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Abstract

Side-channel risks of Intel’s SGX have recently attracted great attention. Under the spotlight is the 

newly discovered page-fault attack, in which an OS-level adversary induces page faults to observe 

the page-level access patterns of a protected process running in an SGX enclave. With almost all 

proposed defense focusing on this attack, little is known about whether such efforts indeed raises 

the bar for the adversary, whether a simple variation of the attack renders all protection ineffective, 

not to mention an in-depth understanding of other attack surfaces in the SGX system. In the paper, 

we report the first step toward systematic analyses of side-channel threats that SGX faces, 

focusing on the risks associated with its memory management. Our research identifies 8 potential 

attack vectors, ranging from TLB to DRAM modules. More importantly, we highlight the common 

misunderstandings about SGX memory side channels, demonstrating that high frequent AEXs can 

be avoided when recovering EdDSA secret key through a new page channel and fine-grained 

monitoring of enclave programs (at the level of 64B) can be done through combining both cache 

and cross-enclave DRAM channels. Our findings reveal the gap between the ongoing security 

research on SGX and its side-channel weaknesses, redefine the side-channel threat model for 

secure enclaves, and can provoke a discussion on when to use such a system and how to use it 

securely.

I. Introduction

A grand security challenge today is how to establish a trusted execution environment (TEE) 

capable of protecting large-scale, data-intensive computing. This is critical for the purposes 

such as outsourcing analysis of sensitive data (e.g., electronic health records) to an untrusted 

cloud. Serving such purposes cannot solely rely on cryptographic means, for example, fully 

homomorphic encryption, which is still far too slow to handle the computing task of a 

practical scale. A promising alternative is made possible by recent hardware progress such 

as Intel’s Software Guard Extension (SGX) [10]. SGX offers protection for data and code 

with a secure enclave designed to be resilient to attacks from its host operating system or 
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even system administrators. Such protection is offered as a feature of Intel’s mainstream 

CPUs (i.e., Skylake and Kaby Lake), and characterized by its small trusted computing base 

(TCB), including just the CPU package, and the potential to scale its performance with the 

capability of the processors. However, the simplicity of the design forces an enclave 

program to utilize resources (memory, I/O, etc.) partially or fully controlled by the untrusted 

OS, and therefore potentially subjects it to side-channel attacks, in which the adversary 

outside the enclave could infer sensitive information inside from observed operations on the 

shared resources.

SGX side-channel hazards.

Unfortunately, the threat has been found to be more realistic and serious than thought: prior 

studies have shown that an adversary with a full control of the OS can manipulate the page 

tables of the code running in the enclave-mode—a CPU mode protected by SGX—to induce 

page faults during its execution; through monitoring the occurrences of the faults in a 

relatively noise-free environment created by the adversary, he could identify the program’s 

execution trace at the page level, which is shown to be sufficient for extracting text 

documents, outlines of images from popular application libraries [39] and compromising 

cryptographic operations [35]. In our paper, we call these attacks the page-fault side-channel 

attacks.

Intel’s position on these side-channel attacks offers much food for thought. They admit that 

SGX does not defend against four side-channel attack vectors: power statistics, cache miss 

statistics, branch timing and page accesses via page tables [2]. Facing the security threats 

due to these side channels, Intel recommends that “it would be up to the independent 

software vendors to design the enclave in a way that prevents the leaking of side-channel 

information. [7]”, though they actually work actively with academia and open source 

partners to help mitigate the threats [6].

It is clear, from Intel’s statements, radical hardware changes to address these side-channel 

problems (e.g., defeating page-fault side channels by keeping the entire page tables inside 

the enclave [15]) is unlikely to happen. As a result, software vendors are left with the 

daunting tasks of understanding the security impacts of the SGX side channels and 

developing practical techniques to mitigate the threats when building their SGX 

applications.

Given the importance of the problem, recent years have already witnessed mushrooming of 

the attempts to address SGX side channel threats [35], [34], [14], for example, by placing 

sensitive code and data within the same page [35], or by detecting page faults through 

hardware supports [34] or timed-execution [14]. However, these studies were primarily 

targeting the page-fault attacks. Although the concern about this demonstrated attack vector 

is certainly justified, the sole attention on the page-fault attack can be inadequate. After all, 

tasking a safe heaven built upon minimum software support with complicated computing 

missions (e.g., data-intensive computing) can potentially open many avenues for inside 

information to trickle out during the interactions with the outside, when the external help is 

needed to accomplish the missions. Focusing on memory alone, we can see not only a 

program’s virtual memory management but that its physical memory control are partially or 
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fully exposed to the untrusted OS, not to mention other system services an enclave program 

may require (process management, I/O, etc.). Even only looking at page tables, we are not 

sure whether the known paging attack is the only or the most effective way to extract 

sensitive information from the enclave process. In the absence of a comprehensive 

understanding of possible attack surfaces, it is not clear at all whether all proposed 

protection, which tends to be heavyweight and intrusive, can even raise the bar to side-

channel attacks, and whether an adversary can switch to a different technique or channel, 

more lightweight and equally effective, to extract the information these approaches were 

designed to protect.

Understanding memory side channels.

As a first step towards a complete understanding of all side-channel threats software vendors 

face, in this paper, we focus on memory-related side channels, which is an important, and 

arguably the most effective, category of side channels that have ever been studied. Of course, 

the page-fault side channel falls in the scope of our discussion. To deepen the community’s 

understanding of the memory side-channel attack surfaces and guide the design of defense 

mechanisms, we particularly hope to convey the following three messages through this 

paper. First, page faults are not the only vector that leaks enclave program’s memory access 
patterns. Any follow-up attempt to mitigate memory side-channel leaks should take into 

account the entire attack surfaces. Second, not every side-channel attack on enclave induces 
a large number of Asynchronous Enclave eXits (AEXs) as demonstrated in the page-fault 
attacks. This is important because the anomalously high AEX interrupt rate has been 

considered to be a key feature of SGX side-channel attacks, which can be defeated by the 

protection designed to capture this signal [34], [14]. Our finding, however, shows that such 

interrupt-based protection is fragile, as more sophisticated attacks can avoid producing too 

many interrupts. Third, it is possible to get a finer-grained (i.e., at the cache-line granularity) 
side-channel observation into the enclave memory. Hence, defense that place sensitive code 

and data on the same page [35] will not be effective on the new attacks.

In this paper, we hope to get across these messages through the following research efforts:

• Systematically exploring memory side-channel attack surfaces. Our study aims to provide 

a systematic exploration of SGX side-channel attack vectors involving memory 

management. Particularly, we enumerate total 8 types of side-channel attack vectors that 

relate to address translation caches in CPU hardware (e.g., TLB, paging-structure caches), 

page tables located in the main memory, and the entire cache and DRAM hierarchy. This 

categorization considers each step in the address translation and memory operation, thus to 

our knowledge presents the most comprehensive analysis on memory side-channel attack 

surfaces against SGX enclaves.

• Reducing side effects of memory side-channel attacks. To demonstrate that a large number 

of AEXs is not a necessary condition of memory side-channel attacks, we develop a new 

memory-based attack, called sneaky page monitoring (SPM). SPM attacks work by setting 

and resetting a page’s accessed flag in the page table entry (PTE) to monitor when the page 

is visited. Unlike the page-fault attacks [39], in which a page fault is generated each time 

when a page is accessed, manipulation of the accessed flags does not trigger any interrupt 
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directly. However, the attack still needs to flush the translation lookaside buffer (TLB) from 

time to time by triggering interrupts to force the CPU to look up page tables and set accessed 
flags in the PTEs. Nevertheless, we found that there are several ways to reduce the number 

of the interrupts or even completely eliminate them in such attacks. Particularly, we can 

avoid tracking the access patterns between the entry and exit pages of a program fragment 

(e.g., a function) and instead, use the execution time measured between these pages to infer 

the execution paths in-between. This approach can still work if all secret-dependent 

branches are located in the same page (i.e., a mechanism proposed by [35]), as long as there 

is still a timing difference between the executions of these branches. Further, we present a 

technique that utilizes Intel’s HyperThreading capability to flush the TLBs through an attack 

process sharing the same CPU core with the enclave code, which can eliminate the need of 

interrupts, when HyperThreading is on.

We demonstrate the effectiveness of SPM through attacks on real-world applications. 

Particularly, we show that when attacking EdDSA (Section IV-C), our timing enhancement 

only triggers 1,300 interrupts, compared with 71,000 caused by the page-fault attack and 

33,000 by the direct accessed flags attack, when recovering the whole 512-bit secret key. 

This level of the interrupt rate makes our attack almost invisible to all known interrupt-based 

defense [34], [14], given the fact that even normal execution of the target program generates 

thousands of interrupts.

• Improving attack’s spatial granularity. Page-fault attacks allow attackers to observe the 

enclave program’s memory access pattern at the page granularity (4KB), therefore existing 

solutions propose to defeat the attacks by aligning sensitive code and data within the same 

memory pages. To show that this defense strategy is ineffective, we demonstrate a series of 

memory side-channel attacks that achieve finer spatial granularity, which includes a cross-

enclave PRIME+PROBE attack, a cross-enclave DRAMA attack, and a novel cache-DRAM 

attack. Particularly, the cache-DRAM attack leverages both PRIME+PROBE cache attacks and 

DRAMA attacks to improve the spatial granularity. When exploiting both channels, we are 

able to achieve a fine-grained observation (64B vs. 16KB for PRIME+PROBE and >1KB for the 

DRAM attack alone), which enables us to monitor the execution flows of an enclave 

program (similar to FLUSH+RELOAD attacks). Note that this cannot be done at the cache level 

since in our case the attacker does not share code with the target enclave program, which 

makes FLUSH+RELOAD impossible.

Implications.

Our findings point to the disturbing lack of understanding about potential attack surfaces on 

SGX, which can have a serious consequence. Not only are all existing defense mechanisms 

vulnerable to the new attacks we developed, but some of them only marginally increase the 

cost on the attacker side: as demonstrated in our study, for the channels on the virtual 

memory, the page-fault attack is not the most cost-effective one and a large number of AEX 

interrupts are not necessary for a successful attack; all existing protection does not add much 

burden to a more sophisticated attacker, who can effectively reduce the frequency of AEXs 

without undermining the effectiveness of the attack. Most importantly, we hope that our 
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study can lead to rethinking the security limitations of SGX and similar TEE technologies, 

provoking a discussion on when to use them and how to use them properly.

Contributions.

In this paper, we make the following contributions:

• First systematic study on SGX side-channel attack surfaces. We report the first systematic 

exploration of the side-channel attack surfaces on Intel SGX. Although only focusing on the 

memory management, our study reveals new channels that disclose information from the 

enclave, particularly accessed flags, timing and cross-enclave channels.

• New attacks. We developed a suite of new attack techniques that exploit these new 

channels. Particularly, we show multiple channels can complement each other to enhance the 

effectiveness of an attack: timing+accessed flags to reduce AEXs (rendering existing 

protection less effective) and DRAM+Cache to achieve a fine-grained observation into the 

enclave (64B).

• New understanding. We discuss possible mitigations of the new threats and highlight the 

importance in better understanding the limitations of SGX-like technologies.

II. Background

A. Memory Isolation in Intel SGX

Memory isolation of enclave programs is a key design feature of Intel SGX. To maintain 

backward-compatibility, Intel implements such isolation via extensions to existing processor 

architectures, which we introduce below.

Virtual and physical memory management.—Intel SGX reserves a range of 

continuous physical memory exclusively for enclave programs and their control structures, 

dubbed Processor Reserved Memory (PRM). The extended memory management units 

(MMU) of the CPU prevents accesses to the PRM from all programs outside enclaves, 

including the OS kernel, virtual machine hypervisors, SMM code or Direct Memory 

Accesses (DMA). Enclave Page Cache (EPC) is a subset of the PRM memory range. The 

EPC is divided to pages of 4KBs and managed similarly as the rest of the physical memory 

pages. Each EPC page can be allocated to one enclave at one time.

The virtual memory space of each program has an Enclave Linear Address Range 

(ELRANGE), which is reserved for enclaves and mapped to the EPC pages. Sensitive code 

and data is stored within the ELRANGE. Page tables responsible for translating virtual 

addresses to physical addresses are managed by the untrusted system software. The 

translation lookaside buffer (TLB) works for EPC pages in traditional ways. When the CPU 

transitions between non-enclave mode and enclave mode, through EENTER or EEXIT 

instructions or Asynchronous Enclave Exits (AEXs), TLB entries associated with the current 

Process-Context Identifier (PCID) as well as the global identifier are flushed, preventing 

non-enclave code learning information about address translation inside the enclaves.
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Security check for memory isolation.—To prevent system software from arbitrarily 

controlling the address translation by manipulating the page table entries, the CPU also 

consults the Enclave Page Cache Map (EPCM) during the address translation. Each EPC 

page corresponds to an entry in the EPCM, which records the owner enclave of the EPC 

page, the type of the page, and a valid bit indicating whether the page has been allocated. 

When an EPC page is allocated, its access permissions are specified in its EPCM entry as 

readable, writable, and/or executable. The virtual address (within ELRANGE) mapped to the 

EPC page is also recorded in the EPCM entry.

Correctness of page table entries set up by the untrusted system software is guaranteed by an 

extended Page Miss Handler (PMH). When the code is executing in the enclave mode or the 

address translation result falls into the PRM range, additional security check will take place. 

Specially, when the code is running in the non-enclave mode and address translation falls 

into the PRM range, or the code runs in the enclave mode but the physical address is not 

pointing to a regular EPC page belonging to the current enclave, or the virtual address 

triggering the page table walk doesn’t match the virtual address recorded in the 

corresponding entry in the EPCM, a page fault will occur. otherwise, the generated TLB 

entries will be set according to both the attributes in the EPCM entry and the page table 

entry.

Memory encryption.—To support larger ELRANGE than EPC, EPC pages can be 

“swapped” out to regular physical memory. This procedure is called EPC page eviction. The 

confidentiality and integrity of the evicted pages are guaranteed through authenticated 

encryption. The hardware Memory Encryption Engine (MEE) is integrated with the memory 

controller and seamlessly encrypts the content of the EPC page that is evicted to a regular 

physical memory page. A Message Authentication Code (MAC) protects the integrity of the 

encryption and a nonce associated with the evicted page. The encrypted page can be stored 

in the main memory or swapped out to secondary storage similar to regular pages. But the 

metadata associated with the encryption needs to be kept by the system software properly for 

the page to be “swapped” into the EPC again.

B. Adversary Model

In this paper, we consider attacks against enclave-protected code and data. The system 

software here refers to the program that operates with system privileges, such as operating 

systems and hypervisors. Our focus in this paper is side-channel analysis that threatens the 

confidentiality of the enclave programs. As such, software bugs in the code of an enclave 

program are out of our scope. Moreover, side channels not involving memory management 

and address translation are not covered either.

We assume in our demonstrated attacks knowledge of the victim binary code to be loaded 

into the enclave. As the adversary also knows the base address of the enclave binary in the 

virtual address space, as well as the entire virtual-to-physical mapping, the mapping of the 

binary code in pages, caches, DRAMs can be derived. Source code of the victim program is 

NOT required. We conducted analysis and experiments on real SGX platforms. So we do 
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assume the adversary has access to a machine of the same configuration before performing 

the attacks.

III. Understanding Attack Surfaces

In this section, we explore side-channel attack surfaces on Intel SGX, through systematic 

enumeration of attack vectors (shared resources that allow interference of the execution 

inside enclaves), followed by an analysis of individual vectors, in terms of the way they can 

be exploited and effectiveness of the attacks.

A. Attack Vectors

A memory reference in the modern Intel CPU architectures involves a sequence of micro-

operations: the virtual address generated by the program is translated into the physical 

address, by first consulting a set of address translation caches (e.g., TLBs and various 

paging-structure caches) and then walking through the page tables in the memory. The 

resulting physical address is then used to access the cache (e.g., L1, L2, L3) and DRAM to 

complete the memory reference. Here, we discuss memory side-channel attack vectors in 

each of these steps.

Address Translation Caches.—Address translation caches are hardware caches that 

facilitate address translation, including TLBs and various paging-structure caches. TLB is a 

multi-level set-associative hardware cache that temporarily stores the translation from virtual 

page numbers to physical page numbers. Specially, the virtual address is first divided into 

three components: TLB tag bits, TLB-index bits, and page-offset bits. The TLB-index bits 

are used to index a set-associative TLB and the TLB-tag bits are used to match the tags in 

each of the TLB entries of the searched TLB set. Similar to L1 caches, the L1 TLB for data 

and instructions are split into dTLB and iTLB. An L2 TLB, typically larger and unified, will 

be searched upon L1 TLB misses. Recent Intel processors allow selectively flushing TLB 

entries at context switch. This is enabled by the Process-Context Identifier (PCID) field in 

the TLB entries to avoid flushing the entries that will be used again. If both levels of TLBs 

miss, a page table walk will be initiated. The virtual page number is divided into, according 

to Intel’s terminology, PML4 bits, PDPTE bits, PDE bits, and PTE bits, each of which is 

responsible for indexing one level of page tables in the main memory. Due to the long 

latency of page-table walks, if the processor is also equipped with paging structure caches, 

such as PML4 cache, PDPTE cache, PDE cache, these hardware caches will also be 

searched to accelerate the page-table walk. The PTEs can be first searched in the cache 

hierarchy before the memory access [11].

Vector 1:  Shared TLBs and paging-structure caches under HyperThreading.

When HyperThreading (HT)1 is enabled, code running in the enclave mode may share the 

same set of TLBs and paging-structure caches with code running in non-enclave mode. 

Therefore, the enclave code’s use of such resources will interfere with that of the non-

1Intel’s term for Simultaneous Multi-Threading.
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enclave code, creating side channels. This attack vector is utilized to clear the TLB entries in 

the HT-SPM attack (Section IV-A).

Vector 2:  Flushing selected entries in TLB and paging-structure caches at AEX.

According to recent versions of Intel Software Developer’s Manual [3], entering and leaving 

the enclave mode will flush entries in TLB and paging-structure caches that are associated 

with the current PCID. As such, it enables an adversary from a different process context to 

infer the flushed entries at context switch. This is possible even on processors without HT. 

However, we were not able to confirm this attack vector on the machines we had (i.e., 

Skylake i7-6700). We conjecture that this is because our Skylake i7-6700 follows the 

specification in an older version of Intel Software Developer’s Manual [4], which states all 

entries will be flushed regardless of the process context. Nevertheless, we believe this attack 

vector could be present in future processors.

Vector 3:  Referenced PTEs are cached as data.

Beside paging-structure caches, referenced PTEs will also be cached as regular data [11]. 

This artifact enables a new attack vector: by exploiting the FLUSH+RELOAD side channel on 

the monitored PTEs, the adversary can perform a cross-core attack to trace the page-level 

memory access pattern of the enclave code. This attack vector presents a timing-channel 

version of the sneaky page monitoring attack we describe in Section IV. We will discuss its 

implication in Section VI.

Page tables.—Page tables are multi-level data structures stored in main memory, serving 

address translation. Every page-table walk involves multiple memory accesses. Different 

from regular memory accesses, page-table lookups are triggered by the micro-code of the 

processor direction, without involving the re-ordering buffer [11]. The entry of each level 

stores the pointer to (i.e., physical address of) the memory page that contains the next level 

of the page table. The structure of a PTE is shown in Figure 1. Specially, bit 0 is present 
flag, indicating whether a physical page has been mapped to the virtual page; bit 5 is 

accessed flag, which is set by the processor every time the page-table walk leads to the 

reference of this page table entry; bit 6 is dirty flag, which is set when the corresponding 

page has been updated. Page frame reclaiming algorithms rely on the dirty flag to make 

frame reclamation decisions.

As the page tables are located inside the OS kernel and controlled by the untrusted system 

software, they can be manipulated to attack enclaves. However, as mentioned earlier, 

because the EPC page permission is also protected by EPCM, malicious system software 

cannot arbitrarily manipulate the EPC pages to compromise its integrity and confidentiality. 

However, it has been shown in previous work [39] that by clearing the present flag in the 

corresponding PTEs, the malicious system software can collect traces of page accesses from 

the enclave programs, inferring secret-dependent control flows or data flows. Nevertheless, 

setting present flag is not the only attack vector against enclave programs.

Vector 4:  Updates of the accessed flags in enclave mode.
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When the page-table walk results in a reference of the PTE, the accessed flag of the entry 

will be set to 1. As such, code run in non-enclave mode will be able to detect the page table 

updates and learn that the corresponding EPC page has just been visited by the enclave code. 

However, page-table walk will also update TLB entries, so that future references to the same 

page will not update the accessed flags in PTEs, until the TLB entries are evicted by other 

address translation activities. We exploit this attack vector in our SPM attacks in Section IV.

Vector 5:  Updates of the dirty flags in enclave mode.

Similar to accessed flags, the dirty flag will be updated when the corresponding EPC page is 

modified by the enclave program. This artifact can be exploited to detect memory writes to a 

new page. The new side-channel attack vector will enable the adversary to monitor secret-

dependent memory writes, potentially a finer-grained inference attack than memory access 

tracking.

Vector 6:  Page faults triggered in enclave mode.

In addition to the present flag, a few other bits in the PTEs can be exploited to trigger page 

faults. For example, on a x86-64 processor, bit M to bit 51 are reserved bits which when set 

will trigger page fault upon address translation. Here bit M – 1 is the highest bit of the 

physical address on the machine. The NX flag, when set, will force page faults when 

instructions are fetched from the corresponding EPC page.

Cache and memory hierarchy.—Once the virtual address is translated into the physical 

address, the memory reference will be served from the cache and memory hierarchy. Both 

are temporary storage that only hold data when the power is on. On the top of the hierarchy 

is the separate L1 data and instruction caches, the next level is the unified L2 cache 

dedicated to one CPU core, then L3 cache shared by all cores of the CPU package, then the 

main memory. Caches are typically built on Static Random-Access Memory (SRAM) and 

the main memory on Dynamic Random-Access Memory (DRAM). The upper level storage 

tends to be smaller, faster and more expensive, while the lower level storage is usually 

larger, slower and a lot cheaper. Memory fetch goes through each level from top to bottom; 

misses in the upper level will lead to accesses to the next level. Data or code fetched from 

lower levels usually update entries in the upper level in order to speed up future references.

The main memory is generally organized in multiple memory channels. Each memory 

channels is handled by a dedicated memory controller. One memory channel is physically 

partitioned into multiple DIMMs (Dual In-line Memory Module), each with one or two 

ranks. Each rank has several DRAM chips (e.g., 8 or 16), and is also partitioned into 

multiple banks. A bank carries the memory arrays organized in rows and each of the rows 

typically has a size of 8KB, shared by multiple 4KB memory pages since one page tends to 

span over multiple rows. Also on the bank is a row buffer that keeps the most recently 

accessed row. Every memory read will load the entire row into the row buffer before the 

memory request is served. As such, accesses to the DRAM row already in the row buffer are 

much faster.
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Vector 7:  CPU caches are shared between code in enclave and non-enclave mode.

SGX does not protect enclave against cache side-channel attacks. Therefore, all levels of 

caches are shared between code in enclave mode and non-enclave mode, similar to cross-

process and cross-VM cache sharing that are well-known side-channel attack vectors. 

Therefore, all known cache side-channel attacks, including those on L1 data cache, L1 

instruction cache, and L3 cache, all apply to the enclave settings. We empirically confirmed 

such threats (Section-V-A).

Vector 8:  The entire memory hierarchy, including memory controllers, channels, DIMMs, 

DRAM ranks and banks (including row buffers), are shared between code in enclave and 

non-enclave mode.

Similar to cache sharing, DRAM modules are shared by all processes running in the 

computer systems. Therefore, it is unavoidable to have enclave code and non-enclave code 

accessing memory stored in the same DRAM bank. The DRAM row buffer can be served as 

a side-channel attack vector: when the target program makes a memory reference, the 

corresponding DRAM row will be loaded into the row buffer of the bank; the adversary can 

compare the row-access time to detect whether a specific row has just been visited, so as to 

infer the target’s memory access. This artifact has been exploited in DRAMA attacks [32]. 

In Section V, we show that after key technical challenges are addressed, such attacks can 

also succeed on enclave programs. Other shared memory hierarchy can also create 

contention between enclave and non-enclave code, causing interference that may lead to 

covert channels [24].

B. Characterizing Memory Vectors

Here we characterize the aforementioned memory side-channels in three dimensions:

Spatial granularity.—This concept describes the smallest unit of information directly 
observable to the adversary during a memory side-channel attack. Specifically, it measures 

the size of the address space one side-channel observation could not reveal. For example, the 

spatial granularity of the page-fault attack is 4KB, indicating that every fault enables the 

adversary to see one memory page (4096 bytes) being touched, though the exact address 

visited is not directly disclosed.

Temporal observability.—Given a spatial granularity level, even though the adversary 

cannot directly see what happens inside the smallest information unit, still there can be 

timing signals generated during the execution of the target program to help distinguish 

different accesses made by the program within the unit. For example, the duration for a 

program to stay on a page indicates, indirectly, whether a single memory or multiple 

accesses occur. A side-channel is said to have this property if the timing is measured and 

used to refine the observations in the attack.

Side effects.—We use this concept to characterize observable anomalies caused by a 

memory side-channel attack, which could be employed to detect the attack. An example is 

AEX, which is frequently invoked by the page-fault attack. Another side effect is the 
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slowdown of the execution. Since the primary approach to conducting a side-channel attack 

is to cause contention in memory resource, such as the flush of caches, TLBs, paging 

structure caches, DRAM row buffers, etc., overheads will be introduced to the runtime 

performance of the enclave code. AEXs also contribute to the performance overhead. For 

example, the original page-fault attacks are reported to make the target program run one or 

two orders of magnitude slower. This level of slowdown is easy to get noticed. Frequent 

AEXs are also detectable using approaches proposed by Chen et al. [14], as the execution 

time between two basic blocks can be much longer.

IV. Reducing Side Effects with Sneaky Page Monitoring Attacks

To attack the virtual memory, a page-fault side-channel attacker first restricts access to all 

pages, which induces page faults whenever the enclave process touches any of these pages, 

thereby generating a sequence of its page visits. A problem here is that this approach is 

heavyweight, causing an interrupt for each page access. This often leads to a performance 

slowdown by one or two orders of magnitude [39]. As a result, such an attack could be 

detected by looking at its extremely high frequency of page faults (i.e., AEXs) and 

anomalously low performance observed from the remote. All existing solutions, except those 

requiring hardware changes, are either leveraging interrupts or trying to remove the page 

trace of a program (e.g., putting all the code on one page). Little has been done to question 

whether such defense is sufficient.

To show that excessive AEXs are not the necessary condition to conducting memory side-

channel attack, in this section, we elaborate sneaky page monitoring (SPM), a new paging 

attack that can achieve comparable effectiveness with much less frequent AEXs.

A. The Three SPM Attacks (Vector 4)

In this section, we introduce three types of SPM attacks, which monitor the page table 

entries and exploit different techniques to flush TLBs.

B-SPM: Accessed Flags Monitoring.—The SPM attack manipulates and monitors the 

accessed flags on the pages of an enclave process to identify its execution trace. Specifically, 

we run a system-level attack process outside an enclave to repeatedly inspect each page table 

entry’s accessed flag, record when it is set (from 0 to 1) and reset it once this happens. The 

page-access trace recovered in this way is a sequence of page sets, each of which is a group 

of pages visited (with their accessed flags set to 1) between two consecutive inspections. 

This attack is lightweight since it does not needs any AEX to observe the pages first time 

when they are visited.

However, as mentioned earlier, after a virtual address is translated, its page number is 

automatically added to a TLB. As a result, the accessed flag of that page will not be set 

again when the page is visited later. To force the processor to access the PTE (and update the 

flag), the attacker has to invalidate the TLB entry proactively. The simplest way to do so is 

by generating an inter-processor interrupt (IPI) from a different CPU core to trigger a TLB 

shootdown, which causes an AEX from the enclave, resulting in flushing of all TLB entries 

of the current PCID. Figure 2 illustrates this attack, which we call basic SPM or B-SPM.
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This B-SPM attack still involves interrupts but is already much more lightweight than page-

fault attack: TLB shootdowns are typically less expensive than page faults; more 

importantly, B-SPM only triggers interrupts when visiting the same page needs to be 
observed again, while the latter needs to trigger an interrupt for every (new) page access.

In terms of accuracy, the page-fault attack tends to have a finer-grained observation while B-

SPM attack cannot differentiate the visiting order of two pages that are spotted during the 

same round of inspections. However B-SPM attack strives for a balance between the 

interrupt rate and attack resolutions.

T-SPM: Timing enhancement.—When repeated visits to same pages become a salient 

feature for an input, the basic SPM needs to issue more TLB shootdowns in order to observe 

the feature, making the attack observable to the existing protections that detect the 

anomalous interrupt rate [34], [14], Figure 3 illustrates an example, in which the secret-

dependent code resides in the same page, except that the execution on one condition involves 

a loop while that on the other does not, leading to different execution time. In this case, TLB 

shootdowns during the execution of the loop are required to distinguish two branches using 

page visit traces (i.e. number of page visits). To reduce the number of the interrupts, we 

leverage a timing channel to enhance SPM, making it stealthier. Specifically, given a code 

fragment with a unique entry page α and a unique exit page β, together with multiple input-

dependent paths between the two points on different pages, our timing-enhanced SPM 

(called T-SPM) continuously monitors α and β, measuring the execution time between these 

two points, and once the accessed flag of β is found to be set, flushes the TLB and resets the 

accessed flags for both PTEs. The timing recorded is then used to infer the input of the code 

fragment.

This simple approach avoids all the interrupts between α and β, but still reveals the possible 

execution path connecting them. In the extreme case, when all other code stays on the same 

page, as proposed by the prior research [35] to defend against page-fault attacks, T-SPM can 

still infer sensitive information when the operations on them take different time to complete.

HT-SPM: TLB Flushing through HyperThreading.—Further we found that when 

HyperThreading is turned on for a processor, we can clear up the TLBs without issuing TLB 

shootdowns, which renders all existing interrupt-based protection ineffective. 

HyperThreading runs two virtual cores on a physical core to handle the workloads from two 

different OS processes. This resource-sharing is transparent to the OS and therefore does not 

trigger any interrupt. The processes running on the two virtual cores share some of the 

TLBs, which allows the attacker to remove some TLB entries outside the enclave, without 

causing any interrupts. As a result, in the presence of HyperThreading, we can run an attack 

process together with an enclave process, to continuously probe the virtual addresses in 

conflict with the TLB entries the latter uses, in an attempt to evict these entries and force the 

victim process to walk its page tables. Using this technique, which we call HT-SPM, we can 

remove most or even eliminate the interrupts during an attack.
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B. Evaluation of Effectiveness

Our analysis was performed on an Dell Optiplex 7040 with a Skylake i7-6700 processor and 

4 physical cores, with 16GB memory. The configuration of the cache and memory hierarchy 

is shown in Table I. It runs Ubuntu 16.04 with kernel version 4.2.8. During our experiments, 

we patched the OS when necessary to facilitate the attacks, as an OS-level adversary would 

do. We used the latest Graphene-SGX Library OS [5], [37] compiled using GCC 5.4.0 with 

default compiling options to port unmodified libraries.

B-SPM on Hunspell.—Hunspell is a popular spell checking tool used by software 

packages like Apple’s OS X and Google Chrome. It stores a dictionary in a hash table, 

which uses linked lists to link the words with the same hash values. Each linked list spans 

across multiple pages, so searching for a word often generates a unique page-visit sequence. 

Prior study [39] shows that by monitoring page faults, the attacker outside an enclave can 

fingerprint the dictionary lookup function inside the enclave, and further determine the word 

being checked from the sequence of accessing different data pages (for storing the 

dictionary). In our research, we evaluated B-SPM on Hunspell 1.3.3 and found that the 

invocation of its spell function (looking up for one word) can be determined by the access 

of a specific page, which can be reliably identified at the inspection rate (for an attack 

process running on a separate core) of once per 184 CPU cycles. For simplicity, our attack 

process issues a TLB shootdown once the function invocation is discovered. In the interrupt, 

the process inspects the PTEs of pages being monitored to identify the searched word and 

resets their accessed flags, and then monitors for the occurrence of next function invocation. 

This approach identifies all the iterative lookups for multiple words.

Like the prior research [39], we also evaluated our attack using the en_US Hunspell 

dictionary, as illustrated in Table II. To compare with the page-fault attack, we 

reimplemented it and ran it against the same data-set, whose results are shown in Table II. 

As we can see here, the effectiveness of B-SPM is in line with that of the known attack: e.g., 

the percentage of the uniquely-identifiable words (i.e., group size 1) is 73.47% in our attack, 

a little below 83.05% observed in the page-fault attack; more than 92% of the words are in 

group size less than or equal to 3, compared with 98.6% in the page-fault attack. When it 

comes to performance, however, B-spM runs much faster: for 62,129 word look-ups it 

slowed down the original program by a factor of 5.1×, while the existing attack incurred an 

overhead of 1214.9×. Note that the prior research reports a slowdown of 25.1× for 39,719 

word look-ups over the SGX emulator [39]. In our study, however, we ran both experiments 

on the real SGX platform.

T-SPM on FreeType.—FreeType is a font library that converts text content (the input) into 

images, which has been used by Linux, Android and iOS and other software packages. In 

our research, we ran T-SPM on its TrueType font rendering function, as did in the prior 

study [39]. The function, TT_load_Glyph, takes a letter’s glyph as its input to construct its 

bitmap. The prior study fingerprints the start and the end of the function, and selects a set of 

pages in-between and uses the number of page faults observed on these pages to determine 

the letter being rendered. In our research, we utilize a trigger page to identify the execution 

of the TT_load_Glyph function and then within the function, select 5 different α-β pairs 

Wang et al. Page 13

Conf Comput Commun Secur. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



along its control-flow graph as features for identifying the 26 alphabet and the space 

between words (see Table III). Each feature, the timing between its α and β points, can 

separate some of these 27 letters from others. Collectively, they form a feature vector over 

which we run a Random Forest Classifier (with number of estimators set as 400) to classify 

an observed execution of TT_load_Glyph into one of these letters.

We ran our experiment on FreeType 2.5.3 within an enclave and collected 250 samples of a 

1000 character paragraph from the book The Princess and the Goblin as a training set for the 

Random Forest Classifier. Then we tested on a 1000 character paragraph from The 
Wonderful Wizard of Oz, as is used in the prior study [39]. Based upon the timing vectors 

observed in the experiments (with an inspection rate of once per 482 cycles), our classifier 

correctly identified 57.35% of the letters with a precision of 89.94% (see Table IV), and 

100% of the spaces. 72.14% of the words were correctly recovered by running a dictionary 

spelling check. Compared with the page-fault attack, which captured 100% of the words, T-

SPM is less accurate but much more efficient: it incurred an overhead of 16%, while our re-

implemented page-fault attack caused the program to slow down by a factor of 252×.

HT-SPM on Hunspell.—As an example, we ran HT-SPM on Hunspell, in a scenario when 

a set of words were queried on the dictionary. We conducted the experiments on the Intel 

Skylake i7-6700 processor, which is characterized by multi-level TLBs (see Table I). The 

experiments show that the dTLB and L2 TLB are fully shared across logical cores. Our 

attack process includes 6 threads: 2 cleaners operating on the same physical core as the 

Hunspell process in the enclave for evicting its TLB entries and 4 collectors for inspecting 

the accessed flags of memory pages. The cleaners probed all 64 and 1536 entries of the 

dTLB and L2 TLB every 4978 cycles and the collectors inspected the PTEs once every 128 

cycles. In the experiment, we let Hunspell check 100 words inside the enclave, with the 

attack process running outside. The collectors, once seeing the fingerprint of the spell 

function, continuously gathered traces for data-page visits, from which we successfully 

recovered the exact page visit set for 88 words. The attack incurred a slowdown of 39.1% 

and did not fire a single TLB shootdown.

C. Silent Attacks on EdDSA

To understand the stealthiness of different attacks, in terms of their AEX frequency (which 

are used by the prior research to detect page side-channel attacks [34], [14]), we ran the 

page-fault attack, B-SPM and T-SPM against the latest version of Libgcrypt (v1.7.6) to 

recover the EdDSA session keys2. Edwards-curve Digital Signature Algorithm (EdDSA) 

[13] is a high-speed high-security digital signature scheme over twisted Edwards curves. The 

security of EdDSA is based on the difficulty of the well-known elliptic curve discrete 

logarithm problem: given points P and Q on a curve to find an integer a, if it exists, such that 

Q = aP. Provided the security parameters b and a cryptographic hash function H producing 

2b-bit output, an EdDSA secret is a b-bit string k, and a = H(k) is also private. The 

corresponding public key is A = sB, with B the base point and s the least significant b bits of 

2The attacks only involve code pages, while HT-SPM is designed to reduce AEXs for data pages. As such, HT-SPM is not presented 
in the comparison.
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a. Let r be the private session key, the signature of a message M under k is a 2b-bit string (R, 

S), where R = rB and S = (r + H(R, A, M)a) mod l. It can be seen that if r is disclosed, 

assuming H(R, A, M) mod l ≠ 0, the long-term secret key a can be directly obtained as a = 

(S – r)/H(R, A, M) mod l.

Figure 4 presents the main function for ECC scalar point multiplication. Although Libgcrypt 

provides side-channel protection by tagging the long-term private key as “secure memory”, 

we found that it does not protect the secret session key. As a result, the non-hardened branch 

of line 13-17 is always taken while generating the message signature. Then the secret-

dependent if-branch can leak out session key information. We present our evaluation results 

using page fault attack, B-SPM and T-SPM respectively, as follows:

Page-fault attacks.—During an offline analysis, we generated the sub-function call traces 

for both _gcry_mpi_ec_dup_point (Line 14 of Figure 4) and 

_gcry_mpi_ec_add_points (Line 16, a necessary condition for bit 1), from which we 

identified 4 code pages to be monitored, including _gcry_mpi_ec_mul_point on one 

page, _gcry_mpi_ec_add_points and _gcry_mpi_ec_dup_point on another page, 

their related functions on the third page and _gcry_mpi_test_bit on the last page, whose 

execution indicates the end of the processing on the current bit. During the attack, we 

intercepted the page fault handler in our kernel module and restricted accesses to these 

monitored pages by clearing their present bits. Once a page fault on a monitored page 

occurred we reset its present bit and recorded the current count of page faults. We found that 

for key bit 1 and 0, there are 89 and 48 subsequent page visits respectively. In total around 

71,000 page faults were triggered to correctly recover all the session key bits.

B-SPM attacks.—We found that the aforementioned code page set is visited for both key 

bit 1 and 0, if we do not flush the TLB. Therefore, the spying thread needs to interrupt the 

target enclave thread and clean up the current TLB to get more detailed information about 

page visits to differentiate the key bit with different values. To reduce the frequency of the 

interrupts needed, instead of sending IPIs with fixed time interval, the spying thread runs 

simultaneously with the target thread and monitors a trigger page containing ec_pow2 and 

ec_mul2. Whenever the trigger page is accessed, the spying thread interrupts the target 

thread to shoot down the TLB, and then identifies whether two other pages in the page set 

(000E9000 and 000F0000 in TableV) are visited between two interrupts. We observed a 

clear difference in the page traces for key bit 1 and 0 and can recover all key bits during the 

post-processing phase. In total around 33,000 interrupts were triggered to correctly recover 

all the session key bits.

T-SPM attacks.—To further reduce the AEX frequency, we monitor the 2 pages containing 

_gcry_mpi_ec_mul_point and _gcry_mpi_ec_dup_point/

_gcry_mpi_ec_add_points respectively and utilize the time between the visits to both 

pages to find out the value of the current key bit. Specifically, once both of them are found to 

be accessed, our attack process starts the timer (using rdtsc) but waits for 2000 

nanoseconds to ensure that the execution of the target process leaves both pages, before 

shooting down the TLB and resetting the accessed flags of both pages. The timer stops when 
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both pages are observed again. In this way, only about 2 interrupts are needed for collecting 

information for each key bit. The recorded timings turn out to be differentiating enough to 

determine whether_gcry_mpi_ec_dup_point or _gcry_mpi_ec_add_points has been 

executed, around 19,700 cpu cycles for the former and 27,900 cpu cycles for the latter. After 

all the call traces are gathered, we can figure out that the current key bit is 1 when 

_gcry_mpi_ec_add_points is observed right after _gcry_mpi_ec_dup_point, and 0 if 

only _gcry_mpi_ec_dup_point is seen. In total around 1,300 interrupts were triggered to 

correctly recover all the session key bits.

In summary, we found that these three attacks all are able to recover the full EdDSA session 

key reliably. Page fault attack triggers a page fault for every page observation and produces 

about 71,000 AEXs. The B-SPM attack can observe the page visit set between two 

consecutive inspections. However it still needs to aggressively send IPIs to clear TLB entries 

to gain timely observation of the pages visited, which produces about 33,000 AEXs. T-SPM 

attack only issues a TLB shootdown for every invocation of _gcry_mpi_ec_dup_point or 

_gcry_mpi_ec_add_points and differentiates between the two functions using timing 

information. As such, it generates a minimum number of AEXs. We noticed that a normal 

execution of the EdDSA program also incurs at least 1,500 page faults. The OS attacker 

could reduce the number of AEXs caused by normal page faults and therefore make the T-

SPM attack unobservable.

V. Improving Spatial Granularity with Cache-DRAM ATTACKS

Page-fault side-channel attacks (and also the sneaky page monitoring attacks described in 

the previous section) only allow attackers to learn the enclave program’s memory access 

patterns at a page granularity. Therefore, mechanisms that mix sensitive code and data into 

the same pages have been proposed to defeat such attacks [35]. Intel also recommends 

“aligning specific code and data blocks to exist entirely within a single page.” [7]. However, 

the effectiveness of this defense method is heavily conditioned on the fact that page 

granularity is the best spatial granularity achievable by the adversary. However, our study 

suggests it is not the case.

In this section, we demonstrate three attack methods to show that a powerful adversary is 

able to improve spatial granularity significantly. Particularly, we will demonstrate a cross-

enclave Prime+Probe cache attack, a cross-enclave DRAMA attack, and a cache-DRAM 

attack. Because SGX do not allow memory sharing between enclaves, the Flush+Reload 

cache attacks that can achieve cache-line granularity cannot be conducted against secure 

enclaves. However, we show that the cache-DRAM attack is capable of achieving the same 

level of spatial granularity against enclaves.

A. Cross-enclave Prime+Probe (Vector 7)

Our exploration starts with a validation of cross-enclave cache Prime+Probe attack. SGX is 

not designed to deal with cache side-channel attacks. Therefore, it is expected that known 

cache attacks also work against SGX enclaves. To confirm this, we ported GnuPG 1.4.13 to 

Graphene-SGX. The algorithm repeatedly decrypted a ciphertext which was encrypted with 

a 3,072-bit ElGamal public key, just as the prior work [27] did. GnuPG uses Wiener’s table 
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to decide subgroup sizes matching field sizes and adds a a 50% margin to the security 

parameters, consequently a private key of 403 bits is used. In the experiment an attack 

process monitored when the victim enclave was loaded and determined the physical address 

of Square-and-Multiply exponentiation. With knowledge of cache slicing and cache set 

mapping [21], the attacker constructed eviction sets mapped to the same cache sets as the 

target addresses. In our experiment, with the observation of only one ElGamal decryption, 

we could recover all 403 bits of the private key through a PRIME+PROBE cache attack with an 

error rate of 2.3%.

This experiment suggest that Prime+Probe cache attacks can be performed in a cross-

enclave scenario, similar to the traditional settings. We note that Prime+Probe attacks 

achieves a spatial granularity of a cache set, which is 16KB on a processor with a 8196-set 

LLC (see Table I and Table VII).

B. Cross-enclave DRAMA (Vector 8)

The DRAMA attack exploits shared DRAM rows to extract sensitive information [32]. In 

such an attack, in order to learn whether the victim process has accessed a virtual address d, 

the adversary allocates two memory blocks that map to the same DRAM bank, with one 

sharing the same DRAM row with the physical memory of d, which we call p, and the other 

mapped to a different row on the same bank, which we call p′. The attack is conducted using 

the following steps:

• Access the memory block p′.

• Wait for some victim operations.

• Measure the access time of memory block p.

A faster memory access to memory block p suggests the victim process has probably 

touched memory address d during its operations. Of course, because the DRAM row is large 

(e.g., typically 8 KB), false detection is likely. Even so, DRAMA is shown to effectively 

detect the existence of keystroke activities [32].

Directly applying DRAMA to perform cross-enclave attacks faces several challenges, most 

of which are also faced by our design of cache-DRAM attacks. Therefore, we defer the 

discussion of these design challenges to Section V-C where we detail the cache-DRAM 

attacks. Here we enumerate some limitations of cross-enclave DRAMA attacks.

First, most of the victim’s memory access will be cached (EPC is cacheable by default), and 

hence no information will be leaked through the use of DRAM rows. In fact, the original 

DRAMA paper only demonstrated the use of DRAMA to detect hardware events (e.g., 

keystrokes) that utilize non-cacheable memory regions [32]. While we could manually 

disable cache by setting the cache disable (CD) bit of CR0 for the core running the victim 

enclave3, this would slow down the enclave process for approximately 1000×.

3In Intel SGX programming reference [1] it is said that PRMRR_BASE register could be programmed with values UC(0×0) to set 
PRM range as uncacheable. We confirmed on our platform that PRMRR_BASE register cannot be changed after system boot.
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Second, DRAMA attacks may falsely detect row hits that are unrelated to the victim 

enclave’s visit to d, because the 8KB DRAM row can be shared by multiple data structure or 

code regions. This false detection, however, is very common in our experiments.

Finally, DRAMA cannot achieve fine-grained spatial accuracy. As an example, on our test 

system a memory page is distributed over 4 DRAM rows. In an extreme case the attacker 

could occupy an entire row except a single 1KB chunk for the victim enclave and achieve a 

spatial accuracy of 1KB (see Table VII), which is better than the PRIME+PROBE cache attack 

(16 KB), however still worse than a FLUSH+RELOAD cache attack (64B).

C. Cache-DRAM Attacks (Vector 7 & 8)

To improve cross-enclave DRAMA attacks, we propose a novel cache-DRAM attack. We 

show that by leveraging both vectors, the adversary can significantly improve the spatial 

granularity of memory side-channel attacks.

Techniques.—Particularly, the cache-DRAM attack is performed using two threads: one 

thread runs in non-enclave mode which PRIME+PROBES a cache set in the last-level cache in 

which the address d is mapped; the other thread conducts the cross-enclave DRAMA 

without disabling caching. As the PRIME+PROBE attack causes conflicts with d in the last-

level cache, the victim enclave’s accesses of d will reach the DRAM. The concept of cache-

DRAM attack is shown in Figure 5. However, to implement cache-DRAM attacks against 

SGX enclaves, one needs to address the following challenges: First, share the DRAM Bank 
and Row with d. The EPC memory exclusively used by enclaves is already isolated from the 

rest of the physical memory in DRAMs. To understand this artifact, we explain the 

mechanism of the DRAM-level isolation using our own testbed (Table I) as an example. 

With the assumption of row bits being the most significant bits in a physical address [32], 

[38], any bit beyond bit 19 is a row bit that detennines the corresponding DRAM row of the 

physical address. With a 128MB PRM (physical memory range 0×80000000 to 

0×87FFFFFF), no non-PRM memory will occupy row number 0×1000 to 0×1 OFF, as 

shown in Table VI. As such, the PRM range (exclusively taken by enclaves) spans every 

DRAM bank and occupies specific sets of rows in each bank; these rows are not shared with 

non-PRM memory regions.

To overcome this barrier, we leverage the processor’s support for running multiple enclave 

programs concurrently to carry out the DRAMA attacks from another enclave program 

controlled by the adversary. Since both programs operate inside enclaves, they share the 

EPC memory range. The adversary can manage to co-locate the memory page with the 

target enclave memory on the same banks and even the same rows, as illustrated in Figure 5. 

Specifically, we first identified the physical address of interest in the victim enclave. This 

can be achieved by reading the page tables directly. Then we allocated a large chunk of 

memory buffer in the spying enclave and determined their physical addresses. Using the 

reverse-engineering tool provided by the original DRAMA attack [32], we picked two 

memory addresses p and p′, as stated above. The attack is illustrated as in Figure 5. p and p′ 
are accessed in turns without any delay. The access latency of memory block p is measured 

to determine whether the target address d in the victim enclave has just been visited.
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Second, obtain fine-grained timers in enclaves. An unexpected challenge in executing this 

attack is the lack of a reliable clock. The SGXv1 processor family does not provide timing 

information within an enclave: the instructions such as RDTSC and RDTSCP are not valid for 

enclave programs. To measure time, a straightforward way is making system calls, which is 

heavyweight, slow and inaccurate, due to the variation in the time for processing EEXIT and 

calls. A much more lightweight solution we come up with utilizes the observation that an 

enclave process can access the memory outside without mode-switch. Therefore we can 

reserve a memory buffer for smuggling CPU cycle counts into the attack enclave. 

Specifically, a thread outside the enclave continuously dumps the cycle counts to the buffer 

and the attack thread inside continuously reads from the buffer. Although the race condition 

between them brings in noise occasionally due to our avoidance of mutex for supporting 

timely interactions between the threads, most of the time we successfully observed a timing 

difference between a row hit and a row conflict when probing the target enclave addresses. 

We use this method to measure the access latency of p.

Evaluation.—First we evaluate the accuracy of the timer we build for the attack. We 

designed a simple enclave process continuously visiting d with clflush instruction forcing 

the memory accesses to reach a DRAM row. An evaluator enclave utilized the timer to 

measure the access latency of p (the address on the same row as d), as well as the access 

latency of p′ (the address on a different row), 1 million times each. Figure 6 shows the 

distributions of the access latency measured by the evaluator enclave during these accesses. 

As we see here the cases of DRAM row hit can be easily identified based on the timing 

difference observed through our timer (the left-most part of its distribution).

As an example, we ported Gap 4.8.6 to Graphene-SGX, targeting an input-dependent branch 

which is illustrated in Figure 7. Gap is a software package implementing various algebra 

algorithms. It uses a non-integer data type for values that cannot fit into 29 bits, otherwise 

the values are stored as immediate integers. In our experiment we had the victim enclave 

running the SumInt operation every 5 μs. We set the range for a row hit detection as within 

400-426 cpu cycles. To further reduce false positives brought by prefetching, we disabled 

hardware prefetches on the victim core by updating MSR 0×1A4. With the cache-DRAM 

attack targeting the instructions in line 8, our attack enclave could detect whether the branch 

in line 7 was taken with a probability of 14.6% and <1% false positive rate. Moreover, we 

only observed a 2% slowdown of enclave program in our experiment.

Discussion.—The cache-DRAM attack achieves a spatial accuracy of 64 byte which is as 

accurate as the Flush+Reload cache attacks. In the meanwhile it ensures that only the 

targeted cache set is primed which further reduces the false positives caused by accesses of 

shared DRAM rows. The attack can be more powerful for a dedicated attacker by reserving 

a DRAM bank exclusively for the victim and spying enclaves.
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VI. Mitigation and Discussion

A. Analysis of Attack Surfaces

Table VII summarizes the characteristics of the memory side-channel attacks discovered 

over different vectors. The data here were collected from the system configuration in Table I 

and a PRM size of 128MB. The value under the Accuracy column shows the spatial 

accuracy of the attack vectors. For example, the iCache PRIME+PROBE channel has an 

accuracy of 2MB (i.e., 128MB/64): that is, detecting one cache miss in one of the iCache 

sets could probably mean any of 2MB of the physical memory being accessed. The larger 

the number is, the coarser-grained the vector will be. The attack with the finest granularity is 

the cache-DRAM attack, which is 64 bytes, equivalent to the FLUSH+RELOAD cache attacks. 

However, note that due to lack of shared memory pages—as EPC pages only belong to one 

enclave at a time—FLUSH+RELOAD cache attacks are not feasible on SGX enclaves. It is also 

worth noting that the calculation of the accuracy does not consider knowledge of the 

physical memory exclusively used by the target enclave. This information can help improve 

the granularity even further. PRIME+PROBE cache attacks on iCache, dCache and L2 cache 

induce high volume of AEXs. This does not take HyperThreading into consideration. If so, 

both AEX numbers and slowdowns will become modest. Most of the attack vectors that 

need to frequently preempt the enclave execution will induce high overheads. The cross-

enclave DRAMA needs to disable cache to conduct effective attacks, therefore inducing high 
slowdown. What is not shown in the table is temporal observabilities. Except for page-fault 

attacks, all other attacks have temporal observabilities, as they allow observing finer-grained 

information than allowed by their basic information unit, which are leaked through timing 

signals.

Other attack vectors not listed.—FLUSH+RELOAD cache attacks against cached PTE 

entries are one attack vector that we have not listed in Table VII. As a PTE entry shares 

cache line with 7 more PTE entries, the spatial accuracy is 4KB × 8 = 32KB. The attack can 

achieve the spatial accuracy of 4KB if PTE entries are intentionally organized. Combining 

SPM and DRAMA attacks will also introduce a new attack vector. We did not show these 

attacks due to the similarity to the ones we demonstrated.

B. Effectiveness of Existing Defenses

Deterministic multiplexing.—Shinde et al. [35] proposes a compiler-based approach to 

opportunistically place all secret-dependent control flows and data flows into the same 

pages, so that page-level attacks will not leak sensitive information. However, this approach 

does not consider cache side channels or DRAM side channels, leaving the defense 

vulnerable to cache attacks and DRAMA.

Hiding page faults with transactional memory.—T-SGX [34] prevents information 

leakage about page faults inside enclaves by encapsulating the program’s execution inside 

hardware-supported memory transactions. Page faults will cause transaction aborts, which 

will be handled by abort handler inside the enclave first. The transaction abort handler will 

notice the abnormal page fault and decide whether to forward the control flow to the 

untrusted OS kernel. As such, the page fault handler can only see that the page fault happens 
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on the page where the abort handler is located (via register CR2). The true faulting address 

is hidden.

However, T-SGX cannot prevent the accessed flags enabled memory side-channel attacks. 

According to Intel Software Developer’s manual [3], transaction abort is not strictly 

enforced when the accessed flags and dirty flags of the referenced page table entry is 

updated. This means there is no security guarantee that memory access inside transactional 

region is not leaked through updates of the page table entries.

Secure processor design.—Sanctum [15] is a new hardware design that aims to protect 

against both last-level cache attacks and page-table based attacks. As Sanctum enclave has 

its own page tables, page access patterns become invisible to the malicious OS. Therefore, 

the page-faults attacks and SPM attacks will fail. However, Sanctum does not prevent cross-

enclave DRAMA attack. As a matter of fact, Sanctum still relies on the OS to assign DRAM 

regions to enclaves, create page table entries and copy code and data into the enclave during 

enclave initialization. Since OS knows the exact memory layout of the enclave, the attacker 

can therefore run an attack process in a different DRAM region that shares a same DRAM 

row as the target enclave address.

Timed execution.—Chen et al. [14] proposes a compiler-based approach, called DÉJÀ 

VU, to measure the execution time of an enclave program at the granularity of basic blocks 

in a control-flow graph. Execution time larger than a threshold indicates that the enclave 

code has been interrupted and AEX has occurred. The intuition behind it is that execution 

time measured at the basic block level will not suffer from the variations caused by different 

inputs. Due to the lack of timing measurements in SGX v1 enclaves, DÉJÀ VU constructs a 

software clock inside the enclave which is encapsulated inside Intel Transactional 

Synchronization Extensions (TSX). Therefore, the clock itself will not be interrupted 

without being detected. It was shown that DÉJÀ VU can detect AEX with high fidelity. 

Therefore, any of the side-channel attack vectors that induce high volume of AEX will be 

detected by DÉJÀ VU. However, those not involving AEX in the attacks, such as SPM 

attacks will bypass DÉJÀ VU completely.

Enclave Address Space Layout Randomization.—SGX-Shield [33] implemented 

fine-grained ASLR when an enclave program is loaded into the SGX memory. However the 

malicious OS could still learn the memory layout after observing memory access patterns in 

a long run as SGX-Shield does not support live re-randomization.

C. Lessons Learned

Our systematic analysis of SGX memory side channels brings to light new attack surfaces 

and new capabilities the adversary has. Here are a few thoughts about how to mitigate such 

risks on the SGX platform, and more generically, for the emerging TEE.

SGX application development.—Our research shows that the adversary can achieve 

fine-grained monitoring of an enclave process, through not only pages and cache channels, 

but also inter-page timing, cross-enclave DRAM and HyperThreading. It is important for the 

SGX developer to realize the impacts of these new attack surfaces, which is critical for 
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building enclave applications to avoid leaks through the new channels. For example, she can 

no longer hide her secret by avoiding page-level access patterns, since intra- or inter-page 

timings can also disclose her sensitive information.

Software-level protection.—Defense against SGX side-channel leaks can no longer rely 

on the assumptions we have today. Particularly, such attacks do not necessarily cause an 

anomalously high AEX rate. Blending sensitive information into the same memory pages is 

not effective against attacks with finer spatial granularity. Also, the adversary may also use a 

combination of multiple channels to conduct more powerful attacks.

Hardware enhancement.—Most memory side channels we know so far can be mitigated 

through hardware changes, e.g., partitions of caches/DRAM and keeping enclave page tables 

inside EPC, etc. In some cases, such changes could be the best option. Further research is 

expected to better understand the issue and the impacts of the related side channels, making 

the case to Intel and other TEE manufacturers for providing hardware-level supports.

Big picture.—Over years, we observe that many side-channel studies follow a similar 

pattern: a clever attack is discovered and then researchers immediately embark on the 

defense against the attack. However, in retrospection, most defense proposals fail to consider 

the bigger picture behind the demonstrated attacks, thus they are unable to offer effective 

protection against the adversary capable of quickly adjusting strategies, sometimes not even 

meaningfully raising the bar to the variations of the attacks. The ongoing research on SGX 

apparently succumbs to the same pitfalls. We hope that our study can serve as a new start 

point for rethinking the ongoing effort on SGX security, inspiring the follow-up efforts to 

better understand the fundamental limitations of this new TEE and the ways we can use it 

effectively and securely.

VII. Related Work

Side-Channel Attacks on SGX.

It has been shown in previous studies that page-level memory access patterns can leak 

secrets of enclave programs under a variety of scenarios [39], [35]. This type of leakage is 

enabled by enforcing page faults during enclave’s execution, by marking selected memory 

pages to be non-present or non-executable. As such, data accesses or code execution in these 

pages will thus be trapped into the OS kernel, and so the malicious OS will learn which page 

is accessed by the enclave program. Page-fault side-channel attack is one attack vector of the 

memory side-channel attack surface we explore in this paper.

A very recent study explores branch prediction units as side channels to infer sensitive 

control flows inside SGX enclaves [25]. The memory side-channel attack surface does not 

include attack vectors through branch prediction. Both are important to the understanding of 

side-channel security of Intel SGX.

Cache Side Channels.

Cache side-channel attacks under the threat model we consider in this proposal (i.e., access 

driven attacks [17]) have been demonstrated on x86 architectures, including data caches (and 

Wang et al. Page 22

Conf Comput Commun Secur. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also per-core L2 unified caches) [31], [30], [28], [36], [17], [18], instruction caches [8], [9], 

[43], and inclusive LLCs [41], [40], [12], [44], [22], [27], [20], [16], [29], [19], [23], [26], 

[42]. The studies on these cache side channels are still valid on SGX enclaves. We briefly 

confirmed the effectiveness of cache side-channel attacks in our paper, while the focus of 

this work is a broader attacker surface than cache.

VIII. Conclusion

We report the first systematic analysis of SGX memory side channels in the paper. Our study 

identified 8 attack vectors in memory management, ranging from TLB to DRAM. Further 

we demonstrate a set of novel attacks that exploit these channels, by leveraging accessed 
flags, timing, HyperThreating and DRAM modules. Compared with the page-fault attack, 

the new attacks are found to be stealthier and much more lightweight, with effectiveness 

comparable with the known attack in some cases. Most importantly, our study broadens the 

scope of side-channel studies on SGX, reveals the gap between proposed defense and the 

design weaknesses of the system, and can provoke the further discussion on how to use the 

new TEE techniques effectively and securely.
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Fig. 1. 
Page table entries.
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Fig. 2. 
Basic SPM attack.
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Fig. 3. 
An example of secret-dependent branch leaking timing information.
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Fig. 4. 
Scalar point multiplication for ECC.
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Fig. 5. 
Illustration of cache-DRAM attack.
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Fig. 6. 
Distribution of access latency for probing the same row and a different row.
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Fig. 7. 
An input-dependent branch in Gap 4.8.6.
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TABLE I

CONFIGURATION OF THE TESTBED.

Size Sets × Ways

iTLB 64 8 × 8

dTLB 64 16 × 4

L2 TLB 1536 256 × 6

iCache 32KB 64 × 8

dCache 32KB 64 × 8

L2 Cache 256KB 1024 × 4

L3 Cache 8MB 8192 × 16

Size Channel × DIMMs × Ranks × Banks × Rows

DRAM 8GB × 2 2 × 1 × 2 × 16 × 215
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TABLE II

WORDS DISTRIBUTION IN THE EN_US HUNSPELL DICTIONARY.

group size
Page-fault based Accessed-flag based

words % words %

1 51599 83.05 45649 73.47

2 7586 12.21 8524 13.72

3 2073 3.34 3027 4.87

4 568 0.91 1596 2.57

5 200 0.32 980 1.58

6 60 0.10 810 1.30

7 35 0.06 476 0.77

8 8 0.01 448 0.72

9 0 0 306 0.49

10 0 0 140 0.23

>10 0 0 173 0.28
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TABLE III

FEATURES USED IN FREETYPE EXPERIMENT.

trigger page 0×0005B000

α-β pairs

0005B000, 0005B000

0005B000, 00065000

0005B000, 0005E000

00065000, 00022000

0005E000, 00018000
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TABLE IV

T-SPM ATTACK ON FREETYPE 2.5.3: FOR EXAMPLE, WE ACHIEVED A PRECISION OF 69.90% OVER A COVERAGE OF 100% 

CHARACTERS.

coverage 100% 88.17% 75.62% 69.14% 57.35%

precision 69.90% 75.25% 80.66% 84.45% 89.94%
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TABLE V

ATTACK SUMMARY ON EDDSA (LIBGCRYPT 1.7.5). A NORMAL EXECUTION OF EDDSA SIGNATURE WITHOUT ATTACK ALSO 

INCURS OVER 1500 AEXS.

Monitored pages Number of AEXs

Page fault attack 000E7000, 000E8000
000F0000, 000F1000 71,000

B-SPM attack 000EF000 (trigger page)
000E9000, 000F0000 33,000

T-SPM attack 000F0000 (trigger page)
000F1000 (trigger page) 1,300
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TABLE VI

ROW RANGES FOR DIFFERENT PRM SIZE.

PRM size PRM range DRAM row range

32MB 0×88000000~0×89FFFFFF 0×1100~0×113F

64MB 0×88000000~0×8BFFFFFF 0×1100~0×117F

128MB 0×80000000~0×87FFFFFF 0×1000~0x10FF
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TABLE VII

ANALYSIS OF SIDE-CHANNEL ATTACK SURFACES.

Vectors Accuracy AEX Slowdown

i/dCache PRIME+PROBE 2MB high high

L2 Cache PRIME+PROBE 128KB high high

L3 Cache PRIME+PROBE 16KB none modest

page faults 4KB high high

B/T-SPM 4KB modest modest

HT-SPM 4KB none modest

cross-enclave DRAMA 1KB none high

cache-DRAM 64B none minimal
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