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The propagation characteristics of the leaky modes in planar anisotropic waveguides with a multilayer
structure have been investigated by means of a compact rigorous formalism. The leakage losses and leaky
transition angle have been studied for the fundamental and first hybrid modes. An inhomogeneous wave-
guide and buffered step index type structure have been discussed. Particular attention has been devoted to
the variation of the loss coefficient of the leaky modes as a function of buffer thickness and buffer refractive in-
dex. A notably different behavior has been obtained for various configurations. Keywords: Leaky modes,
waveguide theory, integrated optics.

1. Introduction

A great number of both active and passive integrated
optical devices are fabricated by using uniaxial aniso-
tropic materials, such as LiNbO3 or LiTaO3 . Elec-
trooptic modulators, switches, mode converters, cou-
plers, and polarization controllers have been made on
titanium-diffused lithium niobate.12 The detailed
knowledge of the properties of the anisotropic optical
waveguiding structures appears highly useful to im-
prove the optimization level of such devices, and, also,
it may suggest a new class of device based specifically
on waveguide anisotropy. 3

For homogeneous three-layer structures exact ana-
lytical solutions are available in the literature. This
problem, in addition to the inhomogeneous case, has
been analyzed with great detail by several authorsfr 2

who have pointed out the interesting properties of such
waveguides. In particular, leakage losses were theo-
retically described and experimentally measured.13"14
The bidimensional case has also been studied by
means of the coupled-mode theory15 and the effective
index method.'6 However, because of the rising per-
formances required by the increasingly sophisticated
optical circuits, there has been in recent years growing
interest in multilayer waveguides. These structures
are widely used since they provide more choices to the
designer in addition to its particular properties. Con-
cerning the leaky modes in such structures, interest in
them comes from their connection with the mode-
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dependent loss waveguides and anisotropy based cut-
off devices. Nevertheless, although the theory of
modal dispersion in multilayer isotropic waveguides
has been very well described, its anisotropic counter-
part is not yet fully developed.

In this paper we use the transfer-matrix method to
establish the waveguiding condition for light propaga-
tion in planar uniaxial dielectric waveguides with a
multilayer structure with no restrictions on the optical
axes orientations. This method provides a very com-
pact formalism to analyze such structures, and it has
been extensively used in the isotropic case.17 It is
based on the well known 4 X 4 formalism, which has
been developed by Berreman' 8 and Vassell'9 and in a
different way by Yeh.2 0 A new formulation was re-
ported recently by Knoesen et al.

2 ' and for special
cases by Walpita.22 The approach can be summarized
as follows. In the homogeneous substrate and super-
strate the total fields are a superposition of the ordi-
nary and extraordinary waves propagating in a uniaxi-
al unbounded medium. These solutions are continued
across the intermediate dielectric medium by means of
a characteristic matrix containing the field solutions.
Thus the required boundary conditions on the top and
bottom waveguide interfaces are expressed by a deter-
minantal condition which yields to the waveguiding
condition. The procedure can be applied to the exact
analytical study of uniaxial multilayer structures and
the numerical analysis of inhomogeneous uniaxial
waveguides.

Details of the analysis are given in Sec. II. As an
application of the formalism, in Sec. III we investigat-
ed the leaky-mode propagation in both an inhomoge-
neous waveguide and a step index structure with a
dielectric buffer layer. The leakage losses of the wave-
guide have been studied for the fundamental and first
hybrid modes for different optical axis orientations.
In the first case, we mainly devoted our attention to the
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effects introduced by the inhomogeneity. In the sec-
ond case, the study was focused to the attenuation
coefficient of the leaky modes and the guided-to-leaky
mode transition angle as a function of the buffer thick-
ness and buffer refractive index.

II. Transfer-Matrix Approach

An asymmetric configuration of uniaxial crystals
forming a three-layer structure with arbitrarily orient-
ed optical axes is assumed (Fig. 1). In the principal
axis coordinate system of the crystals, the dielectric
tensor takes the form

(EO ) (1)

Superstrate

DT

Substrate

[E],

[Eif (Z)

[E] S

z
Fig. 1. Schematic waveguiding multilayer structure. Propagation

is along x.

eo and e, being the ordinary and extraordinary permit-
tivities, respectively. For a given orientation of the
optical axis () determined by the polar and azimuthal
angles (0,sp), the components of the dielectric tensor
are obtained from Eq. (1) by means of the application
of the associated rotation transformation (70,(p).
Thus one obtains

exx = e0(sin2 (p + COS2p COs2O) + e cos
2
Sp sin2

0,

f = O(cos2 (p + sin2
V cos2

0) + ee sin2 f sin2
0,

EZZ = e sin20 + fE Cos20,
(2)

fxy = (e - e) sinfp cos sin2
0,

exz = (e e,) cosp sinO cosO,

eyz = (Ee - ) sinip sinO cosD.

In a waveguide such as the one described above only
hybrid modes can propagate except for specially sym-
metric &-axis orientations. If the propagation direc-
tion is taken to be along the x-axis and assuming time
harmonic dependence, the fields at any point have the
form exp[i(x -wt)], f being the propagation constant.
Outside the guiding layer the fields must be evanescent
so that

E,(z) = E, exp(Ycz), z < 0, (3)

E8 (z) = E, exp[y9 (D-z)], z > D, (4)

where the subscripts c and s stand for superstrate and
substrate regions, respectively. By substitution of
Eqs. (3) and (4) into the wave equation,

V2 E + pW2[e]E = V(V E(5)

and taking into account Eq. (2), an homogeneous equa-
tion system is obtained, the determinant of which must
vanish. This condition leads to two possible solutions
for the decay constants y,, that correspond to the
ordinary and extraordinary waves

Y0 =:I: /3
2 -_ w2 e0 (6)

'Ye = -2( 2Z) - AC0
2
eoeeEzz()i -, f. (7)

Here the upper sign in the parentheses holds for the

substrate and the lower for the superstrate. Accord-
ing to the transfer-matrix method, at any pair of trans-
versal planes Z1 ,Z2 the tangential components of the
fields can be related by using a matrix T, which may be
defined as

= T[E . (8)

The existence of this transfer matrix is guaranteed
by the linearity of the Maxwell equations. In fact, the
matrix T contains the field solutions in the region
between the planes Z1,Z2, so that in Eq. (8) it continues
the solution from z to Z2 across the intermediate re-
gion. Let us take z1 =0 and Z2 = D. Thus the required
boundary conditions for the tangential field compo-
nents are necessarily verified if the field solution is (8)
join with the known solutions (3)-(4) in the substrate
and cover. This condition can be written in a matrix
form using the following standard procedure. The
existence of solutions (6) and (7) requires that all the
components of the fields be expressed in terms of two
of them. Then we have chosen as independent vari-
ables the 9 and x components of the electric field
associated with the ordinary and extraordinary waves,
respectively. In this way, the electric field in the su-
perstrate (z < 0) can be written as

E,(z) = 
1 Ey exp(-yz) + Ay E exp(-yez), (9)

20ZO -Aze-

and in a more compact notation

Ax, I exP(z)}
E,(z) [; A:] {Exp PYez) (10)

For the magnetic field one has

H,(Z) [yoAxo aZO ye ze fExe exp(-yzfj (11)

LU 43 if3Aye Jxe exp(yez) J
The coefficients A appearing in these expressions are
obtained from Eq. (5). Again in z < 0 one has
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(13) where

2 py22 ) + E(zA2L'z - i3)(
Aye }'X(,Y - 2 + .2f )(h2fz _ 02) _ (W2,Ey)2 (14)

(2 _ j2 + PW
2

E 2 )(
2 2

) + fA 2)2 
Az= - + ,' - Y (15)(y2 _ 2 + pU2E )(pue2 - 2 ) - (

2
e , 2

On the other hand, according to Eq. (4), the corre-
sponding expressions for the substrate write in the
same way as Eqs. (10)-(15) by making the transforma-
tion -y - --y for both the ordinary and extraordinary
waves. Thus one has

r i * 1rE; 0 exp[%(D-z)]
Ez) = 1 Aye J (16)

[Az*, A,*, JEexp [*(D- z)I

H,(z) = + iA 0 ) 0(,y + i#A;e)

fExO exp[((D - z)]

IE*, exp[y(D - z)] (17)

Throughout the superscript * indicates a substrate
parameter. Substituting Eqs. (10), (11) and (16), (17)
into Eq. (8) an homogeneous equation system is ob-
tained which can be written as

Axo I p
1
o 7,le

rO 
T

e '2o D2e R e |

1 A, >'3o V3e f Eyo

_ -, -,ye '4o V4 J \E,,

(18)

Nj jol!e V joV (25)

Equation (24) has been obtained for arbitrary wave-
guide parameters with no restriction on the optical axis
orientation of the crystals. Then it is noticeable that
for the orientations which allow separable TE-TM
field solutions Eq. (24) is notably simplified. This
situation happens when one (or both) substrate and
superstrate is (or are) isotropic (i.e., e = ee) and also
when the optical axis lies in the same plane as the
propagation direction and is contained in the plane
perpendicular to that of the waveguide (in our notation
s = 00). As well, when 5s = 0 = 900, the field solutions
allow a TE-TM decomposition. In the second case,
when the c-axis lies in the (P = 00 plane in both the
substrate and superstrate, the expressions for the E
and H fields are identical to Eqs. (10), (11), (16), and
(17), but now Axo = 0, Aye = 0, Az, = 0, and

$LW 22 - i
'ze= )2 _- Wfz (26)

The waveguiding condition is obtained as for the gen-
eral case. Thus it can be written in a formallyidentical
way to the isotropic structure 9 in terms of the new
variables:

EoEe

1 EZZ

8 _ #X2 ¢t2 =Y+ifzE

(27)

(28)

(29)

where

rO2 tAyo + iAL, (19)

e; + i/Aze, (20)

j {il - 1,3, (21)
11W=,2,4,

with

12j2 TjhAx, + Tj3 7- ±j2 (, - 'y7j4), (22)

Q2- Tjl + T12AYe - (Tj2Te - eAyeTj 4)- (23)

As is explicit in these expressions, the vj functions
must be evaluated in the superstrate. The condition
for having a nontrivial solution in Eq. (18) is that the
determinant of the coefficients vanishes. This condi-
tion leads to a restriction of the possible values of the
propagation constant ,, which must now form a dis-
crete set, and, therefore, it is the waveguiding condi-
tion. After straightforward manipulation it can be
expressed as

and similar expressions for e*, an and 2e (Appendix A).
It is well known that5 6"9 '21 if the optical axis of the
uniaxial media forming the guiding layer lies also in
the (,o = 0° plane, the waveguide supports pure TE and
TM modes. As usual, in this case Eq. (24) splits into
two (one TE and one TM) very simple expressions.
Concerning the po = = 90° case, it can be considered as
well by taking the corresponding expressions for the
isotropic case but with e = e0 in the TM terms and e = e

in the TE ones. Likewise in a great number of practi-
cal applications the superstrate is isotropic and the
substrate is a uniaxial crystal. In this case one also has
Ax = 0, Aye = 0, Az, = 0, and Aze = -iI3/yc, where

_y = fV#2 kgn 2, (30)

nc and ko being the refractive index of the isotropic
medium and the free-space wavenumber, respectively.
Then the waveguiding condition is given by Eq. (24),
but now Eqs. (22) and (23) simplify to

Lj. = Tj3 + rŽ Tj4, (31)
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Qje = T+ n Tj2, (32)

The transfer matrix of an homogeneous uniaxial
dielectric slab can be analytically calculated by using
the 4 X 4 formalism. In the general case, it contains a
superposition of the two ordinary and two extraordi-
nary waves propagating in a birefringent medium. In
the case of multilayer step index waveguides, the
transfer matrix of the structure is obtained by the
product of all the matrices associated with each sub-
layer, in accordance with the ordering criterion pre-
scribed in Eq. (8). When diffused waveguides are
considered, in which the inhomogeneity takes place in
addition to the anisotropy, the problem becomes more
complicated. In such a case a closed-form solution of
Maxwell equations is not generally available, and the
associated transfer matrix must be evaluated with the
help of approximate methods or numerical techniques.
The latter can be made through the direct integration
of Maxwell equations in the diffusion region by means
of such standard numerical procedures as the Runge-
Kutta method" or the Gear predictor technique,16

which are available in most mathematical libraries.
Also, the well known multilayer staircase technique
can be useful in analyzing especially complex struc-
tures containing homogeneous additional layers. In
this case the inhomogeneous region is considered as a
finite set of thin homogeneous films, for each the trans-
fer matrix is analytically known.

Finally, since we have imposed no restrictions on the
existence of complex values of the propagation con-
stant 3, the above derived expressions are applicable to
both guided and leaky modes. Thus it is worth notic-
ing that the square roots appearing in Eqs. (6) and (7)
for the transverse propagation constant at the sub-
strate and superstrate (oye) must be evaluated with
the right sign consistent with the behavior of mode
fields far from the waveguide. Special attention is
required when considering leaky modes due to their
improper nature. 0 2 23

Ill. Discussion

As an application of the formalism developed in the
preceding section, we have analyzed here the propaga-
tion characteristics of the leaky modes of various mul-
tilayer waveguides fabricated in dielectic uniaxial ma-
terials. Such modes come from the frustration on
total internal reflection at the interfaces between the
guiding layer and surrounding dielectric media and are
obtained as complex solutions of the eigenvalue equa-
tion. Concerning the anisotropic case, with a suitable
orientation of the crystal optical axes, one of the polar-
izations (ordinary and extraordinary) suffers leakage
losses, whereas the other remains guided in the film.
These kinds of mode. are leaky guided modes in con-
trast to the leaky unguided modes which occur in the
isotropic case.2 4

We have considered here the case in which the opti-
cal axes of the crystals lie in the waveguide plane (0 =
900), making an angle ep with the positive i-axis with

the same value in all uniaxial media. The eigenvalue
equation associated with this case is obtained from Eq.
(24) by taking into account the suitable characteristic
matrix of the structure. The explicit expression of
this characteristic matrix is given in Appendix B. A
waveguide such as the one described above can support
only hybrid modes with the six field components.
When the optical axis makes a. small angle with the
waveguide axis (o - 00) the field components associat-
ed with the ordinary and extraordinary waves are
weakly coupled and the modes correspond to the TE-
TM polarizations. When the angle increases, the cou-
pling between the above components grows also and
several modes become leaky. The nature of these
leaky modes is described in Refs. 7-10. Here we dis-
cuss some open questions from which new results
come.

A. Inhomogeneous Waveguide

First, we have analyzed an asymmetric inhomogene-
ous waveguide with a Gaussian profile in both the
ordinary and extraordinary refractive indices, and in
which the cover is in air. The various waveguide pa-
rameters are

Inq = 2.2946 nef = 2.21081
G1 :. nos = 2.2866 nes = 2.2028

I n= D=21im

Here D is the characteristic depth of the Gaussian
profile, and the subscript f stand for film parameters.
Also we assumed X = 633 nm. When s = 0, G,
supports the TEO and TMO modes. The mode which is
the TEO mode at so = 0 remains guided for all values of
so and becomes the TMo mode at p = 90° via a predomi-
nantly ordinary hybrid mode. On the other hand, the
mode that at s = 0° is TMo becomes leaky beyond n 
110, and it converts into the TEO at so = 900 by means of
a predominantly extraordinary hybrid mode. These
modes are referred to as the [TEo,TMo] [g] and
[TMoTEo] [1], respectively. Here [g] and [] indicate a
guided and leaky mode. We deal now with the behav-
ior of the loss coefficient of the [TMoTEo] [] mode.

In Fig. 2 we have plotted the loss coefficient of the
above mentioned leaky mode as a function of the angle
so. To perform the calculations use has been made of a
numerical zoom root-finding algorithm to solve direct-
ly the eigenvalue equation (24) for complex roots. Al-
though this procedure requires a considerable number
of iterations in the complex -plane, it provides very
accurate results. The graded index profile has been
introduced in the formalism through the multilayer
staircase technique. First, the accurate numerical re-
sults obtained for a few values of the angle (o are given
in Table I together with the results reported by Ko-
shiba et al.'2 from the finite element technique. As
can be seen, the agreement between both sets of values
is quite good, the differences being unsignificant in
practice.

On the other hand, our main aim in this case is to
examine the effects of inhomogeneity on the loss coef-
ficient. Thereupon, we included also in Fig. 2 the
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Tt

Sol 1P (degrees)

Fig. 2. Loss coefficient of the [TMo,TEo][lJ mode supported by Gi
as a function of the optical axis orientation. ol is the guided-to-

leaky mode transition angle.

Table I. Accurate Numerical Values Obtained for the Wavegulde with a

Gaussian Profile (G1) and Comparison with the Finite Element Results

Reported In Ref. 12

'p Transfer Matrix Finite Element

Re(Q/ko) Loss (dB/cm) Re(//ko) Loss (dB/cm)

120 2.28576 170.1 2.28574 181.6

300 2.26757 54.0 2.26756 53.8

600 2.22573 8.9 2.22572 8.9

results corresponding to a waveguide identical to GI
but with a step index profile. This plot deserves some
comments. First, in the case of the homogeneous pro-
file the loss coefficient shows a secondary maximum
which is not observed for the Gaussian profile (see also
Fig. 3). Also, the step index waveguide shows a pro-
nounced loss peak which does not appear in the inho-
mogeneous case. These features agree with the previ-
sions of Burns et a. 8 in the sense that the sharp
structure showed by the loss coefficient in a step index
waveguide is due to interferential phenomena which
originate in the abrupt discontinuities at the film-
cover and film-substrate interfaces. The same con-
clusions follow from Figs. 4 and 5, where the loss coeffi-
cient of the [TMOTEo] [1] mode has been plotted as a
function of the cover refractive index for two different
values of p. In all cases, to emphasize the effects due
to the Gaussian profile the charts have been referred to
the value of the loss coefficient for NC = 1. First, it can

40-

o gaussian

20 _ step-index

30 60 90

P° (degrees)

Fig. 3. Detail of Fig. 2 showing the secondary maximum of the loss
coefficient as a function of so for the homogeneous waveguide and the

monotonous decrease which occurs for the Gaussian profile.

be seen in both figures that the loss coefficient depends
on n, in a stronger way for the Gaussian profile than for
the step index one. Also, in the case of the homoge-
neous waveguide, the behavior of the loss coefficient on
nc is completely different for qp = 300 than for p = 40°.
This difference, which does not occur for the Gaussian
profile, comes again from interferential phenomena.

Finally, it is interesting to note that the presence of
the graded index profile modifies the value of the
critical angle at which the [TMoTEO] [1) mode becomes
leaky. As mentioned above (ij 11° for the Gaussian
profile, whereas spo 140 for the homogeneous wave-
guide.

B. Multilayer Step Index Structures

We deal now with multilayer uniaxial structures.
The interest in such waveguides comes from their anal-
ogy with their isotropic counterparts, whose noticeable
properties have been pointed out in several works.
Our main motivation on this subject lays in the fact
that the presence of additional layers modifies not only
the real part of the effective index [ieG(/ko)] but also
the loss coefficient of the leaky modes and the guided-
to-leaky mode transition angle.

In highly asymmetric structures the propagation
characteristics of the leaky modes are only slightly
modified by the presence of additional layers at the top
of the waveguide. This is because in these waveguides
the leaky modes mainly account for radiation to the
substrate, so that the cover material only affects the
leaky modes when its refractive index amounts to a
value close to that of the substrate. The situation
changes completely when structures with a high degree
of symmetry are considered. Now the leaky modes
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Fig. 4. Loss coefficient for the leaky mode in Fig. 2 as a function of
the cover refractive index for ex = 40' To emphasize the effects due
to the Gaussian profile the curves have been referred to the value of

the loss coefficient for n toe 1.

=300

10 

'I

M25-
0

'~gaussian

0

~~~~4 ~~~~step-index

1.7 1.9 2.1 2.3

n,

Fig. 5. Same as in Fig. 4 but for (p = 300.

correspond to radiation toward both substrate and
superstrate, so that they are strongly dependent on
cover parameters. 12 For example, this is the behavior
shown in Figs. 4 and 5, which we have discussed previ-
ously.

The formalism developed in Sec. II allows us to
analyze in an exact and simple way the multilayer
uniaxial waveguides. As already mentioned, the char-

X 2.187 [TMITEo[g|

Q) 2.1[5 TEoTMo] g]

'TM:/ 1
- TEo TMO

2.183- I I I I I
0 30 60 90

vP (degrees)

Fig. 6. Effective indices of the hybrid modes supported by G2 as a
function of *,. At s = 0,900 the modes are pure TE and TM. The
[TMo,TEo] [g] mode is a predominantly extraordinary guided hybrid
mode, whereas the [TEO,TMo] [1] mode is a predominantly ordinary
leaky hybrid mode. Solid line: pure guided mode. Dashed line:

leaky mode.

acteristic matrix of the whole structure is obtained by
the ordered product of the matrices of each layer. As
an example, we have analyzed a step index symmetric
waveguide in which cover, substrate, and film are as-
sumed to be uniaxial media. In addition, there is an
isotropic buffer layer of thickness Db and refractive
index nb placed between the cover and film. Opposite
the former case, we consider now a LiTaO3 based wave-
guide with the following parameters:

n(f = 2.1856 ne/ = 2.190

G2: n = 2.1834 nes = 2.1878

D = 2 jim

In the limiting cases so = 0 and so = 900 this waveguide
supports the TEo and TMo modes. For any other
value of the angle '1, G2 supports two hybrid modes,
which will be denoted as [TMoTEo][g] and
[TEo,TMoJ[1] according to the notation introduced
above. The guided-to-leaky mode transition angle for
the leaky mode amounts to v p 28°. The rolls of the
TE and TM modes have been interchanged in relation
to the former case (GI) because now we are dealing with
a positive birefringent material (ne > no). Figure 6
shows the propagation characteristics of the above
modes as a function of v.

The influence of the buffer layer on the
[TEo,TMoI[1] mode has been analyzed in Figs. 7-11.
In Fig. 7 we plotted the loss coefficient of this mode as a
function of the buffer thickness, and the variation of
the loss coefficient with the buffer refractive index is
shown in Fig. 8. Two different orientations of the
crystal optical axis have been considered: = 300 and
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0

ep = 30°

0

2.10 2.15 2.20

Fib

Fig. 7. Loss coefficient as a function of the buffer refractive index.
Mode [TEo,TMoJ [1]. Buffer thickness: Db = 0.5 ,pm.

0
u0
T4

Log[Db/A]

Fig. 8. Loss coefficient as a function of the decimal logarithm of the
A-scaled buffer thickness. Mode [TEoTMoJ[1j. Bufferrefractive

index: nb = 2.

s = 400. The charts in these figures show that the
effects of the additional layer on the loss coefficient of
the leaky mode depends strongly on the buffer thick-
ness and is practically insensitive to the buffer refrac-
tive index. In this case, the obtained behavior for the
loss coefficient is similar for both crystal orientations.
However, this result cannot be generalized. For exam-
ple, in Figs. 9 and 10 the previous dependences have

15-

o=300

rn ~ ~ ~~~n

W~~~

10
2.14 2.16 2.18 2.20

Fig. 9. Same as inFig. 7for the [TE,,TMZJ mode supported by
the multimode version (D 6 pm) of 02.

10 5- p=30

0 5~~~~~~~~~ 

~~/

Log[Db/A]

Fig. 10. Same as in Fig. 8 for the [TE,TM [ mode supported by
the multimode version (D = 6pum) of G2-

been plotted for the [TETM 1J [1J mode supported by a
multimode version (D = 6 im) of G2. In fact, this
multimode waveguide also supports the [TM1 ,TE][U]
mode, but it is a very low loss leaky mode.7 As can be
seen in Figs. 9 and 10, now the effects due to the buffer
layer are completely different for the two considered
crystal orientations.

Finally, it is to be emphasized that the presence of
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C;'W
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Log[Db/A]

Fig. 11. Guided-to-leaky mode transition angle for the
[TEo,TMoI (1] mode supported by G2 as a function of the decimal
logarithm of the ;-scaled buffer thickness. Dashed line: transition

angle in the absence of the buffer layer.

the dielectric low index layer also modifies the value of
the guided-to-leaky mode transition angle. For exam-
ple, in Fig. 11 we plotted the variation of the leaky
transition angle with the buffer thickness for various
values of the buffer refractive index for the
[TEoTM 0] [1] mode supported by G2. Similar behav-
ior has been obtained for other leaky modes. As in
Figs. 7 and 9, the leaky transition angle becomes insen-
sitive to the buffer thickness when Db amounts to a
value of the order of X. The modification of the guid-
ed-to-leaky mode transition angle wtih the waveguide
parameters should be particularly interesting for the
anisotropy based cutoff devices in which this angle
plays a fundamental role. We return to this question
in a forthcoming paper. 2 5

IV. Concluding Remarks

The waveguiding condition for light propagation in
planar dielectric uniaxial waveguides with a multilayer
structure has been obtained with no restrictions on the
optical axes orientation. The procedure is based on
the extension of the transfer-matrix formalism to in-
clude an anisotropic substrate and superstrate. As an
application of the formalism we have investigated the
propagation characteristics of leaky modes in an inho-
mogeneous waveguide and a multilayer step index
structure in which the crystal optical axes lie in the
waveguide plane. The explicit expression of the re-
quired characteristic matrix is also given. Both the
loss coefficient and the guided-to-leaky mode transi-
tion angle have been analyzed as a function of the
inhomogeneity and buffer layer parameters. We have

shown that the presence of additional low index layers
forming multilayer structures with a high degree of
symmetry strongly affects the propagation character-
istics of the leaky modes supported by such wave-
guides. These effects depend also on the optical axis
orientation due to interferential phenomena which
come from the presence of abrupt discontinuities on
the interfaces between the various dielectric media.

The authors are grateful to Jiri Ctyroky of the
Czechoslovak Academy of Sciences, Prague, for valu-
able suggestions. This work was partially supported
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Appendix A

The waveguiding condition for the case when the t-
axis lies in the plane so = 0° in both the substrate and
superstrate is

{21 + i T22 + T11 - 2 *T12 X

{T4 +jŽAwT, + i2:wT3 3 - 2T341
{ ( * X

{ 2 T1 -e E*ye T,

{T41 + i--T 4 2 +Z--g T32 = -.
'ye A'. &' J

(Al)

When the waveguide supports pure TE and TM
modes, the first bracket in the above expression corre-
sponds to the TM polarization and the second to the
TE one. In such a case, also, the other two brackets
vanish identically.

Appendix B

The transfer matrix of the buffered uniaxial wave-
guide in Sec. III is given by T = UaUb, where Ua and Ub
are the matrices associated with the anisotropic film
and buffer layer, respectively. Both matrices can be
analytically calculated by means of the 4 X 4 formal-
ism. The derivation follows a general procedure de-
veloped by Vassell,19 who has also reported the expres-
sion of the transfer matrix for the simpler case of a
uniaxial dielectric film whose optical axis lies in the P
-00 plane. The transfer matrix for the general case
can be easily calculated also by means of the same
procedure.26 In our case, 0 = 900, it can be written as

Um = (X2a2 + Afo)fjm (Bi)

U being an auxiliary matrix whose elements are given
by
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l = pf0 cos(wDX0 ) + X2aC cos(wDXe),

12 = e in(wDX,) + ai (e sin(wDXe)i

U3 =- 01X[CEosmDX) +'~
U13 = a1 A[cos(wDX)- cos(wDXe)],

U14 = -ialki[sin(DX) - , sin(wDXe)

Tg21 = i d [Aeo sin(wDX0 ) + a2a\Xe sin(wDXe)],
X" 

r23 = oal sin(oDX,) - x sin(wDXe)I

U2 4 = -pcaj[coswDX) - cos(wDXe)],

U33= a1 cos(coDX0 ) + Ac6 cos(wDX,),

U34 = -i E [ 1o~ea2 sinQwDX0) + peo sin(wDXe)],
Xte

U43 = -i [Xoa sin(wDX0)

U22 = fll 044 = p3 3,

U31 = U24 r32 = l4,

U4 1 = U23 42 = _U13, 

where

Xe = Pee a

e£ - exx

cxy

Xe . 1

Here a = ,1/co and D is the thickness of the anisotropic
film. The transfer matrix of the isotropic buffer layer
comes directly from the above expressions by making
the substitution E, = = enb, e being the free space
permittivity and nb the buffer refractive index. One
arrives at the well known expression

Ub= (UTM 0U ) (B7)

where

[ cos(koDbb) i(i/a) sin(kODb) (B8)
=i(azn) sin(keDbfb) cos(koDbfb) J 

Here X =_1i7; and Db stands for the buffer thickness.
Also, use has been made of the definition

fib" r-N (B9)

N= - /k0 being the effective index and aTE = -0b,aTM =
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