
1SCIENTIFIC REPORTS | 7: 8257  | DOI:10.1038/s41598-017-07418-y

www.nature.com/scientificreports

Leaky Integrate and Fire Neuron 
by Charge-Discharge Dynamics in 
Floating-Body MOSFET
Sangya Dutta1, Vinay Kumar1, Aditya Shukla1, Nihar R. Mohapatra2 & Udayan Ganguly1

Neuro-biology inspired Spiking Neural Network (SNN) enables efficient learning and recognition 
tasks. To achieve a large scale network akin to biology, a power and area efficient electronic neuron is 
essential. Earlier, we had demonstrated an LIF neuron by a novel 4-terminal impact ionization based 
n+/p/n+ with an extended gate (gated-INPN) device by physics simulation. Excellent improvement in 

area and power compared to conventional analog circuit implementations was observed. In this paper, 

we propose and experimentally demonstrate a compact conventional 3-terminal partially depleted 
(PD) SOI- MOSFET (100 nm gate length) to replace the 4-terminal gated-INPN device. Impact ionization 
(II) induced floating body effect in SOI-MOSFET is used to capture LIF neuron behavior to demonstrate 
spiking frequency dependence on input. MHz operation enables attractive hardware acceleration 
compared to biology. Overall, conventional PD-SOI-CMOS technology enables very-large-scale-

integration (VLSI) which is essential for biology scale (~1011 neuron based) large neural networks.

Spiking neural network (SNN) is an attempt to understand and mimic human brain functionalities – a key 
challenge of next generation computing. SNN demonstrates energy e�ciency advantages over von-Neumann 
architecture for recognition and classi�cation tasks1. To construct SNN in hardware, an e�cient analog to the 
biological neuron is essential. Primarily, Si CMOS technology is used for analog implementation of electronic 
neurons. �e dynamic nature of neuronal cell has been successfully captured by analog circuits2–7. Also, analog 
neuron circuits provide area and power bene�t5 compared to the digital1 implementation. But the high neuronal 
density (1011 neurons in the human brain compared to 109 transistors/chip) and connectivity (104 neurons con-
nected to each neuron compared to a typical fan out of 8 in CMOS) imposes two major constraints. First, indi-
vidual components (e.g. neurons and synapses) must be highly area and power e�cient. Second, the technology 
must be su�ciently matured to enable extreme integration of numerous (~1011) neuron. Recently, our group 
has proposed a highly power and area e�cient neuron on impact ionization based n+/p/n+ diode (I-NPN) 
device with an extended gate driven by a small reset circuit in a device simulations study8. Excellent area (60x) 
and power improvement (5x) is demonstrated compared to previously reported analog circuits8. Further, record 
low bias (sub-0.2 V) impact ionization in I-NPN is also experimentally demonstrated by our group9. Gate-I-NPN 
requires unconventional process integration that is challenging for experimental realization and 4 terminals that 
involve layout and interconnection challenges. Hence, the neuronal function still remains to be experimentally 
demonstrated. In this paper, we propose to replace the 4-terminal, novel gated I-NPN device with a conventional 
3-terminal, highly manufacturable PD-SOI MOSFET. We experimentally demonstrate neuronal behavior based 
on the intrinsic charge dynamics of the device.

Background
A simpli�ed step-wise picture of SNN algorithm10 is shown in Fig. 1. First, pre-synaptic neuronal driver D1 and 
D2 provide the input voltage spikes (where ith spike occurs at time t = ti). Second, these input spikes are converted 
to a gently varying current signal proportional to the synaptic weight (wj). �ird, the current from synapses 
(w1and w2) is summed into the input of LIF neuron N3 by the network. Fourth, the LIF neuron (described in 
detail next) integrates the input current across a capacitor, which raises its potential. N3 resets immediately (i.e. 
loses stored charge) once the potential reaches/exceeds a threshold. Fi�h, every time N3 reaches threshold, a 
driver neuron D3 produces a spike. �e detail of this architecture is discussed in ref. 10. Among various neuronal 
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models, the leaky integrate and �re (LIF) model can mimic the behavior of the biological neuron with minimum 
number of circuit element unlike other models11–13.

LIF Neuron Model. Leaky integrate and �re (LIF) model represents neuron as a parallel combination of a 
“leaky” resistor (conductance, gL) and a capacitor (C) as shown in Fig. 2(a). A current source I(t) is used as synap-
tic current input to charge up the capacitor to produce a potential V(t).

When potential exceeds threshold (V(t) ≥ Vth), the capacitor discharges to a resting potential EL using the 
voltage-controlled switch, like a biological neuron. Each time LIF neuron voltage exceeds threshold, a separate 
driver circuit (say, D3) issues a spike as mentioned in the last section. �us, LIF model is governed by the follow-
ing di�erential equation:

= − − +C
dV

dt
g V t E I t( ( ) ) ( )

(1)L L

At low input current (I(t)), V(t) never exceeds threshold Vth - which produces no spikes (i.e. ti → ∞). For example, 
if a dc input (i.e. I(t) = Idc) does not exceed a critical current (Icrit = gL(Vth − EL)), V(t) will always be less than Vth 
(i.e. V(t) < Vth), by simple steady state analysis of Eqn. 1. When I(t) is high (e.g. Idc > Icrit), the charge up time to Vth 
reduces (Fig. 2b). �is essentially increases the output frequency (fo) with increase in input Idc (Fig. 2c).

Figure 1. (a) Biological neuronal network is related to (b) algorithmic SNN analog. (c) �e related signal 
timing (d) with step-wise signal evolution is shown. �e SNN algorithm requires input spikes at times ti from 
jth pre-synaptic neuron driver e.g. D1, D2 (step 1). �e spikes are converted into currents at synapse which 
depend upon synaptic strengths wj (step 2). �e currents are summed by the networks (step 3) and input into 
LIF neuron that determines neuronal �ring instants (step 4) while post-neuronal driver (D3) produces spikes at 
the �ring instants.

Figure 2. (a) LIF neuron circuit model, (b) For input (Idc < Icrit), V(t) never exceeds Vth- hence neuron never 
spikes. However, for Idc ≥ Icrit, neuron will �re when V(t) ≥ Vth and immediately reset i.e. V(t) = EL, (c) With 
higher input (e.g. Idc ≥ Icrit), �ring rate or the frequency increases like a biological neuron while for low input 
(Idc < Icrit), frequency is zero. �e output frequency (fo) vs. input is the signature neuronal function to be 
mimicked arti�cially.
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Device Structure, Concept and Operation. In this work, a simple PD-SOI MOSFET (schematic shown 
in Fig. 3a) is used to demonstrate LIF neuron like behavior. As in conventional CMOS, voltage input and current 
output are used. �is is converse of biology. However, we focus on producing an input (Vin(t)) vs. output fre-
quency (fo) mapping (Fig. 2c). Voltage to current conversion and vice versa is trivial and maybe done based on 
system implementation needs. Figure 3b shows the biasing scheme where the input bias is applied on source (S) 
i.e. VSG(t) = Vin(t). �e drain (D) bias i.e. VDG(t) is used to select “integrate” vs. “reset” modes. Both VSG and VDG 
are referenced to a grounded gate (G). To explain the physics of operation, the output i.e. drain current (ID(t)) is 
annotated at four time instants (i–iv). At instant (i), the device is under equilibrium (Fig. 3(c-i)). At instant (ii), 
a low.

VSG (~0.2 V) and a high VDG (say 2.8 V to enable integrate) are applied to initiate impact ionization (II). �e 
II generated electron (e) current (III−e) escape through the drain while the hole (h) current (III−h) �ows into 
the channel potential well. Some fraction of hcurrent leaks through the source barrier (Ileak−h i.e. equivalent to 
leaky integrate function in LIF) (Fig. 3(c-ii)). �e net h current (III−h − Ileak−h) builds up h-charge in the channel 
potential well over time (equivalent to integrate function in LIF). Increasing h-charge, electrostatically reduce 
the source e-injection barrier, allowing more electron injection for stronger II and set up a positive feedback 
(Fig. 3(c-iii)). �e e-injection barrier reduction is coupled with h-well depth reduction which increases Ileak−h. 
Steady state is achieved when Ileak−h balances III−h preventing additional h-storage. However, before steady state 
is reached, the current exceeds pre-set threshold (Ith) (equivalent to �re function in LIF). �e I(t) ≥ Ith condition 

Figure 3. (a) Device schematic with biased terminals, (b) Input biasing scheme (VSG(t),VDG(t)) with expected 
output (ID(t)), (c-i) Equilibrium band diagram. (ii) Electron hole pair generation due to impact ionization 
(“integrate”) increases holes in well, (iii) Barrier lowering due to stored holes in the potential well. Also, the 
holes start to escape through the source junction (“leak”), (iv) Once threshold is reached (“�re”), removal of VDG 
makes the holes escape through both the junctions bringing the barrier to its original position (“reset”). �us, 
the charge dynamics enables the Leaky Integrate and Fire neuron in a PD-SOI n-MOSFET.

References
Neuron 
Type

Synaptic 
Input Type Device Type Circuit Type

Tech. 
Node Area (µm2) Vth(V)

Energy/
spike (pJ)

Giacomo Indiveri et al.16 LIF Current CMOS Analog-Digital 0.35 µm 2573 (~21 × 103F2) — 900

Jayawan H.B. Wijekoon et al.17 LIF Current CMOS Analog 0.35 µm 2800 (~23 × 103F2) — 8.5–9

A. Joubert et al.5 LIF Current CMOS Digital 65 nm 538 (~127 × 103F2) — 41.3

Kibong Moon et al.18 IF Voltage IMT — — — 1.3 —

Jaesung Park et al.19 IF Voltage IMT — — — 1.6 —

Tomas Tuma et al.20 IF Voltage Phase Change Analog-Digital 14 nm 0.5–1 (2551–5102F2) >1 30

�is work LIF Voltage SOI MOSFET Analog 32 nm 1.8 (1767F2) 0.26 35

Table 1. Benchmarking with state-of-the-art electronic neurons.
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sets o� a small “reset circuit” that removes drain bias (VDG = 0) disabling II (i.e. III−h → 0)8. Hence, all the stored 
holes leak (Ileak−h) through both the source and the drain junction (Fig. 3(c-iv)) and resets the neuron back to the 
initial condition. A�er reset is complete, the drain is set back to high (VDG = 2.8V) a�er a typical timescale (called 
“refractory period”) to re-initiate the LIF process (Fig. 3(c-ii)). �us, the dc input Vin(t) produces cycles of leak-
age, integration, �ring and resetting (LIF process) to produce �ring frequency (fo) in the output drain current (ID).

Experimental Validation
�e typical kink-e�ect is observed in the ID − VD (Fig. 4(a)) to con�rm impact ionization14. Next, transient meas-
urement shows the integration function of the LIF neuron where the applied source bias (VSG) represents input 
Vin(t) (Fig. 4(b)). First, when only VSG = −0.25V is applied (VDG = 0), the device is still o� i.e. current remains 
negligible. When VDG = 2.8V is applied, an instantaneous increase in current is observed akin to Fig. 3(c-ii). A 
slower rise in current follows, as impact ionization produces a build-up of h-charge (i.e. integration). �is, in turn, 
reduces the e-injection barrier to increase current to reach a steady state akin to Fig. 3(c-iii). We observe that the 
rate of current rise increases with input i.e. VSG. For lower VSG, the device is unable to initiate impact ionization 
due to lack of e-current supply. At high VSG, the rate of current rise increases and reaches steady state at a higher 
current (ID) level. To add the �re and reset, a current threshold Ith is set such that when ID exceeds Ith, we set 
VDG = 0 manually. �is can be automatically performed by an external circuit as explained earlier8. Figure 5(a) 
shows the reset e�ect where VDG is set to zero if I ≥ Ith = 500 µA manually. For Fig. 5(a-i), VSG = −0.24 V, threshold 

Figure 4. (a) ID − VD curve for di�erent VG shows “kink e�ect” as a signature of impact ionization induced 
�oating body e�ect, (b) Transient measurement showing Leaky, Integrate functions for di�erent input bias.

Figure 5. (a) �e LIF function for di�erent input (VSG) is shown with a VDG based reset. At threshold 
(ID ≥ Ith = 500 µA), VDGis grounded to reset the neuron for 100 ns, then set back to VDG = 2.8 V. �e output 
current starts from the same initial point a�er each reset – essentially make each LIF cycle identical. As VSG is 
increased from (i–iv) more frequent �re & reset is observed which is akin to faster “spiking” with higher input 
bias (b) Output frequency vs. input shows the occurrence of input threshold i.e. |Vth| = 0.26 V. If |Vin| < |Vth|, 
frequency is zero while for |Vin| ≥ |Vth|, fo increases with input bias. Quantitatively, this device can provide 
100000× higher frequency compared to a biological neuron, which typically �res at ~10 Hz.
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is achieved once in <1 µs duration followed by reset. For Fig. 5(a-ii–iv), VSG is increased. �e drain current rises 
faster (“integration”) to exceed threshold (i.e. I(t) > Ith) followed by e�ective reset. Such cycles of integration and 
reset occurs naturally. We observe increasing frequency of reaching current threshold (�re) with increase in input 
VSG. Figure 5(b) shows output frequency vs. input Vin = VSG akin to Fig. 2 (c). A threshold is observed such that 
|Vin| < 0.26 V produces no spikes while above threshold, a linear dependence of spiking frequency (fo) on Vin is 
observed. �is is the signature of LIF neuron. Further, this device o�ers higher frequency (in the range of MHz) 
compared to biology (~1–10 Hz), which enables attractive hardware acceleration15.

Performance & Benchmarking (New Section)
To evaluate the area and power performance, we have implemented the neuron (i.e. SOI device with a reset cir-
cuit) to demonstrate spiking, evaluate energy per spike and estimate layout area (Supplementary Information 1). 
Further, we use 12 input and 3 output neurons based spiking neural network (SNN) for Fisher Iris classi�ca-
tion to show state-of-the-art recognition (~95%) (Supplementary Information 2). Such an SNN algorithm has 
so�ware-equivalent hardware implementation21. In Table 1, we benchmark SOI neuron with literature. First, 
the conventional current–driven CMOS analog implementations provide power bene�t at the cost of large area 
consumption5, 16, 17. Novel voltage-driven neurons have been proposed18–20, though the materials used here are not 
standard CMOS compatible. Among several voltage-driven neurons, phase change memory (PCM) based neuron 
could be a power and area e�cient counterpart to analog neurons. Integration of PCM material in an array has 
also been demonstrated20. Our proposed PD-SOI technology does not require any new materials integration. 
SOI technology is highly mature for VLSI implementation of numerous neurons. Additionally, SOI neuron has 
its capability of “leaky” integration without any extra circuitry unlike other neurons. �e leakiness is an essential 
feature of biological neuron – which adds a time-dependent memory due to ion channel dynamics22. �is is 
realized at the device level in SOI neuron owing to its inherent charge dynamics (i.e. recombination of excess 
carriers leakage through source/drain region). Also SOI neuron requires ~260 mV for �ring compared to these 
novel neurons, which require higher threshold (>1 V)18–20. Our demonstration requires a smaller voltage swing 
(of the order of few hundred mV), which is closer to biological neuron (100 mV)23. �is voltage range can be 
further reduced by SOI device engineering. �e energy per spike is calculated to be 35 pJ for SOI device including 
the external circuitry, which is comparable to the phase change neuron (30 pJ only at the device level). However, 
phase change neuron requires digital implementation (including a global clock).Global clocks are power ine�-
cient compared to asynchronous implementation. In fact, analog asynchronous implementations maybe as high 
as 10× more energy e�cient24. Our implementation is asynchronous, which is energy e�cient at the systems level 
and closer to biology.

Conclusion
To summarize, a highly manufacturable Si based SOI-MOSFET is experimentally shown to demonstrate LIF 
neuron functionality. Intrinsic carrier dynamics of the device produces “Leak Integrate and Fire” functionality. 
�is experimentally validated approach is noted for signi�cant area and power e�ciency compared to analog 
circuit implementation (Supplementary Information 1). By modeling the output characteristics of the SOI neu-
ron, a MATLAB based spiking neuron network is shown to perform classi�cation task with reasonable accuracy 

Figure 6. TEM image of the fabricated PD-SOI MOSFET at 32 nm technology node with 1.7 nm HfO2 gate oxide.
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(~95%) (Supplementary Information 2).Also, this device o�ers higher frequency (in the order of MHz), than a 
biological neuron (~1–10Hz) to enable attractive hardware acceleration. CMOS based 32 nm SOI technology 
provides excellent maturity and very large scale integration (VLSI), which is essential for biology equivalent large 
scale spiking neural networks.

Method
�e devices used in this study were fabricated using the 32 nm SOI High-k Metal Gate (HKMG) CMOS tech-
nology25, 26. �e gate dielectric stack is composed of 1.7 nm HfO2 (ALD) and 0.8 nm interfacial SiO2 layer which 
is chemically grown. Lanthanum is used as the capping layer between HfO2 and TiN metal gate for VT adjust. 
Excellent CMOS performance and manufacturability is demonstrated earlier27. Figure 6 shows TEM image of the 
fabricated PD-SOI MOSFET at 32 nm technology node. �e devices of 100 nm channel length and 1µm channel 
width are characterized in DC and transient modes by Keysight B1500 DC and Waveform Generation and Fast 
Measurement Unit (WGFMU) system. All the measurements are performed at room temperature.
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