be secret, K0 must not, one
can think of K0 as the first k bits of output of S. In an
implementation, the memory of S is assumed to be split in
three parts, M0,M1,O, and for j > 0 we denote with
Mj−1

0 ,Mj−1
1 ,Oj−1 the contents of M0,M1,O at the be-

ginning of the jth round, in particular the initial state is
M0

0 = A,M0
1 = B and O0 = K0.

Computation. As illustrated in Fig. 1, in the #th round
S does only access (which means reads and rewrites)
M! mod 2 and the output tape O. Let τ! denote the value
(on either M0 or M1) that is accessed in the #th round, and
τ ! the value which is not accessed, i.e.

τ!
def= M!−1

! mod 2 τ !
def= M!−1

!+1 mod 2 (1)

We will refer to the output of the #th round (i.e. the value
O! on the output tape O at the end of this round) as K!.

Adversary. As illustrated in Fig. 1, we consider adver-
saries Q which in the #th round can adaptively choose a
function f! with range {0, 1}λ, and at the end of the round
gets the output K! and

Λ!
def= f!(τ!)

i.e. the output of f! on input the data accessed by S in this
round. We denote with Aλ adversaries as just described
restricted to choose leakage functions with range {0, 1}λ.
Let view! denote the view of the adversary after K! has
been computed, i.e.

view! = [K0, . . . ,K!,Λ1, . . . ,Λ!].
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Indistinguishability. The security notion we consider re-
quires that K! is indistinguishable from random, even when
given view!−1.

A K0 B

M0
0 O0 = K0 M0

1 Q

eval

S

M1
0 O1 = K1 M1

1 Q

eval

S

M2
0 O2 = K2 M2

1 Q

eval

S

M3
0 O3 = K3 M3

1 Q

f1τ1

f1(τ1)

f2
τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 1. General structure of the random ex-
periment S(A,K0, B) 3! Q (the evaluation of S
is black, the attack related part is gray).

We denote with S(A,B,K0)
!! Q the random ex-

periment where an adversary Q ∈ Aλ attacks S (initial-
ized with a key A,B,K0) for # rounds (cf. Fig. 1), and

with view(S(A,B,K0)
!! Q) we denote the view view!

of Q at the end of the attack. For any circuit Dind :
{0, 1}∗ → {0, 1} (with one bit output), we denote with
AdvInd(Dind,Q,S, #) the advantage of Dind in distinguish-

ing K! from random given view(S !−1! Q), formally

AdvInd(Dind,Q,S, #) = |preal − prand| where

prand
def= Pr

A,B,K0
[Dind(view(S(A,B,K0)

!−1! Q), Uk) = 1]

preal
def= Pr

A,B,K0
[Dind(view(S(A,B,K0)

!−1! Q),K!) = 1]

In the full version of this paper, we will also consider the
case where the distinguisher also gets Λ!, i.e. we assume
that information leaks also in round #. Although then we
can’t hope for K! to be indistinguishable from random (as
Λ! could for example be the first λ bits of K!), we still can
show that K! is unpredictable.

Forward Security of S. As motivated in the introduction,
we’ll also consider a forward-secure notion of the above
definition. Informally, we’d like to extend the definitions
AdvInd just given, but additionally give the attacker Dind the
complete state M!

0,O!,M!
1 of S after K! has been com-

puted. Of course then K! = O! cannot be secure in any
way as it is given to Dind entirely. We could simply not give

O! to Dind, but then we cannot claim that we leaked the
state of S completely, as in our construction O! is needed
to compute the future outputs of S. There are at least two
ways around this problem. We could relax our requirement
on forward security, and not leak the state after round #, but
only after round #+ 1 (in terms of the implementation, this
would mean that the output K! is indistinguishable, if in
rounds # and #+ 1 nothing leaked, even given the complete
state of S after round #+ 1).

Another possibility, which we’ll use, is to split the value
K! into two parts K! = Knxt

! ‖Kout
! , such that only the Knxt

!
part is actually used by S to compute the future state. We
then require that Kout

! (and not the entire K!) is indistin-
guishable from random if in round # nothing leaked, even
when given the state of S after round #, where Kout

! is not
considered to be part of the state.

Let state!
def= [M!

0,K
nxt
! ,M!

1] denote the state of S
after round # (not containing Kout

! as just explained). The
forward secure indistinguishability notion is given by

AdvIndFwd(Dind,Q,S, #) = |pfwd
real − pfwd

rand|

where pfwd
rand and pfwd

real are the probabilities

Pr
A,B
K0

[Dind(view(S(A,B,K0)
!−1! Q, state!), U|Kout|) = 1]

Pr
A,B
K0

[Dind(view(S(A,B,K0)
!−1! Q, state!),Kout

! ) = 1]

respectively. The only difference to AdvInd is that now Dind

additionally gets state!, and we only require Kout
! (and

not the whole K!) to be indistinguishable. Thus one gets
forward security at the prize of discarding the Knxt

! part of
S’s output K!. In our construction, Knxt

! will be just a ran-
dom seed for an extractor, using existing constructions we
can make this part logarithmic in the total length of K!, thus
the efficiency loss one has to pay to get forward security is
marginal.

2.1. The Ingredients

The main ingredients of our construction is the concept
of alternating extraction introduced in the intrusion-resilient
secret-sharing scheme of [13] (which again was based on
ideas from the bounded storage model [12, 24, 31]), com-
bined with the concept of HILL-pseudoentropy (cf. Def. 3,
Sect. 5) which we use to get a computational version of al-
ternating extraction.

Alternating Extraction. Let ext : {0, 1}kext × {0, 1}r →
{0, 1}k be an (εext, next)-extractor (cf. Def. 1). Consider
some uniformly random A,B ∈ {0, 1}r and some ran-
dom K0 ∈ {0, 1}k. As illustrated in Fig. 3 in Sect. 4, let
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K1,K2, . . . be computed as Ki = ext(Knxt
i−1, Ci) (where

Knxt denotes the kext first bits of K and Ci = B if i is odd
and Ci = A otherwise). So the Ki’s are computed by al-
ternately extracting from A and B. It is not hard to show
that Ki = ext(Knxt

i−1, Ci) is iεext close to uniformly random
given K0, . . . ,Ki−1 while Ci has still enough min-entropy
for our extractor (i.e. H∞(Ci|K1, . . . ,Ki−1) ≥ next).

As shown in [13], the key Ki is even close to uniformly
random when not only given K1, . . . ,Ki−1 but also some
values f1(C1), . . . , fi−1(Ci−1) for arbitrary functions fi as
long as Ci has min-entropy at least next (conditioned on
K0, . . . ,Ki−1, and f1(C1), . . . , fi−1(Ci−1)).

Consider a “stream cipher” S∗(A,B,K0) which outputs
K1,K2, . . . computed as described above, and an adversary
Q which, before Ki is computed, can adaptively choose
a function fi and then gets Ki, fi(Ci).6 As explained in
the previous paragraph, we can give the following security
guarantee for S∗: as long as the min-entropy of Ci is at
least next (given the adversary’s view), the next output Ki

is close to uniformly random (given the view of the adver-
sary so far).

Pseudoentropy. The stream cipher S∗ just described is
not very useful, as it only provides security (in the sense
that the next output looks random given the current view as
required by our AdvInd security notion) as long as the out-
put (i.e. the Ki’s plus the leaked information) is shorter (by
at least next bits) than the initial key.

To get security beyond that bound, we will “refresh”
the values A,B after we extracted from them. Let Ai =
Mi

0 and Bi = Mi
1 denote the values on M0 and M0

after round i respectively. In round i (we assume i is
odd, otherwise replace the role of A and B) we extract
(Ki,Xi) = ext(Knxt

i−1, Bi−1), and use Xi to compute the
fresh Bi := prg(Xi) using a pseudorandom generator prg
as illustrated in Fig. 2. If at the beginning of the ith round
Bi−1 has min-entropy at least next (given the adversaries
view), Knxt

i−1 is pseudorandom (given Bi) and we assume
that during this ith round no information is leaked, then Xi,
and thus also Bi = prg(Xi) is pseudorandom given the
view of the adversary.

Of course assuming that the refreshing phase does not
leak any information is completely unjustified, and we
do not want to make such an assumption. As we give
Λi = fi(Bi) to the adversary, we cannot hope for Bi to
be pseudorandom (just consider the case where fi(Bi) are
the λ first bits of Bi). Fortunately, Bi needs not to be
(pseudo)random to apply alternating extraction, all we need
is that Bi has high min-entropy. Of course Bi = prg(Xi)
cannot have more min-entropy than Xi, but as we consider
computationally bounded adversaries, it is enough if Bi

6As Ki−1 can be hard-coded into fi, this function has access to all the
data accessed during the computation of Ki = ext(Knxt

i−1, Ci)

is indistinguishable from some distribution with high min-
entropy. A random variable which is computationally indis-
tinguishable from some variable with min-entropy k is said
to have HILL-pseudoentropy k. It is not hard to see that
a pseudorandom value Bi has high HILL-pseudoentropy
when given fi(Bi) for some efficient function fi, but this
is not enough for our application, as the leakage function
fi is given access to Bi−1 (and not just Bi), from which it
can compute the seed Xi used to compute Bi = prg(Xi).
We will prove (Lemma 3) that for any pseudorandom gen-
erator prg, the output of prg(X) on a random seed X has
high HILL-pseudoentropy even if some function (with suf-
ficiently short output) of X (and not only prg(X)) is leaked.

Using this lemma, we can prove that refreshing using
a PRG as just described actually works, and will result in
a “fresh” value Bi (or Ai for even i) having high HILL-
pseudoentropy.

2.2. The construction

M0 O M1

A0 K0 = Knxt
0 ‖Kout

0 B0 Q

eval

(K1,X1) := ext(Knxt
0 , B0)

A1 = A0 K1 B1 = prg(X1) Q

eval

(K2,X2) := ext(Knxt
1 , B1)

A2 = prg(X2) K2 B2 = B1 Q

eval

(K3,X3) := ext(Knxt
2 , B2)

A3 = A2 K3 B3 = prg(X3) Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 2. Illustration of the random experi-
ment S(A0, B0,K0)

3! Q for the stream cipher
S as described in Section 2.2.

We will now formally define the construction just out-
lined, which is based on an extractor ext : {0, 1}kext ×
{0, 1}r → {0, 1}mext and a pseudorandom generator prg :
{0, 1}kprg → {0, 1}r .

State: The state of S at the beginning of round # is
M!−1

0 ,M!−1
1 ,O!−1. The computation done in round

# is defined below.

Get Key: Read K!−1 = O!−1 and parse it as K!−1 =
(Knxt

!−1,K
out
!−1) ∈ {0, 1}kext × {0, 1}kout .
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Extract: Compute ext(Knxt
!−1,M

!−1
! mod 2) and parse it as

(K!,X!) ∈ {0, 1}k × {0, 1}kprg .

Write output: Write K! on O.

Refresh: Compute prg(X!) and write it on M! mod 2.

3. Security of S

Total Size. We denote with size(D) the size of a circuit

D. For an adversary Q ∈ Aλ, size(S !! Q) denotes the
size of a circuit needed to implement the random experi-

ment S
!! Q.

Theorem 1 (Security of S) Let ext : {0, 1}kext×{0, 1}r →
{0, 1}mext be an (εext, next)-extractor, and let prg :
{0, 1}kprg → {0, 1}r be an (εprg, sprg) pseudorandom gen-
erator. Consider any εHILL > 0 and let ŝ ≈ ε2HILLsprg/8r.7

Consider any εgap > 0,∆ > 0 where

εprg ≤
ε2gap

2λ
−2−∆ , next ≤ r−∆−(λ+mext)−2 log(1/εgap)

(2)
Then for all adversaries Q ∈ Aλ and D where size(S !!
Q) + size(D) ≤ ŝ with δ!

def= #2(3εgap + εHILL + εext)

AdvInd(D,Q,S, #) ≤ δ! and AdvIndFwd(D,Q,S, #) ≤ δ!
(3)

We actually do not even need the initial key to S to be uni-
formly random, but only require a weaker condition as give
by equations (10) and (11).

The proof of Theorem 1 is split in three parts. The first
part in Section 4 on alternating extraction is information
theoretic and uses ideas from the intrusion-resilient secret-
sharing scheme from [13]. In the second part (Section 5)
we revisit some notions and results on computational pseu-
doentropy. We then prove that the output of any pseudo-
random generator has high HILL pseudoentropy even if in-
formation about the seed is leaked. In Section 6 we prove
Theorem 1 by using the result from Section 5 to get a com-
putational version of alternating extraction from Section 4.

How Much Leakage can we Tolerate? The amount of
leakage λ we can tolerate is bounded by (2) as εprg ≤
ε2gap/2λ − 2−∆. For concreteness, assume we set ∆ such
that 2−∆ ≤ εprg/2 and εgap ≥ 4

√
εprg/4, then we can set

λ =

⌊
log ε−1

prg

2

⌋

To see what this means it is convenient to take an asymp-
totic viewpoint and think of S as a family of stream ciphers

7See Lemma 2 as to what ŝ exactly is.

indexed by a security parameter which we identify with
kprg, i.e. the input length to prg. If prg is secure against
polynomial-size circuits, then εprg = 2−ω(log kprg) (and thus
λ ∈ ω(log kprg)), and if prg is secure against exponential
size circuits, then εprg = 2−Θ(kprg) (and λ ∈ Θ(kprg)).

Already the λ ∈ ω(log kprg) case covers quite a large
class of real-life attacks. In particular many attacks based
on measuring the power consumption result in logarithmic-
size leakages, e.g. in a so-called Hamming weight attack
(see e.g. [21]) the adversary just learns the number of wires
carrying the bit 1. Of course this value is of logarithmic
length in the size of the circuit, and hence also in kprg.

In the case λ ∈ Θ(kprg) (i.e. if prg is exponentially hard)
one can leak even a constant fraction of the entire state of S.

4. Random Keys by Alternating Extraction

A K0 = Knxt
0 ‖K ′

0 B Q

eval

ext

A K1 = ext(Knxt
0 , B) B Q

eval

ext

A K2 = ext(Knxt
1 , A) B Q

eval

ext

A K3 = ext(Knxt
2 , B) B Q

f1τ1

f1(τ1)

f2

τ2

f2(τ2)

f3τ3

f3(τ3)

Figure 3. The “alternating extraction” random
experiment S∗(A,B,K0)

3! Q as considered
in Lemma 1.

In this section we state an information theoretic result
which is very similar to the main main technical lemma
used in the security proof of the intrusion-resilient secret-
sharing scheme from [13], a proof appears in [14].

Basically, we consider the random experiment S
!! Q

but without the refreshing. For this let S∗ denoted the con-
struction S but where A and B are never replaced: thus in

the random experiment S∗(A,B,K0)
!! Q where Q ∈ Aλ,

in the jth round Q chooses a function fj : {0, 1}r →
{0, 1}λ and as output gets Kj = ext(Knxt

j−1, τj) and Λj =
fj(τj) where τj = B if j is odd and τj = A otherwise.

As Q attacks S∗, she learns information on A and B, and
thus the min-entropy of A and B degrades. We show that as
long as the min-entropy of A and B is high enough (which
means more than next as required by the extractor ext), the
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next key Kj to be output is close to uniformly random when
given the view after Kj−1 has been computed.

Lemma 1 belows similar to Lemma 8 from [13] (for the
special case of two players).

Lemma 1 (Alternating Extraction) Let ext : {0, 1}kext ×
{0, 1}r → {0, 1}mext be an (εext, next)-extractor. Let
A,B ∈ {0, 1}r and K0 ∈ {0, 1}k be random variables
where A and B are independent and

d(K0|B) ≤ ε0 H∞(A) ≥ r−∆ H∞(B) ≥ r−∆,

Consider any λ,∆, r ≥ 0 and 1 ≥ εgap > 0 which satisfy

next ≤ r − ∆ − ##/2$(λ+ mext) − log(1/εgap).

Consider any adversary Q ∈ Aλ and the random ex-

periment S∗(A,B,K0)
!! Q. Recall that view! =

[K0, . . . ,K!, Λ1, . . . ,Λ!] and τ! = B if # is odd and
τ! = A otherwise. We have

d(K!+1|view!, τ!) ≤ (#+ 1)εext + 2εgap + ε0,

i.e. given τ! and the view of Q after the computation of
K!, the next key K!+1 = ext(K!, τ !) to be output by S is
(#εext + 2εgap + ε0)-close to uniformly random.

5. Pseudoentropy

In this section we will prove that the output of a PRG has
high HILL-pseudoentropy even if some function of the seed
is leaked. We first prove this result for a weaker notion of
pseudoentropy called “metric-type”, and then use the equiv-
alence of metric-type and HILL-pseudoentropy (Lemma 2)
to get our lower bound for HILL-pseudoentropy.

Basic Definitions We denote with δD(X;Y ) the advan-
tage of a circuit D in distinguishing the random variables
X,Y , i.e.: δD(X;Y ) def= |Pr[D(X) = 1]−Pr[D(Y ) = 1]|.
With δs(X;Y ) we denote maxDδD(X;Y ) where the max-
imum is over all circuits D of size s. For a random variable
X over {0, 1}z , ds(X) def= δs(X;Uz).

Definition 2 (Pseudorandom Generator) A function prg :
{0, 1}n → {0, 1}m is a (δ, s)-secure pseudorandom gener-
ator (PRG) if ds(prg(Un)) ≤ δ.

Definition 3 (HILL pseudoentropy[17, 2]) We say X has
HILL pseudoentropy k, denoted by HHILL

ε,s (X) ≥ k, if there
exists a distribution Y where H∞(Y ) ≥ k and δs(X,Y ) ≤
ε.

The above definition requires that there exists a distribution
Y with high min-entropy that is indistinguishable from X
by all distinguishers. One can also consider a notion where
the quantifiers are exchanged, i.e. to allow the distribution
to depend on the distinguisher.

Definition 4 (Metric-type pseudoentropy [2]) We say X
has metric-type pseudoentropy k, denoted HMetric

ε,s (X) ≥ k,
if for every circuit D of size s there exists a distribution Y
with H∞(Y ) ≥ k and δD(X,Y ) ≤ ε.

Barak et al. [2] use the von Neumann’s min-max theorem
[26] to prove the equivalence of HHILL and HMetric.

Lemma 2 Let X be a distribution over {0, 1}n. For every
ε, εHILL > 0 and k, if HMetric

ε,s (X) ≥ k then HHILL
ε+εHILL,ŝ(X) ≥

k where s ∈ O(nŝ/ε2HILL) or equivalently ŝ ∈ Ω(ε2HILLs/n).
More precisely (by inspection of the proof of Thm.5.2 in [2])
s ≤ 8nŝ/ε2HILL − ζ where ζ is the size of a circuit needed to
compute the majority of 8n/ε2HILL bits.

5.1. Pseudoentropy of a PRG

By the following lemma, the output of a PRG has high
metric-type pseudoentropy (and thus by Lemma 2 also high
HILL-pseudoentropy) even if some function of its input is
leaked.

Lemma 3 (Metric/HILL Pseudoentropy of a PRG) Let
prg : {0, 1}n → {0, 1}m and f : {0, 1}n → {0, 1}λ
(where 1 ≤ λ < n < m) be any functions. If prg is
a (εprg, sprg)-secure pseudorandom-generator, then for
any ε,∆ > 0 satisfying εprg ≤ ε2

2λ − 2−∆, we have with
X ∼ Un

Pr
y:=f(X)

[HMetric
ε,sprg

(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ε

(4)
and for any εHILL > 0

Pr
y:=f(X)

[HHILL
ε+εHILL,ŝ(prg(X)|f(X) = y) ≥ m − ∆] ≥ 1 − ε

(5)
where ŝ ≈ ε2HILLsprg/8m.

Proof : Eq. (5) follows from (4) by Lemma 2. To prove (4)
assume for contradiction that it does not hold. Hence, by
Def. 4, there exists a subset

S ⊆ {0, 1}λ where Pr[f(Un) ∈ S] > ε (6)

such that for each a ∈ S there exists a distinguisher Da of
size at most sprg such that for every random variable Z with
H∞(Z) ≥ m − ∆ we have (again X ∼ Un)

|Pr[Da(Z) = 1] − Pr[Da(prg(X)) = 1|f(X) = a]| ≥ ε
(7)

Consider some a ∈ S for which

Pr[f(Un) = a] > 2−λ · ε (8)

Such an a exists by (6) and as |S| = 2λ. Our distin-
guisher for the PRG prg will be the distinguisher Da sat-
isfying (7) and (8). It remains to prove that Da breaks
prg with advantage higher than εprg. For β ∈ {0, 1} let
Iβ := {x ∈ {0, 1}m : Da(x) = β}
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Claim 1 For some β ∈ {0, 1} we have |Iβ | < 2m−∆

Proof of Claim: Assume for contradiction that |Iβ | ≥
2m−∆ for β = 0 and β = 1. For β ∈ {0, 1} and X ∼ Un

let pβ = Pr[Da(prg(X)) = β|f(X) = a]. Let Z ′ be a ran-
dom variable distributed uniformly over S′

0 ∪ S′
1 where S′

β

is an arbitrary subset of Iβ of size pβ2m−∆ (here we use the
fact that |Iβ | ≥ 2m−∆). Clearly since |S′

0 ∪ S′
1| = 2m−∆

we have that H∞(Z ′) = m − ∆ and by construction (with
X ∼ Un)

Pr[Da(Z ′) = 1]︸ ︷︷ ︸
=Pr[Z′∈S′

1]=p1

−Pr[Da(prg(X)) = 1|f(X) = a] = 0

contradicting (7). This finishes the proof of the claim. /
For β as guaranteed by the above claim, we have

Pr[Da(Um) = β] = |Iβ |/2m < 2−∆. (9)

By equation (7), using that H∞(Um) = m > m − ∆ we
get:

|Pr[Da(Um) = β]︸ ︷︷ ︸
<2−∆

−Pr[Da(prg(X)) = β|f(X) = a]| ≥ ε

By assumption, we have ε ≥ ε2/2λ > 2−∆. As for any
x, y, ε ≥ 0 we have that |x−y| ≥ ε and ε > x implies y ≥ ε,
the above equation implies Pr[Da(prg(X) = β|f(X) =
a] ≥ ε, and further with X ∼ Un

Pr[Da(prg(X)) = β]

≥ Pr[Da(prg(X)) = β|f(X) = a]︸ ︷︷ ︸
≥ε

·Pr[f(X) = a]︸ ︷︷ ︸
>2−λ·ε by(8)

>
ε2

2λ
.

By (9) and the above equation, the advantage of Da for Um

and prg(Un) is at least

Pr[Da(prg(Un)) = β]−Pr[Da(Um) = β] >
ε2

2λ
−2−∆ ≥ εprg

which contradicts the (εprg, sprg)-security of prg. "

6 Putting Things Together

In this section we show how the security of S as stated
in Theorem 1 follows from the results in the two previous
sections. S is based on ext and prg where

• ext : {0, 1}kext×{0, 1}r → {0, 1}mext is an (εext, next)-
extractor.

• prg : {0, 1}kprg → {0, 1}r is an (εprg, sprg) pseudoran-
dom generator.

Further we set kout := mext − kext + kprg (thus mext =
kext + kout + kprg) and fix parameters ∆, εgap,λ satisfying

εprg ≤
ε2gap

2λ
−2−∆ and next ≤ r−∆−(λ+mext)− log ε−1

gap

We also fix some εHILL > 0 and set ŝ := ε2HILLsprg/8r.
The following lemma quantifies how much security is

“lost” by one round of our stream cipher. Let sizei denote
the size of the circuit realizing the ith round of the experi-

ment S
!! Q, then

∑!
i=1 sizei = size(S !! Q).

Lemma 4 (The ith round) Consider the random experi-

ment S
!! Q. Then if before round i ≤ # (recall that

τ i−1 = τi = Bi if i is odd and τ i−1 = τi = Ai other-

wise) for some si−1 ≤ ŝ and ε′ def= εHILL + εgap

HHILL
ε′,si−1

(Ai−1|viewi−1, Bi−1) ≥ r − ∆

HHILL
ε′,si−1

(Bi−1|viewi−1, Ai−1) ≥ r − ∆
dsi−1(Ki−1|viewi−2, τ i−1) ≤ εi−1

then with si
def= si−1 − sizei, s′i

def= si−1 − size(ext) and

εi
def= εi−1 + εext + εgap + ε′.

ds′
i
(Ki,Xi|viewi−1, τ i) ≤ εi

with probability 1 − εgap − εi

HHILL
ε′,si

(Ai|viewi, Bi) ≥ r − ∆

HHILL
ε′,si

(Bi|viewi, Ai) ≥ r − ∆

This lemma can be proven by using Lemma 3 to get a com-
putational version of the alternating extraction Lemma 1
(see the full version [14] for details). We’ll now see how
Theorem 1 is implied by this lemma. Let ε0 = 0 and s0 = ŝ,

then ε! = #(2εgap+εext+εHILL) and s! = ŝ−size(S !! Q).
If the initial key A0, B0,K0 satisfies

HHILL
ε′,s0

(A0|B0) ≥ r − ∆ HHILL
ε′,s0

(B0|A0) ≥ r − ∆ (10)

d(K0|B0) = ε0 (11)

as it is the case in Theorem 1, by Lemma 4 with probability
1 −

∑!
i=1(εgap + εi) ≥ 1 − #(εgap + ε!) we have

ds′
"
(K!,X!|view!−1, τ !) ≤ ε!

This proves (note that s′# < s#) the bound for the AdvInd
as stated in Theorem 1. To prove the bound for AdvIndFwd
we move X!,Knxt

! to the conditioned part (recall that K! =
Knxt
! ‖Kout

! )

ds′
"
(Kout

! |Knxt
! ,X!, view!−1, τ !) ≤ ε!

Then we apply the prg to X!

ds′! − |prg|︸ ︷︷ ︸
>s"

(Knxt
! |Kout

! , view!−1,

A",B"︷ ︸︸ ︷
τ !+1︸︷︷︸

prg(X")

, τ !) ≤ ε!

Which proves the bound on AdvIndFwd from Theorem 1.
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