LEAKY RAYS ON OPTICAL FIBRES OF
ARBITRARY (CIRCULARLY SYMMETRIC)
INDEX PROFILES

lnd;xmg terms: Fibre optics, Geometrlcal optics, Optical wave-
guides

The local plane-wave decomposition approach used to analyse
optical fibres of arbitrary refractive-index profiles has been
extended to include the case of so called ‘leaky’ rays. The
result thus obtained for acceptance angle represents a
generalisation of results derived previously for simple forms
of the profile by geometrical-optics methods.

Introduction: Recent publications‘- 2 derive an expression for
the acceptance angle of a graded-index fibre by a geometrical-
optics technique. The results so obtained indicate that the
acceptance angle at a point on the fibre input face varies not
only with position, but als¢ with the projected angle of
incidence of the ray (¢ in Fig. 1). This is contrary to the
approach developed by Gloge and Marcatili,? ¢ which predicts
that the local numerical aperture is a function of radius only.
The purpose of this letter is to extend the plane-wave decom-
position method to include weakly leaky or tunnelling rays®-
and to show that these rays account for this discrepancy. In
addition, we show that tunnelling rays exist in the general
class of circularly symmetric guiding index profiles, and that
their presence strongly influences the observed near-field
power distribution in short fibres excited by incoherent
sources. ,

Fig. 1 Local wave-vector diagram for ray incident on fibre
face at radius ro and with angle |
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Fig.2 Squared magnitude of components of eqn. 2
Showing a mode just below cutoff (8 < knm;); a is the core radius

Theory: The local plane-wave decomposition® ¢ is shown in
Fig. 1, where the angles @, 7o, ¢ are those appropriate for a
ray entering the fibre at radius ro. The relationships between
the launching conditions (given by ro, &0, o) and the wave-
optical decomposition components are®
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where k is the wavenumber, v is the azimuthal wavenumber,
n(ro) is the refractive index and B is the propagation constant.

The radial component of the wave vector at r, is given by
+
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In Fig. 2, the squared magnitude of the various components

of eqn. 2 are shown as a function of radius r,. The Figure is
drawn for a fibre core of arbitrary index profile and radius a,
surrounded by a cladding of constant index 7, which may
be air. The case shown is that of a mode just below cutoff,
i.e. B < kn,. It can be seen’that this mode has

(a) a region of radial periodicity within the core, representing
bound power

(b) a region of evanescent field within the cladding

(c) a further region having an oscillatory field solution within
the cladding, representing radiated power.

The mode may therefore be identified as a leaky tunnelling
mode. The: limiting values for the propagation constant
between which these'modes may exist are given from Fig. 2 by
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Inserting eqr;. 1 into eqn. 3 yields

22— (ro/a)? nH3(ro) cos® ap < n?(ro)costys < my2  (4)

na®=0-6
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Fig. 3 Near-field intensity plots
Calculated from eqn. 12 for class of profiles given by
sg) = n2(0)1 —ZA(rIa)']
witha = 1,2, 4,6, ©, Also shown (broken line) is the index-profile plot for ¢ = 2

The physical significance of this result may be seen more
readily by expressing it in terms of the angle of incidence I
and the projected angle ¢ of a ray incident on the fibre face
(Fig. 1). We see that, for an external medium of unity index,

sinl =n(ro)siny, . .. . . . . . . (5
cos ¢ = cosapfsiny, . .o A (1))

Inserting eqns. 5 and 6 into eqn. 4 gives the required
expression:
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Eyn. 7 defines the angular region in which we find leaky
tunnelling rays at a given radius on the endface of a fibre
with an arbitrary circularly symmetric index profile. It may
be seen that one requirement is that the angle of incidence
I is greater than the local acceptance angle defined in Reference
3. In addition, I must be less than some value dependent
on both the radius ro and the projected angle ¢. As expected,
no leaky-ray region exists for ¢ = n/2, as this defines a
meridional ray.

Solutions for simple profiles: By using only the lLh.s. of
eqn. 7, we define a local acceptance angle that includes both
the bound rays, given by sin?I < n*(ro)—n,%, and the
tunnelling rays. It is then possible to verify the resuit by
geometrical optics. Solutions to the following simple cases
are already available:

(a) Step-index fibre: Eqn. 7 is equivalent to Snyder’s condi-
tions® for leaky rays, if expressed in terms of the angles
0., 8y, 8. (see Reference 6 for definitions):

nf2=0,>86, n[2 =0y > 7/2-0,

In addition, eqn. 7 gives the maximum acceptance angle at
radius ro as
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where n, is the core refractive index and ¢ is the angle defined
by Matsumura'® as
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This is identical to the result obtained by a geometric optics
analysis of skew-ray propagation,®*”? confirming that, in a
step-index fibre, leaky tunnelling rays are those rays travelling
at an angle greater than the meridionally defined numerical
aperture, although predicted by geometrical optics to be

trapped.
(b) Parabolic-index fibre:
n2(0)[1 —2A(ro/a)?] ro<a

n3(ro) = { . . (10)
n2(0)[1 —2A] ro>a

where n(0) is the refractive index at the core centre and A is
the maximum refractive-index difference. Eqn. 7 yields
2An2(0){1 — (ro/@)’]

1—(rofa)? cos? ¢
This relationship was recently derived by Matsumura,® using
a geometrical technique.

sin?] <
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(¢c) Fourth-order index profile: Tkeda’s skew and meridional
acceptance angle (eqns. 39 and 40 of Reference 2) may be
similarly derived by setting ¢ = 0 and ¢ = =/2, respectively.

Near-field intensity distribution: To determine the effect of
leaky rays on fibre propagation, the near-field intensity
distribution P(r) may be calculated by the method of
Reference 3, suitably corrected for the increased local accep-
tance angle. Assuming an incoherent source (all modes
equally excited), it can be shown that

n?(r)—n,? 1
m0)—n2 v{1-(rla)*}

where P(0) is the intensity at the fibre centre.

Fig. 3 shows the near-field intensity plots for a range of
index profiles and clearly indicates a substantial departure
from the plots of Reference 3. The most obvious difference
occurs for the step-index fibre, plotted here for two different
meridional numerical apertures. Thedependence on numerical
aperture is a result of truncation of eqn. 7 at some value of
ro to ensure that the local acceptance angle does not exceed
nf2.

P(/P(0) = (12)

Conclusions: By extending the plane-wave decomposi.tion
technique, a simple generalised expression has_ been demfed
defining in angular terms the region in which tunnelling

leaky rays are found. This region varies with both index
profile and position on the fibre face, and accounts for the
somewhat larger local acceptance angles found in References 1
and 2.

The inclusion of the additional angle defined by the leaky-
ray region causes a large deviation from the expected near-
field intensity distribution. The close resemblance between
the index profile and the near-field intensity is no longer
found. Although not shown here, a similar departure occurs
in the far field. However, these results assume all rays
propagate unattenuated, and, whereas experiments show this
to be substantially true for 1 m lengths of graded-index fibre,
account must be taken of the slow radiation loss of tunnelling
rays in longer lengths.

The full significance of leaky tunnelling rays on graded-
index fibres has yet to be determined. In step-index fibres,
it is normally possible to avoid the excitation of tunnelling
rays by simply arranging the launching conditions to just
fill the numerical aperture of the fibre. This is not so for the
parabolic-index fibre, as all leaky tunnelling rays are con-
tained within the angular limits of the meridionally defined
numerical aperture. Thus an incoherent source excites
all tunnelling modes, even if arranged to only just fill this
aperture.

At least for the step-index fibre, it has been shown® that
some of the tunnelling modes may persist for several kilo-
metres if excited by the source. It seems likely that this will
also be so for the graded-index fibre. Since it is difficult to
avoid their excitation, modes of this type may therefore have a
significant effect on the measured loss and pulse dispersion in
graded-index fibres.
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