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Abstract. In this report, we are concerned with models to analyze the
security of cryptographic algorithms against side-channel attacks. Our
objectives are threefold. In a first part of the paper, we aim to survey
a number of well known intuitions related to physical security and to
connect them with more formal results in this area. For this purpose, we
study the definition of leakage function introduced by Micali and Reyzin
in 2004 and its relation to practical power consumption traces. Then, we
discuss the non equivalence between the unpredictability and indistin-
guishability of pseudorandom generators in physically observable cryp-
tography. Eventually, we examine the assumption of bounded leakage per
iteration that has been used recently to prove the security of different
constructions against side-channel attacks. We show that approximated
leakage bounds can be obtained using the framework for the analysis of
side-channel key recovery attacks published at Eurocrypt 2009.

In a second part of the paper, we aim to investigate two recent leakage
resilient pseudorandom generators, both from a theoretical and practical
point of view. On the one hand, we consider a forward secure generator
from ASIACCS 2008 and its similarities with a previous construction by
Bellare and Yee. On the other hand, we analyze Pietrzak’s block cipher
based construction from Eurocrypt 2009. Doing this, we put forward the
difficulty of meaningfully restricting the physical leakages and show that
this difficulty leads to different drawbacks. It allows us to emphasize the
differences between these two designs. First, one construction that we
analyze requires strong black box assumptions (i.e. random oracles) -
the other one considers unrealistic leakages leading to (possibly useless)
performance overheads. Second, one construction considers an adversary
able to adaptively choose a leakage function while the second one does not
permit this adaptivity. Third, the security proof of the Eurocrypt 2009
construction relies on the assumption that “only computation leaks” (or
relaxed but related hypotheses) while this assumption is not necessary
for the ASIACCS construction. We then discuss the impact of these
hypotheses with respect to recent technological advances.
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In the third part of the paper, we show that Pietrzak’s leakage resilient
mode of operation from Eurocrypt 2009 can be broken with a standard
DPA if it is re-initialized without sharing new keys. Then, we propose
solutions to fix this issue and extend the initial proposal from ASIACCS
2008 in order to rely on more standard cryptographic constructions. We
use these alternative designs to illustrate the incompatibility between a
fully adaptive selection of the leakage function and the secure initial-
ization of a pseudorandom generator. We also argue that simple pseu-
dorandom functions (e.g. the one of Goldreich, Goldwasser, Micali) can
be shown leakage resilient, using the random oracle methodology. We
additionally discuss the security vs. performance tradeoff that is inher-
ent to these different schemes. Eventually, we show that the security of
the forward secure pseudorandom number generator of Bellare and Yee
against side-channel attacks cannot be directly generalized in the stan-
dard model. It is an open problem to determine the minimum black box
assumptions and restrictions of the leakage function for this purpose.

1 Introduction

Theoretical treatments of physical attacks have recently attracted the attention
of the cryptographic community, as witnessed by various publications, e.g. [1, 17,
22, 24, 29, 31, 33, 34, 42]. These works consider adversaries enhanced with abili-
ties such as inserting faults during a computation or monitoring side-channel
leakages. They generally aim to move from the ad hoc analysis of the attacks
towards stronger and more systematic security arguments or proofs. Quite natu-
rally, these more general approaches also have limitations that are mainly caused
by the versatility of physical phenomenons. Namely, since it is impossible to prove
the security against an all powerful physical adversary, one has to find ways to
meaningfully restrict them. This is in fact similar to the situation in classical
cryptography, where we need to rely on computational assumptions. That is,
when moving to a physical setting, we need to determine what are the physi-
cal limits of the adversary. Therefore, the question arises of how relevant these
physical models are and to which extent they capture the engineering experi-
ence. In order to tackle this question, it is useful to first introduce some usual
terminology, e.g. from the side-channel cryptanalysis lounge [14]:

1. Invasive vs. non-invasive attacks. Invasive attacks require depackaging
the chip to get direct access to its inside components. A typical example of this
is the connection of a wire on a data bus to see the data transfers. A non-invasive
attack only exploits externally available information (the emission of which is
however often unintentional) such as running time, power consumption, . . .

One can go further along this axis by distinguishing local and distant attacks:
a local attack requires close but external (i.e. non-invasive) proximity to the
device under concern, for example by a direct connection to its power supply.
As opposed, a distant attack can operate at a larger distance, for example by
measuring an electromagnetic field several meters (or hundreds of meters) away.
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Fig. 1: Informal classification of physical attacks.

2. Active vs. passive attacks. Active attacks try to tamper with the devices
proper functioning. For example, fault induction attacks will try to introduce
errors in the computation. By contrast, passive attacks will simply observe the
devices behavior during its processing, without disturbing it.

As an illustration, Figure 1 classifies different physical attacks according to
these two axes. With this respect, it is important to remark that seemingly
similar abilities can have very different costs in practice. For example, probing
attacks such as described by Anderson and Kuhn [3] and the recent memory
attacks based on data remanence issues [20] both allow the adversary to learn
the value of certain bits in a cryptographic device. But the first one can only
target depackaged chips and may require very expensive tools to probe circuits,
e.g. when realized in advanced (65 nanometer or smaller) technologies. By con-
trast, memory remanence based attacks can take advantage of cheap “cold boot”
techniques to read memory. In addition, the cost of an attack is not the only
factor to consider when discussing its applicability. The likelihood to find its sce-
nario in real life conditions is obviously as important. As a result, side-channel
attacks are usually considered as the most dangerous type of physical attacks.
They are at the same time low cost and realistic, e.g. when applied against small
embedded devices, as in the Keeloq case study presented at Crypto 2008 [13].

In this report, we consequently investigate the relation between theoretical
models and practical engineering works in the area of side-channel attacks. In
particular, we consider the pseudorandom generators (PRG) proposed at ASI-
ACCS 2008 [33] and Eurocrypt 2009 [34], respectively. These constructions are
based on the same core ideas. First, they assume a bounded leakage for each iter-
ation of the PRG. Second, they rely on frequent key updates in order to avoid the
application of standard DPA attacks. In fact, these ideas were not new. Directly
after the publication of the first power analysis attack [26], Paul Kocher listed
possible countermeasure in which key updates combined with bounded leakage
were explicitly mentioned [27, 28]. Hence, the novelty in the previous PRGs is
not really in the design principles but rather in the advanced techniques for their
analysis, leading to a better confidence in their security levels.

3



Both papers have pros and cons. Summarizing, the ASIACCS PRG was the
first one to provide a systematic analysis of a block cipher based construction in a
physically observable setting. It initiated a study of forward secure cryptographic
primitives with their relation to side-channel issues. The underlying model in
this work [42] is a specialization of Micali and Reyzin [31] and is motivated by
the need to evaluate side-channel attacks on a fair basis. As will be shown in
Section 5.4 of this report, this connection to the practice of side-channel attacks
is required anyway, anytime a leakage bound needs to be assumed (and hence,
quantified). In other words, the framework presented at Eurocrypt 2009 [42] is
also useful to the work of Pietrzak [34] and more generally to any construction
based on a λ-bit leakage: it can be used to estimate practical values for λ. On
the negative side, the analysis in [33] considers black box security and physical
security separately. It also relies on the existence of ideal ciphers.

The main advantage of [34] is to analyze the security of a PRG in a com-
bined fashion, mixing black box and physical security issues, and in the standard
model. It also introduces useful tools for the systematic investigation of physi-
cally observable devices (e.g. the quantification of the leakages with the HILL
pseudoentropy). On the negative side, the PRG of Eurocrypt 2009 lacks a secure
initialization process (as discussed in Section 6.1). It is also designed in order
to face unrealistic (i.e. too powerful) leakages, e.g. the so called “future compu-
tation attacks” that we describe in Section 5.1. As a result, it exploits a (less
efficient) “alternating structure” for which it is not clear if it is really required to
prevent actual side-channel attacks or if it is only caused by proof technicalities.
Eventually, its security proofs rely on the assumption that “only computation
leaks” (or relaxed but related assumptions) which may not always be respected.

Following these observations, the goal of this report is threefold.

First, we aim to connect Micali and Reyzin’s definition of leakage function to the
practice of side-channel attacks. Doing so, we review the intuitions behind some
important results, e.g. the non equivalence between the unpredictability and in-
distinguishability of PRGs implemented in leaking devices. Second, we aim to
investigate the underlying assumptions and the concrete security provided by two
PRGs, with and without alternating structure, in a systematic manner. Doing
so, we provide a proof of security for an efficient construction similar to the one
of Bellare and Yee [5], using the random oracle methodology. We also introduce
definitions allowing us to formalize the practical security of an implementation,
inspired by the q-limited adversaries used in Vaudenay’s decorrelation theory
[48]. Third, we analyze the initialization of a leakage resilient PRG with a public
seed. Doing so, we put forward the incompatibility of a secure initialization with
a fully adaptive selection of the leakage functions. We also emphasize that stan-
dard constructions of pseudorandom functions (PRF) [18] can be shown leakage
resilient, in the random oracle model. We conclude this paper with a negative
result. We show with a simple example that the leakage resilience of Bellare
and Yee’s PRG cannot be directly (meaning, without additional computational
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and physical hypotheses) proven in the standard model. We leave as an open
problem to determine the minimum black box assumptions and restrictions of
the leakage function that would be required for this purpose.

Note that this work mainly focuses on the formal techniques used to analyze
two PRGs, namely [33] and [34]. Obviously, they are not the only attempts to
study side-channel attacks from a more theoretical point of view. Several other
references could be acknowledged, e.g. [8, 41], typically. However, we believe these
two PRGs are emblematic of one approach for proving the security against side-
channel attacks that we denote as the “global approach” in Section 4.

2 Background

2.1 Notations

We take advantage of notations from [39, 42]. In particular, let x
R
←− X be a uni-

formly distributed plaintext picked up from a set X and k
R
←− K be a uniformly

distributed key picked up from a set K. For simplicity, we take X = K = {0, 1}n.
Let also Ek(x) be the encryption of a plaintext x under a key k with a n-bit block
cipher. In classical cryptanalysis, an adversary is able to query the block cipher
in order to obtain pairs of the form [xi,Ek(xi)]. In side-channel attacks, he is
additionally provided with the output of a leakage function of which exemplary
outputs are illustrated in Figure 2. Let xq = [x1, x2, . . . , xq] be a vector contain-
ing a sequence of q input plaintexts to a target implementation. In our notations,
the measurements resulting from the observation of the encryption of these q
plaintexts are stored in a leakage vector that we denote as lq = [l1, l2, . . . , lq].
Each element li of the leakage vector is referred to as a leakage trace and is in
the set of leakages L. Typically, L = R

Nl , where Nl is the number of samples
per trace (possibly coming from multiple channels [44]). For example, Figure 2
represents 4 leakage traces, corresponding to 4 input plaintexts encrypted under
the same key. Eventually, we denote the tth leakage sample of a trace as li(t).

2.2 Definition of a leakage function

Following [31], a leakage function is an abstraction that models all the speci-
ficities of a side-channel (e.g. the power consumption or the EM radiation of a
chip), up to the measurement setup used to monitor the physical observables.

Using the previous notations, it means that each leakage sample li(t) in a
leakage trace li is the output of a leakage function Lt. In our block cipher example,
this leakage function takes at least a plaintext xi and a secret key k as inputs.
But in theory, the leakages take many more parameters into account. For this
reason, Micali and Reyzin consider three input arguments, namely the target
device’s internal configuration C, a measurement parameter M and a random
string R. Note that in order to be reflective of actual physical leakages, C has to
contain all the configurations of the device before the computation corresponding
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Fig. 2: Exemplary leakage traces.

to its current inputs, i.e. before the tth sample of input xi has been produced
in our block cipher example. This incorporates the fact that the leakages can in
principle be dependent on anything that has been computed prior to this time
sample t, e.g. on the transitions between a former state and a current state in
standard CMOS devices. Since Micali and Reyzin define a leakage function as a
polynomial time function of its input arguments, this “history” is necessary to
include forward secure primitives for which previous states are not polynomial
time computable from current states. It yields:

li(t) = Lt((xi, k, . . .)
︸ ︷︷ ︸

, M, R) (1)

C

For convenience and in order to avoid unnecessarily heavy notations, we will omit
the parameters of Equation (1) that are not directly useful for our discussions
in the following of this paper (e.g. M , typically). We will also sometimes replace
the generic state C by the parts of the state for which the leakage dependencies
are exploited in a side-channel attack (e.g. inputs and keys).
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We note that polynomial time functions actually correspond to more pow-
erful leakages than what is usually observed in practice. As will be discussed in
Section 5.1, leakage functions generally have a limited complexity of which the
exact specification is an interesting direction to obtain more efficient side-channel
resistant constructions. Also, a consequence of the previous generic definition is
that we potentially have a different leakage function for every implementation1.
It implies that any security analysis that one may perform in the context of
side-channel attacks has to be positioned between two extremes:

1. On the one hand, we can analyze cryptographic primitives with respect to a
generic adversary who is enhanced with an arbitrary leakage function. But
then, generic and positive statements are hard to obtain and prove. They
are also difficult to interpret for a specific device.

2. On the other hand, we can completely fix one instance of leakage function
(i.e. perform an experimental attack against a given target device). But then,
the conclusions obtained are only valid within this particular setting.

Quite naturally, an interesting approach would be to investigate the existence
of intermediate contexts, i.e. to restrict the leakage function in such a way that
conclusions can be drawn as long as the leakages fulfill a set of practically mean-
ingful conditions. It is typically the approach followed, e.g. by [22, 33, 34].

Note that a concurrent solution for the analysis of physical security issues in
cryptography is to rely on the existence of some minimum primitives from which
it is possible to build secure devices. This corresponds, e.g. to the “minimal one
way function” of Micali and Reyzin [31] or the “tamper proof” pieces of hardware
in [17, 24]. As a matter of fact, these approaches are complementary. Namely, one
focuses on the construction of physically secure objects while the other focuses
on their exploitation in the construction of advanced functionalities.

3 Unpredictability vs. indistinguishability

Although protecting leaking devices against key recovery attacks is already diffi-
cult, ensuring security against this type of attacks is unfortunately not sufficient.
One generally expects pseudorandom generators, functions or permutations to
be indistinguishable from truly random. For example, we can refer to the formal
definitions of security for symmetric encryption schemes in [4]. As an illustration,
we use the real-or-random indistinguishability. In this setting, the adversary has
access to an oracle Enck(RR(·, b)) that takes an input message x and does the fol-
lowing: toss a coin b, if b = 0, return Enck(x), else return Enck(r), where Enck(x)
is an encryption scheme (i.e. typically, our block cipher Ek(x) put into a certain

mode of operation) and r
R
←− X is a uniformly distributed random message.

1 In [31, 42], an implementation is defined as the combination of a target device and
a measurement setup. We use the same definition in this paper.
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Definition 1. Let Enc : K × X → X be an encryption scheme and A be an
algorithm that has access to the oracle Enck(RR(·, b)). We consider:

Succror−ind−b
Enc,A = Pr[k

R
←− K : A(Enck(RR(·, b))) = 1]

The ror-advantage of a chosen plaintext adversary A against Enc is:

Advror−cpa
Enc,A =

∣
∣
∣Succror−ind−1

Enc,A − Succror−ind−0
Enc,A

∣
∣
∣

We say that an encryption scheme Enc is ror-indistinguishable if this ror-advantage
is negligible for any polynomial time adversary.

The central issue when trying to adapt this definition to a physically observ-
able device is that in general, a leakage trace easily allows distinguishing real
inputs/outputs from random ones. This can be intuitively understood by looking
at Figure 3 where the leakage trace corresponding to an encryption yi = Enck(xi)
is plotted. In this trace, we see that different dependencies can be observed and
exploited: the beginning of the trace mainly leaks about the input xi; the core
of the trace leaks jointly about the input xi and the secret key k; finally, the end
of the trace mainly leaks about the the output yi. In most practical side-channel
attacks, the leakage is in fact sufficient to recover the secret key k, provided a
sufficient amount of (different) encrypted plaintexts can be observed.

Fig. 3: Impossibility to assume indistinguishability for block ciphers.

Say now that the adversary does not have to recover the key, but to distin-
guish a real output Enck(xi) from a random one Enck(r), given the input xi and
the leakage trace corresponding to the encryption of xi. In fact, the leakage trace
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will easily allow doing this distinction. For example, imagine that some samples
in the leakage trace depend on the Hamming weight HW (xi), a frequently con-
sidered model in practice. With high probability, this Hamming weight will not
be equal to HW (r). In other words, since we can hardly achieve implementations
secure against key recovery, it is even harder to achieve implementations provid-
ing an indistinguishability notion. At least, this is definitely not something that
we can take for granted. Note that for exactly the same reasons, the existence
of durable functions and maximal one way functions as assumed in [31] cannot
be considered as reasonable foundations for a leakage resilient cryptography.

The previous discussion suggests that “protecting” the inputs/outputs of a
cryptographic algorithm against distinguishing attacks enhanced with physical
leakages is a difficult task. Following this observation, a natural idea is to try
analyzing simpler security notions for simpler primitives first. For example, [22,
31, 33, 34] consider PRGs. In this context, two security definitions can be con-
sidered, namely the next bit unpredictability introduced in [6] and the current
output indistinguishability introduced in [49]. In a black box setting, these two
notions are equivalent. But as pointed out in [31], this equivalence does not hold
anymore with physically observable devices. The reason of this difference can
be easily understood from the example in Figure 3. Intuitively, what essentially
matters from a side-channel point of view is the word “next” in these defini-
tions. That is, distinguishing current outputs from random ones is trivial if one
can access the leakage corresponding to this output (as in the Hamming weight
example). But predicting the next output bit may still be difficult in this case.
Therefore, the following sections will consider a definition of security that cor-
responds to the next output indistinguishability (or equivalently to the next bit
unpredictability). We denote this security notion as physical indistinguishability.

Definition 2. Let Gq : K → K × X q be an iterative pseudorandom generator,
with q iterations denoted as [k1, x1] = G(x0), [k2, x2] = G(k1), . . . , [kq, xq] =
G(kq−1). Let lq = [L(k1, x1), L(k2, x2), . . . , L(kq, xq)] be the leakage vector cor-
responding to these q iterations. Let Pq = (Gq, L) be the physical implementa-
tion corresponding to the combination of the pseudorandom generator Gq with
the leakage function L. Let finally A be an algorithm that takes the plaintexts
xq = [x1, x2, . . . , xq] and leakages lq as input and returns a bit. We consider:

Succprg−ind−0
Pq,A = Pr[k0

R
←− K, [xq+1, kq+1] = Pq+1(k0) lq+1 : A(xq+1, lq) = 1)

Succprg−ind−1
Pq,A = Pr[k0

R
←− K, [xq, kq] = Pq(k0) lq;xq+1

R
←− X : A(xq+1, lq) = 1)

The ind-advantage of A against Pq is defined as:

Advprg−ind
Pq,A = |Succprg−ind−0

Pq,A − Succprg−ind−1
Pq,A |

The implementation of a PRG is physically indistinguishable if the ind-advantage
of any polynomial time adversary against this implementation is negligible.
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We observe that, contrary to the definitions of Dziembowski and Pietrzak [12,
34], our definition is not adaptive in the sense that the leakage function is the
predefined before the q iterations of the PRG. We believe that this definition
is realistic since the information leaked is essentially a function of the targeted
device rather than a choice of the adversary. Besides, letting the adversary select
different leakage functions for different runs of the circuit results in an overly
strong definition in many cases, as we will further discuss in Sections 5.1, 6.4.

4 Physical assumptions: local vs. global approach

Since the apparition of power analysis attacks in the late 1990s, various solu-
tions have been proposed to counteract them. Among these countermeasures, a
first category aims to provide design guidelines for the implementation of cryp-
tographic primitives. That is, they study how to implement (e.g.) a block cipher
is in such a way that it leaks as little as possible. Such local countermeasures
have been intensively analyzed in the last ten years and typically include hid-
ing [47] or masking [19]. Their limitation is that up to now, no solution allows
to completely get rid of the leakages. For example, masking schemes have been
shown vulnerable to higher-order attacks [32] and hiding countermeasures gen-
erally give rise to small data dependent leakages that can be exploited by an
adversary. As a consequence, a complementary approach is to accept that cryp-
tographic implementations leak a certain amount of information and try to use
them in such a way that these leakages do not lead to complete security failures.
In this global approach, one essentially assumes that a single iteration of the
target cryptographic primitive “does not leak too much” in some sense.

In the following of this paper, we investigate this second option. It implies the
need to define what is meant by “bounded leakage”. For this purpose, the proofs
in [34] assume a leakage of λ bits on a key K if this key is (computationally) indis-
tinguishable from a distribution Y having an average min entropy conditioned on
the leakage of n−λ bits. This is formalized by the notion of HILL pseudoentropy.
Here, we denote with δD(K;Y ) the advantage of a circuit D in distinguishing
the random variables K, Y , i.e. δD(K;Y ) = |Pr[D(K) = 1]−Pr[D(Y ) = 1]|. We
also define δs(K;Y ) as the maximum of δD(K;Y ) taken over all circuits D of
size s. We finally use the standard definitions:

Definition 3. The min entropy of a random variable K is defined as:

H∞(K) = − log max
k∈K

Pr[K = k],

and the average min entropy of K conditioned on L is defined as:

H∞(K|L) = − log

(

El←L

[

max
k∈K

Pr[K = k|L = l]
])

Then, we define the following computational analogues:
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Definition 4. K has HILL pseudoentropy n, denoted by HHILL
ǫ,s (K) ≥ n, if there

exist a distribution Y with min entropy H∞(Y ) ≥ n where δs(K;Y ) ≤ ǫ.

Definition 5. K has HILL pseudoentropy n conditioned on L, denoted by HHILL
ǫ,s

(K|L) ≥ n, if there exists a collection of distributions Yl (giving rise to a joint
distribution (Y ,L)), such that H∞(Y |L) ≥ n and δs((K, L); (Y, L)) ≤ ǫ.

From such definitions, there are two possible research directions. First, one can
investigate how to best exploit a λ-bit leakage, e.g. in the design of PRGs (this
will be analyzed in Section 5). Second, it is also required to determine what is a
reasonable value for λ, in practical settings. As already mentioned, this amount
of leakage highly depends on the target device and adversarial strategy. Leakage
traces can be made of gigabytes of data and the selection of a good decoding
algorithm to extract λ bits of information is a quite challenging issue. As for
classical cryptanalysis concerns, this is where reasonable assumptions have to
be introduced in accordance with practical works in the area of side-channel at-
tacks. We show in this section that the framework of [42] can be used for this
purpose. Without entering into details that are out of the scope of this paper,
the goal of this framework is to provide tools allowing one to evaluate a leak-
ing implementation and a side-channel adversary. As summarized in Figure 4, it
can be seen as an interface between practical and theoretical concerns raised by
physically observable devices. When designing new attacks or local countermea-
sures, it allows determining their effectiveness with a combination of information
theoretic and security metrics. For example, it is shown in [43] that an informa-
tion theoretic metric nicely captures the impact of a local countermeasure such
as masking. When building new cryptographic primitives, it allows to quantify
the λ-bit leakage assumed in the proofs of constructions such as [12, 34].

Fig. 4: Interfacing the theory and practice of side-channel attacks.
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Literally, the min entropy H∞(X) is the negative logarithm of the probability
that a variable X is determined correctly with only one guess of the form “is
X equal to x?”, with an optimal strategy [7]. Since an exact evaluation of the
min entropy (and its computational analogues such as the HILL pseudoentropy)
is generally hard to obtain, a simple assumption is to approximate it with the
success rate of a side-channel key recovery attack (briefly recalled in Appendix
A), as can be estimated in practical settings:

Assumption. The HILL pseudoentropy remaining after a q-query side-channel
key recovery attack has been performed against a key variable K is approximated
by HHILL

ǫ,s (K|Lq) ≃ − log2(Succ
sc-kr-1,K
AEK ,L

(τ,m, q)), where AEK ,L is a “best avail-

able” adversary with time, memory and data complexity τ , m and q.

Otherwise said, we have: λ(τ,m, q) ≃ n+log2(Succsc-kr-1,K
AEK ,L

(τ,m, q)). Exemplary

values for λ in different contexts will be discussed in the next section. We men-
tion that considering the success rate of specific attacks may appear as weak
from a theoretical point of view. But this assumption is in fact imposed to some
extent by the computational difficulty of perfectly estimating the side-channel
leakage, as we now argue. That is, ideally, estimating λ would require, for each
key value (that is the only unknown variable in a side-channel attack):

- to estimate the probability distribution of the leakage conditionally to this key,
- to compute the (e.g. average min) entropy by integrating this distribution.

For practical ciphers (e.g. the AES Rijndael), this would mean the estimation
of 2128 distributions, which is unfeasible. Note that for large leakage traces (as
usually observed in practice, see [44]), even the estimation of one distribution
may be computationally hard (e.g. assuming that the leakages are normally dis-
tributed, it requires to estimate a covariance matrix of size Nl × Nl). In order
to avoid such limitations, actual side-channel attacks generally exploit the ap-
proximated probability distribution of a reduced set of leakage samples, and for
enumerable subkeys, i.e. the generic template attacks detailed in [42].

As a consequence, there is a hardly avoidable gap between the λ-bit leakage
assumed in the proofs and the λ-bit leakage that can be approximated in practice.
Solutions to reduce this gap can also be devised in two directions. On the one
hand, the approximations of λ should consider reasonable security margins, as
in the practical security approach when designing block ciphers, e.g. in [25]. On
the other hand, proofs could be based on weaker assumptions than n−λ bits of
HILL pseudoentropy. For example, one could try to exploit the unpredictability
entropy defined in [36] (that is implied by HILL pseudoentropy):

Definition 6. K has unpredictability entropy n conditioned on L, denoted by
Hunp

s (K|L) = n, if for any A of size s it holds that Pr[A(L) = K] ≤ 2−n.

Or, alternatively, one could assume that the leakage function is hard to invert
(which seems a very minimal assumption), as in the work of Dodis et al. on
cryptography with auxiliary input. We will use this assumption in Section 5.3.
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Note finally that the parameters τ and m correspond to the circuit size s in
our definitions of computational entropy. They allow considering the effectiveness
of techniques combining side-channel leakages with classical cryptanalysis such
as the collision or algebraic side-channel attacks introduced in [40] and [36, 37],
i.e. attacks in which the time (and memory) complexity is non-negligible.

Analogy with classical cryptanalysis. Before moving to the security analy-
sis of different PRGs, it is worth emphasizing that this situation, although not
satisfying, is not very different than the one in classical (e.g. linear, differen-
tial) cryptanalysis. In this case, one also considers the best available attacks to
evaluate the security of a cipher. Hence, local and global countermeasures are
not contradictory. It is both required to know how to design implementations
that do not leak to much and how to exploit such implementations in order
to provide good cryptographic properties. By analogy, there is no contradiction
between the wide trail strategy [9], that has been used in the design of the AES
Rijndael (i.e. a type of local countermeasure against linear/differential attacks),
and the proof that an encryption mode is secure if its underlying block cipher
is indistinguishable from a pseudorandom permutation [4] (i.e. a more global
approach). Similarly, countermeasures such as masking and hiding (or more for-
mal solutions like [8, 16, 22]) can be used to design implementations with limited
leakages that can then be used in secure PRG (or other) constructions.

5 Leakage resilient PRGs

5.1 On the difficulty of modeling a leakage function

An appealing solution to build PRGs secure against side-channel attacks is to
consider forward secure primitives, e.g. as introduced in [5] for symmetric encryp-
tion. In this section, we analyze the “future computation attack” to illustrate
the need of a new type of construction in [34]. This attack can be explained from
Figure 5, in which a length doubling PRG is denoted as 2PRG and the l states
corresponding to l iterations of the arbitrary length PRG are denoted as Si.

Fig. 5: The “future computation attack”.
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In [34], the leakage of each iteration of the 2PRG is bounded to λ bits. As
discussed in the previous section, this is a reasonable abstraction. But the λ bits
leaked by the computation of a state Si can be selected adaptively by the adver-
sary, as long as they are a polynomial time function of this state. Therefore, a
straightforward attack depicted on the figure is to select λ bits of Sl during the
computation of S1, another λ bits of Sl during the computation of S2, . . . until
the state Sl is completely revealed which trivially (and completely) breaks the
security of the scheme. Looking at the physical reality, this attack is obviously
an overestimation of what a side-channel adversary could achieve. In general,
the leakage function is not selected by the adversary, at least not arbitrarily. It
is rather a feature of the target device. In certain settings (e.g. electromagnetic
leakages), one could imagine that the antenna is moved adaptively during the
attack. But it at least remains that a leakage function does never leak about
future computations. In reaction to this type of (unrealistic) attacks, three dif-
ferent positions could be adopted, that we now detail:

1. One can consider stronger assumptions for the 2PRG. For example, in the
ideal cipher model, the outputs of any iteration of the PRG are uniformly
random and the computation of a state Si cannot leak about any state Sj

with j > i. This is typically the solution considered in [33].
2. Another solution is to keep the model as it is (i.e. unrealistic with respect

to the physics) and to build constructions that can even cope with this type
of leakage. This is typically the solution considered in [34].

3. Eventually, a more elegant solution is to restrict the leakage function in a
meaningful way. A natural direction with this respect would be to limit the
complexity of this function (e.g. in terms of circuit size).

The goal of the next section is to analyze the security of different PRGs against
side-channel attacks. For simplicity, we selected the forward secure PRG from
[5] and the leakage resilient PRG from [34], pictured in Figure 6.

Note that the block cipher based PRG from [33] could be similarly inves-
tigated (i.e. it has the same properties as [5] in terms of leakage resilience).
Following these papers, we aim to work out the question: “is the alternating
structure of [34] a requirement for leakage resilient PRGs or is a forward secure
primitive such as [5, 33] sufficient to withstand side-channel attacks?”.

5.2 Theoretical security analysis and limitations

We start with an intuitive description of the two approaches.

Alternating structure. As previously mentioned, a central difficulty when
modeling a leakage function is the fact that polynomial time computations from
a state Si may potentially leak information about future states Sj with j > i.
The solution proposed in [34] may be summarized as follows:

1. Double the key size and use an “alternating structure” such as in the lower
part of Figure 6 in which wPRF is a weak pseudorandom function (i.e. a
PRF in which the inputs are not chosen by the adversary but at random).
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(a) Forward secure PRG from [5].

(b) Leakage resilient PRG from [34].

Fig. 6: Two PRG constructions

2. Assume that when computing the odd states (i.e. S1, S3, . . .), the even states
(i.e. S2, S4, . . .) are not manipulated by the device and therefore do not leak.

As a result, the sequence of keys k0, k2, k4, . . . cannot be determined from the
sequence k1, k3, k5, . . . It implies that, e.g. when leaking λ bits about S1, the
states Si for any i > 1 are not polynomial time computable from S1 because k1

is still safe. This prevents the future computation attack. The main limitation of
this proposal is that it is not clear if the alternating structure is only motivated
by the proof technique (i.e. the willing to be in the standard model) or if there
is also a physical concern that makes it necessary. Its main advantage is the
security analysis combining physical and classical security notions (whereas, e.g.
[33] was dealing with both issues separately, in a more specific scenario).

Forward secure PRGs. Alternatively, one can prevent side-channel attacks
with a forward secure primitive without alternating structure. But if no addi-
tional restrictions are considered for the leakage function, proving the security
against the future computation attack then requires the assumption that the
2PRGs in the construction of Figure 6a behave as random oracles that the leak-
age function cannot query. Interestingly, this solution also allows to get rid of
certain physical assumptions, as will be detailed in the next section.

The main security features of these two approaches are listed in Table 1.
In summary, we have an efficient construction that requires strong black box
assumptions on the one hand. And on the other hand, we have a less efficient
construction proven in the standard model. It is worth to emphasize that the
random oracle is only used to prove the leakage resilience of [5]. Yet, in the black
box setting, this construction remains secure in the standard model. In other
words, the random oracle essentially prevents the “future computation attack”,
which seems a reasonable abstraction, while keeping the proofs simpler.
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Forward secure PRG [5] Alternating structure [34]

Black box assumptions random oracles standard model
Leakage assumptions non-invertibility [10] HILL pseudoentropy

+ non-adaptivity + “independent leakages”
Key size n 2n

Output bits per round n n

Exhaustive key search O(2n) O(2n)
Construction 2PRG  PRG wPRF  PRG
Tolerated leakage λ = αn (with α ∈ [0, 1]) λ ≃ log2(n) (if wPRF secure

against poly. size adversaries)
λ = αn (if wPRF secure

against exp. size adversaries)

Table 1: Summary of the security features for two leakage resilient PRGs.

5.3 Proving leakage resilience with random oracles

In this section, we provide a proof of security for the PRG depicted in Figure 6a.
For this purpose, we first detail the three assumptions that we require for our
proof to hold and discuss their pros and cons compared to the approach in [34].

a. Random oracles. In order to ensure the locality of the leakages, we model
2PRG : ki → (ki+1, xi+1) as a random oracle mapping values from {0, 1}n to val-
ues in {0, 1}2n. Then, during the i-th invocation of 2PRG , the attacker receives
two leakages associated to this evaluation, Li

i(ki−1) and Lo
i (ki, xi), together with

the output xi of the execution of 2PRG. Most importantly, we assume that the
leakage functions cannot query 2PRG, which makes it impossible to use them to
obtain information about previous or future invocations of 2PRG.

The fact that we model 2PRG as a random oracle that the leakage function
cannot query corresponds to the experimental observation that any useful infor-
mation obtained through the side-channels of a circuit implementation is related
to simple functions of the inputs and outputs of that circuit, but will not provide
any sophisticated function that is not present in the circuit state, e.g. a future
output of the PRG. This, in particular, appears to be realistic for circuits im-
plementing block ciphers where the measured information can be interpreted as
a simple function of the block cipher input and key during the first few rounds
of the block cipher computation, and/or as a simple function of the block cipher
output and key during the last few rounds of the block cipher computation, but
where any useful function of the block cipher input and output remains elusive
(or would be the sign of a completely broken implementation, e.g. as in [36, 37]).

b. Bounded leakage per iteration. Formally, we require that the leakages
given to the adversary preserve the secrecy of the PRG seed in the following
sense: the probability that an adversary recovers the seed used as input or pro-
vided as output during two iterations of the PRG construction should be small.
Considering two iterations is minimal here since half of the output of an iteration
is the input of the next iteration, and there are therefore two leakages taken on
each secret variable. This is formalized through the following definition.
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Definition 7. Let (Lo, Li) be a pair of functions, A
2PRG an algorithm represent-

ing the side-channel adversary with oracle access to 2PRG, n a fixed integer, and
PrGuess(n) the following probability: Pr[A2PRG(Lo(k1, x1), x1, L

i(k1)) = k1 : k0 ←
{0, 1}n; (k1, x1) := 2PRG(k0)]. The pair (Lo, Li) is said to be ǫ-seed-preserving for
security parameter n and A

2PRG if PrGuess(n) ≤ ǫ. A pair of functions (Lo, Li) is
said to be seed-preserving if, for every PPT A

2PRG, there is a negligible function
ǫ such that (Lo, Li) is ǫ(n)-seed-preserving for every security parameter n and
A

2PRG running on input 1n. A sequence of pairs of functions (Lo
1, L

i
1), . . . , (L

o
l , L

i
l)

is said to be uniformly seed-preserving if, for every PPT A
2PRG, there is a neg-

ligible function ǫ such that each pair of this sequence is ǫ(n)-seed-preserving for
every security parameter n and A

2PRG running on input 1n.

Assuming that adversaries only receive outputs of seed-preserving functions
is in fact similar to the assumptions made in the cryptography with auxiliary
input setting [10]. We believe it captures physical leakages particularly well in
the sense that we do not put any constraint on the form of the leakage: it can
be a simple computation time, a huge sequence of power consumption mea-
surements, a map of electromagnetic radiations, or anything else. Moreover, it
might very well be the case that the full information about the 2PRG seeds is
included in these leakages. We only require that the leakage functions cannot be
inverted efficiently. Overall, this is a weaker assumption than requiring a high
HILL pseudoentropy as in [12, 34]. But when to be quantified in practice, it also
suffers from the gap described in Section 4. That is, we can hardly evaluate the
performance of every possible adversary and need to rely on specific attacks.

Stronger versions of these notions of seed preservation would provide the
extra-ability to the adversary to check whether a condidate key k1 is the cor-
rect one. This can happen in different contexts in practice: it might be the case
that half of 2PRG(k1) is available as public output of a next round, enabling
the adversary to perform some comparisons; it might also be the case that the
adversary is able to re-initialize the circuit to a value of his choice, and to com-
pare the leakages observed in the targeted execution to the leakage occurring in
an execution triggered after re-initialization. The security of the PRG and PRF
construction, as claimed next in Theorems 1 and 2, could be rephrased in terms
of this strengthened notion of seed preservation. The proofs would remain the
same, except that the reductions would become tighter by a factor corresponding
to the number of random oracle queries made by the adversary.

c. Only the current iteration leaks. We assume that the leakage of each
state Si only depends on its current inputs/outputs and is independent of the
previous states. This is a reasonable restriction in regard to most experimental
side-channel attacks. But in fact, even if history effects were observed in the leak-
ages (e.g. if the leakage in state Si was dependent on ki−2), it would be possible
to relax this assumption by simply generalizing the seed-preserving property to
more than two PRG iterations. We then would require, for instance, that a triple
of leakage functions (L1, L2, L3) with appropriate inputs does not give any PPT
adversary a non negligible advantage in guessing any of the involved secrets.
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Finally, it is worth emphasizing that we do not need the “only computation
leaks” assumption that was first introduced in [31]. This is interesting since in
advanced CMOS technologies (65 nanometer or smaller), the power consump-
tion is not dominated by its dynamic part anymore and the so-called “static
leakages” start to play a significant role. This means that leakages happen in-
dependently of the fact that computations are performed. In our setting, these
non computational leakages can simply be given to the adversary in Definition
7, as long as they provide a negligible advantage in guessing the seeds.

Similarly, we do not need the condition of independent leakages as in [34].
In this respect, and contrary to what is claimed in [35], this independence re-
quirement is not a completely mild assumption and it may be contradicted by
coupling effects in microelectronic devices. As an illustration, [2] suggests dif-
ferent leakage models that can be observed, among which linear and quadratic
ones. If we denote by S(i) the i-th bit of a state S, it yields:

Lquad(S) =
∑

i

αi × S(i)

︸ ︷︷ ︸

+
∑

i,j

βi,j × S(i)× S(j) + · · ·

Llin(S)

Clearly, if the quadratic term (that typically captures coupling effects) is non
negligible and S contains two consecutive states of the alternating structure,
their leakage are not independent (i.e. depend on the combination of both parts).
Note that even if partially unverified, none of these assumption has the potential
to break the constructions in practice. But quantifying them empirically and
reflecting non-computational or dependent leakages in the proofs would increase
their relevance. Summarizing, the combination of an alternating structure and
the assumption of independent leakages can be seen as the counterparts that one
has to pay in order to get rid of the random oracles in the proofs of [34].

d. Security of the forward secure PRG of Figure 6a. We define the security
for the PRG construction of Figure 6a through the experiment PredA2PRG,L(n)

during which the adversary A2PRG tries to predict something about the next
round’s output of PRG given the output and leakages from the past rounds, where
the leakages are taken from a family of leakage functions L := 〈Li

1, L
o
1, L

i
2, L

o
2, . . . 〉.

Experiment PredA2PRG,L(n):
1. During initialization, a key k0 is selected uniformly at random in the

set {0, 1}n, and a counter i is set to 0.
2. On input 1n, adversary A2PRG starts sending request queries. On

each request query, the counter i is incremented, the pair (ki, xi) is
computed as 2PRG(ki−1), and the leakages Li

i(ki−1) and Lo
i (ki, xi)

are returned to A2PRG, together with xi.
3. When A2PRG outputs a test query, a bit b ∈ {0, 1} and a value r ∈
{0, 1}n are chosen uniformly at random, and r is given to A2PRG if b =
0 or xi+1 is given otherwise, computed as (ki+1, xi+1) := 2PRG(ki).

4. A2PRG outputs a bit b′, and PredA2PRG,L(n) is set to 1 iff b = b′.
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We show that, as long as the pairs of leakage functions that are evaluated on
the same keys are uniformly seed-preserving and can be evaluated efficiently, no
efficient adversary can efficiently predict the output of the next round of the
PRG from the outputs and leakages of the past rounds. That is:

Theorem 1. Let A
2PRG be a PPT adversary playing the Pred

A2PRG,L(n) experi-

ment. Then, we have Pr[Pred
A2PRG,L(n) = 1] = 1

2 +negl(n), provided that the fam-

ily of pairs of leakage functions (⊥, Li
1), (Lo

1, L
i
2), . . . is uniformly seed-preserving

and that all leakage functions can be evaluated in probabilistic polynomial time.

In other words, the implementation of the PRG in Figure 6a is physically indis-
tinguishable (as in Definition 2). The proof is given in Appendix B.

5.4 Practical security analysis

The previous section provided an overview of the theoretical security analysis for
two PRGs. Given a “small enough” leakage, these two constructions are expected
to be secure against side-channel attacks. In order to observe these results for
real devices, it then remains to evaluate exactly how much information is leaked
in practice. For this purpose, a first step is to instantiate the 2PRGs and wPRFs
that are necessary to implement the leakage resilient PRGs. For illustration and
because they are usual targets of practical works in the area of side-channel
attacks, we used the block cipher based constructions in Figure 7, following the
suggestion of Pietrzak [34] for his wPRF implementation.

As detailed in Section 4, a reasonable estimation of the leakage in one itera-
tion of a PRG is given by the success rate of the “best available adversary” for
which the most important parameter is the data complexity q. A consequence is
that the practical security of a construction is mainly determined by the num-
ber of different traces that can be exploited to identify each secret key. In other
words, the practical security of a construction can be related to the notion of
q-limited adversary that has been formalized by Vaudenay in his decorrelation
theory [48]. For example, in the context of block ciphers, it yields:

Definition 8. An adversary against a block cipher Ek(x) is q-limited for a key
k if he can only observe the encryption of q different plaintexts under this key.

Following this definition, it is clear that the 2PRG and wPRF of Figure 7 are
similar in terms of practical security. For both constructions, one iteration limits
the side-channel adversaries to two queries. We can then refine the definition:

Definition 9. A block cipher based construction is q-limiting for a side-channel
adversary A if this construction limits the number of different encryptions per-
formed under a single key that A can observe (i.e. the data complexity) to q.

Of course, having a q-limiting construction is not a sufficient condition to be
secure against side-channel attacks. Overall, we need a combination of theoretical
security (i.e. the physical indistinguishability discussed in Sections 3, 5.2, 5.3)
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Fig. 7: Instantiation of a 2PRG and a wPRF with the AES Rijndael.

and practical security. But the q-limit allows hardware designers to know how
much leakage they need to face. If a construction is 2-limiting, their goal will
be to limit the success rate of the best available adversary for q = 2 queries. As
an illustration, Table 2 provides the estimated success rates for different attacks
against implementations of the DES and AES Rijndael.

Algorithm Device Attack Ref. q = 2 q = 10 q = 100

AES PIC 8-bit algebraic [37] ≈ 1 ≈ 1 ≈ 1
controller

AES Atmel 8-bit hexavariate [45] ≈ 2−16
≈ 1 ≈ 1

controller templates
AES Atmel 8-bit correlation [45] ≈ 2−128

≈ 2−37
≈ 1

controller
DES 64-bit ASIC DoM test [46] ≈ 2−56

≈ 2−56
≈ 2−12

Table 2: Approximated success rates for different attacks.

These results illustrate that small differences in data complexity can lead to
largely different success rates. Recall that side-channel attacks can be performed
in various contexts (e.g. allowing the profiling of a device or not) which explains
this large variance. Hence, the table makes a case for evaluating the metrics of
[42] in various experimental settings, e.g. for protected circuits. Initiatives such
as the DPA Contest [11] could typically be used for this purpose.
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Note that the table already suggests that, for small devices (like 8-bit con-
trollers), a reasonable λ-bit leakage can hardly be achieved if no additional (local)
countermeasures are considered. For example and when applicable, the 1-limited
algebraic side-channel attacks in [37] leak the complete AES key.

We also mention that it is important to distinguish the data complexity of a
side-channel attack from the number of measurements performed by the adver-
sary. Indeed, for a given data complexity q, the adversary may wish to repeat the
measurement of his q different traces several (say nr) times. For example, the
left part of Figure 8 illustrates the impact of measuring the same leakage trace
l1 three different times (giving rise to measurements l1, l′1 and l′′1 ). Intuitively,
the combination of these measurements can be used to remove the noise from
the traces, e.g. in order to obtain a more precise information about an inter-
mediate value Y in the target cryptographic computation. This information can
then be translated into information about a subkey S. Here the data complexity
is q = 1 and we have nr = 3. By contrast, standard DPA attacks generally try
to combine the leakage corresponding to different plaintexts. As illustrated in
the right part of Figure 8, each trace then brings a different information about
the target intermediate value Y . And by translating these leakages into subkey
information, one can have the intersection between the set of possible subkeys
arbitrary small. Here, the data complexity is q = 2 and we have nr = 1.

Following this observation, the expectation when using q-limiting construc-
tions is that even if a polynomial time adversary can remove a significant part of
the noise from his side-channel traces (e.g. the ones in Figure 2), there remains
some uncertainty on the key because of the bounded data complexity. At least,
one can hope that it is easier for hardware designers to guarantee this condition
than to bound the success rate for a non limiting construction.

Fig. 8: Repeating a measurement vs. measuring a new trace.

We conclude this section with two remarks.

Remark 1. It is interesting to mention that, depending on the block cipher used
in the 2PRG construction of Figure 7, such an instantiation may introduce a gap
with the assumptions of Section 5.3. Just observe that we consider the leakage on
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the output of a 2PRG Lo(ki, xi) and the one on its input Li(ki−1) as independent.
But if a block cipher with an invertible key scheduling algorithm (e.g. the AES
Rijndael) is used in Figure 7, the output leakage may potentially leak on the key
that was used to produce this output. This observation is not expected to modify
the practical security of the resulting PRG (a similar leakage actually occurs
for the wPRF construction too), but suggests that carefully instantiating block
cipher based constructions may be important to prevent side-channel attacks.
It also recalls that non-invertible key scheduling algorithms (e.g. as in the FOX
block cipher [23]) are desirable in the context of leaking devices. Alternatively,
strictly respecting the assumption of Section 5.3 may require some performance
overheads, e.g. by replacing 2PRG(x) :=

(
BCx(0n),BCx(1||0n−1)

)
by a slightly

more expensive one, e.g. 2PRG(x) :=
(
BCBCx(0)(0

n),BCBCx(0)(1||0
n−1)

)
.

Remark 2. It is also worth noticing that by adding more block ciphers to the
2PRG example of Figure 7, one can easily extend it towards a 3PRG, 4PRG,
. . . This leads to a simple tradeoff between security and performance. Namely,
for a given q-limit, one can use a qPRG in Figure 6a and consequently generate
n·(q−1)

q
pseudorandom bits per block cipher execution.

6 Initialization issues

6.1 Breaking [34] with a standard DPA

The claim in [34] is that the alternating structure in Figure 6b can be used
as a leakage resilient stream cipher. This implies the need of an initialization
process with a public initialization vector. For this purpose, the authors suggest
to pick up the keys k0 and k1 as well as the public x0 at random. But this is
in fact in contradiction with the practical requirements of a stream cipher. It is
generally expected that one can re-initialize or re-synchronize a stream cipher
without picking up new keys at random (e.g. see [15]). This is important, e.g. if
the stream cipher has to be used in a challenge response protocol. Unfortunately,
using x0 as an initialization vector without changing the keys k0 and k1 in the
same time leads to straightforward DPA attacks that break the stream cipher
of [34] in practice. Just observe that, because of the AES based construction
in Figure 7, the adversary targeting the alternating structure for a given x0 is
2-limited. Say now the adversary re-initializes the PRG with multiple random
x0 values, e.g. say he does it t times with the same key (k0, k1). Then, the first
iteration of the PRG is not 2-limited anymore but 2 · t-limited, where t can be
arbitrarily large. As a consequence, the construction is no more leakage resilient.
A standard DPA attack such as in the right part of Figure 8 can be applied.

Summarizing, either the alternating structure from [34] is limited to a fixed
x0 and its proof holds - but then, the resulting stream cipher cannot be efficiently
re-initialized, re-synchronized, used in a challenge response protocol, . . . Or it
allows the adversary to observe multiple x0 values - but then it is insecure. In
other words, there is a component missing in this construction.
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6.2 Secure initialization process

In order to avoid the previous issue, [33] proposed a secure initialization process
of which different variants can be designed. Essentially, the idea is to bound
the increase of the q-limit during initialization at the cost of some performance
overheads. This can be simply achieved by adding multiplexors in the implemen-
tation and using the selection bit(s) to insert the random IV progressively in
the PRG iterations. In its original form, pictured in Figure 9, this process was
made of two phases (we refer to the original publication for the details):

Fig. 9: Secure initialization process from ASIACCS 2008.

1. In a first (initialization) phase, n iterations of the PRG are executed with
inputs zi’s that are obtained as follows: zi = C0 if IV (i) = 0, zi = C1 if
IV (i) = 1, where IV (i) is the ith bit of the initialization vector and C0, C1

are two constants. The n first yi values are not transmitted as output.

2. In a second (generation) phase, the PRG goes on iterating with a fixed input
C0 and now transmits the pseudorandom blocks yi as outputs.

In this basic proposal and if a n-bit IV is considered, the secure initialization
requires n iterations of the PRG before pseudorandom blocks can be produced.
The advantage of this constructions is that it is still 2-limiting. Trading perfor-
mances for security is again possible by adapting the q-limit and using larger
multiplexors (i.e. incorporating more IV bits in each iteration).

Applying this idea to the PRGs of [5] and [34] can then be done in different
ways. The simplest one is to use the IV bits to select which of the 2PRG and
wPRF outputs is used as a key in the next round (i.e. if IV (i) = 0, use the lower
outputs in Figure 7, if IV (i) = 1, use the upper one) - again without generating
any pseudorandom block during initialization. Adding a multiplexor as in Figure
9 and XORing its output with the plaintexts (or keys) in the PRG constructions
of Figure 6 is another solution that also allows various tradeoffs (but may requires
a more careful analysis). The next section details yet another simple solution that
we only apply to the forward secure PRG of [5] for convenience.
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6.3 A more elegant (and standard) construction

In fact, the initialization of [33] can be directly related to the construction for
pseudorandom functions introduced by Goldreich, Goldwasser and Micali in 1986
[18]. This leads to the simple process represented in Figure 10. In its basic form
(in the left part of the figure), this construction can be viewed as a binary tree
of depth n. The value of the root equals k0. Then, depending on the IV bits, the
left or right outputs of the 2PRG are selected. After n iterations of the 2PRG,
we obtain a key k′0 that has been initialized with a public IV and can be used
as a seed in PRG of Figure 6a. Again, it is possible to reduce the depth of the
tree (i.e. to increase performances) by increasing the q-limit (e.g. the right part
of Figure 10 uses 4PRGs with q = 4 and n/2 iterations), leading to the tradeoff:

– Number of block cipher executions for initialization: n/β,

– q-limit: 2β , where β is an integer ∈ [1, n].

The security of such an initialization process will be discussed in Section 7.

Fig. 10: Leakage resilient PRF. Left: n-iteration, Right: n

2
-iteration.
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Remark 3. Combining the PRG in the upper part of Figure 6 with the initial-
ization process of Figure 10 leads to an overall tradeoff between security and
performances. As an illustration, two extreme solutions are given in Appendix,
Figure 11. In the upper part, a completely trusted block cipher is exploited.
Hence, a 2n-limited construction is tolerated, with an initialization process in
one block cipher execution and producing n pseudorandom bits per block cipher
execution. In the lower part, the block cipher has significant leakages. Hence, a
2-limited construction is used, with an initialization process in n block cipher
executions and producing n/2 pseudorandom bits per block cipher execution.

6.4 Remark on the impossibility of a secure initialization process
with an adaptive selection of the leakages

It interesting to highlight that a secure and efficient initialization process (i.e.
where re-synchronization does not imply a new key exchange) is incompatible
with a fully adaptive selection of the leakage function for stateless devices (i.e.
devices that do not save any part of their state between two reinitializations).
Even the previous proposals can be broken in this context. Indeed, if a new
leakage function can be chosen anytime the PRG is initialized with the same
input, then a “future computation attack” exploiting only the first iteration of
the initialization process can be mounted. This can be intuitively related to
Figure 8. In fact, the goal of a secure initialization process is to keep the q-limit
as small as possible. Say for illustration that we have a 1-limiting process. Then,
the expectation is that repeating the measurement of the same trace l1 can only
be used to remove noise, as in the left part of the figure. Good implementations
should be such that this is not sufficient to leak the whole subkey S. But say now
the adversary can adaptively choose his leakage function anytime he measures
the trace corresponding to the same input plaintext x1. Then, DPA attacks can
again be mounted as in the right part of the figure. Quite problematically, such
an attack would imply that any leaking implementation can be broken in linear
number of measurements, making it impossible to build a secure device.

One solution to prevent the previous issue could be to limit the adaptivity
of the leakage function to different inputs. That is, one could require that the
same inputs to the target device should always give rise to the same leakage
function. But from an operational point of view, the adaptivity of the leak-
age function relates to the possibility to change the measurement conditions
during a side-channel attack (e.g. the antenna’s position in an electromagnetic
analysis). Hence, whatever modification of the setup that an adversary can do
when changing the inputs can also be done when these inputs are kept constant.
Therefore, if we assume that the leakage function cannot be chosen adaptively
by the adversary when inputs are kept constant (which is mandatory in order to
avoid trivial attacks as just described), there is no reason to allow it for variable
inputs. We conclude that the leakage function should not be considered as adap-
tively selected by the adversary. In fact, a better solution to reflect the possible
adaptivity of the measurement conditions is to include this adaptivity in the
adversary’s abilities and to quantify it directly in the λ-bit leakage bound.
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7 Generalization to PRFs

In addition to its interesting features for initializing a PRG, the construction of
Figure 10 can also be used as a PRF, if the IV is replaced by an input x. Proving
the security of these constructions can be done using essentially the same tech-
nique as in Section 5.3 and Appendix B. Namely, each IV determines one trail
through the tree of Figure 10. And each of these trails is similar to one iteration
of a PRG. As in Section 3, we need to extend the black-box security definition
of a PRF (against adaptive queries) from [18] to physical indistinguishability in
presence of all leakages except for the challenge (here meaning that the output
to be distinguished from random does not come with a leakage). That is:

Definition 10. Let F : X ×K → X be a pseudorandom function and P = (F, L)
be the physical implementations corresponding to the combination of F with a
leakage function L. Let finally A = (A1,A2) be a pair of PPT algorithms where
A1 takes a set of plaintexts S and some information I as input and outputs a
plaintext, while A2 takes a plaintext, a ciphertext and some information I as
input and outputs a bit. We consider the following experiments:

Expprf−ind−0
P,A Expprf−ind−1

P,A

S = ∅; S = ∅;
I = ∅; I = ∅;

k
R
←− {0, 1}n; k

R
←− {0, 1}n;

for i = 1 : q for i = 1 : q
xi ← A1(S, I); xi ← A1(S, I);
S = S ∪ {xi}; S = S ∪ {xi};
I = I ∪ {xi,Fk(xi) li}; I = I ∪ {xi,Fk(xi) li};

end; end;
xq+1 /∈ S ← A1(S, I); xq+1 /∈ S ← A1(S, I);

- y
R
←− {0, 1}n;

b← A2(xq+1,Fk(xq+1), I); b← A2(xq+1, y, I);

The ind-advantage of A against P is defined as:

Advprf−ind
P,A = |Pr[Expprf−ind−0

P,A = 1]− Pr[Expprf−ind−1
P,A = 1]|

The implementation of a PRF is physically indistinguishable if the ind-advantage
of any polynomial time adversary against this implementation is negligible.

In other words, the leakage is provided for the q first queries but not for the q +
1’th one for which the indistinguishability game is played2. Also, the plaintexts
can be selected adaptively by the adversary, but not the leakage function.

2 In fact, for the PRF construction of Figure 10, we can prove a slightly stronger
result. Namely, we only need that the leakage of the last PRF round (i.e. the last
2PRG invocation) of the last query xq+1 is not provided to the adversary.

26



We show in this section that if the leakage functions corresponding to the
different rounds of the PRF in Figure 10 are seed-preserving, then the implemen-
tation of the PRF is physically indistinguishable (satisfying Definition 10). But
we need a slight modification of the seed-preserving notion for this purpose. Just
observe that Definition 7 has no guarantee for preserving the right-hand output
of 2PRG. For example, a leakage function such that Lo(k1, x1) = x1 satisfies this
definition but trivially leaks all PRF outputs rooted from x1 to adversary A2PRG.
Hence, we introduce symmetric seed-preserving leakage functions in Definition
11, and then state the main result for our PRF construction in Theorem 2.

Definition 11. Let (Lo, Li) be a pair of functions, A
2PRG an algorithms repre-

senting the side-channel adversary with oracle access to 2PRG, n a fixed integer
and PrGuess(n, b) the following probability: Pr[A2PRG(Lo(k0, k1), L

i(kb), kb) = kb :
k ← {0, 1}n; (k0, k1) := 2PRG(k)]. The pair (Lo, Li) is said to be ǫ-symmetric
seed-preserving for parameter n and A

2PRG if PrGuess(n, b) ≤ ǫ for any b ∈ {0, 1}.
A pair of functions (Lo, Li) is said to be symmetric seed-preserving if, for every
PPT A

2PRG, there is a negligible function ǫ(n) such that (Lo, Li) is ǫ(n)-symmetric
seed-preserving for every security parameter n and A

2PRG running on input 1n. A
sequence of pairs of functions (Lo

1, L
i
1), . . . , (L

o
l , L

i
l) is said to be uniformly sym-

metric seed-preserving if, for every PPT A
2PRG, there is a negligible function

ǫ(n) such that each pair of this sequence is ǫ(n)-symmetric seed-preserving for
every security parameter n and A

2PRG running on input 1n.

In order to state our theorem, let us assume X = K = {0, 1}n, and denote the
input and key of the PRF in Figure 10 as x = b1· · ·bn ∈ {0, 1}n and k ∈ {0, 1}n,
respectively. Let us also define the following notations:

G0(k)‖G1(k)
def
= 2PRG(k), with |G0(k)| = |G1(k)|,

kb1···bi

def
= Gbi

(· · ·Gb2(Gb1(k)) · · · ) for 1 ≤ i ≤ n− 1,

kb1···bn

def
= G0(Gbn

(kb1···bn−1
)),

where subscripts b1 · · · bi identify the invocation path from root node k with one
more invocation of G0 appended to the last level, and thus the PRF output Fk(x)
is simply given by kx. We observe that this construction is essentially the GGM
one [18], except that an extra round has been added in the end. This extra round
has been introduced in order to make sure that the leakage occurring during the
evaluation of Fk on one input does not trivially provide information on the output
of Fk evaluated on an input that would only differ from the first one by the last
bit. Note that, if 2PRG is implemented using two AES, as depicted in Figure 7,
then it is possible to evaluate only one of the two output halves, and this extra
round is not needed anymore. As previously, we model the leakage function L

with n + 1 pairs of functions, L := 〈(Li
1, L

o
1), . . . , (L

i
n+1, L

o
n+1)〉, such that for any

jth level PRG invocation (kb1···bj−10,kb1···bj−11) := 2PRG(kb1···bj−1
), the leakage

is given by (Li
j(kb1···bj

), Lo
j(kb1···bj0,kb1···bj1)). It directly yields:

27



Theorem 2. The PRF construction given by Fk(x) = G0(Gbn
(· · ·Gb1(k) · · · ))

is physically indistinguishable provided that the family of pairs of leakage func-
tions {(⊥, Li

1), (Lo
1, L

i
2), . . . , (Lo

n, Li
n+1)(L

o
n+1,⊥)}n∈N, is uniformly symmetric

seed-preserving and can be evaluated in probabilistic polynomial time.

The proof of Theorem 2 is given in Appendix C.

8 Remark on the impossibility of proving the leakage resilience for
the forward secure PRG of Figure 6a in the standard model

Before to conclude this paper, we finally note that restricting the leakage function
only will not be sufficient to prove the leakage resilience for the forward secure
PRG of Figure 6a in the standard model. For example, say the 2PRG used in
this construction can be written as:

G(x1, x2, . . . , xn) = (x1,G
∗(x2, x3, . . . , xn)) = (y1, y2, . . . , y2n),

with G∗ : {0, 1}n−1 → {0, 1}2n−1 a secure PRG. Using this 2PRG in the upper
scheme of Figure 6 gives rise to a secure PRG in the black box setting. But if
the first n bits of G(x1, x2, . . . , xn) are used as intermediate key and the sec-
ond n bits as output, then a simple leakage function that only leaks x1 will
straightforwardly allow breaking the scheme. Importantly, this attack assumes
a non adaptive leakage function of which the computational complexity is very
low (it just leaks one bit per iteration). This counterexample shows that proving
the leakage resilience of a PRG such as [5] in the standard model also requires
stronger black box assumptions than traditionally considered for 2PRGs.

9 Open problems

This report implies two important scopes for further research. A first one is to
better investigate side-channel resilient constructions of PRGs and PRFs (and
their possible extension to PRPs). This requires to work on the minimum black
box and physical assumptions that can be used to analyze the security of crypto-
graphic devices in a formal setting. For example, important assumptions include:

1. The adaptivity of the leakage function. As discussed in Section 6.4, it is
reasonable to remove this ability from the adversary’s power and to reflect
the possible adaptivity of the measurement setup in the λ-bit leakage bound.

2. “Only computations leak”. As discussed in Section 5.3, this (and related) as-
sumptions should ideally be avoided or reflected in the proofs quantitatively,
in order to capture the behavior of advanced circuit technologies where static
leakages and coupling effects are not negligible. Or, alternatively, one could
investigate the exact type of dependencies that should be avoided (and trans-
late them as requirement for hardware designers) to keep sound proofs.
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3. The computational limits of the leakage function. In [31, 34], the leakage
function is assumed to be a polynomial time computable function of its
inputs. As discussed in Section 5.1, this incorporates attacks that exceed
the power of actual adversaries. Hence, an interesting direction would be
to further restrict this function. Promising candidates can be found in the
early literature on side-channel attacks such as [2]. For example, considering
linear functions of a device’s internal configuration (or quadratic functions
in order to capture possible coupling effects in the circuits) appears as a
good starting point. At least, those type of functions should be captured by
theoretical analysis, in view of their close connection to practice.

These physical assumptions then have to be combined with minimum black box
requirements. We note that considering the black box security and the physical
security with different assumptions may be an interesting alternative to demon-
strate the leakage resilience while keeping proofs simple. For example, one can
show the security of a construction in the standard model without leakage and
then use a random oracle (that cannot be queried by the leakage function) to
prove side-channel resilience, as in this report. Since the random oracle is then
mainly used to capture the idea that “side-channel leakages do not leak about the
future”, it seems a reasonable abstraction in this context. Overall, this discussion
shows that there are interesting tradeoffs to consider between the black box and
physical requirements that one imposes to algorithms and implementations.

Second, we need to move from the abstract description of leakage resilient
primitives towards their concrete implementations, in order to quantify the ac-
tual information leakages that they provide, in function of the adversary’s abili-
ties (i.e. data, time and memory complexity). It implies extending Table 2 in this
paper and evaluating the security of more algorithms and devices against various
attacks. This situation is in fact analogical to the classical cryptanalysis of block
ciphers, where it is essential to determine the best known attacks against various
ciphers. In a physical setting, the same question arises for every combination of
algorithm and device - with the additional difficulty of exactly specifying the
adversary’s power, e.g. in terms of profiling and a priori knowledge of the under-
lying hardware. Concentrating the community’s experimental efforts on a few
implementations (e.g. by standardizing measurement boards [38]) would be very
useful in this respect. Initiatives such as [11] could also be adapted for this pur-
pose. We note that the large variability of the success rates in Table 2 suggests
that keeping λ as small as possible in practical devices is certainly as challenging
as properly exploiting small λ’s in secure PRG (or other) constructions.

Eventually, physical security is a young topic and its proper formalization is
still a scope for further research. Hence, it is important to question the validity
of the models used to analyze the security of leaking devices first. Because of the
physical origin of, e.g. side-channel attacks, it implies the need of experimental
evaluations. And the implementation cost also has to be part of this analysis
since overall (and in particular for small embedded devices), what matters to
hardware designers is to obtain the best security at the lowest cost.
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29. B. Köpf, D. Basin, An Information Theoretic Model for Adaptive Side-Channel At-
tacks, in the proceedings of the ACM Conference on Computer and Communications
Security 2007, pp 286-296, Alexandria, Virginia, USA, October 2007.

30. M. Luby, C. Rackoff, How to Construct Pseudorandom Permutations from Pseu-
dorandom Functions, SIAM Journal of Computing, vol 17, num 2, pp 373-386, 1988.

31. S. Micali, L. Reyzin, Physically Observable Cryptography, in the proceedings of
TCC 2004, LNCS, vol 2951, pp 278-296, Cambridge, MA, USA, February 2004.

32. T.S. Messerges, Using Second-Order Power Analysis to Attack DPA Resistant Soft-
ware., in the proceedings of CHES 2000, LNCS, vol 2523, pp 238-251, Worcester,
Massachussets, USA, August 2000.

33. C. Petit, F.-X. Standaert, O. Pereira, T.G. Malkin, M. Yung, A Block Cipher based
PRNG Secure Against Side-Channel Key Recovery, in the proceedings of ASIACCS
2008, pp 56-65, Tokyo, Japan, March 2008.

34. K. Pietrzak, A Leakage-Resilient Mode of Operation, in the proceedings of Euro-
crypt 2009, LNCS, vol 5479, pp 462-482, Cologne, Germany, April 2009.

35. K. Pietrzak, Provable Security for Physical Cryptography, invited talk, in the pro-
ceedings of WEWORC 2009, Graz, Austria, July 2009.

36. M. Renauld, F.-X. Standaert, Algebraic Side-Channel Attacks, Cryptology ePrint
Archive, Report 2009/279, http://eprint.iacr.org/2009/279.

37. M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, Algebraic Side-Channel At-
tacks on the AES: Why Time also Matters in DPA, in the proceedings of CHES
2009, LNCS, vol 5746, pp 97-111, Lausanne, Switzerland, September 2009.

38. RCIS (Research Center for Information Security), SASEBO (Side-Channel Attack
Standard Evaluation Boards), http://www.rcis.aist.go.jp/special/SASEBO/

39. W. Schindler, K. Lemke, C. Paar, A Stochastic Model for Differential Side-Channel
Cryptanalysis, in the proceedings of CHES 2005, LNCS, vol 3659, pp 30-46, Edin-
burgh, Scotland, September 2005.

40. K. Schramm, T.J. Wollinger, C. Paar, A New Class of Collision Attacks and Its
Application to DES, in the proceedings of FSE 2003, LNCS, vol 2887, pp 206-222,
Lund, Sweden, February 2003.

31



41. N. Smart, D. Page, E. Oswald, Randomised Representations, in IET Information
Security, vol 2, num 2, pp 19-27, June 2008.

42. F.-X. Standaert, T.G. Malkin, M. Yung, A Unified Framework for the Analysis of
Side-Channel Key Recovery Attacks, in the proceedings of Eurocrypt 2009, LNCS,
vol 5479, pp 443-461, Cologne, Germany, April 2009, extended version available on
the Cryptology ePrint Archive, Report 2006/139, http://eprint.iacr.org/2006/139.

43. F.-X. Standaert, E. Peeters, C. Archambeau, J.-J. Quisquater, Towards Security
Limits in Side-Channel Attacks, in the proceedings of CHES 2006, LNCS, vol 4249,
pp 30-45, Yokohama, Japan, October 2006, latest version available on the Cryptol-
ogy ePrint Archive, Report 2007/222, http://eprint.iacr.org/2007/222.

44. F.-X. Standaert, C. Archambeau, Using Subspace-Based Template Attacks to Com-
pare and Combine Power and Electromagnetic Information Leakages, in the proceed-
ings of CHES 2008, LNCS, vol 5154, Washington DC, USA, August 2008.

45. F.-X. Standaert, B. Gierlichs, I. Verbauwhede, Partition vs. Comparison Side-
Channel Distingsuishers: An Empirical Evaluation of Statistical Tests for Univariate
Side-Channel Attacks, in the proceedings of ICISC 2008, LNCS, vol 5461, pp 253-
267, Seoul, Korea, December 2008.

46. F.-X. Standaert, P. Bulens, G. de Meulenaer, N. Veyrat-Charvillon, Improv-
ing the Rules of the DPA Contest, Cryptology ePrint Archive, Report 2006/139,
http://eprint.iacr.org/2006/139.

47. K. Tiri, M. Akmal, I. Verbauwhede, A Dynamic and Differential CMOS Logic with
Signal Independent Power Consumption to Withstand Differential Power Analysis
on Smart Cards, ESSCIRC 2003, Estoril, Portugal, September 2003.

48. S. Vaudenay, Decorrelation: a Theory for Block Cipher Security, in Journal of
Cryptology, vol 16, num 4, pp 249-286, 2003.

49. A.C. Yao, Theory and Applications of Trapdoor Functions (Extended Abstract), in
the proceedings of FOCS 1982, pp 80-91, Chicago, Illinois, November 1982.

32



A Security metric

We consider a side-channel key recovery adversary AEK ,L with time complex-
ity τ , memory complexity m and q queries to the target physical computer.
His goal aim is to guess a key class s with non negligible probability. For this
purpose and for each candidate s∗, he compares the actual observation of a leak-
ing device lq with some key dependent model for these leakages M(s∗, .). Let
T(lq,M(s∗, .)) be the statistical test used in the comparison. We assume that
the highest value of the statistic corresponds to the most likely key candidate.
For each observation lq, we store the result of the statistical test T in a vec-
tor gq = T(lq,M(s∗, .)) containing the key candidates sorted according to their
likelihood: gq := [g1, g2, . . . , g|K|] (e.g. |S|=256 for key bytes). Then, for any
side-channel attack exploiting a leakage vector lq and giving rise to a result gq,
we define the success function of order o against a key byte s as: So

k(gq)=1 if

k ∈ [g1, . . . , go], else So
k(gq)=0. It leads to the oth-order success rate:

Succsc-kr-o,S
AEK ,L

(τ,m, q) = E
k

E
lq

So
k(gq) (2)

Intuitively, a success rate of order 1 (resp. 2) relates to the probability that the
correct key byte is sorted first (resp. among the two first ones) by the adversary.

B Proof of Theorem 1

Proof (Theorem 1). Let A2PRG(1n) be an adversary who wins the PredA2PRG,L(n)

game with probability 1
2 + η(n), and let p be a polynomial such that p(n) is an

upper bound on the number of request queries made by A2PRG(1n). Let Queryl

(resp. Querya) be the event that A2PRG(1n) makes a query to 2PRG on the last
key ki (resp. any key) computed by the challenger before the test query is made.

We distinguish between the cases where the Queryl event happens or not:
Pr[PredA2PRG,L(n) = 1] ≤ Pr[PredA2PRG,L(n) = 1 ∧ ¬Queryl] + Pr[Queryl].

The probability Pr[PredA2PRG,L(n) = 1 ∧ ¬Queryl] is bounded by 1
2 + p(n)2

2n ,
which is the sum of the probability of a pure guess and an upper bound on the
probability that a collision happens between PRG’s last output and an output
of a previous round.

We now show that Pr[Queryl] is negligible. To this purpose we build an
adversary A′2PRG as follows.:

Adversary A′2PRG:
1. On input 1n, start an instance of A2PRG with input 1n, and record

all interactions between A2PRG and the 2PRG oracle.
2. Pick j ← [0, p(n)] and r0 ← {0, 1}n uniformly at random, and set a

counter i to 0.
3. Ask a challenger to pick k0 ∈ {0, 1}n uniformly at random, to com-

pute (k1, x1) := 2PRG(k0) and to provide (Lo
j(k1, x1), x1, Li

j+1(x1)).
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4. On each request query from A2PRG, proceed as follows: increment
the counter i, select (ri, xi) ← ({0, 1}n)2 uniformly at random, and
submit Li

i(ri−1), yi and Lo
i (ri, yi) to A2PRG, unless i = j in which case

Lo
j(k1, x1), x1 and Li

j+1(x1) are submitted instead.

5. On the test query from A2PRG, pick yi+1 ← {0, 1}n uniformly at
random and submit that value to A2PRG.

6. Let {z1, . . . , zq} be the set of requests made by A2PRG to 2PRG until
it halts. Output an element z selected uniformly at random into that
set.

The strategy of adversary A′2PRG is based on the assumption that, in a normal
run of the PredA2PRG,L(n) experiment, A2PRG would make a query on (at least)

one of the keys involved in the experiment. So, A′2PRG makes a uniform guess
on the index of the first key on which such a query is made; guessing the first
queried key ensuring that that key will only be correlated to one thing: the
corresponding leakages (and not any previous call on 2PRG). This guess will
be correct with probability 1

p(n)+1 . Then, A′2PRG provides leakages to A2PRG

computed from random values of its own choice, except for the j index, for which
the leakages and PRG output are replaced by those obtained from a challenger for
the seed-preserving property. A′2PRG also provides a random value yl+1 as final
input to A2PRG. If the guess on the index j is correct, all the inputs sent to A2PRG

are distributed exactly as in the PredA2PRG,L(n) experimen, as long as A2PRG does
not make a query on the value k1 computed by the challenger. Therefore, when
A2PRG halts, A′2PRG can select one of the inputs of the q queries made by A2PRG

and, if A2PRG made a query on k1, that guess will be correct with probability 1
q
.

So, eventually, we have that Pr[z = k1|Querya] = 1
q(p(n)+1) .

Now, we observe that Pr[z = k1|Querya] ≤ Pr[z=k1]
Pr[Querya] , and that Pr[Queryl] ≤

Pr[Querya], which implies that Pr[Queryl] ≤ q(p(n) + 1) Pr[z = k1].
Eventually, we observe that A′2PRG runs in PPT: A2PRG runs in PPT, and

the leakage functions can be evaluated in PPT too. Therefore, since the leakage
function family L is uniformly seed-preserving, there is a negligible function ǫ
such that Pr[x = k1] ≤ ǫ(n). As a result, Pr[Queryl] ≤ q(p(n) + 1)ǫ(n), which is
negligible.

So, we have that Pr[PredA2PRG,L(n) = 1] ≤ 1
2 + p(n)2

2n + q(p(n) + 1)ǫ(n), as
desired.

C Proof of Theorem 2

Proof (Theorem 2). In the context of this construction, Expprf−ind−0
P,A (as in

Definition 10) is the output of A2PRG with the first q adaptive queries to (F, L) and

the (q+1)th query to F alone, which we visually write as A2PRG,〈(F,L)[1,q],(F,⊥)[q+1]〉

and analogously denote Expprf−ind−1
P,A as A2PRG,〈(F,L)[1,q],(R,⊥)[q+1]〉, where random

function R is constructed using the same tree structure except that all tree nodes
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are fresh randomness (rather than being generating by invoking 2PRG on their
parent node as in the F), the output of R on input x is the leaf node reached by
taking path x from the root. Then, by triangle inequality we have

|Pr[Expprf−ind−0
P,A = 1]− Pr[Expprf−ind−1

P,A = 1]|

≤ |Pr[A2PRG,〈(F,L)[1,q],(F,⊥)[q+1]〉 = 1]− Pr[A2PRG,〈(R,L)[1,q],(R,⊥)[q+1]〉 = 1]|

+ |Pr[A2PRG,〈(R,L)[1,q],(R,⊥)[q+1]〉 = 1]− Pr[A2PRG,〈(F,L)[1,q],(R,⊥)[q+1]〉 = 1]|

≤ |Pr[A2PRG,(F,L)[1,q+1] = 1]− Pr[A2PRG,(R,L)[1,q+1] = 1]|

+|Pr[A2PRG,(R,L)[1,q] = 1]− Pr[A2PRG,(F,L)[1,q] = 1]|

Therefore, we reduce the problem to showing the oracle indistinguishability be-
tween (F, L) and (R, L).

The main idea of the rest proof is that the ability to distinguish (F, L) and
(R, L) using p queries to 2PRG and q queries to the above oracle pair (by a hybrid
argument and efficient simulation of the GGM tree [18]) implies an efficient algo-
rithm (with only slightly more complexity than the distinguisher) to invert one
of 2q independent instances of symmetric seed-preserving functions with prob-
ability of ǫ(n)/(2pn), or equivalently, solve one such instance with probability
at least ǫ(n)/(4pqn), and thus a contradiction to the symmetric seed-preserving
property in Definition 11.

Following Section 7, we use kb1···bj
to denote the string on the jth level tree

node by taking invocation path b1· · ·bj from the 0th level (root) node k. We
consider hybrids (H0, L0), · · · (Hn+1, Ln+1), where each (Hj, Lj) is constructed
using the tree structure with all nodes of up to level j are randomly chosen,
and the rest nodes (of higher levels) obtained by invoking 2PRG on their parent
node, and let Hj(x) be the leaf node reached by taking path x from the root, and
define Lj by invoking L on the corresponding nodes. It is not hard to see that
(F, LF) is identical to (H0, L0), and that (R, LR) is identical to (Hn+1, Ln+1).

Suppose to the contrary that there exists A2PRG that distinguishes (F, LF)
and (R, LR) with advantage ǫ(n) by making p queries to 2PRG and q queries
to (F, LF)/(R, LR), then A2PRG can distinguish at least one neighboring hybrids
(Hj, Lj) and (Hj+1, Lj+1) with advantage at least ǫ(n)/(n + 1) by the same num-
ber of queries. We stress that (Hj, Lj) and (Hj+1, Lj+1) are identically distributed

to anyone without access to 2PRG, or otherwise said, A2PRG must obtain the
ǫ(n)/(n + 1) advantage by recovering of one of the jth level on-path (with re-
spect to the q queries) nodes of (Hj, Lj) and then run 2PRG on it iteratively to
verify whether the final output corresponds to the output of Hj. Note that the

ability to recover nodes on any other level does not gives A2PRG any advantage
in distinguishing (Hj, Lj) and (Hj+1, Lj+1), which can be seen by a comparison
between the two. We show in the following an inverting algorithm that uses the
above distinguisher to solve one of 2q independent instances of pair of functions
(Lo

j−1, L
i
j) with probability at least ǫ(n)/(2p(n + 1)).

The inverting algorithm Inv2PRG that runs A2PRG as subroutine, simulates
(Hj, Lj), and inverts 2q independent instances of (Lo

j−1, L
i
j) works as follows.
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We recall (see Definition 11) that each problem instance is in the format of
(Lo

j−1(k0, k1), L
i
j(kb),kb̄), and the challenge is to recover kb.

Adversary Inv2PRG:
1. Inv2PRG takes as input 1n, q independent instances of (Lo

j−1, L
i
j) with

b = 0, and another q independent instances with b = 1. On startup,
Inv2PRG starts an instance of A2PRG with input 1n.

2. For each query b1· · ·bn from A2PRG to (Hj, Lj), Inv2PRG simulates (Hj, Lj)
as follows: for the first query (otherwise skip the common prefix that
matches any of the previous ones), sample and record random strings
k′, (k′b1 ,k

′
b1

), (k′b1b2
,k′

b1b2
), . . . , (k′b1···bj−2bj−1

,k′
b1···bj−2bj−1

) of level up

to j−1, and compute corresponding leakages using the leakage func-
tions from L. At the jth level, if b1· · ·bj−1 does not match the prefix

of previous queries, toss a random bit at
R
←− {0, 1} (1 ≤ t ≤ q)

and install a new instance of (Lo
j−1, L

i
j) with b = bj⊕at on it, i.e.,

(Lo
j−1(k0, k1), L

i
j(kb),kb̄) as the output-layer leakage of level j, input-

layer leakage on input k′b1···bj−1b, and k′
b1···bj−1b̄

respectively. In case

that at = 1 (i.e. bj = b̄), the strings and leakages on level j and above
can be simulated by invoking 2PRG (on kb̄ and onwards) and com-
puting the leakage functions, and in the other case that at = 0, the
simulation is identical except that k′b1···bj0

and k′b1···bj1
are sampled

randomly instead of being obtained by invoking 2PRG on kb̄.
3. Inv2PRG records all A2PRG’s queries to 2PRG. When A2PRG halts, Inv2PRG

randomly selects one of the recorded p queries and produces it as
output, and then halts.

As discussed, A2PRG can invert one (say the tth) of the 2q instances with
chance at least ǫ(n)/(n+1) on condition that it is selected from the p candidates
(with probability 1/p) and that at = 0 (with probability 1/2), and thus the
overall probability is ǫ(n)/(2p(n + 1)), as desired.
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Fig. 11: Securely re-initialized PRGs. Up: 2n-limited construction (i.e. best efficiency,
worst security); Down: 2-limited contstruction (best security, worst efficiency).
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