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Abstract. Client-side deduplication is a very effective mechanism to
reduce both storage and communication cost in cloud storage service.
Halevi et al. (CCS ’11) discovered security vulnerability in existing im-
plementation of client-side deduplication and proposed a cryptographic
primitive called “proofs of ownership” (PoW) as a countermeasure. In
a proof of ownership scheme, any owner of the same file can prove
to the cloud storage server that he/she owns that file in an efficient
and secure manner, even if a bounded amount of any efficiently ex-
tractable information of that file has been leaked. We revisit Halevi et
al.’s formulation of PoW and significantly improve the understanding
and construction of PoW. Our contribution is twofold: Firstly, we pro-
pose a generic and conceptually simple approach to construct Privacy-
Preserving Proofs of Ownership scheme, by leveraging on well-known
primitives (i.e. Randomness Extractor and Proofs of Retrievability) and
technique (i.e. sample-then-extract). Our approach can be roughly de-
scribed as Privacy-Preserving PoW = Randomness Extractor + Proofs
of Retrievability. Secondly, in order to provide a better instantiation of
Privacy-Preserving-PoW, we propose a novel design of randomness ex-
tractor with large output size, which improves the state of art by reducing
both the random seed length and entropy loss (i.e. the difference between
the entropy of input and output) simultaneously.

Keywords: Cloud Storage, Client-side Deduplication, Proofs of Own-
ership, Leakage Resilience, Privacy-Preserving, Proofs of Retrievability,
Randomness Extractor, Sample-then-Extract.

1 Introduction

Cloud storage service (e.g. Dropbox, Skydrive, Google Drive, iCloud, Amazon
S3) is becoming more and more popular in recent years [2]. The volume of
personal or business data stored in cloud storage keeps increasing [3,4,5]. In
face to the challenge of rapidly growing volume of data in cloud, deduplication
technique is highly demanded to save disk space by removing duplicated copies
of the same file (Single Instance Storage). SNIA white paper [6] reported that the
deduplication technique can save up to 90% storage, dependent on applications.
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Traditional deduplication technique (i.e. server side deduplication [7,8,9,10])
in centralized storage system removes duplicated copies residing in the same
server. Unlike server-side deduplication, client-side deduplication in cloud storage
system will identify duplicated copies such that one copy resides in the cloud
storage server and the other resides remotely in the cloud client, and saves the
uploading bandwidth (time, respectively) for the duplicated file. In both server
and client side deduplication, all owners of the deduplicated file will be provided a
soft link to the unique copy of that file stored in the centralized storage or cloud
storage respectively. In contrast to server-side deduplication which saves only
storage on server side, client-side deduplication saves not only server storage but
also network bandwidth and transmission time, and benefits both cloud server
and client.

However, how to implement client-side deduplication securely in an untrusted
environment, is far more challenging than it first appears [11,12]. Arguably,
the root cause of the difference between security requirements of server-side
and client-side deduplication, is that server-side deduplication is executed in the
trusted server, while client-side deduplication is distributively executed between
the trusted1 cloud server and potentially untrusted cloud client. Here the cloud
user is considered as potentially untrusted, since anyone from the untrusted
Internet could become a cloud user and the cloud server is unable to distinguish
honest users from malicious users (i.e adversaries) in general.

Server side deduplication may simply apply a collision resistant hash function
(say SHA256) to identity duplicated files in the storage server, and remove the
extra copies to achieve “single instance storage”. An existing implementation
of client-side deduplication (called as “hash-as-a-proof” method) is as below:
Cloud storage server keeps a lookup table, which records hash value of each file
in its storage. Cloud user Alice, who tries to upload file F to the cloud storage,
will firstly send hash value hash(F ) to the cloud server. If hash(F ) is not found
in the lookup table, then Alice should upload file F to the cloud storage and
cloud server will update the lookup table by adding entry hash(F ). Otherwise,
cloud server has a copy of F already, which could be uploaded by other users.
Consequently Alice’s uploading process will be saved, and Alice is allowed to
download F from cloud server on demand. In the above method, the knowledge
of hash value hash(F ) is treated as a “proof” that Alice owns file F . Previously,
Dropbox2 applied the above “hash-as-a-proof” method on block-level cross-users
deduplication [12][13].

Halevi et al. [12] targets the critical security vulnerability in the above “hash-
as-a-proof” method, where the leakage of a short hash value hash(F ) would lead
(or amplify) to leakage of entire file F to outside adversary. Their work pro-
poses a cryptographic primitive called “proofs of ownership” (PoW) to address

1 The cloud server is trusted in data integrity and availability in this work.
2 In Feb 2012, we noticed that Dropbox disabled the deduplication across different
users, probably due to recent vulnerabilities discovered in their original cross-user
client-side deduplication method. This also indicates the importance and urgency in
the study of security in client-side deduplication.
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such leakage amplification vulnerability. The distinguishable feature of Halevi et
al. [12] from all of previous study in security of deduplication (e.g. convergent
encryption [7,8,14]), is that Halevi et al. [12] adopts a bounded leakage model
to characterize the untrusted environment in which the client-side deduplication
runs. Their formulation requires that, after a setup between one owner of file
F and the cloud storage server, any owner of F can efficiently prove (in the
sense of “interactive proof system” [15]) to the cloud storage server that he/she
indeed owns file F without really transmitting F , even if a bounded amount
of any efficiently extractable information of F has been leaked via some owner
(considered as the accomplice or colluder) of F intentionally or unintentionally.

In this work, we revisit Halevi et al. [12]’s formulation, and extend it in two
aspects: (1) We shift a significant amount of workload (precisely, the setup proce-
dure) from cloud server to a cloud user, which reflects our understanding of real
world setting—the average computation power allocated to each online user by
cloud server is typically smaller than the computation power of an average cloud
user. (2) We protect data privacy against verifier (e.g. the cloud storage server),
during the interactive proof protocol. Halevi et al. [12]’s formulation does not
address privacy protection of user data against the cloud storage server. Pru-
dent users may have reasons to not trust the cloud server. For example, the cloud
server may be hacked (e.g.[16]), making it a single point of failure of user data pri-
vacy. In addition, the cloud server may make careless technical mistakes [17,18],
which may expose user data to unauthorized persons. In this work, we will trust
cloud storage server in data availability and integrity (which is the research topic
of proofs of storage [19,20]), but not trust it in data privacy.

1.1 Overview of Our Result

Under the framework of Halevi et al. [12], in a secure PoW scheme, if the input
file F has k bits min-entropy to the view of adversary at the very beginning and
at most T (< k−λ) bits of message about F is leaked at adversary’s (adaptive)
choice, then the adversary should not be able to convince the cloud storage server
that he/she owns file F with significant probability.

1.1.1 Generic Construction of Privacy-Preserving-PoW. Intuitively,
our generic construction of Privacy-Preserving-PoW is as below: At first, ap-
ply a proper3 randomness extractor over file F to output T + 2λ (< k) bits
almost-uniform random number YF . Next, apply a proper proofs of retrievabil-
ity (POR [19]) scheme over YF . Since the output YF of the randomness extractor
is statistically close to true uniform randomness, any adversary that learns at
most T bits arbitrary information of F , cannot output the T + 2λ bits long
value YF entirely with significant probability, and thus cannot succeed in the
verification of POR scheme. The difference (k − T ) is like the entropy loss in
randomness extractor, thus the smaller the difference (k− T ) is , the better the
PoW scheme is in aspect of leakage resilience.

3 See Theorem 1 and Theorem 2 for the explanation of “proper” randomness extractor
and “proper” POR.
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Our result can be combined with convergent encryption or Message-Locked
Encryption [7,8,21,10,22], in order to construct strong leakage-resilient client-
side deduplication scheme for encrypted data in cloud storage and thus protect
data privacy against both outside adversary and curious cloud server.

We remark that formulating and constructing privacy-preserving PoW scheme
are very challenging.PreviousworkbyNg et al. [23]made the first attempt towards
this goal, but gavean unsatisfactory solution:As pointed out byXu et al. [21], Ng et
al. [23] formulates the privacy property locally for each block and their scheme
suffers from “divide and conquer” attack: If an input file with N blocks has 1 bit
min-entropy in each block independently, then this file could be recovered by an
outside adversary via brute force search in time O(N) instead of O(2N ).

1.1.2 Improved Randomness Extractor. Unfortunately, the state of art
[24,25] (with restriction of small seed size and practical computation cost) of ran-
domness extractor only gives us a PoWwith k−T = Ω(|F |) and requires relatively
large random seed. We propose a new randomness extractor with shorter random
seed and results in a PoW with k − T = O(|F |1−c) for any constant c ∈ (0, 1).

Table 1. Compare our PoW scheme with existing works. Unsatisfactory items are
highlighted in italic font and red color.

Scheme Distribution
of input

Seed
Size

Computation
complexity

Privacy-
Preserving

Security Model

PoW1 [12] Any O(λ) Expensive [12] No (Leaking
whole file F )

Stand. Model

PoW2 [12] Any ≥ 6T
†

Prohibitively
expensive [12]

No Stand. Model

PoW3 [12] Generalized
block-fixing
distribution

O(λ) Practical Unclear Rand. Oracle; Un-
justified Assump.‡

This work Any O(λ) Practical Yes Stand. Model

†T may take value 64MB.
‡ Theorem 3 in [12] relies on an unproven assumption that the code generated by the
third construction PoW3 is “good” and authors of [12] admits that it is very hard to
analyze this unproven assumption. See text surrounding Theorem 3 in [12].

Table 2. Compare randomness extractors with output size �ρ, where � could take value
as large as 221 ≈ 2 millions. The input is file F . Unsatisfactory items are highlighted
in italic font and red color.

Scheme Distribution of input Randomness complexity Computation complexity Entropy Loss Security Model
HMAC(s1,F )‖...
‖HMAC(s�,F ) Any �λ �|F | small Random Oracle

Inner Product

Universal Hash

[26]

Any 2|F | Ω(|F | log(�ρ)) 2 log(1/ε) Stand. Model

[24] Any O(�λ) 2|F | log � Ω(|F |) Stand. Model

This work Any O(λ) 2|F | log � O(|F |1−c) † Stand. Model

†c ∈ (0, 1)
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1.2 Contributions

Our main contributions can be summarized as below:

1. We propose a generic and conceptually simple paradigm to construct proof
of ownership scheme: PoW=Randomness Extractor + Proofs of retrievabil-
ity. To the best of our knowledge, this is the first work that bridges the
proof of ownership and randomness extractor. Our result improves previous
works on PoW in the following aspects: (1) Complete proof of security in
standard model for any distribution of input file, while still being practi-
cal. (2) The first generic framework to construct PoW and benefited from
the future advance in randomness extractor or proofs of retrievability. (3)
Privacy-Preserving against verifier (e.g. cloud storage server). A detailed
comparison between our work and existing PoW schemes is given in Table 1
(on page 100).

2. We propose a novel construction of randomness extractor with large output
size, which improves existing work [24] by reducing both the seed length and
entropy loss (i.e. the difference between entropy of input and output) simul-
taneously. This new randomness extractor may have independent interest. A
detailed comparison between our work and existing randomness extractors
is given in Table 2 (on page 100).

1.3 Organizations

We introduce preliminaries and background in Section 2 and formulation in
Section 3. We present our overall solution in a modular approach in Section 4
and Section 5: At first in Section 4, we propose the construction of Privacy-
Preserving-PoW and analyze its security, by treating an important component
(i.e randomness extractor) as black-box. Next, Section 5 constructs the required
randomness extractor with rigorous analysis and completes the description of
the proposed solution. Section 6 concludes this paper. Due to space constraint,
experiment result and most detailed proofs will be available only in full paper [1].

2 Preliminaries and Background

2.1 Notations and Definitions

Key notations in this paper are defined in Table 3 (on page 102).

Definition 1 (Statistical Difference). The statistical difference between two
random variables X and Y on the same space U is defined as

SD(X,Y) =
1

2

∑

a∈U

∣∣∣Pr[X = a]− Pr[Y = a]
∣∣∣ (1)

Some useful background information about statistical difference is provided in
full paper [1].

2.2 Proofs of Retrievability

We adopt the formulation of proofs of retrievability from existing works [27,28]
and make some syntactical modifications according to our needs to construct
proofs of ownership scheme.
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Table 3. Key Notations

Notation Semantics

λ The security parameter.

PPT Probabilistic polynomial time (w.r.t. security parameter λ, if not explicitly stated otherwise).

[n] The set of integers 1, 2, 3, 4, . . . , n.

h(·) Full domain collision resistant hash function (e.g. SHA256).

F [i] The projection of bit-string F onto i-th coordinate (i.e. the i-th bit of F , 1 ≤ i ≤ |F |).
F [{i1, . . . , in}] The projection of bit-string F onto the subset of coordinates (i.e F [i1]‖F [i2]‖ . . . ‖F [in],

where 1 ≤ i1 < i2 < . . . < in ≤ |F |).
H∞(X) min-entropy of random variable X.

SD(X,Y ) Statistical difference between random variables X and Y .

X ≈ε Y SD(X,Y ) ≤ ε; X is ε-close to Y .

B|A=a The conditional distribution of B given that A = a for jointly distributed random variables (A,B).

x ∼ D Sample x according to distribution D.

U|n| Independent uniform random variable over {0, 1}n.
U|n|,1,

U|n|,2,... Independently and identically distributed uniform random variables over {0, 1}n.

Definition 2 (Proofs of Retrievability). A proofs of retrievability (POR)
scheme consists of PPT algorithms KeyGen,Tag,GenChal,GenProof and Verify,
which are described as below
• KeyGen(1λ) → (pk, sk). The key generation algorithm takes a security pa-

rameter λ as input and outputs a pair of public-private key (pk, sk).
• Tag(sk, {Fi}ni=1) → {σi}ni=1. The tag generation algorithm computes an au-

thentication tag σi for each file block Fi.
• GenChal(pk, n, c) → (C, ΨF , Ψσ). The challenger generation algorithm takes

as input the public key pk, erasure encoded file size n (in term of blocks), and
the sample size c, and outputs a sample C ⊂ [n] with |C| = c and meta-data
(ΨF , Ψσ).

• GenProof(pk, {(Fi, σi)}ni=1, C, ΨF , Ψσ) → (F̄ , σ̄), where F̄ := GenProofdata(pk,
{Fi}ni=1, C, ΨF ) and σ̄ := GenProoftag(pk, {σi}ni=1, C, Ψσ). The algorithm
GenProofdata takes as input the public key pk, file blocks Fi’s, a sample set
C ⊂ [n], and meta-data ΨF , and outputs an aggregated file block denoted
as F̄ . The algorithm GenProoftag takes as input the public key pk, authen-
tication tags σi’s, a sample set C ⊂ [n], and meta-data Ψσ, and outputs an
aggregated authentication tag denoted as σ̄.

• Verify(K, F̄ , σ̄, ΨF , Ψσ, C) → Accept or Reject. If K is private key sk, then
the POR scheme supports private key verifiability; if K is public key pk, then
the POR scheme supports public key verifiability.

We remark that the above formulation is syntactically different from origi-
nal [27,28] in the sense that we explicitly decompose the algorithm GenProof
into two sub-routines: GenProofdata and GenProoftag, where GenProofdata pro-
cesses selected data blocks Fi (i ∈ C) and GenProoftag processes corresponding
authentication tags σi’s. Many existing works (e.g. [27,28] and Merkle Hash Tree
based POR) support such decomposition, but a few works (e.g. [19]) do not.

For some POR schemes [27,28], meta-data ΨF and Ψσ are two seeds from which
a list of coefficients {αi}i∈C , {βi}i∈C can be generated, and the aggregated values
are F̄ =

∑
i∈C αiFi and σ̄ =

∑
i∈C βiσi.

Definition 3 (Soundness of POR [19,27,28]). Let ε ∈ (0, 1). A POR scheme
is ε-sound, if there exists a PPT extractor algorithm, such that for any prover
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which can convince the verifier to accept with probability ≥ ε, then the extrac-
tor can output the original file with overwhelming high probability (1 - negl) by
executing POR proof protocol with the prover.

Readers may find more details about POR in [19,27,30,28].

2.3 Randomness Extractor

Definition 4 (Strong Extractor). We say Ext : {0, 1}�in×{0, 1}�s → {0, 1}�out
is a strong (k, ε)-extractor, if for any distribution X over {0, 1}�in with at least
k bits min-entropy, the following inequality holds

SD
(
(Ext(X ; s), s), (U�out , s)

)
≤ ε (2)

where the seed s is uniformly randomly chosen from {0, 1}�s and U�out is a uni-
form random variable over {0, 1}�out.
It is well known that the output size 	out of any randomness extractor can not
exceed the min-entropy k of the input (i.e. 	out < k), and the difference (k−	out)
is called the “entropy loss” of the randomness extractor.

3 Formulation: Proofs of Ownership, Revisited

Halevi et al. [12] proposed the formulation of proofs of ownership. In this section,
we revisit and revise their formulation and propose our definition for privacy-
preserving proofs of ownership.

Definition 5 (Proofs of Ownership [12]). Aproof of ownership scheme (PoW)
consists of a probabilistic algorithm S and a pair of probabilistic interactive algo-
rithm 〈P,V〉, which are described as below:

• S(F, 1λ) → ψ: The randomized summary function S takes a file F and the
security parameter λ as input, and outputs a short summary value ψ, where
the bit-length of ψ is short and independent on file size |F |.

• 〈P(F ),V(ψ)〉 → Accept or Reject: The prover algorithm P which takes as
input a file F , interacts with the verifier algorithm V which takes as input a
short summary value ψ, and outputs either Accept or Reject.

We are only interested in efficient PoW scheme, such that V is polynomial time
algorithm w.r.t. security parameter λ and both S and P are polynomial algorithms
in |F | and λ.

Definition 6 (Completeness of PoW [12]). A PoW scheme (S, 〈P,V〉) is
complete, if for all positive integer λ and for any file F ∈ {0, 1}poly(λ), it holds
that

〈P(F ),V(S(F, 1λ))〉 always outputs Accept.

3.1 Two Players Setting and Three Players Setting of PoW

In the original framework [12], PoW runs by two players: verifier and prover.
In this paper, we will redefine this system model by introducing a third player,
called summarizer, who is responsible to preprocess the data file F during the
setup. The PoW scheme in three players setting executes in this way: Summarizer
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(e.g. data owner of F ) runs summary function to obtain ψ := S(F, 1λ) and sends
ψ to verifier (e.g. the cloud storage server). Then prover (e.g. some cloud user
claiming to own file F ), who runs algorithm P(F ), interacts with the verifier,
who runs algorithm V(ψ). A dishonest prover (e.g. dishonest cloud user) may
replace the prover algorithm P with any other PPT program of his/her choice.

Definition 7 (Two/Three Players setting of PoW). For any PoW scheme
(S, 〈P,V〉), the two players setting and three players setting are described as
below:

• in a two players setting, the summary algorithm S and verifier algorithm
V are executed by the first player—verifier (e.g. cloud storage server), and
the prover algorithm P is executed by the second player—prover (e.g. cloud
user);

• in a three players setting, the summary algorithm S is executed by the first
player—summarizer (e.g. cloud user owning file F ), the verifier algorithm
V is executed by the second player—verifier (e.g. cloud storage server), and
the prover algorithm P is executed by the third player—prover (e.g. another
cloud user claiming to own F ).

Our three players setting will further relieve the computation burden of the cloud
storage server, and might make our scheme easier to be adopted by cloud storage
servers in real applications—This is exactly our initial motivation to introduce
the new three players setting of PoW. We believe that, the average computation
resource that a cloud storage server allocates to each online user, is typically less
than the computation resource of an average cloud user. Additionally, the fact
that many cloud storage servers (e.g. Dropbox, Skydrive, and Google Drive)
provide free service to public users, further justifies our attempt to shift some
computation burden from cloud server to cloud user.

The change from two players setting to three players setting also leads to the
change of trust model and thus impact the security formulation. In the original
two players setting of PoW [12], preserving privacy of input file F during the
interactive proof 〈P,V〉 (like in zero-knowledge proof) is meaningless, since the
verifier, who runs V, also runs the summary function S(F, 1λ) and has direct
access to file F . Therefore, the verifier has to be trusted in data confidentiality
of input file F in this two players setting. In contrast, in our three players setting,
preserving privacy of F during the interactive proof 〈P,V〉 (like in zero-knowledge
proof) is an interesting problem, if the verifier (e.g. cloud storage server) is not
trusted in data confidentiality.

3.2 Soundness of PoW

Intuitively, PoW aims to prevent leakage amplification in client-side deduplica-
tion: If an outside adversary somehow obtain a bounded amount (≤ T bits) of
messages about the target user file F via out-of-band leakage, then the adversary
cannot obtain the whole file F by participating in the client-side deduplication
with the cloud storage server.

The security game GPoW
A (k, T ) between a PPT adversary A and a challenger

w.r.t. PoW scheme (S, 〈P,V〉) is defined as below. Here k is the lower bound
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of min-entropy of the distribution of the challenged file F at the beginning of
the game, and the adversary is allowed to learn at most T bits message related
to file F (possibly including random coins chosen when processing F ) from the
challenger via the leakage query.
Setup. The description of (S, 〈P,V〉) is made public. Let D be a distribution over
{0, 1}M with min-entropy ≥ k, where D is chosen by the adversary A and M is
any public positive integer constant. The challenger samples file F according to
distribution D and runs the summary algorithm to obtain ψ := S(F, 1λ).
Learning. The adversary A can adaptively make polynomially many queries to
the challenger, where each query is in one of the following types and concurrent
queries of different types are not allowed4. Furthermore, the total amount of
messages output by all leakage queries should not be greater than the threshold
T , i.e. YI + YII ≤ T , where YI and YII will be defined below.
• Prove-Query: The challenger, running the verifier algorithm V with input
ψ, interacts with the adversary A which replaces the prover algorithm P, to
obtain b := 〈A,V(ψ)〉. The adversary A is given the value of b.

• Leak-Query-I(P): This query consists of a description of a PPT algorithm
P (a variant version of prover algorithm). The challenger responses this
query by computing the output y of P(F ) after interacting with V(ψ) (i.e.
y := P(F )V(ψ)) and sending y to the adversary A. Denote with YI the sum
of bit-lengths of all responses y’s for this type of queries.

• Leak-Query-II(L): This query consists of a description of a PPT algorithm
L. Let transcriptS denote the transcript of all steps of operations in the
execution of algorithm “ψ := S(F, 1λ)” in the above Setup phase. The
challenger responses this query by computing the output y := L(transcriptS)
and sending y to the adversary A. Denote with YII the sum of bit-lengths of
all responses y’s for this type of queries.

Challenge. The adversary A which replaces the prover algorithm P, interacts
with the challenger, which runs the verifier algorithm V with input ψ, to obtain
b := 〈A,V(ψ)〉. The adversary A wins the game, if b = Accept.

Definition 8 (Soundness of PoW (Refining [12])). APoW scheme is (k, T, ε)-
sound in three players setting, if for anyPPTadversaryA,Awins the security game
GPoW
A (k, T ) with probability not greater than ε+ negl(λ).

Pr[A wins the security game GPoW
A (k, T )] ≤ ε + negl(λ). (3)

The (k, T, ε)-soundness definition in two players setting is the same as the above,
except that the adversary A is not allowed to make Leak-Query-II in the se-
curity game GPoW

A (k, T ) (i.e. YII = 0).

4 Concurrent Prove-Query and Leak-Query would allow the adversary to replay
messages back and forth between these two queries, and eliminate the possibility
of any secure and efficient solution to PoW. Therefore, the framework of Halevi et
al. [12] do not allow concurrent queries of different types in the security formulation.
We clarify that, concurrent queries of the same type can be supported. Thus, in the
real application, the cloud storage server (verifier) can safely interact with multiple
cloud users (prover) w.r.t. the same file concurrently.
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We remark that (1) the (k, T, ε)-soundness definition in two players setting is
essentially the same as the original formulation [12], and (2) soundness in three
players setting implies soundness in two players setting, but not vice versa.

3.3 Privacy-Preserving PoW

Intuitively, we say a PoW scheme is privacy-preserving against the verifier, if
everything about file F that the verifier can learn after participating the PoW
scheme w.r.t. F , can be computed from the short summary value of F and some
almost-perfect uniform random number.

Definition 9 (Privacy-Preserving). A PoW scheme (S, 〈P,V〉) is (k, T, ε)-
privacy-preserving against the verifier (in the three players setting), if for any
distribution D over {0, 1}M with at least k bits min-entropy, for every PPT in-
teractive algorithm V∗, there exists a PPT algorithm Sim and a random variable
Z over domain {0, 1}T+λ+Ω(λ), such that

• SD(Z,U|Z|) ≤ ε, where U|Z| is the uniform random variable over {0, 1}|Z|;
• for any function f : {0, 1}M → {0, 1}, and any (leakage) function L :

{0, 1}M → {0, 1}≤T , the following two probabilities (taken over file F ∼ D
and the random coins of related algorithms) are equal

Pr
[
V∗(ψ‖L(F )

)P(F )
= f(F )

]
= Pr

[
Sim

(
ψ‖L(F ), Z

)
= f(F )

]
,

where ψ := S(F, 1λ) and V∗(S(F, 1λ)‖L(F ))P(F ) denotes the output of (dis-
honest) verifier V∗ taking the summary value S(F, 1λ) and leakage information
L(F ) as input and having interaction with interactive prover algorithm P(F ).

As we discussed before, preserving privacy against the verifier for any PoW
scheme in the two players setting, is impossible.

3.4 Clarification on Leakage of User ID and Password

We admit that, as the same as Halevi et al. [12], this work will consider leakage of
user account (i.e. id and password) as out of scope. We assume the user account
is associated to user’s real identity (e.g. mobile phone number) and sibyl account
is hard to create. Thus, leakage of user file stored in cloud storage by disclosure of
user account could be traced back to the source and the corresponding account
could be disabled without affecting honest users.

4 Generic Construction of Proofs of Ownership

4.1 Some Unsatisfactory Approaches

At first, putting privacy-preserving property aside, we review some straightfor-
ward approaches and existing works for PoW as below.

4.1.1 Compute fresh MACs online on Both Sides. To prove his/her
ownership of a file F , the prover can compute a MAC (i.e. Message Authentica-
tion Code) value over F with a random nonce as key, where the random nonce
is chosen by the verifier. To verify the correctness of this MAC value, the verifier
need to re-compute the MAC value of F under the same key. This approach is
secure, but rejected for two reasons: (1) in some applications of PoW, the verifier
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does not have access to the file F ; (2) the stringent requirement on efficiency
(including disk IO efficiency) given by Halevi et al. [12] does not allow verifier
to access entire file F during the interactive proof.

4.1.2 Pre-compute MACs offline. In the summary phase, t number of
keys s1, . . . , st are randomly chosen and t number of MAC valuesMACsi(F )’s are
computed correspondingly. The summary value of file F is {(i, si,MACsi(F )) :
i ∈ [t]}. In the i-th proof session, the verifier sends the MAC key si to the prover
and expects MACsi(F ) as response.

This approach is not secure in the setting of PoW [12], since a single malicious
adversary could consume up all of t pre-computed MACs easily by impersonating
or colluding with t distinct cloud users.

4.1.3 Proofs of Retrievability. Some instance of POR (e.g. [27,32,30]) can
serve as PoW.The first construction (i.e. PoW1 as in Table 1) of Halevi et al. [12] is
just the Merkle Hash Tree based POR scheme (MHT-POR), which combines error
erasure code andMerkle HashTree proofmethod5. The drawback of this approach
is that, the relatively expensive error erasure code6 is applied over the whole input
file, while in our approach, error erasure code is applied over the output of the
randomness extractor, which is much shorter than the whole input file.

We notice that recent work by Zheng and Xu [33] attempts to equip proofs
of storage (POR or PDP) with deduplication capability. However, their work is
not in the leakage setting of Halevi et al. [12].

4.1.4 Pairwise-Independent Hash with Large Output Size. The sec-
ond construction of PoW in Halevi et al. [12] is based on pairwise independent
hash family (a.k.a 2-independent or 2-universal hash family). A large input file
is hashed into a constant size (say about 3T = 3 × 64MB) hash value and then
apply the merkle hash tree proof method over the hash value. This construction
is secure, but very in-efficient in both computation and randomness complexity.
Furthermore, large random seed also implies large communication cost required
to share this seed among all owners of the same file. It is worth pointing out that
Halevi et al. [12] overlooked the disadvantage in large randomness complexity
(i.e. at least twice of hash output size, say about 2× 3T = 6× 64MB ), although
they admitted that this construction is prohibitively expensive in computation
for practical data size.

A quick thought to reduce the seed length is to apply pseudorandomness
generated from a short true random seed. However, in the leakage setting of PoW,
any short seed could be leaked to the adversary by some colluded owner of target
file. Consequently, the standard computational indistinguishability argument of
pseudorandom number generator (or pseudorandom functions) is not applicable.

5 Merkle Hash Tree proof method proves the correctness of a leaf value by presenting
as a proof all sibling values along the path from the questioned leaf to the root of
Merkle Hash Tree, and verification requires only the root value.

6 In typical usage of error erasure code, block length is some small constant (say 223
bytes for (255, 223)-reed-solomon code). However, in the usage of POR, the block
length has to be as large as the input file, which makes the coding much slower than
typical case.
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It is unclear whether this pseudorandomness approach works or not without new
sophisticated proof (or disproof). Similar issue is discussed in the study of proofs
of retrievability by Dodis et al. [30], which adopts sampling technique with public
coin as seed to replace pseudorandomness.

4.1.5 PoW with respect to Particular Distribution. The third con-
struction of PoW in Halevi et al. [12] is the most efficient one among all of three
constructions proposed by Halevi et al. [12]. In the third construction, the size of
random seed is dramatically reduced by treating hash function SHA256 as a ran-
dom oracle. However, their proof (in random oracle model) of this construction
is incomplete: firstly, the distribution of input file is restricted as “generalized
bit/block-fixing distribution”7; secondly, their proof assumes their algorithm will
generate a “good linear code” and the authors admit that it is “very hard to
analyze” this unproven assumption (See texts around Theorem 3 in [12]).

We emphasize that, information leakage of file F may have different forms.
For example, some plain bits F [i]’s are leaked, or some aggregated information of
file F (e.g. a hash value) is leaked. In the latter case, file F is hardly considered
as fitting in (generalized) fixed-bit/block distribution.

Gabizon et al. [35] proposed a randomness extractor for input under bit-fixing
distribution. Such extractor can be combined with our generic construction to
obtain a secure PoW scheme for bit-fixing input file and with complete security
proof in standard model.

Other works on deduplication/PoW include Pietro and Sorniotti [36], which
treats a projection (F [i1], . . . , F [iλ]) of file F onto λ randomly chosen bit-positions
(i1, . . . , iλ) as the “proof” of ownership of file F . Similar to the “hash-as-a-proof”
method, this work is extremely efficient but insecure in the bounded leakage set-
ting [12]. Readers may find more related works in Xu et al. [21].

4.2 Our Approach: PoW = Randomness Extractor + POR

Intuitively, our generic construction extracts (T + 2λ) bits message Y from
the input file F and then apply a proofs of retrievability scheme over Y . It
is worth noting that in our usage of proofs of retrievability scheme, algorithm
POR.GenProofdata runs by prover and algorithm POR.GenProoftag runs by ver-
ifier8, while in the literature [19,27,28], both of these two algorithms run by
prover. It is easy to see that, such modification will preserve the soundness of
POR scheme.

The detailed construction is given in Figure 1 (on page 110). Before present-
ing a formal statement in Theorem 2 for the PoW scheme in Figure 1 which

7 A M bits long file F with k bit entropy under “generalized bit-fixing distribution”
is generated in this way: (1) Independently choosing k uniform random bits; (2)
deriving all other (M − k) bits from these k random bits (Halevi et al. [12] applies
linear transformation); (3) the file F is a random permutation of these k random
bits and (M − k) derived bits. If in the above step (2), all (M − k) bits are constant,
then the resulting distribution is called “bit-fixing distribution” with entropy k.

8 All tag values are stored with the verifier instead of the provers, in order to prevent
any potential leakage of partial information of Y from its tag values to the (dishonest)
provers.
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constructed from a generic randomness extractor algorithm and a generic POR
scheme, we will prove a stronger result in Theorem 1 for the special case that
the POR scheme is instantiated with MHT-POR9 scheme in the construction of
PoW. The reason that MHT-POR can achieve a stronger result is that, the secu-
rity of MHT-POR relies on the cryptographic one-way function without trapdoor
(precisely the collision resistance hash function). In contrast, most other POR
schemes rely on cryptographic trapdoor one-way function (e.g. factorization),
and such short trapdoor (or private key) might be leaked via some colluded file
owner in our stringent security model in three player setting. Once the short
trapdoor is leaked to the adversary, the POR scheme can be easily broken.

Theorem 1. Suppose Extractor : {0, 1}M × {0, 1}�s → {0, 1}T+2λ is a strong
(k, ε)-extractor, and the POR scheme is the Merkle Hash Tree based scheme
MHT-POR (as described in Sec 2.2.1 in the full paper [1]), which is ε-sound.
Then the PoW scheme constructed in Figure 1 is (k, T, ε)-sound and (k, T, ε)-
privacy-preserving in the three players setting. (Proof is in full paper [1])

Most POR schemes [27,28] require a short private key (e.g. the factorization
of a RSA modulus, the secret key of some pseudorandom function) to work and
thus cannot resist Type-II leak query Leak-Query-II, from which the adversary
could learn the short private key and break the POR scheme. Therefore, for
such POR schemes with private key, we have to disable Type-II leak query by
switching to the two players setting as below.

Theorem 2. Suppose Extractor : {0, 1}M × {0, 1}�s → {0, 1}T+2λ is a strong
(k, ε)-extractor and POR is an ε-sound POR scheme. Then the PoW scheme
constructed in Figure 1 is (k, T, ε)-sound in the two players setting.

We compare two instantiations of our generic approaches in Table 4 (on
page 109).

Table 4. Two instantiations of PoW=RE+POR

Choice of POR Setting Summary Value Size (bits) Communication cost (bits)

MHT-POR 2P,3P λ λ · log1−α ε · log (T/α)
Brent-Waters-POR [27] 2P T/(αs) † (s+ 3)λ+ 440

† : s is a system parameter of POR [27] and can take any positive integer value.

5 Randomness Extractor with Large Output Size

In this section, we propose in Figure 2 (on page 111) a novel randomness extrac-
tor with large output size using the well-known “sample-then-extract” approach:
Repeatedly sample a subset of bits from a weak random source and then apply
an existing extractor with small output size over the sample.

Intuitively, the sampling lemma [24,25] states that “if one samples a random
subset of bits from a weak random source, the min-entropy rate (i.e. ratio of min-
entropy to bit-length) of the source is nearly preserved”. Precisely if X ∈ {0, 1}n
9 Detailed description of Merkle Hash Tree based POR (MHT-POR) is given in Sec
2.2.1 of the full paper [1]
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S(F, 1λ) Summary function.
Input: An M -bit file F ∈ {0, 1}M and security parameter λ in unary form.
Extract: Choose random seed s from domain {0, 1}�s and compute Y :=

Extractor(F ; s).
Expand: Apply Erasure-Correcting-Code on Y to obtain Ŷ = (Ŷ1, Ŷ2, . . . , Ŷn)

such that Y can be completely recovered from any αn blocks among
{Ŷ1, Ŷ2, . . . , Ŷn}, where constant α ∈ (0, 1) is some system parameter. Gen-
erate POR-key pair (pk, sk) := POR.KeyGen(1λ), and authentication tags
{σi}ni=1 := POR.Tag(sk, {Ŷi}ni=1). Let πF = (pk, sk, {σi}ni=1).
Note: As mentioned in [12], in the construction of PoW, the decoding algo-
rithm of the above Erasure-Correcting-Code is not required to be practical,
since the decoding algorithm will not be invoked in the legitimate application
of PoW.

Output: The summary value of file F is ψ = (s, α, πF ). Output ψ.

〈P(F ),V(ψ)〉 Interactive proof system between verifier (cloud storage server)
and prover (cloud storage client).

Input: The prover has file F as input and the verifier has a summary value
ψ = (s, α, πF ) as input, where πF = (pk, sk, {σi}ni=1).

V1: Verifier finds c = �log1−α ε� (i.e. c is the smallest integer such that (1 −
α)c ≤ ε) and computes (C,ΨF , Ψσ) := POR.GenChal(pk, n, c). Verifier sends
(C, s, α, pk, ΨF ) to the prover.

P1: Prover runs the extractor algorithm to obtain Y := Extractor(F ; s), and
re-generate the erasure code Ŷ from Y using the same Erasure-Correcting-
Code with the same parameter α. Prover divides Ŷ into n blocks Ŷ1, . . . , Ŷn

and computes F̄ := POR.GenProofdata(pk, {Ŷi}ni=1, C, ΨF ). Prover sends F̄
to verifier.

V2: Verifier computes σ̄ := POR.GenProoftag(pk, {σi}ni=1, C, Ψσ) and b :=
POR.Verify(K, F̄ , σ̄, ΨF , Ψσ) ∈ {Accept, Reject}, where K is pk if the POR
scheme supports public key verification; otherwise K is sk.

Output: Output b ∈ {Accept, Reject}.
Note: The subset C requires |C| log n bits communication cost. We can
reduce this communication cost by using Goldreich [29]’s (δ, γ)-hitter sam-
plera to represent C compactly with only log n + 3 log(1/γ) bits of public
random coins.

a Goldreich [29]’s (δ, γ)-hitter guarantees that, for any subset W ⊂ [1, n] with size
|W | ≥ (1 − δ)n, Pr[C ∩ W �= ∅] ≥ 1 − γ. Readers may refer to [29,30] for more
details.

Fig. 1. PoW = RE + POR: A Generic Construction of PoW using Randomness
Extractor Extractor(· ; ·) and POR scheme (KeyGen,Tag, GenChal, GenProofdata ,
GenProoftag ,Verify). The completeness of the constructed PoW scheme is straightfor-
ward.

has δn min-entropy and X [S] ∈ {0, 1}t is the projection of X onto a random set
S ⊂ [n] of t positions, then with high probability, X [S] is statistically close to a
random variable with δ′t min-entropy. We consider the difference (δt−δ′t) as the
entropy loss in sampling t bits. Nisan and Zuckerman( Lemma 11 in [24] ) gave
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a sampling algorithm where δ′ = cδ/ log(1/δ) for some small positive constant
c. Vadhan (Lemma 6.2 in [25]) improved their result and allows δ′ = (δ − 3τ)
for sufficiently small positive constant τ .

We brief the existing approach [24,38] as below: (1) Independently and ran-
domly choose l number of seeds, in order to get l samples X1, . . . , Xl from the
input weak source F , which has min-entropy rate δ. (2) Show that (X1, . . . , Xl)
is a δ′-block-wise source with δ′ close to δ, i.e. for each i ∈ [l], conditional
on (X1, . . . , Xi), the random variable Xi+1 has min-entropy rate at least δ′.
(3) Apply existing randomness extractor on the structured weak random source
(X1, . . . , Xl) to generate almost-uniform random output (y1, . . . , yl).

Roughly speaking, in the analysis of the above approach in [24,38], to extract
each block yi, the remaining min-entropy of the input F reduces by |Xi| bits—the
bit-length of Xi. Unlike previous works [24,25,38], we do not generate block-wise
source as intermediate product, and manage to show that the remaining min-
entropy of the input F , after extracting each block yi, reduces by |yi| bits—the
bit-length of yi which is much smaller than |Xi|. Readers may find definition
and calculation of remaining (or conditional) min-entropy H̃∞(A|B) of variable
A given variable B in the full paper [1]. In this jargon, we manage to switch the
conditional variable B from Xi (as previous works) to yi in the analysis of our
new design.

Extractor(F ; s, s′) This extractor algorithm will serve as a subroutine to
construct PoW scheme.

Input: An M -bit file F ∈ {0, 1}M ; s ∈ {0, 1}r0 and s′ ∈ {0, 1}r1 are true
random seeds, where r0 + r1 = ρ.

Sample-then-Extract-Loop:
Let s1 := s and s′1 := s′. Let hF := SHA256(F ) with |hF | ≤ ρ.
For each i from 1 to 	:
Sample: Independently and randomly sample t distinct indices

from the set [M ], using random seed si, to obtain Si :=
Samp([M ], t; si) ⊂ [M ].

Extract: Compute yi := Ext(hF ‖ F [Si]; s′i) ∈ {0, 1}ρ. Let si+1 be
the prefix of bit-length r0 of bit-string yi, and s′i+1 be the suffix
of bit-length r1 of bit-string yi.
Note: The hash value hF is added into the input of Ext, in order to

ensure that any change in file F will lead to significant change in the

output of randomness extractor.

Output: Let Y := y1‖y2‖ . . . ‖y� ∈ {0, 1}ρ�. The output is Y .

Fig. 2. A Novel Randomness Extractor with Large Output Size and Short Seed. Ext
is some existing strong randomness extractor and Samp is some existing sampling
algorithm.

Theorem 3. Let t = M c and τ = M−c for constant c ∈ (0, 1). Let Ext :
{0, 1}t+256 × {0, 1}r1 → {0, 1}ρ be a strong (k0, ε0)-extractor. Let Samp be an
(μ, θ, γ)-averaging sampler [25,38]. Then the algorithm Extractor : {0, 1}M ×
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{0, 1}ρ → {0, 1}ρ� constructed in Figure 2 is a (k1, ε1)-extractor, where ρ =
λ+ log(M/t) + log(1/γ) · poly(1/θ), ρ · 	 = k1 − (k0 +3)M1−c, and ε1 = 5	(ε0 +
γ + 2−λ + 2−Ω(τM)).

We make the following remarks: (1) Our algorithm in Figure 2 requires about
1/	 fraction of the amount of random bits required by [24], since [24] requires
that all of sampling seeds s1, s2, . . . , s� should be independent randomness. (2)
The choice of value t = M c ensure that there will be sufficient remaining min-
entropy in the last sample (worst case), and this value of sample size t would be
much larger than required for the first few samples (good cases). One may use
different sample size ti for the i-th sample (t1 < t2 < t3 . . . < t� = M c), in order
to reduce the IO reading. (3) Alternatively, we may choose hitter-sampler [29]
as in [24] instead of averaging sampler, in order to reduce the seed length ρ
(only O(λ+logM) bits) at the cost of larger value of t. (4) In practice, one may
use Tabulation Hashing [39] or CBC-MAC or HMAC as the underlying extractor
algorithm Ext (possibly in the companion with hitter sampler which allows small
ρ), as analyzed by Dodis et al. [40].

To prove Theorem 3, we introduce Lemma 4 and Lemma 5.

Lemma 4 (Amplification). Suppose the algorithm Ext : {0, 1}M × {0, 1}ρ →
{0, 1}ρ defined as

Ext
(
X ; (s, s′)

) def
= Ext

(
SHA256(X) ‖ X [Samp(s)]; s′

)
(4)

is a strong (k2, ε2)-extractor. Then Extractor : {0, 1}M × {0, 1}ρ → {0, 1}ρ� con-
structed in Figure 2 is a (k1, ε1)-extractor, where k1 ≥ k2 + ρ(	 − 1) + λ and
ε1 = 5	(ε2 + 2−λ).

Our proof for Lemma 4 in full paper [1] is an analog of hybrid proof technique
for (computational) indistinguishability [41].

Lemma 5 (Theorem 6.3 [25], sample-then-extract). Let 1 ≥ δ ≥ 3τ > 0.
Suppose that Samp : {0, 1}r0 → [M ]t is an (μ, θ, γ) averaging sampler with
distinct samples for μ = (δ − 2τ)/ log(1/τ) and θ = τ/ log(1/τ) and that Ext :
{0, 1}t+256 × {0, 1}r1 → {0, 1}ρ is a strong (k0 = (δ − 3τ)t, ε0)-extractor. Let
ρ = r0 + r1 and define Ext : {0, 1}M × {0, 1}ρ → {0, 1}ρ by

Ext(X ; (s, s′))def=Ext
(
SHA256(X) ‖ X [Samp(s)]; s′

)
(5)

Then Ext is a strong (k2, ε2)-extractor with k2 = δM and ε2 = ε0+γ+2−Ω(τM).
Note: As mentioned in [25], τ could be arbitrarily small and approaches 0. In this

paper, we set τ = M−c for some constant c ∈ (0, 1).

Computational Complexity. Recall that, in order to reduce computation
cost, we could choose different sample size tj for iteration j, where t1 < t2 <
. . . < t� = t = M c. The computational complexity of our proposed randomness
extractor can be measured by the total number of bits read (or sampled) from
the file (double counting repeated bits), i.e. the sum of tj for j ∈ [	]. We will
give an upper bound on the sum of tj .
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Lemma 6 (Complexity). Suppose M1−c ≥ 2. The total number of bits (i.e.∑�
j=1 tj) of input file F accessed by the randomness extractor in Figure 2 is in

O(M log 	).
Note: (1) If the underlying extractor Ext is Tabulation Hashing, then the constant

behind the big-O notation is very small—around 2. (2) Multiple access to the same

bit will be counted with its frequency. (3) The proof of this lemma is in full

paper [1].

We remark that the extractor algorithm in Figure 2 can be modified into m
concurrent threads/processes, while increasing the seed size by m times.

6 Conclusion and Open Problems

We were the first one to bridge construction of PoW with randomness extractor
and proofs of retrievability. We also proposed a novel randomness extractor with
large output size, which improves existing works in both seed length and en-
tropy loss (i.e. the difference between entropy of input and output). Our proofs
of ownership scheme can be applied in client-side deduplication of encrypted (un-
encrypted, too) data in cloud storage service, and the new randomness extractor
may have independent interest.

Whether “partition-then-extract” approach works for any distribution of in-
put file and how to apply pseudo-entropy extractor (e.g Yao-Entropy extractor)
to construct proofs of ownership scheme, remain two open problems.
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