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Abstract. The strongest standard security notion for digital signature
schemes is unforgeability under chosen message attacks. In practice, how-
ever, this notion can be insufficient due to “side-channel attacks” which
exploit leakage of information about the secret internal state. In this
work we put forward the notion of “leakage-resilient signatures,” which
strengthens the standard security notion by giving the adversary the ad-
ditional power to learn a bounded amount of arbitrary information about
the secret state that was accessed during every signature generation. This
notion naturally implies security against all side-channel attacks as long
as the amount of information leaked on each invocation is bounded and
“only computation leaks information.”
The main result of this paper is a construction which gives a (tree-based,
stateful) leakage-resilient signature scheme based on any 3-time signa-
ture scheme. The amount of information that our scheme can safely leak
per signature generation is 1/3 of the information the underlying 3-time
signature scheme can leak in total. Signature schemes that remain secure
even if a bounded total amount of information is leaked were recently
constructed, hence instantiating our construction with these schemes
gives the first constructions of provably secure leakage-resilient signa-
ture schemes.
The above construction assumes that the signing algorithm can sample
truly random bits, and thus an implementation would need some special
hardware (randomness gates). Simply generating this randomness using
a leakage-resilient stream-cipher will in general not work. Our second
contribution is a sound general principle to replace uniform random bits
in any leakage-resilient construction with pseudorandom ones: run two
leakage-resilient stream-ciphers (with independent keys) in parallel and
then apply a two-source extractor to their outputs.

1 Introduction

Traditionally, provable security treats cryptographic algorithms as black-boxes.
An adversary may have access to inputs and outputs, but the computation within
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the box stays secret. In particular, the standard security notion of digital signa-
tures is existential unforgeability under chosen message attacks [17] (UF-CMA),
where one requires that an adversary cannot forge a valid signature even when
given access to a signing oracle.

Unfortunately, this traditional security model often does not match reality
where an adversary can attack the algorithm’s implementation with more pow-
erful attacks. An important example in this context are side-channel attacks,
which provide an adversary with a partial view on the inner secret state (e.g.,
a secret signing key) of an algorithm’s execution due to physical leakage during
computation. In the last two decades a vast number of ingenious side-channel
attacks have been invented and used to break implementations of schemes which
were provably secure in the traditional model. Examples of side-channels include
information derived from running-time [23], electromagnetic radiation [33, 15],
power consumption [24], and many more (see, e.g., [34, 29]).

1.1 Leakage-Resilient Cryptography

Classical research in side-channel attacks sometimes resembles a cat-and-mouse
game. New side-channel attacks are discovered, and then heuristic countermea-
sures are proposed to prevent the specific new attack. This yields countermea-
sures that are tailored specifically for the class of attacks they intend to defeat.
Not very surprisingly, these countermeasures are often later found to be vulnera-
ble to new attacks. This state of affairs is fundamentally different from the design
principles of “modern cryptography,” where one usually requires that the system
is secure against all adversaries from some well defined resource bounded class4

and for a broad and well-defined attack scenario. (E.g., existential unforgeability
for signature schemes or IND-CCA2 security for encryption.)

As this situation is clearly not very satisfying, in an influential paper Micali
and Reyzin [?] suggest a framework for adapting the methodology of modern
cryptography to the scenario of side-channel attacks.

A formal security definition. Inspired by the framework of Micali-Reyzin
and Maurer’s bounded storage model (and the subsequent bounded-retrieval
model), in [12] the notion of leakage-resilience was proposed.5 A cryptographic
primitive (or protocol) is said to be leakage-resilient, if it is secure in the tradi-
tional (black-box) sense but now the adversary may additionally obtain arbitrary

side-channel information (also called leakage) during the execution of the secu-
rity experiment. The side-channel information given to the adversary only has
to satisfy the following two restrictions

4 In complexity based cryptography one usually bounds the running time. Other
bounds that often are used include the size of the memory an adversary can use
or the number of queries the adversary can make to some oracle.

5 The primary contribution of [12] was not proposing a new model, their model com-
bined ideas that were explicit and implicit in prior work. Rather, the primary contri-
bution was actually constructing a primitive (a stream-cipher) and proving it secure
in this model.



LR1 (bounded leakage): the amount of leakage in each invocation is
bounded (but overall can be arbitrary large).

LR2 (only computation leaks information): the internal state that is
not accessed during an invocation (“passive state”) does not leak.

At a technical level this is modeled by considering adversaries that, when attack-
ing the primitive, additionally to the regular input specify a leakage function f
with bounded range {0, 1}λ and then (besides the regular output) also obtain
Λ = f(s+, r), where s+ denotes the part of the internal secret state that has
been accessed during this invocation (“active state”) and r are the internal coin
tosses that were made by the cryptosystem during the invocation.

Motivation of the leakage restrictions. It is clear that one has to restrict
the class of leakage functions, as if we would allow the identity function f(s) = s
(where s is the cryptographic algorithm’s internal state) , no security whatsoever
can be achieved.

In this work we focus on leakage functions that are restricted in terms of
their output length. This is a natural resource bound, and allows to model a
rich class of side-channel attacks (e.g. timing or hamming-weight attacks, which
exploit only a polylogarithmic amount of information on each invocation. This
is much smaller than the constant-fraction leakage for which we can still prove
security in this work.) We remark that we could use a more relaxed restriction
than a bound on the leakage function,6 but we will stick to bounded leakage

(LR1) which is more intuitive and simpler to work with.

Bounded leakage alone might not be a sufficiently strong restriction, and we
use a further restriction on the leakage function, which still seems to allow a rich
and very natural family of side-channel attacks.

Following [12], we use LR2 (“only computation leaks information”), originally
put forward as one of the axioms of “physically observable cryptography” by
Micali and Reyzin [?]. The original axiom requires that if a primitive with secret
internal state s is invoked, then on this particular invocation, only the part
s+ ⊆ s of the memory leaks that was accessed during this invocation.

It is important to distinguish between the “only computation leaks infor-
mation” axiom (which is a statement about the physical properties of a crypto-
graphic device), and how this axiom is formally captured (i.e. by leaking f(s+, r)
as explained above.) For example in a so called “cold-boot attack” [18], the ad-
versary learns a random subset of the bits of the entire secret state (even when
no computation is going on.) This attack clearly does not adhere the axiom, but
still is easily captured by the model of leakage-resilience whenever we consider a
primitive where ultimately the entire secret state will be touched.7 The reason
is that then the adversary can “simulate” a cold boot attack by simply leaking

6 In particular, we can consider the class F of leakage functions such that the degra-
dation of the HILL-pseudoentropy of the internal state S due to leakage of f(S)
(where f ∈ F) is sufficiently bounded.

7 The only setting we are aware of where the entire state will not be touched, are the
the tokens used in the construction of one-time programs [16].



a random subset of the accessed state in each invocation, until the entire state
is touched.

1.2 Leakage-Resilient Signatures

Previous work has shown how to build stream-ciphers that are provably resistant
to continual leakage in the standard model [12,?]. In this paper we construct a
leakage-resilient public-key primitive in the plain model, a signature-scheme.

Digital signatures are a central cryptographic primitive and are widely imple-
mented on computational devices that are especially vulnerable to side-channel
attacks (such as smart cards). Starting with the seminal work by Kocher [23],
there have been a great number of theoretical and practical side-channel attacks
on signature schemes (e.g., [23, 24, 35, 14]).

Security Definition. The standard notion for secure signatures schemes is
unforgeability under adaptive chosen-message attacks [17]. Here one requires
that an adversary cannot forge a signature of any message m, even when given
access to a signing oracle.

We strengthen this notion by giving the adversary access to a more powerful
oracle, which not only outputs signatures for chosen messages, but as an addi-
tional input takes a leakage function f : {0, 1}∗ → {0, 1}λ and outputs f(s+, r)
where s+ is the state that has been accessed during computation of the signature
and (if the scheme is probabilistic) r is the randomness that was sampled. Note
that if we want the signature scheme to sign a large number of messages (i.e.,
more than the state length), then this security definition inherently requires
the signature scheme to update its internal state. We call signature schemes
which are secure in the above sense UF-CMLA (unforgeable under chosen mes-
sage/leakage attacks) or simply leakage resilient. We also define a notion called
UF-CMTLA (unforgeability under chosen message total leakage attacks), which
is defined similarly to UF-CMLA but is significantly weaker, as here the total
amount of leakage (and not the leakage per invocation) is bounded.

Overview of our construction. Our construction of leakage resilient sig-
nature schemes is done in two steps. First, we give a number of instantiations
of 3-time UF-CMTLA signature schemes offering different trade-offs. Then, we
present a generic tree-based transformation from any UF-CMTLA secure 3-time
signature scheme (i.e., a signature scheme that can securely sign up to 3 mes-
sages) to a UF-CMLA signature scheme.

From UF-CMTLA to UF-CMLA Security. Following the construction of
Naor and Yung [28] and the ideas of Lamport [25] and Merkle [26], we propose
a simple tree-based leakage-resilient signature scheme SIG∗ that is constructed
from any leakage resilient 3-time signature scheme SIG. The scheme we propose
strongly resembles the construction of a forward-secure signature scheme [3]
from [4], but let us stress that leakage-resilience and forward-security are orthog-
onal concepts. In particular, our construction is not forward-secure, but could
be made so in a straight forward way, at the cost of having a more complicated
description.



For any a-priori fixed d ∈ N, our construction can sign up to 2d+1−2 messages
and one can think of the (stateful) signing algorithm as traversing the 2d+1 − 1
nodes of a binary tree of depth d in a depth-first manner. Suppose the signing
algorithm of SIG∗ wants to sign the i-th message m and its state points to
the i-th node w̃ in a depth-first traversal of the tree. It first computes a fresh
public/secret-key pair (pk w̃, sk w̃) of SIG for this node. Next, the signature (σ, Γ )
for m is computed, where σ is a signature on m according to the 3-time signature
scheme SIG using the secret key sk w̃ of the current node w̃, and Γ contains a
signature path from the root of the tree to the node w̃: for each node w on the
path it contains a signature on pkw using the secret key skpar(w), where par(w)
denotes the parent of w in the tree. The public-key of SIG∗ is the public-key
associated to the root node and verification of a signature of SIG∗ is done by
verifying all the 3-time signatures on the path from w̃ to the root.

The crucial observation that will allow us to prove leakage-resilience of our
construction, is that for each node w in the tree, the secret key skw associated
to this node is only accessed a constant number of times (at most three times).
The security we prove roughly states that if SIG is a UF-CMTLA secure 3-time
signature scheme which is secure even after leaking a total of λtotal bits, then
SIG∗ is a UF-CMLA secure signature scheme that can tolerate λ = λtotal/3 bits
of leakage per signature query. The loss in security is a factor of q.

Instantiations UF-CMTLA secure 3-time signature schemes. It is not
hard to see that every signature scheme looses at most an exponential factor
2λtotal in security (compared to the standard UF-CMA security) when λtotal bits
about the secret key are leaked (as the UF-CMA adversary can simply guess the
leakage, and a random guess will be correct with probability 2−λtotal). Recently,
much better constructions have been proposed. Alwen, Dodis, and Wichs [2]
show that the Okamoto-Schnorr signature-scheme [30, 36] remains secure even if
almost n/2 bits (where n is the length of the secret key) of information about
the secret-key are leaked. Instantiating our construction with Okamoto-Schnorr
signatures thus gives a leakage resilient signature scheme which can leak a con-
stant fraction (almost 1/6) of the accessed state on each invocation. Due to
the Fiat-Shamir heuristic used in the Okamoto-Schnorr signature scheme, this
scheme can only be proven secure in the random-oracle model. Recently, Katz
and Vaikuntanathan [22] showed how to construct signature schemes in the stan-
dard model (and under standard assumptions) which can tolerate leakage of as
much as λtotal = n−nǫ bits (ǫ > 0). With this construction we get a leakage re-
silient signature scheme in the standard model. Unfortunately it is not practical
due to the use of general NIZK proofs.

In the same paper [22], Katz et al. also construct an efficient one-time sig-
nature scheme that tolerates leakage of λtotal = (1/4− ǫ)n bits (for any ǫ > 0).
This scheme is easily generalized to a (stateful) 3-time signature schemes where
one can leak λtotal = (1/12− ǫ)n bits.8 This construction fits well into our gen-
eral transformation, yielding a UF-CMLA secure scheme where one can leak

8 They propose a general transformation to t-time schemes using cover free sets which
can leak λtotal = Ω(n/t2) bits (which for t = 3 is Ω(n)). We note however, that



λtotal = (1/36 − ǫ)n bits (here n is the size of the accessed state on each in-
vocation). As the construction only assumes universal one-way hash functions
(UOWHF), we get that it is secure in the standard model under the minimal [28]
assumption that one-way functions exist.

1.3 Replacing Randomness in Leakage-Resilient Primitives.

In the construction of SIG∗ we silently assumed that the device could sample
uniformly random bits to be used in the key-generation and signing steps of the
underlying scheme SIG. This , however, would require special hardware for gen-
erating random bits (such as noise generating gates). In the non-leakage setting
one can avoid the necessity for such special hardware by using pseudorandomness
(generated by a stream-cipher) instead of truly random bits.

Unfortunately, in the leakage-setting the simple analogous idea of replacing
the random bits with the output of a leakage-resilient stream-cipher (as defined
in [12]) does not work (at least we do not know how to prove it). The reason is
that an output block of a leakage-resilient stream-cipher is only guaranteed to
have high HILL-pseudoentropy when given the leakage that was generated while
computing this block.

A sound approach to replace uniform random bits in any leakage-resilient
construction while provably preserving leakage-resilience is as follows: run two
leakage-resilient stream ciphers with independent keys in parallel and feed their
output to a two-source extractor. For lack of space, this can be found in the
full version [?]. Intuitively, the reason is that now the outputs X, X ′ of the two
stream ciphers are indistinguishable from having high min-entropy (given the
leakage), and thus applying a two source extractor ext gives a (indistinguishable
from) uniform Y = ext(X, X ′) which then can be used in the signature scheme.

While we do not know how to prove in general the security of the simpler
approach of using a single leakage-resilient stream cipher to generate the random
bits, in some special cases this simpler approach does go through. For example:

– If the scheme (for which we want to replace the uniform random bits) already
can be proven leakage-resilient assuming only that the random bits have
high min-entropy (as opposed to being uniform), this is e.g. the case for the
(generalized) Okamoto signature scheme from [2].

– The output of the particular leakage-resilient stream-cipher from [12] can
always be used directly. Informally, the reason is that here (unlike e.g. in
[?]) the final output already was generated by applying an extractor.

1.4 Related Work

A body of prior work has considered countermeasures against different classes
of side-channel attacks. Most works consider security against some particular

(while this leakage bound is worse than ours) their scheme enjoys the advantage of
being stateless, whereas ours is stateful.



attack, like “template attacks” [37]. Below we mention some work on “provable
security” in the context of side-channel attacks, where only the class of leakage
functions is restricted, but not the adversaries ability to exploit the leakage.

Ishai et al. [21] show how to securely implement any (efficiently computable)
function even when the attacker can probe a bounded number of wires in the
implementation. This result has been recently extendend [13] to allow leakage
functions that get as input the values carried by all the wires in the circuit, as
long as the output of the leakage functions is short, and the leakage functions is
from some low complexity class like AC0.

Micali and Reyzin [?] proposed the influential theoretical framework of “phys-
ically observable cryptography” to model side-channel attacks. In particular,
they explicitly state and motivate the “only computation leaks information”
axiom used in leakage-resilient cryptography [12,?].

Several recent works [?,27, 22, 9] propose (stateless) constructions which are
secure against so called “memory attacks”. This means that they remain secure
even after a bounded total amount of information has leaked (this is sufficient
against attacks like “cold-boot” attacks [18], but not for most other side-channel
attacks which leak on each invocation). Unlike in leakage-resilient cryptogra-
phy, here the leakage functions need not obey the only “computation leaks
information” restriction. Akavia et. al [?] and Naor and Segev [27] construct
symmetric/public-key encryption schemes that are secure in this model. Katz
et al [22] and Alwen et al [2] construct digital signatures in this setting (see
the discussion above). The “bounded retrieval model” (BRM) [8, 10, 11, 2] is an
extension of “memory attacks” where the key is made artificially huge and thus
the tolerated leakage can also be made arbitrary large (but still a priory bounded
by the key size). The difficulty in this model (as compared to memory attacks),
is that in the BRM model the efficiency of a scheme must only depend on some
security parameter, but not on the size of the (potentially huge) secret key. Dodis
et al. [9,?] consider the case where the range of f(·) is not necessarily bounded,
but instead one only requires that it is (exponentially) hard to recover sk from
f(sk).

2 Preliminaries

Notion. If x is a string, then |x| denotes its length, while if S is a set then
|S| denotes its size. If k ∈ N then 1k denotes the string of k ones. For n ∈ N,

we write [n] as shorthand for {1, . . . , n}. If S is a set then s
$
← S denotes the

operation of picking an element s of S uniformly at random. With PPT we
denote probabilistic polynomial time.

Algorithms. We write y ← A(x) to indicate that A is an algorithm which runs

on input x and outputs y. If A is probabilistic, y
$
← A(x) denotes running the

algorithms using fresh randomness.
To model stateful algorithms we will in particular consider algorithms with

a special input/output syntax. We split the input into three disjoint syntactic



parts: a query x, the state s, and (in case the algorithm is probabilistic) random-
ness r. Similarly, the output is split into the output y and the new state s′. We
write (y, s′) ← B(x, s, r) to make this explicit. Here one can think of the query
x as being chosen (or at least known) to the adversary. The state s and s′ is the
secret internal state of the primitive before and after execution of the algorithm
on input x, respectively.

If we consider the execution (y, s′)← B(x, s, r) of an algorithm, we can split
the state in two parts s = s+ ∪ s−. The active state, s+, denotes the part that
is accessed by B in order to compute y and update its state.9 The passive state,
s− = s \ s+, is the part of the state that is not accessed (i.e., read and/or
overwritten) during the current execution. We use the notation

(y, s′)
s+

←֓ B(x, s, r) .

to make explicit that s+ is the active state of the execution of B with inputs
x, s, r. This is illustrated in Figure 1. Note that the passive state s− is completely
contained in s′, i.e., state information that is never accessed is contained entirely
in the next state s′.

r

x

y

s−

s+
B

Fig. 1. Illustration of the execution of a stateful algorithm (y, s′)
s+

←֓ B(x, s, r). The
secret state s splits into the active state s+ (that is accessed during the execution of
B) and the passive state s−.

3 Leakage resilient signatures

3.1 Standard signatures

A (stateful) digital signature scheme SIG = (Kg, Sign, Vfy) consists of three PPT
algorithms. The key generation algorithm Kg generates a secret signing key sk

9 For this to be well defined, we really need that B is given as an algorithm, e.g. in
pseudocode, and not just as a function.



and a public verification key pk . The signing algorithm Sign get as input the
signing key sk and a message m and returns a signature and a new state sk ′

which replaces the old signing key. The deterministic verification algorithm Vfy

inputs the verification key and returns 1 (accept) or 0 (reject). We demand the
usual correctness properties.

We recall the definition for unforgeability against chosen-message attacks
(UF-CMA) for stateful signatures. To an adversary F and a signature scheme
SIG = (Kg, Sign, Vfy) we assign the following experiment.

Experiment Expuf-cma
SIG (F , k)

(pk , sk0)
$
← Kg(1k) ; i← 1

(m∗, σ∗)
$
← FOski−1 (pk )

If Vfy(pk , m∗, σ∗) = 1 and m∗ 6∈ {m1, . . . mi}
then return 1 else return 0.

Oracle Oski−1
(mi)

(σi, sk i)
$
← Sign(sk i−1, mi)

Return σi and
set i← i + 1

We remark that for the special case where the signature scheme is stateless
(i.e., sk i+1 = sk i), we can consider a simpler experiment where the signing
oracle Oski

(·) is replaced by Sign(sk , ·). With Advuf-cma
SIG (F , k) we denote the

probability that the above experiment returns 1. Forger F (t, q, ǫ)-breaks the
UF-CMA security of SIG if Advuf-cma

SIG (F , k) ≥ ǫ, its running time is bounded by
t = t(k), and it makes at most q = q(k) signing queries. We call SIG UF-CMA

secure (or simply secure) if no forger can (t, q, ǫ)-break the UF-CMA security of
SIG for polynomial t and q and non-negligible ǫ.

3.2 Leakage resilient signatures

We now define the notion of unforgeability against chosen-message/leakage at-
tacks (UF-CMLA) for stateful signatures. This extends the UF-CMA security
notion as now the adversary can learn λ bits of leakage with every signature
query. With the ith signature query, the adversary can adaptively choose any
leakage function fi (described by a circuit10) with range {0, 1}λ and then learns
the output Λi of fi which as input gets everything the signing algorithm gets,
that is the active state S+

i−1 and the random coins ri. To an adversary F and a
signature scheme SIG = (Kg, Sign, Vfy) we assign the following experiment.

Experiment Expuf-cmla
SIG (F , k, λ)

(PK ,SK 0)
$
← Kg(1k) ; i← 1

(m∗, σ∗)
$
← FOSKi−1 (PK )

If Vfy(PK , m∗, σ∗) = 1 and
m∗ 6∈ {m1, . . . mi}
then return 1 else return 0.

Oracle OSK i−1
(mi, fi)

Sample fresh randomness ri

(σi,SK i)
SK

+
i−1

←֓ Sign(SK i−1, mi, ri)
Λi ← fi(SK+

i−1, ri)
if |Λi| 6= λ then Λi ← 0λ

Return (σi, Λi) and set i← i + 1

10 We could also model the fi’s as Turing machines, but then we would have to require
that the output length is independent of the input, as otherwise information could
be encoded in the output length itself.



With Advuf-cmla
SIG (F , k, λ) we denote the probability that the above experiment

returns 1. Forger F (t, q, ǫ, λ)-breaks the UF-CMLA security of SIG if its run-
ning time is bounded by t = t(k), it makes at most q = q(k) signing queries
and Advuf-cmla

SIG (F , k, λ) ≥ ǫ(k). We call SIG UF-CMLA secure with λ leakage

(or simply λ-leakage resilient) if no forger can (t, q, ǫ, λ)-break the UF-CMLA
security of SIG for polynomial t and q and non-negligible ǫ.

3.3 Signatures with bounded total leakage

In the previous section we defined signatures that remain secure even if λ bits
leak on each invocation. We will construct such signatures using as building
block signature schemes that can only sign a constant number (we will need 3)
of messages, and are unforgeable assuming that a total of λtotal bits are leaked
(including from the randomness r0 that was used at key-generation). Following
[22], we augment the standard UF-CMA experiment with an oracle Oleak which
the adversary can use to learn up to λtotal arbitrary bits about the randomness
used in the entire key generation and signing process. This oracle will use a
random variable state that contains all the random coins used by the signature
scheme so far and a counter λcnt to keep track how much has already been leaked.
Note that we do not explicitly give the leakage functions access to the key sk i,
as those can be efficiently computed given r0 ∈ state.

Experiment Expuf−cmtla
SIG (F , k, λtotal)

(pk , sk0)
r0←Kg(1k); i← 1; λcnt ← 0; state← r0

(m∗, σ∗)
$
← FOski−1

,Oleak(pk )
If Vfy(pk , m∗, σ∗) = 1 and m∗ 6∈ {m1, . . . mi}

then return 1 else return 0.

Oracle Oski−1
(mi)

Sample fresh randomness ri

state← state ∪ ri

(σi, sk i)← Sign(sk i−1, mi, ri)
Return σi and set i← i + 1

Oracle Oleak(f)
Λ← f(state)
If λcnt + |Λ| > λtotal Return ⊥
λcnt ← λcnt + |Λ|
Return Λ

With Advuf-cmtla
SIG (F , k, λtotal) we denote the probability that the above experi-

ment returns 1. Forger F (t, d, ǫ, λtotal)-breaks the UF-CMTLA security of SIG

if its running time is bounded by t = t(k), it makes at most d = d(k) signing
queries and Advuf-cmtla

SIG (F , k, λtotal) ≥ ǫ(k). We call SIG UF-CMTLA secure

with λtotal leakage if no forger can (t, d, ǫ, λtotal)-break the UF-CMTLA security
of SIG for polynomial t and non-negligible ǫ.

4 Construction of leakage resilient signature schemes

We first discuss three constructions of UF-CMTLA secure 3-time signature
schemes. We then prove our main result which shows how to get a leakage-
resilient signature scheme from any UF-CMTLA 3-time signatures scheme using
a tree based construction.



4.1 Signatures with bounded leakage resilience

Generic construction with exponential loss. We first present a simple
lemma showing that every d-time UF-CMA secure signature scheme is also a d-
time UF-CMTLA secure signature scheme, where the security loss is exponential
in λtotal.

Lemma 1. For any security parameter k, t = t(k), ǫ = ǫ(k), d = d(k), and

λtotal, if SIG is (t, d, ǫ) UF-CMA secure, then SIG is (t′, d, 2λtotalǫ, λtotal) UF-

CMTLA secure where t′ ≈ t.

Proof. For contradiction, assume there exists an adversary Fλtotal
who breaks

the (t′, d, 2λtotal ǫ, λtotal) UF-CMTLA security. We will show how to construct an
adversary F which on input a public-key pk breaks the (t, d, ǫ) UF-CMA secu-

rity of SIG in a chosen message attack. FOski−1 (pk ) simply runs F
Oski−1

,Oleak

λtotal
(pk ),

where it randomly guesses the output of the leakage oracle Oleak. As Oleak out-
puts at most λtotal bits, F will guess all the leakage correctly with probability
2−λtotal . Conditioned on F guessing correctly, Fλtotal

will output a forgery with
probability at least ǫ, thus F will output a forgery with probability at least
ǫ · 2−λtotal .

An efficient scheme in the random oracle model. The security loss in
the above reduction is exponential in λtotal. Recently, Alwen, Dodis and Wichs [2]
proposed a signature scheme which can leak a substantial bounded amount λtotal

of information without suffering an exponential decrease in security. More pre-
cisely, [2, 22] show that in the random oracle model (a variant of) the Okamoto-
Schnorr signature scheme [30, 36] is still secure even if a constant fraction λtotal

of the total secret key is leaked to the adversary. For concreteness we now recall
the variant SIGOS

ℓ = (KgOS
ℓ , SignOS

ℓ , VfyOS
ℓ ) of the Okamoto-Schnorr signature

scheme.
Let G(1k) be a group sampling algorithm which outputs a tuple (p, G), where

p is a prime of size log p = 2k and G is a group of order p in which the discrete
logarithm problem is hard.11 Let H : {0, 1}∗ → Zp be a hash function that will
be modeled as a random oracle. The scheme is given in Figure 2.

In [2, 22] the authors show that SIGOS
ℓ is secure under the hardness of the

ℓ-representation problem (c.f. [2, 22] and the references therein for its description
and its equivalence to the DL problem). More precisely, they prove the following
lemma.

Lemma 2. For any δ > 0 and ℓ ∈ N, security parameter k, t = t(k), ǫ = ǫ(k),
d = d(k), λtotal = (1/2−1/2ℓ−δ)n where n = 2kℓ is the length of the secret key,

if the ℓ-representation problem is (t, ǫ)-hard then the signature scheme SIGOS
ℓ

11 For technical reasons we assume that elements of G can be sampled “obliviously”,
this means, there exists an efficient algorithm sampG that outputs random elements
of G with the property that, given g ∈ G, one can sample uniformly from the set of
coins ω for which g := samp

G
(ω). See [22] for more details.



Algorithm KgOS
ℓ (1k)

(G, p)
$
← G(1k)

(g1, . . . , gℓ)
$
← G

ℓ; (x1, . . . , xℓ)
$
← Z

ℓ
p

h←
Q

i gxi

i

return (pk , sk) = ((G, p, g1, . . . , gℓ, h), (x1, . . . , xℓ))

Algorithm SignOS
ℓ (sk , m)

(r1, . . . , rℓ)
$
← Z

ℓ
q

A←
Q

i
gri

i

c← H(A,m)
return σ = (A, cx1 + r1, . . . , cxℓ + rℓ)

Algorithm VfyOS
ℓ (pk , σ, m)

Parse σ as (A, α1, . . . , αℓ)
c← H(A,m)

Iff
Q

gαi

i

?
= Ahc return 1; else return 0

Fig. 2. SIGOS
ℓ = (KgOS

ℓ , SignOS
ℓ , VfyOS

ℓ ).

from Figure 2 is (t′, d, ǫ′, λtotal) UF-CMTLA secure in the random oracle model,

where t′ ≈ t and ǫ′ = (qH · (2 · ǫ + 1/p + qH/p2δℓ))1/2, where qH is the number

of random oracle queries made by the adversary.

A scheme in the standard model. From a universal one-way hash func-
tion (UOWHF) H , [22] constructs an efficient one-time signature scheme that
tolerates leakage of a (1− δ)/4 fraction of the secret key. Using sequential com-
position this scheme is easily generalized to a stateful d-time signature schemes
SIGK

δ which can leak up to a (1− δ)/4d fraction of the secret-key.

Lemma 3. For any δ > 0, security parameter k, t = t(k), ǫ = ǫ(k), d = d(k), if

H is a (t, ǫ)-secure UOWHF, then SIGK
δ is (t′, d, ǫ′, λtotal) UF-CMTLA secure,

where ǫ′ = dǫ, t′ ≈ t and λtotal = n · 1−δ
4d where n = O(dk2/δ) is the length of

the secret key.

4.2 Construction of leakage resilient signature schemes

In this section we show how to construct a UF-CMLA secure signature scheme
SIG∗ = (Kg∗, Sign∗, Vfy∗) from any UF-CMTLA 3-time signature scheme SIG =
(Kg, Sign, Vfy).

We first introduce some notation related to binary trees that will be useful for
the description of our signature scheme. For d ∈ N, we denote with {0, 1}≤d =
⋃d

i=0{0, 1}i∪ε the set of size 2d+1−1 containing all binary bitstrings of length at
most d including the empty string ε. We will think of {0, 1}≤d as the labels of a
binary tree of depth d. The left and right child of an internal node w ∈ {0, 1}≤d−1

are w0 and w1, respectively. For a node w ∈ {0, 1}≤d\1d, we denote with DF(w)
the node visited after w in a depth-first traversal.

DF(w) :=

{

w0 if |w| < d (w is an internal node)
ŵ1 if |w| = d, where w = ŵ01t (w is the root)

We define the mapping ϕ : {0, 1}≤d → [2d−1− 1] where ϕ(w) = i if w is the i-th
node to be visited in a depth first traversal, i.e. ϕ(ε) = 1, ϕ(0) = 2, ϕ(00) = 3, . . ..

We now give the construction of our leakage resilient signature scheme. To
simplify the exposition, we will assume that SIG is a stateless signature scheme,
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Fig. 3. Illustration of the execution of SIG∗ in the UF-CMLA experiment. This figure
shows the first 4 rounds of interaction between the adversary F and Sign. The dotted
edges associate a public/secret key to each node. The dashed arrows represent F ’s
oracle queries. F queries for a message mi and a leakage function fi, and obtains the
signature Σmi

. Additionally, it obtains the leakage function fi evaluated on the active
state S+

i , which, for instance for i = 1, includes the keys skε, sk0.

but this is not required. We fix some d ∈ N such that q = 2d+1 − 2 is an upper
bound on the number of messages that SIG can sign. The signing algorithm
Sign∗ traverses a tree (depth first), “visiting” the node w and associating to it
a key-pair (pkw, skw) generated from the underlying signature scheme SIG. We
will use the following notational conventions for a node w = w1w2 . . . wt.

– Γw = [(pkw1
, φw1

), (pkw1w2
, φw1w2

), . . . , (pkw, φw)] is a signature path from
w to the root, where φw′ always denotes the signature of pkw′ with its parent
secret key skpar(w′).

– Sw = {skw1w2...wi
: wi+1 = 0} denotes a subset of the secret keys on the

path from the root ε to w. Sw contains skw′ , if the path goes to the left child
w′0 at some node w′ on the path. (The reason is, that in this case the right
child w′1 will be visited after w in a depth first search, and we will then need
skw′ to sign the public key pkw′1 of that child.)

The secret key of SIG∗ will always be of the form (w,Sw, Γw), and we will use
stacks S and Γ to keep track of the state. We denote an empty stack with ∅.
For a stack A, push(A, a) denotes putting element a on the stack A, a← pop(A)
denotes removing the topmost element from A and assigning it to a, and trash(A)
denotes removing the topmost element from A (without assigning it). To avoid



confusion we will always use upper case letters (PK ,SK ) for keys of SIG∗ and
lower case letters (pk , sk) for keys used by the underlying signature scheme SIG.
To ease exposition, we use the secret key of the node 0, and not the root to sign
the first message. The scheme SIG∗ is defined in Figure 4.

Algorithm Kg∗(1k)

(pk , sk)
$
← Kg(1k)

S ← ∅; push(S , sk); Γ ← ∅
SK 0 ← (wε,S , Γ ); PK ← pk

return (PK , SK 0)

Algorithm Vfy∗(PK , m,Σ)
parse Σ as (σ, Γw1w2...wt

)
pkǫ ← PK

for i = 1 to t do
if Vfy(pkw1...wi−1

, 0pkw1...wi
, φw1...wi

) = 0 return 0

return Vfy(pkw1w2...wt
, 1m, σ)

Algorithm Sign∗(SK i, m)
parse SK i as (w,S , Γ ) % then S = Sw and Γ = Γw

if w = 1d return ⊥ % stop if last node reached
ŵ ← DF(w) % compute next node to be visited

(sk ŵ, pk ŵ)
$
← Kg(1n) % generate secret key for the current node

σ
$
← Sign(sk ŵ, 1m) % sign m with secret key of current node

sk par(ŵ) ← pop(S) % get secret key of parent (which is on top of S)

φŵ
$
← Sign(skpar(ŵ), 0pkŵ) % sign new pk with sk of its parent

if ŵ|ŵ| = 0 then push(S , sk par(ŵ)) % put skpar(ŵ) back if ŵ is a left child
if |ŵ| < d then push(S , sk ŵ) % put sk ŵ on S if it is not a leaf, now S = Sŵ

if |w| = d % if previous node was a leaf then clean signature chain
parse w as w′01j

for i = 1, . . . , j + 1 do trash(Γ );
push(Γ, (pk ŵ, φŵ)) % Now Γ = Γŵ

Σ ← (σ, Γ )
SK i+1 ← (ŵ,S , Γ ) % store key for next signature
return (Σ,SK i+1)

Fig. 4. The leakage resilient signature scheme SIG∗.

Theorem 1. For any security parameter k, t = t(k), ǫ = ǫ(k), q = q(k), λ =
λ(k), if SIG is (t, 3, ǫ, λtotal) UF-CMTLA secure, then SIG∗ is (t′, q − 1, qǫ, λ)
UF-CMLA secure where t′ ≈ t and λ = λtotal/3.

Proof. We will show how to construct an adversary F which breaks the UF-
CMTLA security of SIG (with λtotal = 3 · λ bits of total leakage) using as a
subroutine the adversary Fλ who breaks the UF-CMLA security of SIG∗ (with
λ bits of leakage in each of the q observations) with advantage at least

Advuf-cmtla
SIG (F , k, λtotal) ≥

1

q
·Advuf-cmla

SIG∗ (Fλ, k, λ) . (1)

The adversary F(pk ) (attacking the UF-CMTLA security of SIG) simulates
Fλ(PK ) attacking the UF-CMLA security of SIG∗, embedding its challenge
public-key pk into one of the nodes of SIG∗. That is, F(pk) simulates the fol-
lowing experiment (as defined in Section 3.2, cf. also Figure 3 for a graphical
illustration.)



Experiment Expuf-cmla
SIG∗ (Fλ, k, λ)

(PK ,SK 0)
$
← Kg∗(1k) ; i← 1

(m, Σ)
$
← F

OSKi−1
(·,·)

λ (PK )
If Vfy∗(PK , m, Σ) = 1

and m 6∈ {m1, . . . mi}
then return 1 else return 0.

Oracle OSK i−1
(mi, fi)

Sample fresh randomness ri

(Σi,SK i)
SK

+
i−1

←֓ Sign∗(SK i−1, mi, ri)
Λi ← fi(SK+

i−1, ri)
if |Λi| 6= λ then Λi ← 0λ

Return (Σi, Λi) and set i← i + 1

Simulation of PK . On input pk , F samples a node w̃ at random from the first

q nodes (i.e., ĩ
$
← {1, . . . , q} and w̃ ← ϕ−1(̃i)). The key (pk w̃, sk w̃) used by

Sign will be the challenge key (pk , sk). Note that sk = sk w̃ is unknown to
F . Next, F generates the other keys (pkw, skw), w ∈ {0, 1}≤d \ w̃ by calling
Kg(1k) using fresh randomness for each call. (Of course, these keys will only
be computed when needed during the simulation of the signing oracle.) F
defines PK = pkε and runs Fλ on PK .

Simulation of the signing oracle. Let (mi, fi) be the i-th query to oracle
OSK i−1

(mi, fi) and let SK+
i−1 be the active state information in an execution

of the real signing algorithm (i.e., (Σi,SK i)
SK

+
i−1

←֓ Sign∗(SK i−1, mi, ri)).
Depending if sk w̃ ∈ SK+

i−1 or not, adversary F distinguishes the two cases.

Case 1: sk w̃ 6∈ SK+
i−1 (Sign(SK i−1, mi, ri) does not access sk w̃.) In this

case the adversary F computes σi
$
← Sign(SK i−1, mi, ri) and Λi =

fi(SK+
i−1, ri) itself and outputs (σi, Λi).

Case 2: sk w̃ ∈ SK+
i−1 (Sign(SK i−1, mi, ri) does access sk w̃ ∈ SK+

i−1.) In
this case F can compute (σi, Λi) without knowing sk w̃ = sk as it has
access to the signing oracle Osk w̃

and the leakage oracle Oleak as defined
in the CMTLA attack game. As sk w̃ ∈ SK+

i−1 for at most three different
i, and on for each i the range of fi is λ bits, the total leakage will be
λtotal = 3 · λ bits, which is what we assume F can get from Oleak.

The simulation of the UF-CMLA experiment by F is perfect (i.e. has the right
distribution). As F perfectly simulates the UF-CMLA experiment, by assump-
tion, Fλ does output a forgery with probability Advuf-cmla

SIG (Fλ, k, λ). We now
show that from F ’s forgery one can extract a forgery for at least one of the keys
(pkw, skw) of the underlying signature scheme SIG.

Claim. If Fλ outputs a forgery (σ, Σ) in the UF-CMLA experiment, then one
can extract a forgery for SIG with respect to at least one of the public-keys
(pkw, skw), w ∈ {ϕ−1

d (1), . . . , ϕ−1
d (q)}.

Proof. Let W = {ϕ−1
d (0), . . . , ϕ−1

d (q)} be the set of nodes that have been vis-
ited during the query phase of the UF-CMLA experiment. Further, let U :=
{Γw}w∈W be the set of all signature chains that have been generated during the
experiment. We distinguish two cases.

Case 1: Γ ∈ U . Then Γ = Γw for one w ∈ W . If Σ = (σ, Γ ) is a valid forgery,
then σ ∈ Sign(skw, 1m), where m 6= mϕ−1

d
(w). Thus, (1m, σ) is a valid forgery

of SIG for public key pkw.



Case 2: Γ 6∈ U . Then there must exist a node w ∈ W such that φ ∈ Γ with
φ ∈ Sign(skw, 0pkw∗), where pkw∗ 6= pkw0 and pkw∗ 6= pkw1.

12 It follows
that φ is a valid signature for key pkw and message 0pkw∗ that has not been
queried before.

The claim follows. △

With this claim and the fact that the simulation is perfect, it follows that we
can extract a forgery for SIG with respect to the challenge public-key pk with
probability Advuf-cmla

SIG∗ (Fλ, k, λ)/q (namely when the w from the claim is w̃).
This proves (1) and completes the proof. ⊓⊔

4.3 Efficiency and Trade-offs

We analyze the performance of our basic leakage resilient signature scheme and
provide some efficiency trade-offs. For d ∈ N let D = 2d+1 − 2 be the upper
bound on the number of messages that can be signed.

For simplicity, we assume that for SIG key generation, signing and verification
all take approximately the same time, and further that public keys, secret keys
and signatures are all of the same length. Let us now analyze the efficiency of
SIG∗. Public key size and key generation are as in the underlying scheme.

In the signing process, Sign∗ has to run at most two instances of Sign (i.e., to
sign the message and to certify the next public key) and one run of the underlying
key generation algorithm Kg. This adds up to an overhead of 3 compared to
SIG. In our scheme, a signature consists of the signature of the actual message
together with a signature chain from the current signing node to the root. Thus,
the size of a signature increases in the worst case (if we sign with a leaf node)
by a factor of ≈ 2d. For the verification of a signature, in Vfy∗ we have to first
verify the signature chain, and only if all those verifications pass, we check the
signature on the actual message. This results in an overhead of d compared to
the the underlying verification algorithm Vfy. Finally, in contrast to SIG our
scheme requires storage of ≈ d secret keys, ≈ d public keys and ≈ d signatures,
whereas in a standard signature scheme one only has to store a single secret key.
Note however that only the storage for the secret keys needs to be kept secret.

In the special case, when we instantiate SIG∗ with SIGOS and set δ = 1/2
(thus, ℓ = 3), then SIG∗ is quite efficient13: signing requires only 9 exponentia-
tions and 2 evaluations of a hash function. Verification is slightly less efficient
and needs in the worst case 4d exponentiations and d evaluations of the under-
lying hash function. Finally, in the worst case a signature contains 18d group
elements. Notice that our construction instantiated with SIGOS allows us to leak
a 1/36th fraction of the secret key in each observation. It is easy to increase this
to a 1/24th fraction by only using the leafs of SIG∗ to sign actual messages.

12 Wlog assume that w0 and w1 are both in W .
13 only counting exponentiations and hash function evaluations.
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