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A classical optics waveguide structure is proposed to simulate resonances of short range one-dimensional potentials in quantum
mechanics.�e analogy is based on the well-known resemblance between the guided and radiation modes of a waveguide with the
bound and scattering states of a quantum well. As resonances are scattering states that spend some time in the zone of in	uence of
the scatterer, we associate themwith the leakymodes of awaveguide, the latter characterized by su
ering attenuation in the direction
of propagation but increasing exponentially in the transverse directions. �e resemblance is complete because resonances (leaky
modes) can be interpreted as bound states (guided modes) with de�nite lifetime (longitudinal shi�). As an immediate application
we calculate the leaky modes (resonances) associated with a dielectric homogeneous slab (square well potential) and show that
these modes are attenuated as they propagate.

1. Introduction

In general, a resonance may be de�ned as the excitation of a
system that results when one of its characteristic frequencies
matches a particular value that is de�ned by either the bound-
ary conditions, the external forces, or any other interaction
or constraint applied to the system. �e concept arises from
the study of oscillating systems in classical mechanics and
extends its applications to physical theories like electromag-
netism, optics, acoustics, and quantum mechanics, among
others [1]. In quantum and nuclear physics the resonances
are associated with metastable states of a system which has
su�cient energy to break up into two or more subsystems
[2]. �e whole range of scattering experiments provides
a big number of examples in this matter [3, 4]. �is last
is because scattering includes the situation in which the
impinging particle is “captured” for a while in the zone
of in	uence of the scatterer, so that the projectile and the
scatterer form a new unstable system (resonance state). �e
capturing occurs for speci�c energies of the projectile that are
de�ned by the general properties of the scatterer. Eventually,
the projectile is released and escapes from the interaction

zone (decay process). In this model the “time of capture”
corresponds to the lifetime of the decaying system that is
formed of the scatterer and the projectile under the resonance
condition. Collisions, in addition, aremodeled as interactions
localized in time and space. �is implies that the involved
potential vanishes rapidly enough in space, so that incoming
and outgoing asymptotic states can be represented by wave
packets in free motion. �e problem is usually reduced to
the analysis of one-dimensional e
ective potentials such that
the main information is obtained from the transmission and
re	ection amplitudes of the scattering states; see, for example,
[5]. In the case of one-dimensional square potential wells
and barriers the resonances appear for speci�c values of
the parameters that de�ne the interaction. Indeed, for such
parameters the resonances can be associated with the bell-
shaped peaks of the corresponding transmission coe�cient
[6, 7]. �e presence of resonances can be also stimulated
either by shallowing a square well [8] or by adding to it a static
electric �eld [9]. As resonances are special cases of scattering
states, they are represented by irregular (not normalizable)
vectors [10, 11] that satisfy the purely outgoing condition
[12] (see also [1]). �is last property of resonances is useful
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in constructing complex potentials that operate as optical
devices with position-dependent complex refractive index
[6, 13, 14].

Remarkably, quantum wells and barriers can be made
with high precision and compositional control by modern
epitaxial growth techniques [15]. �is has opened a wide
window of experimental possibilities to explore various
quantum phenomena in real devices and actual laboratory
settings. For example, it has been shown that the transmission
time of a wave packet that is tunnelling through a one-
dimensional barrier does not depend on the barrier thickness
[16]; a similar property is found in one-dimensional potential
wells [17, 18].�is condition implies anomalously large group
velocities of the wave packets that impinge the barrier (well)
since the velocity of the packet’s peak must increase with
the width across the interaction zone. Such a superluminal
phenomenon has been observed using electromagnetic ana-
logues for evanescent modes [19] and microwave pulses [20];
at the same time this result has stimulated the designing
of high-speed devices based on the tunneling properties of
semiconductors (see, e.g., Chapters 11 and 12 of [21]). On the
other hand, as the scattering by quantum wells attenuates
the outgoing wave packets only because of the multiple
re	ections at the well boundaries, it is expected that the
resonance condition implies a maximum in the time spent
by the projectile in traversing the zone of in	uence of the
scatterer [6]. Recent theoretical research includes the case
of a rectangular well that is embedded in an environment
formed of a zero potential energy (	at potential) at the right
and a parabolic potential at the le� of the well [22–24]. �us,
the connection between time delay and “time of capture”
associated with the scattering processes would be veri�ed in
the laboratory by using semiconductor materials.

Another accessible laboratory tool to study quantum
phenomena is provided by waveguide structures. �e con-
nection is based on the analogies between light waves and
Schrödinger wave-state functions that have been studied
since the early years of quantumphysics [25]. In this approach
the amplitude of an electromagnetic �eld is associated with
the probability amplitude of a quantum statewith two degrees
of freedom while the propagation of such �eld through the
waveguide corresponds to the time evolution of the quantum
state. Such optical-quantum analogy is representative of a
wider scheme that includes diverse connections between
classical and quantum systems [26] and has been successfully
applied in studying Anderson localization [27], coherent
enhancement [28] and destruction of tunneling [29], coher-
ent population transfer [30], and decay of metastable states
coupled to semi-in�nite, tight-binding lattices [31], among
others. Of special interest for the purposes of this paper,
nanoseconds delay-timemeasurements have been performed
into the electromagnetic framework by using microwave
setups of narrowed waveguides [32].�e relevance of this last
result obeys the fact that the waveguide simulates a quantum
potential barrier so that the measured electromagnetic delay-
time is in correspondence with the quantum tunneling time.
�us, the waveguide structures represent an emergent and
versatile arena to perform realistic experiments addressed to

get deeper insights into the understanding of resonances in
quantum physics.

�e aim of this paper is to get a classical optics analogy
of the resonances associated with one-dimensional short
range potentials in quantum physics. �e centerpiece of
our approach is the connection between the mathematical
structure of the propagation of electromagnetic signals in
waveguides and the dynamics of a time-dependent quantum
state. In this form our interest is twofold: we want to connect
the theoretical calculations of resonances with measurable
properties of an electromagnetic wave that propagates in
a waveguide and we would like to extend the application
of the resonance mathematical techniques to the solving
of problems associated with electromagnetic waveguides. A
collateral result will be the connection between the resonance
properties of electrons that are injected into heterostruc-
tures and the properties of the electromagnetic signals that
propagate in optical waveguides. �e paper is organized
as follows. In Section 2 we revisit the main properties of
the resonance states associated with one-dimensional short
range potentials. In particular, the relevance of the Fock-
Breit-Wigner distribution in a scattering process is shown.
When the transition amplitude from an initial scattering state
to its time-evolved version is ruled by such a distribution,
one immediately identi�es energy resonances between the
projectile and the scatterer. It is also shown that analytical
continuation of the eigenvalue equation to a complex plane
of energies is required to get an appropriate mathematical
description of resonance states. In Section 3 we include
some of the well-known generalities of the mode �elds
in waveguide structures and their connection with the
Schrödinger equation of a system of two degrees of freedom.
�e case of electromagnetic propagation through a �nite,
dielectric homogeneous material and its association with
a one-dimensional square well potential is considered in
Section 3.1 as immediate application. Section 4 is devoted to
the connection between resonance states and a singular form
ofmodal �eld inwaveguides; the latter is known as leakymode
and is characterized by su
ering attenuation in the direction
of propagation but increasing exponentially in the transverse
directions. We apply the resonance approach of [6] in the
calculation of the leaky modes associated with the dielectric
homogeneous slab described in Section 3.1. As an example we
provide the propagation constant values (energy resonances)
corresponding to the leaky modes supported by a slab of def-
inite width and refractive index, and show that these modes
are attenuated as they propagate. Section 5 includes the
calculation of the longitudinal shi�s for the leaky modes of
Section 4; we show that the maxima of these shi�s are in cor-
respondencewith themaxima of the transmission coe�cient,
a result that veri�es the connection between times of capture
and resonances in the scattering processes. Finally, Section 6
includes some of the main conclusions of the present work.

2. One-Dimensional Scattering States
and Resonances

Let � be the Hamiltonian de�ned by a short range one-
dimensional potential �(�). Assuming that the spectrum of
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� is formed of discrete and continuous eigenvalues, one can
consider the following sets of state vectors:

discrete eigenvalues

�� ←→
{{{{{{{{{

�����⟩ , � ∈ I� ⊆ Z
+

I� = ∑
�∈I�

�����⟩ ⟨�����
H� = Span {�����⟩}�∈I� ,

continuous eigenvalues

� ←→
{{{{{{{{{

�����⟩ , � ∈ I� ⊆ R

I� = ∫
�∈I�

�� �����⟩ ⟨�����
H� = Span {������⟩}�∈I� ,

(1)

where I� and I� are, respectively, the identity operator in
H� and H�. Consistently, the spectrum and Hilbert space
of � are �(�) = {��}�∈I� ∪ {�}�∈I� and H = H� ⊕
H�, respectively. As usual, the discrete and continuous
eigenvectors (1) are orthonormal in their respective subspace
according to the rules

⟨� | �⟩ = ���,
⟨� | ��⟩ = � (� − ��) . (2)

Herea�er we pay detailed attention to the scattering states
(i.e., vectors in H�). �e description of bound states (i.e.,
vectors in H�) is straightforward by using the well-known

relationship ∫�� ↔ ∑�. �e reason is that, as we have said
in the introduction, resonance states arise quite naturally in
the scattering processes.

Any scattering state |�⟩ ∈ H� can be expressed in the
basis of continuous eigenvectors

�����⟩ = I�
�����⟩ = ∫

�∈I�
��% (�) �����⟩ ,

% (�) = ⟨� | �⟩ ,
(3)

and is such that

&&&&�&&&&2 = ⟨� | �⟩ = ∫
�∈I�

�� |% (�)|2 . (4)

In �-representation the above expressions read as

� (�) = ∫
�∈I�

��% (�) � (�) ,

% (�) = ∫
R

��� (�) � (�) ,
(5)

&&&&�&&&&2 = ∫
R

�� ����� (�)����2 = ∫
�∈I�

�� |% (�)|2 , (6)

with ' standing for the complex conjugate of ' ∈ C. �e
above expressions allow writing the energy distribution *(�)
as follows:

* (�) = �+
�� = |% (�)|2 . (7)

Let (3), equivalently (5), be the initial state of a stationary
system. �e transition amplitude -(/ ≥ 0) from |�(/ = 0)⟩ =|�0⟩ to |�(/)⟩ = |��⟩ is given by the inner product

- (/ ≥ 0) = ⟨�0 | ��⟩ = ∫
R

���0 (�) �� (�)
= ∫
�∈I�

��* (�) 2−	��/ℏ.
(8)

It is clear that - can be investigated in terms of spatial
coordinates � or as a function of the energy distribution (7).
In this workwewill assume that*(�) is given by the following
expression:

* (�) = (Γ/2)2
(� − �0 + 8Γ/2) (� − �0 − 8Γ/2)

= (Γ/2)2
(� − �0)2 + (Γ/2)2 ,

(9)

where �0 ∈ I� is the energy of the initial state |�0⟩ andΓ ≥ 0 is a parameter having units of energy. Note that the
bell-shaped function (9) is centered at � = �0, for which*(�0) = 1, and has a half-width at half-maximum equal toΓ/2. In addition,*(�) is ameromorphic function that has two
poles�± = �0±8Γ/2.�is function is known as either Cauchy
(mathematics), Lorentz (statistical physics), or Fock-Breit-
Wigner (FBW) (nuclear and particle physics) distribution.
Using (7) we can write the Fourier coe�cient %(�) in the
expansion (3) as follows:

% (�) = Γ/2
� − �0 + 8Γ/2 . (10)

A�er the analytic continuation ofI� ⊆ R to the complex �-
plane one can introduce (9) into (8) to arrive, up to a global
constant factor, at the expression

- (/ ≥ 0) = Γ
22−	�0�/ℏ = (Γ

22−	�0�/ℏ) 2−Γ�/2ℏ,
>0 := �0 − 8Γ2 .

(11)

�is last result has the form of a transient oscillation [1] and
means that the transition from |�0⟩ to |��⟩ is an exponential
decreasing function of time whenever %(�) is given by (10).
�at is, the initial state |�0⟩ decays according to the time-
dependent probability

|- (/ ≥ 0)|2 = (Γ
2)
2 2−Γ�/ℏ. (12)

As we can see, the width Γ of the distribution (9) represents
an indirect measure of the lifetime of |�0⟩ because at time@ := ℏ/Γ the probability that this state has not yet decayed

is reduced approximately in 36%, that is, Γ2/4 → Γ2/(42). It
is clear that Γ and @ are correlated; the smaller the value ofΓ the larger the lifetime @. In general, one says that there is a
resonance �0 of width Γ when either the energy distribution
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of the system at time / ≥ 0 is given by the FBW function (9)
or the Fourier coe�cients%(�) of the expansion (3) are given
by (10).

We would like to emphasize that the dependence of *,%, and - on the complex number >0 = �0 − 8Γ/2, as this
has been expressed in (9)–(12), is not merely aesthetic; this
corresponds to the formulation developed by Gamow, Fock,
Breit, andWigner in the late 1920s and along the 1930 decade
(see details in [1]). It is due to Siegert [12] that a resonance
is introduced as a solution E� of the Schrödinger equation
associated with the complex eigenvalue > = � − 8Γ/2 and
satisfying the purely outgoing condition [6]:

lim
→±∞

F = ∓8�, (13)

where �2 = 2H>/ℏ2 ∈ C and

F := − �
�� ln E�. (14)

It can be shown that the above conditions lead automatically
to the FBW distribution (9) with � a number in the fourth
quadrant of the complex plane C; see [1]. In turn, the distri-

bution of the complex points >1/2 = ℏ�/√2H characterizes
a Riemman surface of two sheets, each one cutting along the
positive real axis. �ese complex numbers de�ne directly the
behavior of the propagator (12). For instance, consider a very
narrow distribution *(�), that is, Γ ≪ 1 (the point > ∈ C

is close to the positive real axis). As Γ de�nes the vicinity� ∈ (�0 − Γ/2, �0 + Γ/2), we see that “large lifetimes” @ = ℏ/Γ
means narrow widths Γ, so that the energy � of the system at
time / ≥ 0 is very close to the initial energy�0. In the extremal
case Γ → 0, the distribution *(�) is as narrow and singular
as �(� − �0). �at is, the related lifetime @ is large enough(@ → +∞) to consider the initial vector |�0⟩ a nondecaying
(stable) state. In this context, bound states are considered as
decaying states with in�nitely large lifetimes and vice versa,
unstable (decaying) states correspond to bound states with a
de�nite lifetime.

To get more insights into the complex eigenvalue >0 let us
consider the Schrödinger equation

�� (�; /) = 8ℏ �
�/� (�; /) . (15)

Assuming separation of variables �(�; /) = M(�)N(/), with
N(/) = 2−	��/ℏ and � ∈ I� the separation constant, the
probability density does not depend on time |�(�; /)|2 =|M(�)|2. Now, let us make the analytic continuation of the
eigenvalue equation �M(�) = �M(�) in order to include
complex eigenvalues > = � − 8Γ/2, that is, �E� =
>E�. In this case we have �(�; /) = E�(�)2−	��/ℏ, and the
probability density is an exponential decreasing function of

time |�(�; /)|2 = |E�(�)|22−Γ�/ℏ. Clearly, the spatial part E�(�)
of the wave-function �(�; /) is no longer a square-integrable
function because this belongs to the complex eigenvalue > and
theHamiltonian� is still Hermitian. Indeed, it can be proved
that E�(�) diverges exponentially as |�| → +∞. �us, the

density |�(�; /)|2 increases exponentially for either large |�|

or large negative values of /. �e usual form to avoid some
of the complications connected with the limit / → −∞ is to
consider the long lifetime limit Γ → 0; see, for example, [33].
�erefore, we consider the condition

Γ/2
Δ� ≪ 1. (16)

�is last means that the level width Γ must be much smaller
than the level spacingΔ� in such a way that closer resonances
must imply narrower widths (longer lifetimes). In general,
the main di�culty is precisely to �nd the adequate � andΓ. However, it has been shown [6] that for one-dimensional
stationary short range potentials the superposition of a
denumerable set of FBW distributions (each one centered at
each resonance ��, P = 1, 2, . . .) entails an approximation of
the transmission coe�cient- such that the larger the numberQ of resonances involved, the higher the precision of the
approximation:

- ≈ *� (�) =
�∑
�=1

* (�, ��) ;

* (�, ��) = (Γ�/2)2
(� − ��)2 + (Γ�/2)2 .

(17)

3. Mode Fields in Waveguide Structures

Consider the Helmholtz equation

S2
S�2� (�, ') + S2

S'2� (�, ') + �20P2 (�) � (�, ') = 0, (18)

with �0 = T/U the wave number in vacuum. Equation (18)
can be achieved from the Maxwell equations for transversal

electric �elds �⃗ in presence of inhomogeneous dielectric
materials, neglecting the magnetic polarizability and the dis-
persive properties of the medium. Indeed, (18) corresponds
to an electric wave propagating along the positive '-direction
and polarized in the W-direction, assuming that the refractive
index P depends only on the �-coordinate. In the paraxial
regime we use the ansatz

� (�, ') = M (�) 2−	�0(�−�0)�, (19)

to transform (18) into the linear second-order di
erential
equation

[− 1
2�20P0

�2
��2 − P (�)] M (�) = >M (�) , > = Z − P0, (20)

known as the paraxial Helmholtz equation. In (19)-(20) the
number P0 is a reference refractive index that may be taken
as the maximum of P(�), and we have assumed that the
weakly guiding condition (ΔP = |P − P0| ≪ 1) holds. In
this approach the parameter >, known as the propagation
constant, is the value of the '-component of the generalized
linearmomentum [34] and de�nes the slope of the light beam
as follows:

> = −[� = −P (�) cos N (�) . (21)
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In general, modal �elds associated with open waveguides
are classi�ed into guided (trapped) modes and radiation
modes, the latter propagating outside the core [35–38]. �e
guided modes are bounded �elds that correspond to real
values of the propagation constant ful�lling −P0 ≤ > <−1. �ey are perfectly guided through the waveguide as
they su
er no attenuation along the optical axis and decay
exponentially in the transverse direction. �us, as guided
modes are trapped into the core of the waveguide they add
no energy 	ux into the in�nite surrounding clad. In turn,
propagating radiation modes correspond to real propagation
constants ful�lling −1 ≤ > < 0, so that they are oscillatory
�elds in the transverse as well as in the longitudinal directions
[35].�ey appear as a consequence of the in�nite extension of
the clad cross section. Guided and radiationmodes constitute
a complete set of modal �elds in the sense that any physical
solution to the paraxial Helmholtz equation can be expressed
as a linear superposition of a �nite number of guided modes
and a continuum of radiation modes.

At this stage it is important to stress the resemblance of
the electric �eld expression (19) with the solutions �(�; /) =
M(�)2−	��/ℏ of the Schrödinger equation (15). �is allows the
identi�cation

�−10 ←→ ℏ,
' ←→ /,
> = Z − P0 ←→ �.

(22)

In adittion, (20) would correspond to the eigenvalue equation�M = �M, provided the following additional identi�cation
holds:

� = −(�−202P0)
�2
��2 − P (�) ,

P0 ←→ H, − P (�) ←→ �(�) .
(23)

�e identi�cation (22)-(23) is well known in the literature;
see, for example, [34]. �is allows to construct the classical
optics analogy of diverse quantumphenomena and vice versa,
the quantum analogy of classical optical phenomena [26, 34].
�e analogy includes the sets of vectors introduced in (1)
because bound states correspond to “trapped” waves that
have no chance of escaping from the zone of in	uence of the
scatterer (as we have seen in the previous section, these states
can be interpreted as decaying states with in�nitely large
lifetime). �us, quantum bound states correspond to guided
electromagnetic modes. Particles in scattering states, on the
other hand, can be temporally trapped by the scatterer in such
a form that their presence in the zone of interaction decreases
in time. In this form, scattering states correspond to radiation
modes. �e orthonormalization properties of guided and
radiation modal �elds can be stated in a form similar to
that of the quantum mechanical bound and scattering states
(see, e.g., [35, 37]). Hence, the total radiated power can be
expressed as the sum of two terms: the �rst one associated
with the power that propagates inside the core, given by a
�nite sum containing the contribution of guided modes, and

a second term corresponding to the power radiated from the
core, expressed as an integral over all radiationmodes. In this
form, denoting by `� and `(>) the guided and the radiation
mode amplitudes, respectively, the total power of the radiated
�eld in the waveguide axis direction is given by [36]

arad = ∑
�

����`�����2 + ∫
�∈I�

�> |` (>)|2 . (24)

On the other hand, as we have seen, resonances are scattering
states of complex eigenenergy that spend de�nite intervals of
time in the interaction zone. So resonances are not connected
to radiation modes because these last do not belong to
complex eigenvalues. Next we will take full advantage of
the analogy indicated above to get optical models for the
resonances discussed in Section 2.

3.1.Wave Propagation through a Dielectric Homogeneous Slab.
As an immediate application let us analyze the simplest case
of electromagnetic propagation through a �nite, dielectric
homogeneous material. It is convenient to rewrite the eigen-
value equation (20) as follows:

[−(�−202P0)
�2
��2 + 1 − P (�)] M = (> + 1) M. (25)

Considering a combination of media distributed along the �-
axis such that there is vacuum in (−∞, −b) ∪ (b, +∞) and
a medium of constant refractive index P = �0 > 1 in� ∈ [−b, b], (25) is in correspondence with the eigenvalue
equation de�ned by a linear square well of depth f0 = |1 −�0| and width 2b. �e solutions to this equation are well
known and can be found elsewhere, though the analysis of
resonances and the resolution of the transmission coe�cient
in terms of the FBWdistribution (see (17)) can be consulted in
[6]. Herea�er we will label the regions of the media (vacuum,
medium, vacuum) from le� to right as I, II, and III.

4. Leaky Modes and Resonances

Besides the guided and radiation modes discussed in the
previous section, it is well known the existence of solutions to
the Helmholtz equation with complex propagation constants
that have an “unusual behavior”: they increase exponentially
in the transverse direction and su
er attenuation in the
longitudinal one [35]. �ese solutions are called leaky modes
and have attracted much attention over the time. �e leaky
modes do not belong to the set of guided and radiationmodes
of in�nite transverse waveguides, though they constitute
a discrete set of modes that can be used to approximate
the continuous mode contribution to the radiation �eld, in
regions close to the core and far from the source, in order
to avoid integration overall radiation modes [36–40]. Yet,
leaky modes have properties that are very similar to the ones
of guided modes, but the former modes loss energy as they
propagate along the optical axis [37]. In slab waveguides
this leakage is due to refraction at the waveguide core-clad
boundaries (refracting leakymodes [36]). Inwaveguides with
curved cross section the leakage can be also produced by
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the partial re	ection at the boundaries due only to the
curvature of the cross section (tunneling leaky modes) [35,
36]. It can be shown that the leakage is slower in the tunneling
modes compared to the refractive modes [35]. In any case,
these modes behave much like guided modes as they are
able to propagate large distances inside the guide before their
power loss started to be signi�cant. Di
erent methods have
been applied to determine the leaky modes of planar [37, 41]
as well as cylindric [35, 39] waveguides involving isotropic
and anisotropic dielectrics [42]. �ese techniques include
numerical methods asmode-matching [43], �nite di
erences
and �nite element [38, 42, 44], approximatemethods asWKB
[45], transfer matrix [41] and di
erential transfer matrix
methods [40, 46]. In contrast to the diversity of mathematical
techniques to determine the propagation constants of leaky
modes there is still a conceptual discussion concerning them,
the exponential growing in the transversal direction of these
nearly guided modes make them appear as nonphysical
solutions to the Helmholtz equation. Yet, this behavior is
required if the energy 	ux must be preserved: as the 	ux
is damped in the longitudinal direction, there must be an
increasing 	ux in the transverse direction [37].

�e problem of �nding leaky modes is mathematically
equivalent to determine the resonant states in quantum
mechanics for a particle in a short range interaction potential.
�is is convenient because we may apply di
erent methods
that have been addressed to obtain the resonance energies and
the corresponding wave functions in order to determine the
complex propagation constants and the modal �elds. To this
end, let us regard the square well potential analogy indicated
in Section 3.1 with a complex propagation constant, > = >� −8(Γ/2).�e corresponding complex wave number � = ��+8�I
is related to > through

>� = �2� − �2I2�20 − 1,

−Γ
2 = ���I�20 .

(26)

�e energy density 	ux in the transverse direction is not
null because �� ̸= 0 (see [6]). A wave coming from region
III enters into resonance with the optical medium and is
thus trapped inside the core (region II); then it propagates
and travels a �nite distance along the optical axis. A�er a
while, the wave is �nally emitted into the clad. �e result is
a wave propagating to the le� in region I and another one
propagating to the right in region III. �e correct sign for�� is thus positive and the whole process obeys the pure
outgoing condition. �e expression for the electric energy
density ful�lls

lim
→±∞

h� ∝ 2−�0Γ� ����M (�)����2 , (27)

meaning that the power decreases exponentially as ' grows
whenever Γ > 0 and �I < 0. �e optical-quantum analogy
requires also a purely outgoing wave M(�) (see Section 2)
so the amplitudes of the external electric �elds increase
exponentially as � → ±∞. Leaky modes then correspond

to wave numbers � = �� + 8�I in the fourth quadrant of
the complex plane. �e factor �−10 /Γ can be interpreted as
the mean distance traveled by the beam, along the optical
axis, before its intensity decays by 1/2 of its intensity at a
focus. In this context Γ represents a measure of the transient
con�nement of the �eld into the core. In the limit Γ → 0
we will have a quasistationary mode propagating inside the
slab in a very similar way as a guided mode. In this limit, it
is possible to establish an analytic approach to calculate the
propagation constant. Bearing this in mind, following (16),
we may write

Γ/2
Δ>� ≪ 1, (28)

where Δ>� is the separation between two consecutive res-
onances. To get the position >� and the width Γ of the
resonances we follow the approximations reported in [6].
A�er some calculations one arrives at the expressions

>� ≈ 1
2�20�0 (

Hj
2b )2 − �0,

Γ
2 ≈ 1

�0b�0√2 (>� + 1),
(29)

withH an integer number ful�lling

√2�0 (�0 − 1) < Hj
2�0b < √2�20 . (30)

�us, for each combination of the parameters (b, �0, �0),
there is a �nite number of resonances given by (29). Table 1
shows the propagation constants > corresponding to the 17
leaky modes supported by a slab waveguide of refractive
index �0 = 1.5 and width �0b = 30. �e behavior
of the real part of the �eld amplitude of these modes, as
they propagate in the longitudinal direction through the
waveguide, is depicted in Figure 1 for H = 24 (le�), H = 32
(center), and H = 40 (right). Observe that the modes with
smaller values of H attenuate slower compared to those with
larger values ofH.

5. Longitudinal Shifts

Let us determine the longitudinal shi� of a wave packet under
scattering by an optical medium. �is will provide us some
insight into the mean distance traveled by the leaky mode in
the waveguide before the longitudinal power is completely
lost. �is problem is equivalent to evaluating the re	ection
and transmission phase times for a particle in a rectangular
well potential [16, 17, 47]. Consider a wave-packet scattering
solution for the external electric �eld

�I (�, ') = ∫�
0
��n (�) 2	(�−�0�(�)�)

+ ∫�
0
��n (�) o (�) 2	(−�−�(�)�0�−2��+�(�)),

�III (�, ') = ∫�
0
��n (�) / (�) 2	(�−�(�)�0�−2��+�(�)+�/2),

(31)
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Table 1: Propagation constant values > corresponding to the 17 leaky
modes supported by a slab of width �0b = 30 and constant refractive
index �0 = 1.5.

�0b = 30, �0 = 1.5
H > = >� − 8Γ2
24 −0.973621 − 80.0051042
25 −0.928842 − 80.0083833
26 −0.882236 − 80.0107847
27 −0.833802 − 80.0128120
28 −0.783540 − 80.0146215
29 −0.731450 − 80.0162860
30 −0.677533 − 80.0178462
31 −0.621788 − 80.0193273
32 −0.564215 − 80.0207462
33 −0.504815 − 80.0221150
34 −0.443587 − 80.0234424
35 −0.380531 − 80.0247350
36 −0.315647 − 80.0259981
37 −0.248936 − 80.0272358
38 −0.180397 − 80.0284514
39 −0.110031 − 80.0296476
40 −0.037836 − 80.0308267

z(k0) z(k0) z(k0)

I III IIIII III I II III

n n n

−a
−a −a

a
a a

x(k0)

Figure 1: Propagation of resonances inside a slab waveguide of
width �0b = 30 and constant refractive index P = �0 = 1.5. �e slab
supports 17 leaky modes (24 ≤ H ≤ 40) de�ned by (29). �e �gure
shows the propagation in the axial direction (from the bottom to the
top in each slab) of the real part of the leaky modes �eld amplitudes
for H = 24 (le�), H = 32 (center), and H = 40 (right). Note that
these are attenuated as the mode propagates. �e leakage is faster
for larger values ofH.

where n(�) is the Fourier coe�cient, r is de�ned by >(r) = 0,o(�) and /(�) are the re	exion and transmission amplitudes,
respectively, and

 (�) = − arctan
2�s cos 2sb

(�2 + s2) sin 2sb ,
s2 = �0 (�2 + 2�20 (�0 − 1)) .

(32)

Applying the stationary phase condition [16, 23, 24] to the
incident and transmitted wave packets, one has

S
S� (�� − �2

2�0 ' + �0') = 0,
S
S� (�� − 2�b − �2

2�0 ' + �0' +  (�) + j
2) = 0.

(33)

So that the equations of motion for the centers of the
corresponding Fourier components are given by

� = �
�0 ',

� = 2b + �
�0 ' + S

S� .
(34)

�epoint 'in at which an incident planewave of wave number�would reach the le� wall of the optical medium is then 'in =−(�0/�)b. In the same way the point '� at which the re	ected
or transmitted wave leaves the optical medium is

'� = �0� (−b + S
S�) . (35)

�en the longitudinal shi� of the re	ected or transmitted
wave is readily written as

�' = '� − 'in = �0�
S
S� . (36)

Figure 2 shows the longitudinal shi� of a Fourier component
under re	ection or transmission as a function of > for (a)�0b = 30 and (b) �0b = 5 × 104. It is worthwhile pointing
out that the peaks of this shi� coincide with the peaks
of the corresponding transmission coe�cient as shown in
Figure 3.�is implies that the electromagnetic modes having
maximum transmission probabilities and thus corresponding
to the resonant (leaky)modes travel amaximum longitudinal
distance in the core before they are �nally transmitted to
the in�nite clad. Figure 4 shows the longitudinal shi� as
a function of the width �0b for the propagation constant> = −0.995 and �0 = 1.5. We can appreciate that the
transmission shi� �' takes negative values; these have been
already predicted for both rectangular barriers and wells in
the quantum approach [17, 47]. �e analogy between the
Schrödinger and the paraxial Helmholtz equations suggests
that this property may be used to measure the negative phase
time in the scattering of particles by a potential well (compare
with [18]).

6. Conclusions

�e classical optics analogy of quantum systems is based on
the relationship between the Helmholtz equation and the
two degrees of freedomSchrödinger equation. Although such
analogy is mathematical, the optical solutions are useful in
simulating the quantum ones for diverse cases. For instance,
it is well known that the guided and radiation modes of
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Figure 2: Longitudinal shi� as a function of the propagation constant > = −[� for a dielectric slab of width �0b equal to (a) 30 and (b) 5×104.
In both cases �0 = 1.5.
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Figure 3: Longitudinal shi� (continuous line) and transmission
coe�cient (dotted line) of an electric wave propagating in a
dielectric slab of width �0b = 30 and constant refractive index�0 = 1.5, both as a function of the propagation constant >. Observe
that the maxima of both curves coincide.
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Figure 4: Longitudinal shi� as a function of the width �0b of a
dielectric slab with constant refractive index �0 = 1.5. Here > =−0.995.

a waveguide structure can be put in correspondence with the
bound and scattering states of a one-dimensional short range
potential in quantummechanics. However, the association of
leaky modes with their quantum counterpart, as well as the
identi�cation of the optical analogue of a quantum resonance,
is rarely discussed in the literature on the matter. One of the
reasons would be that in both cases the calculation of the
eigenvalues and wave solutions is not as immediate as in the
scattering (radiation) or bound (guided) states (modes). In
this work we have presented a form to connect these two
kinds of wave solutions: a leaky mode is in correspondence
with a resonance state.�e former is as close to a guidedmode
as a resonance is close to a bound state. �at is, a leaky mode
(resonance state) is a guided mode (bound state) for which
the longitudinal shi� (lifetime) is de�nite.
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primer on resonances in quantum mechanics,” AIP Conference
Proceedings, vol. 1077, p. 31, 2008.

[2] N. Moiseyev, “Quantum theory of resonances: calculating
energies, widths and crosssections by complex scaling,” Physics
Reports, vol. 302, pp. 211–293, 1998.

[3] J. R. Taylor, Scattering 
eory, John Wiley and Sons, New York,
NY, USA, 1972.
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