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Leaky termination at premature stop codons antagonizes
nonsense-mediated mRNA decay in S. cerevisiae

KIM M. KEELING, JESSICA LANIER, MING DU, JOE SALAS-MARCO, LIN GAO,1 ANISA KAENJAK-ANGELETTI,2

and DAVID M. BEDWELL
Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA

ABSTRACT

The Nonsense-Mediated mRNA Decay (NMD) pathway mediates the rapid degradation of mRNAs that contain premature stop
mutations in eukaryotic organisms. It was recently shown that mutations in three yeast genes that encode proteins involved in
the NMD process, UPF1, UPF2, and UPF3, also reduce the efficiency of translation termination. In the current study, we
compared the efficiency of translation termination in a upf1� strain and a [PSI+] strain using a collection of translation
termination reporter constructs. The [PSI+] state is caused by a prion form of the polypeptide chain release factor eRF3 that
limits its availability to participate in translation termination. In contrast, the mechanism by which Upf1p influences translation
termination is poorly understood. The efficiency of translation termination is primarily determined by a tetranucleotide termi-
nation signal consisting of the stop codon and the first nucleotide immediately 3� of the stop codon. We found that the upf1�
mutation, like the [PSI+] state, decreases the efficiency of translation termination over a broad range of tetranucleotide
termination signals in a unique, context-dependent manner. These results suggest that Upf1p may associate with the termination
complex prior to polypeptide chain release. We also found that the increase in readthrough observed in a [PSI+]/upf1� strain
was larger than the readthrough observed in strains carrying either defect alone, indicating that the upf1� mutation and the
[PSI+] state influence the termination process in distinct ways. Finally, our analysis revealed that the mRNA destabilization
associated with NMD could be separated into two distinct forms that correlated with the extent the premature stop codon was
suppressed. The minor component of NMD was a 25% decrease in mRNA levels observed when readthrough was ≥ 0.5%, while
the major component was represented by a larger decrease in mRNA abundance that was observed only when readthrough was
≤ 0.5%. This low threshold for the onset of the major component of NMD indicates that mRNA surveillance is an ongoing
process that occurs throughout the lifetime of an mRNA.

Keywords: UPF1; [PSI+]; NMD; translation termination; mRNA stability; readthrough

INTRODUCTION

Translation termination in eubacteria is mediated by two

class I release factors. RF1 decodes UAG and UAA stop

codons, while RF2 decodes UGA and UAA codons. Studies

in bacteria have provided evidence that RF1 and RF2 asso-

ciate with the ribosomal A site, where they recognize the

stop codon directly through the action of a “peptide anti-

codon” sequence (Ito et al. 2000). After the nascent poly-

peptide chain is released, the class II release factor RF3

facilitates recycling of RF1 or RF2 from the termination

complex by a GTP-dependent mechanism (Zavialov et al.

2001, 2002). In contrast, eukaryotic organisms mediate

translation termination through the action of a single class

I release factor (eRF1) that recognizes all three stop codons

(UAG, UAA, and UGA; Bertram et al. 2001; Kisselev et al.

2003). A class II release factor (eRF3) forms a complex with

eRF1 and assists in termination through a GTP-dependent

mechanism. Further mechanistic details of eukaryotic trans-

lation termination remain to be elucidated.

Translation termination is normally a highly efficient

process. Previous studies have shown that stop codons are

normally suppressed at a frequency of only 0.001%–0.1% in

eukaryotes (Loftfield and Vanderjagt 1972; Mori et al. 1985;

Stansfield et al. 1998). The suppression of a stop codon

occurs when a near-cognate aminoacyl-tRNA, which can

base pair with a stop codon at two of the three positions of

a codon–anticodon complex, is accommodated into the ri-
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bosomal A site. This allows its amino acid to be erroneously

incorporated into the polypeptide chain and the subsequent

continuation of translation beyond the stop codon (Fearon

et al. 1994). The process of stop codon suppression is fre-

quently referred to as translational readthrough.

Mutations in the yeast genes encoding eRF1 (SUP45) or

eRF3 (SUP35) lead to an “omnipotent suppressor” pheno-

type, which is characterized by the suppression of transla-

tion termination at all three stop codons. Another condi-

tion that reduces the efficiency of translation termination in

yeast is the cytoplasmically inherited [PSI+] state. This novel

condition is caused by the conversion of eRF3 to a non-

functional prion form that associates in large aggregates

within yeast cells (Serio and Lindquist 1999). As a result,

[PSI+] strains experience an increased level of readthrough

due to the limitation of functional eRF3. In addition, mu-

tations within the small subunit (18S) and large subunit

(25S) ribosomal RNAs have also been shown to cause an

increased rate of translational readthrough in yeast (Cher-

noff et al. 1994; Liu and Liebman 1996; Velichutina et al.

2000, 2001).

Previous studies have shown that the sequence context

surrounding a stop codon can have a large effect on the

efficiency of translation termination in bacteria, yeast, and

mammals. For example, it was shown that changes in the

immediate sequence context surrounding a stop codon can

alter the efficiency of translation termination by >100-fold.

Proximal sequences both upstream and downstream of the

stop codon contribute to this effect (Bonetti et al. 1995).

Sequence analysis has also shown that the distribution of

nucleotides that surround naturally occurring stop codons

is nonrandom. This bias is most evident for the first nucleo-

tide following a stop codon, where a purine nucleotide is

usually observed (Brown et al. 1990). Based upon these

results, it was proposed that translation termination is me-

diated by a tetranucleotide termination signal that contains

the stop codon and the first downstream nucleotide. More

recently, it was shown that the bacterial release factor RF2

directly contacts the first nucleotide following the stop

codon (Poole et al. 1998).

In eukaryotic organisms, mRNA molecules that contain a

premature stop mutation frequently undergo rapid turn-

over by a mechanism termed Nonsense-Mediated mRNA

Decay (NMD). Unlike normal 5� → 3� mRNA turnover,

which requires removal of the poly(A) tail prior to decap-

ping and degradation by the Xrn1 exonuclease (Decker and

Parker 1993; Muhlrad and Parker 1994), the NMD pathway

decaps the mRNA and facilitates its degradation without

prior removal of the poly(A) tail (Hagan et al. 1995; Beel-

man et al. 1996). This NMD process is mediated by the

trans-acting factors Upf1p, Upf2p, and Upf3p (Leeds et al.

1991, 1992). A significant fraction of each of these proteins

is normally found in association with 80S ribosomes and

polyribosomes (Atkin et al. 1995, 1997). Upf1 is an RNA-

binding protein that exhibits ATP-dependent 5� → 3� heli-

case activity (Czaplinski et al. 1998), while Upf2p and

Upf3p have been proposed to regulate the function of

Upf1p (Maderazo et al. 2000). Upf3p has also been shown

to shuttle between the cytoplasm and the nucleus (Shirley

et al. 1998, 2002).

The mechanism that couples premature translation ter-

mination to the process of NMD remains obscure. In one

model, it has been proposed that Upf1p binds to eRF1 and

eRF3 while the termination complex is still bound to the

stop codon in the ribosomal A site (Czaplinski et al. 1998).

The association of Upf1p with Upf2p and Upf3p then re-

sults in the formation of a “surveillance complex” that scans

the mRNA downstream of the stop codon following release

of the nascent polypeptide chain to determine whether ter-

mination has occurred at the proper location in the mRNA

(Wang et al. 2001). In another model, it was proposed that

the spatial relationship between the stop codon and the 3�
UTR determines whether NMD is activated via a kinetic

proofreading mechanism (Hilleren and Parker 1999). When

a premature stop mutation alters this spatial relationship,

the rate of translation termination is reduced beyond a cru-

cial threshold and NMD is induced. In this model, the

ATPase activity of Upf1p serves as the kinetic clock that

determines the time frame in which a termination event

must be completed to avoid the initiation of NMD.

Previous studies have provided strong evidence that a

“downstream sequence element” (DSE) must be located

within the 3� UTR of a yeast mRNA for NMD to occur

(Peltz et al. 1993; Ruiz-Echevarria and Peltz 1996; Mendell

et al. 2000; He and Jacobson 2001). A somewhat different

situation occurs in mammalian cells, where NMD is in-

duced only when the premature stop codon is located >50–

55 nucleotides upstream of the 3�-most exon–exon junction

(Nagy and Maquat 1998; Culbertson 1999). An explanation

for this observation arose when it was shown that an exon–

exon junction complex (EJC) involved in mRNA splicing is

deposited 20–24 nucleotides upstream of each exon–exon

junction (Le Hir et al. 2000). The presence of this complex

on newly synthesized mammalian mRNAs immediately fol-

lowing mRNA export from the nucleus is consistent with

the proposal that the initial or “pioneer” round of transla-

tion may remove factors and thereby remodel the mRNA

(Ishigaki et al. 2001; Lejeune et al. 2002). This remodeling

process is thought to prevent the initiation of NMD in

subsequent rounds of translation.

It was recently shown that mutations in the UPF1, UPF2,

and UPF3 genes increase the readthrough of stop codons

(Maderazo et al. 2000; Wang et al. 2001), suggesting that

these gene products also affect the efficiency of translation

termination. In the current study, we compared the mag-

nitude and context-dependence of translational readthrough

in [PSI+], upf1�, and [PSI+]/upf1� strains. We found that

the upf1� mutation, like the [PSI+] state, reduces the effi-

ciency of translation termination over a broad range of

tetranucleotide termination signals. This observation dem-

Keeling et al.

692 RNA, Vol. 10, No. 4

  

http://rnajournal.cshlp.org/
http://www.cshlpress.com


onstrates that Upf1p influences the efficiency of translation

termination in a general manner. Furthermore, the in-

creased readthrough observed with the [PSI+]/upf1� strain

was routinely larger than the readthrough observed in

strains carrying either defect alone. By correlating the rela-

tive level of readthrough to the mRNA level, we found that

the effects of NMD could be dissected into two distinct

components. The major component of mRNA destabiliza-

tion by NMD was induced only when translational read-

through was extremely low, indicating that NMD in yeast is

not carried out solely during the first round of translation as

proposed for mammalian cells. Instead, our results suggest

that NMD in this simple eukaryote is an ongoing process

that is carried out throughout the lifetime of an mRNA

molecule.

RESULTS

The upf1� mutation causes a general decrease in the
efficiency of translation termination that becomes
more severe when combined with [PSI+]

The cytoplasmically inherited [PSI+] factor has long been

known to reduce the efficiency of translation termination

(and thereby increase the readthrough of stop codons) in

the yeast Saccharomyces cerevisiae (Serio and Lindquist

1999). More recently, it was shown that mutations that

compromise the machinery involved in nonsense-mediated

mRNA decay (NMD) also increase the suppression of pre-

mature stop mutations (Maderazo et al. 2000; Wang et al.

2001). To gain a better understanding of the extent and

magnitude of readthrough caused by the loss of an NMD

factor, we compared the efficiency of translation termina-

tion in [PSI+] and upf1� strains. The initial readthrough

reporter system consisted of a �-galactosidase reporter pro-
tein whose expression depended upon the suppression of a

UAG, UGA, or UAA stop codon (Fig. 1A; Bonetti et al.

1995). As a control, a construct containing a UGG (tryp-

tophan) codon at the same position was assayed in each

strain to determine the theoretical maximal level of expres-

sion (i.e., 100% readthrough) for this reporter system. Fi-

nally, readthrough of the stop codons in this assay system

was monitored in two sequence contexts. The first set,

termed the SXA reporters, contains an upstream UCC (ser-

ine) codon and downstream GCA (alanine) codon on either

side of the premature stop codon. This context was previ-

ously shown to yield very efficient termination at each of

the three stop codons (Bonetti et al. 1995). The second set,

called the QXQ reporters, differed from the SXA constructs

by the addition of a CAA (glutamine) codon on either side

of the premature stop codon. This modest change in the

context surrounding the stop codon was previously shown

to result in as much as a 100-fold reduction in the efficiency

of translation termination. In particular, it was shown that

the presence of a C residue at the first position following the

stop codon alone could reduce the efficiency of termination

by as much as 20-fold (Bonetti et al. 1995).

To compare the effects of [PSI+] and the upf1� mutation

on the efficiency of translation termination, we introduced

the SXA and QXQ reporter constructs into wild-type,

[PSI+], upf1�, and [PSI+]/upf1� strains. �-Galactosidase

assays were then carried out to determine the level of full-

length protein produced by the suppression of stop codons

in different sequence contexts. To evaluate the level of sup-

pression as accurately as possible, the �-galactosidase enzy-

matic activity was corrected for the relative level of �-ga-
lactosidase mRNA in each strain (normalized to the ACT1

mRNA as an internal loading control). This final value,

referred to as the “corrected readthrough,” provides an ac-

curate measure of the efficiency of translation termination

(full-length protein produced per unit mRNA).

Northern blot analysis of the four strains expressing ei-

ther set of readthrough reporter constructs revealed the

presence of three LacZ mRNA species: a predominant spe-

cies representing the full-length mRNA, and two higher

molecular weight species (Fig. 2). The presence of multiple

mRNA species was presumably due to inefficient transcrip-

tion termination in these constructs. Quantitation of the

total LacZ mRNA levels measured in each strain is shown in

Table 1. For the wild-type strain expressing �-galactosidase

FIGURE 1. Readthrough reporter systems. (A) The �-galactosidase
readthrough reporter constructs containing either the SXA or QXQ
readthrough cassettes. (B) The dual luciferase readthrough reporter
constructs.
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from the SXA reporter constructs, we observed a significant

(up to twofold) decrease in total nonsense-containing

mRNA levels (relative to the sense control), indicating their

destabilization by NMD. A similar decrease in the �-galac-
tosidase mRNA level was observed for all three mRNA spe-

cies, indicating that each of these LacZ species was subject to

a similar level of RNA degradation by NMD. A reversal of

this decrease in mRNA stability in the upf1� strain con-

firmed that this effect was due to NMD. Interestingly, this

NMD effect was less pronounced in the wild-type strain

when the mRNA was expressed from the QXQ reporter

constructs, indicating that the context affects not only the

efficiency of translation termination, but also the level of

NMD observed.

The corrected readthrough values obtained for the wild-

type, [PSI+], upf1�, and [PSI+]/upf1� strains carrying either

the SXA and QXQ reporter constructs are also shown in

Table 1. We found that these values ranged from 0.015% to

0.018% in the wild-type strain carrying the SXA plasmids,

which represents a very efficient level of translation termi-

nation. The corrected readthrough in the wild-type strain

carrying the QXQ plasmids ranged from 0.57% to 1.04%.

The large differences obtained with these two sets of re-

porter constructs are consistent with the results obtained in

a previous study (Bonetti et al. 1995) and demonstrate the

large effects sequence context can play on the efficiency of

translation termination.

A comparison of the corrected readthrough associated

with the [PSI+] state, the upf1� mutation, or both alter-

ations together in the SXA context is shown in Figure 3A.

We found that the [PSI+] state increased readthrough in the

SXA context by 1.6- to 6.1-fold (relative to the wild-type

strain). The upf1� mutation increased readthrough in the

SXA context by 2.5- to 3.9-fold. The stimulation of

readthrough measured in the upf1� strain at the UGA

codon was similar to the increase observed in the [PSI+]

strain, while readthrough at the UAG stop codon was sig-

nificantly lower, and readthrough at the UAA stop codon

was significantly higher. When [PSI+] and the upf1� mu-

tation were present together in the same strain, the

readthrough observed at each stop codon was significantly

higher than the level measured when either [PSI+] or the

upf1� mutation alone were present. These results suggest

that these two defects are manifested at distinct steps of the

termination process that lead to larger increases in

readthrough when both are present together.

A comparison of the effects of [PSI+] and the upf1�
mutation on the corrected readthrough in the QXQ context

is shown in Figure 3B. We found that the [PSI+] state in-

creased readthrough in the QXQ reporters by 3.8- to 5.3-

fold (relative to the wild-type strain). The upf1� mutation

increased readthrough in this context only 2.0- to 3.2-fold,

which represents a more modest increase in readthrough

than [PSI+] at all three stop codons. Combining [PSI+] and

the upf1� mutation in the same strain increased readthrough

in the QXQ context by 3.8- to 6.9-fold. This represents a

higher level of readthrough at the UAG and UGA stop codons

than either defect alone, while the level observed at the UAA

stop codon was intermediate between that observed with ei-

ther defect alone. When taken together, these results indicate

that both the [PSI+] state and the upf1� mutation can induce

readthrough at each of the three stop codons in various se-

quence contexts. Furthermore, combining these two defects

usually leads to a larger decrease in the efficiency of translation

termination than either condition alone.

The context-dependent effects on translation
termination caused by the upf1� mutation supercede
the larger effects caused by [PSI+]

As described above, the basal levels of readthrough mea-

sured in the wild-type strain ranged from 0.015% to 0.018%

with the SXA reporters and 0.57% to 1.04% with the QXQ

reporters. When these context-dependent differences in

readthrough (QXQ/SXA) were compared at each stop

codon in the wild-type background, we found that the cor-

rected readthrough measured using the QXQ reporters was

36- to 69-fold greater than that measured at the same stop

codon in the SXA reporter constructs (Fig. 4). When the

relative readthrough measured in the QXQ and SXA re-

porter plasmids were compared in the [PSI+] strain, we

found that the context dependence was similar to the wild-

type strain at the UAG codon but was significantly higher in

the QXQ context at the UGA and UAA stop codons. These

results suggest that the limitation of functional eRF3 that

occurs in the [PSI+] strain preferentially influences the con-

text dependence of translation termination at the UGA and

UAA stop codons. Overall, these differences in readthrough

measured in the [PSI+] strain ranged from 40- to 104-fold.

FIGURE 2. Northern blot analysis of mRNA from �-galactosidase
SXA reporter constructs. Steady-state �-galactosidase mRNA levels
were measured in the wild-type, [PSI+], upf1�, and [PSI+]/upf1�
strains. The �-galactosidase SXA reporter constructs contained either
a UAA, UAG, or UGA stop codon, or a UGG tryptophan codon in the
readthrough position.
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When we compared the relative context-dependent

readthrough (QXQ/SXA) at each stop codon measured in

the upf1� strain, we found that these ratios were smaller at

each of the three stop codons than in either the wild-type

and [PSI+] strains. In particular, the QXQ/SXA ratios in the

upf1� strain were much smaller at the UGA and UAA stop

codons than in the [PSI+] strain. Overall, the differences in

the relative level of readthrough at the QXQ and SXA con-

texts measured in the upf1� strain ranged from 29- to 61-

fold. These results suggest that the upf1� mutation alters

the ability of the termination machinery to discriminate

between different sequence contexts and may be related to

the previously demonstrated ability of Upf1p to interact

directly with eRF1 and eRF3 (Wang et al. 2001). When we

examined the context-dependent differences in readthrough

in the [PSI+]/upf1� strain, we found that they were gener-

ally similar to those observed in the upf1� strain. Overall,

the QXQ/SXA ratios in the [PSI+]/upf1� strain ranged from

12- to 72-fold. When taken together, these results indicate

that the context-dependent differences in readthrough

caused by [PSI+] are much larger than those observed in

either the wild-type or upf1� strains. Furthermore, the rela-

tively small context-dependent differences in readthrough

observed in the [PSI+]/upf1� strain suggest that the conse-

quences associated with the loss of Upf1p supercede the

larger context-dependent differences attributable to [PSI+].

Analysis of the effects of [PSI+] and upf1� on
translation termination using a dual luciferase
readthrough reporter system

The results described above suggest that both [PSI+] and the

upf1� mutation reduce the efficiency of translation termi-

nation at UAG, UAA, and UGA stop codons in at least two

TABLE 1. Effect of stop codon context on [PSI+] and upf1�-mediated readthrough

Strain
Reporter
construct

Readthrough
codon

Absolute �-gal
activity (±SD)a

Relative
�-gal mRNA (±SD)b

Corrected
readthrough (%)

Wild type SXA UGG 193.33 (±15.40) 1 100
Wild type SXA UAG 0.023 (±0.067) 0.66 (±0.036) 0.018 (±0.003)
Wild type SXA UGA 0.019 (±0.004) 0.71 (±0.088) 0.015 (±0.001)
Wild type SXA UAA 0.016 (±0.007) 0.53 (±0.025) 0.016 (±0.004)

[PSI+] SXA UGG 188.30 (±12.23) 1 100
[PSI+] SXA UAG 0.088 (±0.029) 0.44 (±0.058) 0.11 (±0.011)
[PSI+] SXA UGA 0.030 (±0.009) 0.50 (±0.078) 0.039 (±0.010)
[PSI+] SXA UAA 0.024 (±0.010) 0.50 (±0.052) 0.025 (±0.006)

upf1� SXA UGG 232.65 (±15.36) 1 100
upf1� SXA UAG 0.184 (±0.034) 0.85 (±0.11) 0.056 (±0.008)
upf1� SXA UGA 0.094 (±0.001) 1.06 (±0.093) 0.038 (±0.007)
upf1� SXA UAA 0.171 (±0.029) 1.12 (±0.11) 0.063 (±0.005)

[PSI+]/upf1� SXA UGG 163.71 (±36.33) 1 100
[PSI+]/upf1� SXA UAG 0.249 (±0.025) 1.06 (±0.062) 0.15 (±0.022)
[PSI+]/upf1� SXA UGA 0.177 (±0.027) 1.18 (±0.11) 0.096 (±0.009)
[PSI+]/upf1� SXA UAA 0.323 (±0.037) 1.17 (±0.041) 0.18 (±0.025)

Wild type QXQ UGG 549.74 (±54.17) 1 100
Wild type QXQ UAG 3.59 (±0.18) 0.77 (±0.050) 0.83 (±0.054)
Wild type QXQ UGA 3.68 (±0.21) 0.71 (±0.11) 1.04 (±0.15)
Wild type QXQ UAA 1.85 (±0.15) 0.62 (±0.083) 0.57 (±0.085)

[PSI+] QXQ UGG 484.91 (±41.67) 1 100
[PSI+] QXQ UAG 16.82 (±1.21) 0.87 (±0.12) 4.43 (±0.47)
[PSI+] QXQ UGA 14.63 (±1.52) 0.76 (±0.11) 3.97 (±0.41)
[PSI+] QXQ UAA 9.18 (±0.64) 0.83 (±0.11) 2.6 (±0.22)

upf1� QXQ UGG 559.10 (±34.39) 1 100
upf1� QXQ UAG 10.96 (±1.13) 1.29 (±0.18) 1.64 (±0.25)
upf1� QXQ UGA 12.70 (±1.27) 1.16 (±0.23) 2.33 (±0.23)
upf1� QXQ UAA 9.23 (±1.23) 0.98 (±0.058) 1.81 (±0.14)

[PSI+]/upf1� QXQ UGG 204.88 (±45.94) 1 100
[PSI+]/upf1� QXQ UAG 24.60 (±2.86) 2.02 (±0.089) 5.75 (±0.70)
[PSI+]/upf1� QXQ UGA 25.90 (±4.22) 1.97 (±0.18) 6.87 (±0.39)
[PSI+]/upf1� QXQ UAA 7.90 (±2.12) 1.86 (±0.057) 2.17 (±0.28)

aEight independent �-galactosidase assays were carried out for each construct.
bAt least three independent mRNA measurements were carried out for each construct.
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distinct sequence contexts. However, it remained a formal

possibility that these results could be an artifact caused by

some limitation of the �-galactosidase reporter system. For

example, it was possible that the increases in �-galactosidase
activity observed could be attributable to indirect effects on

the rate of translation initiation rather than a direct effect

on the efficiency of translation termination. This led us to

adapt another set of readthrough reporter constructs to our

yeast experimental system.

In recent studies, a dual luciferase reporter system was

shown to provide an effective means to monitor the effi-

ciency of translation termination in mammalian cells

(Grentzmann et al. 1998; Howard et al. 2000). This system

utilizes tandem Renilla and firefly luciferase genes that are

separated by a single in-frame stop codon (Fig. 1B). Thus,

it uses the relative abundance of these light-emitting pro-

teins to monitor the efficiency of translation termination.

The activity of firefly luciferase, encoded by the distal open

reading frame, provides a quantitative measure of the sup-

pression of the stop codon that separates the two open

reading frames. The activity of Renilla luciferase, encoded

by the proximal open reading frame, serves as an internal

control for mRNA abundance and precludes the need for

mRNA determinations. In addition, this system also avoids

possible artifacts associated with changes in the efficiency of

translation initiation associated with the function of the

NMD machinery (Muhlrad and Parker 1999), because both

the Renilla and firefly enzymes initiate translation from the

same AUG codon.

We found that the corrected readthrough measured in

the wild-type strain using the dual luciferase system ranged

from 0.31% to 0.79% (Table 2). These levels were very

similar to those measured in the wild-type strain using the

�-galactosidase QXQ reporter plasmids. This result is con-

sistent with the presence of a C residue immediately fol-

lowing the stop codon in both reporter systems, which re-

sults in the presence of identical tetranucleotide termination

signals. We next determined the effect of the [PSI+] state

and the upf1� mutation on the corrected readthrough mea-

sured with the dual luciferase system. We found that the

presence of [PSI+] increased readthrough in the dual lucif-

erase plasmids by 4.6- to 10.9-fold, while the upf1� muta-

tion increased readthrough in this reporter system only 1.9-

to 2.5-fold (Fig. 5). The combined effects of [PSI+] and

upf1� increased readthrough from 8.1- to 17.5-fold, indi-

cating that the presence of these two alterations together

FIGURE 3. Corrected readthrough levels determined using the �-galactosidase readthrough assay. The fold increase in readthrough in the [PSI+],
upf1�, and [PSI+]/upf1� strains are represented relative to the basal level of readthrough measured in the wild-type strain at the corresponding
stop codon. (A) SXA �-galactosidase reporter constructs. (B) QXQ �-galactosidase reporter constructs. WT, wild type.

FIGURE 4. Context-dependent readthrough (QXQ/SXA) determined
using the �-galactosidase readthrough assay. The data is expressed as
the ratio of readthrough measured with the �-galactosidase QXQ re-
porter relative to the readthrough measured with the �-galactosidase
SXA reporter. The QXQ/SXA ratios are shown for the wild-type,
[PSI+], upf1�, and [PSI+]/upf1� yeast strains. WT, wild type.
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increased readthrough more than either one alone. Overall,

these results indicate that the corrected readthrough levels

measured in the wild-type, [PSI+], upf1�, and [PSI+]/upf1�
strains using the dual luciferase system were qualitatively

similar to the values obtained with the �-galactosidase re-

porters with the QXQ context (cf. Figs. 5 and 3B), confirm-

ing that the differences in corrected readthrough efficiencies

measured in the wild-type, [PSI+], upf1�, and [PSI+]/upf1�
strains using the �-galactosidase reporter plasmids re-

flect real differences in the efficiency of translation termi-

nation.

It was previously shown that the recognition of a prema-

ture stop codon not only induces NMD, but also results in

a decrease in the rate of translation initiation (Muhlrad and

Parker 1999). Because the expression of both the Renilla

and firefly luciferase in our system is initiated at a single

AUG codon in our reporter system, such an effect could not

influence our corrected readthrough results. As such, any

changes observed in the firefly luciferase activity could be

attributed specifically to suppression of the premature stop

codon. However, the Renilla protein expressed before the

premature stop codon could also be used to compare the

translational efficiency of nonsense mRNA and control

(sense) mRNAs in this system. To determine whether trans-

lational efficiency of the dual luciferase mRNA was influ-

enced by the presence of a premature stop codon, we com-

pared the Renilla translational efficiency (the Renilla activity

per unit mRNA) in nonsense (UGAC) and control (CGAC)

constructs in the wild-type, [PSI+], upf1�, and [PSI+]/

upf1� strains (Fig. 6). We found that the translational ef-

ficiency (protein specific activity/unit mRNA) of Renilla

luciferase was similar in nonsense (UGAC) and sense

(CGAC) reporter plasmids in a wild-type strain, resulting in

a translational efficiency ratio (UGAC/CGAC) of 1.0. A

slightly lower ratio of 0.87 was observed in the [PSI+] strain.

Interestingly, we observed a much larger decrease in this

ratio in both the upf1� and [PSI+]/upf1� strains. We found

that the translational efficiency ratio (UGAC/CGAC) was

0.44 in the upf1� strain and 0.49 in the [PSI+]/upf1� strain.

These results suggest that the loss of Upf1p leads to a two-

fold reduction in the efficiency of translation initiation of

the Renilla open reading frame in the dual luciferase re-

porter mRNA.

A low level of translational readthrough is required to
activate NMD

The data obtained with the �-galactosidase reporter system

also allowed us to determine how differences in the effi-

FIGURE 5. Corrected readthrough levels determined using the dual
luciferase readthrough assay. The fold increase in readthrough mea-
sured in the [PSI+], upf1�, and [PSI+]/upf1� strains are represented
relative to the basal level of readthrough measured in the wild-type
strain at the corresponding stop codon.

TABLE 2. Readthrough measured with the dual luciferase reporter system

Strain
Readthrough

codon
Firefly/renilla

stop codon (±SD)
Firefly/renilla

sense codon (±SD)
Corrected

readthrough (%)

Wild type UAG 0.0057 (±0.00015) 1.38 (±0.065) 0.41 (±0.012)
Wild type UGA 0.0124 (±0.0018) 1.57 (±0.11) 0.79 (±0.047)
Wild type UAA 0.0038 (±0.00013) 1.21 (±0.059) 0.31 (±0.016)

[PSI+] UAG 0.025 (±0.0014) 1.33 (±0.059) 1.88 (±0.025)
[PSI+] UGA 0.121 (±0.0019) 1.40 (±0.050) 8.60 (±0.120)
[PSI+] UAA 0.022 (±0.0024) 1.23 (±0.087) 1.79 (±0.038)

upf1� UAG 0.010 (±0.0010) 1.31 (±0.037) 0.76 (±0.012)
upf1� UGA 0.023 (±0.0025) 1.15 (±0.056) 2.00 (±0.040)
upf1� UAA 0.093 (±0.0027) 1.39 (±0.041) 0.67 (±0.016)

[PSI+]/upf1� UAG 0.050 (±0.0049) 1.25 (±0.025) 4.00 (±0.056)
[PSI+]/upf1� UGA 0.16 (±0.029) 1.16 (±0.11) 13.80 (±0.78)
[PSI+]/upf1� UAA 0.032 (±0.0050) 1.27 (±0.053) 2.52 (±0.096)

aEight independent luciferase assays were carried out for each construct.
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ciency of translation termination influence mRNA stability.

The corrected readthrough levels in the wild-type and

[PSI+] strains ranged from 0.015% to 4.43%, which repre-

sents a 295-fold range in the efficiency of translation ter-

mination using these closely related mRNA species. To de-

termine how the level of nonsense suppression influences

mRNA stability, we correlated the corrected readthrough

levels to the relative steady-state LacZ mRNA level in each

strain. Quantitation of the relative mRNA level (the abun-

dance of nonsense-containing mRNA relative to the abun-

dance of the corresponding control mRNA containing a

sense codon) revealed as much as 2.3-fold differences

(Table 1).

The results of this analysis using the data obtained with

the wild-type and [PSI+] strains that contain an intact NMD

pathway are shown in Figure 7A. For comparison, the re-

sults of the data from the upf1� strain that lacks an NMD

pathway are presented in Figure 7B. We found that the

mean steady-state level of the six mRNAs examined in the

upf1� strain was 1.08 ± 0.15, indicating that the presence of

a premature stop mutation did not alter the abundance of

these mRNAs in a strain lacking an intact NMD pathway. In

contrast, we observed two distinct effects of NMD on the

abundance of mRNAs that contain a premature stop mu-

tation (Fig. 7A). First, the mean steady-state level of the six

mRNAs that were measured in the wild-type and [PSI+]

strains with a corrected readthrough level �0.5% was

0.76 ± 0.098. This represented a statistically significant dif-

ference from the mean mRNA level observed in the upf1�
strain (P value <0.01). In addition, we found that the mean

steady-state level of the six mRNAs examined from the

wild-type and [PSI+] strains with a corrected readthrough

level �0.5% was 0.56 ± 0.105. This greater decrease in the

steady-state mRNA levels was statistically significant when

compared to the mRNA levels measured when readthrough

was �0.5% (P value <0.02). These results suggest that the

consequences of NMD are exerted on these similar LacZ

mRNAs in two distinct ways. The first is a modest (25%)

reduction in the steady-state mRNA level that is detected at

higher readthrough levels (�0.5%). The second manifesta-

tion of NMD is a more severe mRNA

destabilization that occurs only when

readthrough drops below a surprisingly

low threshold (�0.5%).

Increased abundance of nonsense
mRNA species as a function of
[PSI+] and the upf1� mutation

While examining the relative steady-

state mRNA levels in the various strains

expressing each reporter construct, we

found evidence of an additional, unex-

pected change in mRNA stability that

was dependent on the presence of a pre-

mature stop codon. First, as described in

the previous section, the lowest levels of

nonsense-containing mRNAs in the

wild-type and [PSI+] strains correlated

with the lowest levels of readthrough

(Fig. 8A). In some cases, we also made

the surprising observation that the non-

sense-containing transcript was more

stable than the corresponding control

FIGURE 6. Effect of a premature stop codon on the translation effi-
ciency of Renilla luciferase. Renilla specific activity (RLUs/sec/ng pro-
tein) per unit mRNA was determined for the indicated strains using
dual luciferase reporter plasmids containing either the UGAC or
CGAC tetranucleotides. The ratio of these values (UGAC/CGAC)
serves as a measure of the relative translational efficiency. Assuming
translation elongation rates are constant, this ratio should provide a
measure of the relative levels of translation initiation in the UGAC and
CGAC reporter plasmids.

FIGURE 7. Correlation between mRNA levels and corrected readthrough of stop codons using
the �-galactosidase readthrough assay. The corrected readthrough values obtained in both the
�-galactosidase SXA and QXQ contexts were plotted against the relative level of LacZ mRNA
for each construct as determined by northern blot analysis. (A) Plot of data obtained with the
wild-type strain, SXA context (squares); wild-type strain, QXQ context (diamonds); [PSI+]
strain, SXA context (circles); and [PSI+] strain, QXQ context (triangles). (B) Plot of data
obtained with the upf1� strain, SXA context (squares); and the upf1� strain, QXQ context
(triangles). WT, wild type.
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mRNA containing a sense codon in the readthrough posi-

tion. This was particularly evident in the [PSI+]/upf1�
strain carrying the QXQ reporter plasmids, where the non-

sense mRNAs were 1.9- to 2.0-fold more abundant than the

control mRNAs encoding full-length proteins (Fig. 8B,D).

A similar stabilization of nonsense-containing mRNAs was

observed in both the upf1� and [PSI+]/upf1� strains car-

rying the dual luciferase reporters (Fig. 8C,E). In this case,

the nonsense-containing mRNAs were 1.4- to 1.7-fold more

abundant than control mRNAs in the upf1� strain, and 1.5-

to 1.9-fold more abundant than the control mRNAs in the

[PSI+]/upf1� strain. Although these effects were observed in

strains with some of the highest levels of readthrough, this

trend was not observed in other strains with a high level of

corrected readthrough and an intact NMD apparatus. For

example, the [PSI+] strain with the QXQ reporter plasmids

did not show this effect (see Table 1). Taken together, these

results suggest that both a high level of readthrough and

inactivation of the NMD pathway are necessary for this

preferential stabilization of nonsense-containing mRNAs.

DISCUSSION

Recent studies have shown that mutations in the UPF1,

UPF2, and UPF3 genes reduce the efficiency of translation

termination (Maderazo et al. 2000; Wang et al. 2001). Our

systematic examination of the effects of the upf1� mutation

on translation termination at different termination signals

and in different sequence contexts revealed that the upf1�
mutation causes a general decrease in the efficiency of trans-

lation termination at UAG, UAA, and UGA stop codons.

These results are in general agreement with a previous re-

port by Bidou et al. using a dual LacZ-Luc reporter system

(Bidou et al. 2000). Overall, we found that the loss of Upf1p

function conferred readthrough at levels

that were generally comparable to the

readthrough observed in a [PSI+] strain.

Furthermore, the magnitude of these

decreases in the efficiency of translation

termination associated with [PSI+] and

upf1� were larger in strains that har-

bored both defects than in strains car-

rying either defect alone. Although the

context dependence of readthrough ob-

served in both the [PSI+] and upf1�
strains showed distinct and strong biases

(ranging from 12- to 104-fold) toward

certain sequence contexts, we found that

the context effects associated with the

upf1� mutation largely superceded

those associated with [PSI+] when both

defects were present. It was previously

proposed that Upf1p associates with

eRF1 and eRF3 while they are still pre-

sent in the ribosome-bound termination

complex (Czaplinski et al. 1998; Wang

et al. 2001). Our results support this

conclusion, and further suggest that this

association may occur prior to polypep-

tide chain release, because we found that

the upf1� mutation can influence the

efficiency of translation termination as a

function of both the tetranucleotide ter-

mination signal and surrounding se-

quence context. Further studies will be

required to determine whether the

upf2� or upf3� mutations can produce

similar effects.

Previous studies have shown that the

suppression of an amber (UAG) stop mu-

tation in the yeast URA3 (Losson and La-

croute 1979) and SUC2 (Gozalbo and

FIGURE 8. Comparison of relative mRNA levels (nonsense/sense). (A) The relative levels of
LacZ mRNA in the wild-type, [PSI+], upf1�, and [PSI+]/upf1� strains expressed from the SXA
reporters. (B) The relative levels of LacZ mRNA in the wild-type, [PSI+], upf1�, and [PSI+]/
upf1� strains expressed from the QXQ reporters. (C) The relative levels of dual luciferase
mRNA in the wild-type, [PSI+], upf1�, and [PSI+]/upf1� strains. (D) Representative Northern
blot data from the wild-type and [PSI+]/upf1� strains expressing the �-galactosidase QXQ
reporters. (E) Representative Northern blot data from the wild-type and [PSI+]/upf1� strains
expressing the dual luciferase reporters. WT, wild type.
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Hohmann 1990) genes due to the introduction of amber sup-

pressor tRNA genes resulted in a significant increase in mRNA

abundance. Those results provided the first evidence that a

partial suppression of nonsense mutations could antagonize

the effects of NMD. Our analysis of the readthrough associated

with different tetranucleotide termination signals and se-

quence contexts in otherwise identical �-galactosidase tran-

scripts gave us a unique opportunity to correlate the level of

stop codon readthrough with mRNA stability in a more com-

prehensive manner. We found two distinct consequences

caused by the introduction of a premature stop mutation in

the �-galactosidase mRNA that can be attributed to NMD.

First, the abundance of the nonsense-containing mRNA was

slightly destabilized (∼75% of normal) when readthrough was

�0.5%. In addition, we observed a greater decrease in the

steady-state level of �-galactosidase mRNAs (as much as 2.3-

fold lower than wild type) when these mutations were associ-

ated with lower levels of readthrough (�0.5%). Both of these

effects depended on an intact NMD machinery, because both

were lost when the upf1� mutation was present. Consistent

with this conclusion, the effects we observed were comparable

to the changes in mRNA abundance observed in other studies

of NMD in yeast. For example, it was reported that a

PGK1(cup1) mRNA carrying a premature stop mutation

showed a two- to threefold decrease in stability due to NMD

(Muhlrad and Parker 1999). Similarly, the can1–100 prema-

ture stop mutation led to a fourfold decrease in the abundance

of the CAN1mRNA (Maderazo et al. 2000). Thus, the changes

in LacZ mRNA abundance observed in the current yeast study

are comparable to NMD-induced changes in mRNA stability

documented previously.

It was previously reported that LacZ mRNAs containing

premature stop mutations are not susceptible to the effects

of NMD in yeast (Wang et al. 2001). In contrast, we ob-

served a destabilization of LacZ mRNAs by NMD in the

current study. It is likely that subtle differences between the

reporter constructs used are responsible for this discrep-

ancy. In particular, we found that the major destabilization

of mRNAs by NMD occurred in our study only when they

were associated with very low levels of readthrough. The

translational threshold we found for the onset of this “se-

vere” form of NMD (�0.5% readthrough) was significantly

lower than the 1%–3% readthrough observed with the

�-galactosidase constructs used in the previous study

(Wang et al. 2001). Thus, it is likely that the absence of

NMD in their study is consistent with our conclusion that

the major form of NMD is induced only in mRNAs that

exhibit a very low level of readthrough.

The 0.5% readthrough threshold we observed for the

onset of the major phase of NMD represents a ribosome

progressing through the premature stop codon only once in

200 attempts. This indicates that a very low level of trans-

lational readthrough of a premature stop mutation can sup-

press the onset of the most severe phase of NMD in yeast

cells. Such a mechanism could have evolved to protect yeast

mRNAs that are weakly expressed, and possibly genes

whose translation requires the suppression of a leaky stop

codon (Namy et al. 2003). More importantly, this observa-

tion strongly suggests that the fate of an mRNA is not deter-

mined solely during the initial round of translation in yeast

cells. NMD in mammalian cells retains many of the same

features as NMD in yeast, including participation by homologs

of the Upf1p, Upf2p, and Upf3p components of the surveil-

lance complex. However, it has been proposed that NMD is

exerted primarily at the first (or “pioneer”) round of transla-

tion (Ishigaki et al. 2001; Lejeune et al. 2002). Our results in

the yeast system are more consistent with a model in which the

mechanism controlling the onset of NMD can be activated

following translation termination during each successive

round of translation. Evidence supporting this conclusion

was also reached in another recent study, where strains

lacking the UPF1, UPF2, or UPF3 genes were used in con-

junction with plasmids that allowed their expression under

the control of an inducible promoter. It was shown that

preexisting mRNAs containing premature stop mutations

could be promptly destabilized once the expression of the

components of an intact surveillance complex was restored

(Maderazo et al. 2003). When taken together with our re-

sults, a growing body of evidence suggest that mRNA sur-

veillance by NMD in yeast is an ongoing process that occurs

throughout the lifetime of the mRNA molecule.

This conclusion implies that NMD in yeast has evolved to

be an inherently inefficient process to discriminate between

these subtle differences in the level of readthrough. It is

possible that this inefficiency in NMD may be due to the

limitation of one (or more) components of the surveillance

complex. It has been reported that Upf1p is present in large

excess over Upf3p in yeast cells (Atkin et al. 1997). More

recently, it was estimated that a typical yeast cell contains

roughly 1600 molecules of Upf1p, 160 molecules of Upf2p,

and 80 molecules of Upf3p (Maderazo et al. 2000). These

data are more consistent with the notion that the compo-

nents of the NMD machinery may be recruited in a sequen-

tial manner, rather than forming as one large preassembled

complex directly at the premature stop codon (Atkin et al.

1997; Shirley et al. 1998). Because the complete absence of

any one of these components eliminates NMD, it is possible

that the level of the least abundant of the three components

(Upf3p) may determine the absolute efficiency of NMD in

this simple eukaryote.

Muhlrad and Parker (1999) previously used a hybrid

PGK1(cup1) reporter mRNA containing a premature stop

mutation to show that a threefold increase in the rate of

translation initiation occurred upon: (1) the introduction of

a upf1� mutation, or (2) the removal of the DSE from the

mRNA. However, removal of the DSE in a upf1� mutation

resulted in a 33% decrease in translational efficiency. These

results indicate that translation initiation of an mRNA in-

creases in a upf1� strain when a DSE is present, but de-

creases in a upf1� strain when the DSE is absent. We ob-
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served a twofold decrease in Renilla expression (per unit

mRNA) in both upf1� and upf1�/[PSI+] strains. Assuming

that the upf1� mutation does not affect the rate of trans-

lation elongation, these results suggest that the absence of

the NMD pathway function led to a twofold decrease in the

efficiency of translation initiation of the dual luciferase

mRNA. Because we did not observe NMD with the dual

luciferase mRNA in the wild-type strain, it either lacks a

DSE or the level of readthrough of the premature stop

codon in that mRNA remained above the threshold level

required for the induction of the major component of

NMD. Thus, our observation of a twofold decrease in trans-

lation initiation is generally consistent with the previous

observation that the lack of a DSE leads to a reduction of

translation initiation in a upf1� strain. When taken together

with our finding that the readthrough threshold may rep-

resent a critical determinant for the induction of the major

component of NMD (as demonstrated with the �-galacto-
sidase reporters), these results raise the intriguing possibility

that factors that bind to the DSE may not only mediate the

onset of NMD, but may also regulate the translational ef-

ficiency of mRNAs that contain a premature stop codon.

We also found that some nonsense-containing mRNAs

from both the �-galactosidase and dual luciferase constructs

become more stable than control mRNAs when expressed

in the upf1� and/or upf1�/[PSI+] strains. These effects were

observed in strains with some of the highest levels of

readthrough. However, other strains with an intact NMD

apparatus as well as a high level of corrected readthrough,

such as the [PSI+] strain carrying the QXQ reporter plas-

mids, did not show this effect. From these results we con-

clude that this differential mRNA stability is normally sup-

pressed by a Upf1p-dependent mechanism. This effect

could result from either a preferential stabilization of the

nonsense-containing mRNAs, or a destabilization of nor-

mal mRNAs that lack a premature stop codon. Although

the components of the surveillance complex are frequently

thought to be involved only in NMD, a upf1� mutation has

also been shown to influence the abundance of a wide range

of normal cellular mRNAs (Lelivelt and Culbertson 1999).

Our results indicate that a differential effect between non-

sense-containing and normal mRNAs are also most evident

in a [PSI+] background, suggesting that the absence of

Upf1p in conjunction with a reduced availability of eRF3 in

the termination complex could lead to these complex effects

on mRNA stability. It is also possible that this differential

mRNA stability is obscured or superceded by the normal

function of the surveillance complex.

MATERIALS AND METHODS

Strains and media

In a previous study, we used the yeast strain YDB108 (MATa

ura2–52 his3�200 trp1–�901 ade2–101 leu2–3, 112 �pep4�LEU2

�ste6�HIS3) to characterize the efficiency of translation termina-

tion using �-galactosidase readthrough assays (Bonetti et al. 1995).

We subsequently found that the strain YDB108 is [PSI+]. This

strain was cured by growth in the presence of guanidine hydro-

chloride, resulting in the [psi−] strain YDB342. The UPF1 gene was

knocked out in strain YDB342 to create YDB343 (MATa ura2–

52 his3�200 trp1–�901 ade2–101 leu2–3, 112 �pep4�LEU2

�ste6�HIS3 �upf1�hisG). UPF1 was also knocked out in strain

YDB108 to create YDB339 (MATa ura2–52 his3�200 trp1–�901

ade2–101 leu2–3, 112 �pep4�LEU2 �ste6�HIS3 �upf1�hisG

[PSI+]). Cultures were grown in minimal medium containing

0.67% (w/v) yeast nitrogen base without amino acids (Difco) con-

taining 2% (w/v) glucose (SMD plates) or 2% galactose (SMGal

plates) as specified. Additional nutritional supplements were

added as required (Adams et al. 1997).

Construction of readthrough reporter systems

Construction of the �-galactosidase readthrough reporter plas-

mids containing each of the 12 tetranucleotide termination signals

and the four related (sense) control constructs was previously

described (Bonetti et al. 1995). The initial construction of dual

luciferase reporter plasmids used to monitor the efficiency of

translation termination in mammalian cells was previously de-

scribed (Grentzmann et al. 1998). The dual luciferase constructs

were adapted for expression in yeast by subcloning a 2.6 kb DNA

fragment into the pYEplac195 yeast expression plasmid (Gietz and

Sugino 1988) that carries the yeast PGK promoter and the CYC2

transcription terminator.

�-Galactosidase readthrough assays

The �-galactosidase reporter plasmid constructs were transformed

into the yeast strains described above, and transformants were

selected on SMD dropout plates lacking uracil (Adams et al. 1997).

Transformed strains were grown in SMGal medium to a cell den-

sity of approximately 0.75 A600 units/mL as measured using a

Shimadzu UV-1201 spectrophotometer. Cells were then harvested

and �-galactosidase activity was assayed using standard conditions

(Guarente 1983). The final values are expressed as the mean ± the

standard deviation.

In all cases, �-galactosidase activity was expressed per unit

mRNA. This was done by correcting for the relative steady-state

�-galactosidase mRNA level as measured by Northern blot analy-

sis. To do this, strains were grown under the same conditions used

for the readthrough assays and total cellular RNA was isolated by

SDS/phenol extraction (Schmitt et al. 1990). An equal amount of

RNA (10 µg) from each strain was subjected to agarose gel elec-

trophoresis in the presence of formaldehyde. Following transfer to

nitrocellulose, the blots were probed with a 2558 bp PvuII frag-

ment from the LacZ gene. The blot was stripped and reprobed

with a 420-bp fragment from the yeast ACT1 gene to serve as an

internal control. The ACT1 probe was prepared by PCR amplifi-

cation from genomic DNA using the primers DB154 (5�-GCGC

GGAATTCAACGTTCCAGCCTTCTAC-3�) and DB155 (5�-GGA

TGGAACAAAGCTTCTGG-3�). All probes were labeled with

[�-32P]-dATP using the random hexamer method (Sambrook and

Russell 2001). Radioactivity in specific hybrids was quantified by

PhosphorImager analysis (Molecular Dynamics). LacZ mRNA lev-

els were corrected for each strain by normalizing the lacZ-specific

counts to the ACT1-specific counts. These values were then nor-
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malized to the same measurements obtained with the sense control

for each set of constructs (containing a UGG tryptophan codon in

place of the UAG, UAA, or UGA stop codon) to determine the

theoretical maximal level of expression (i.e., 100% readthrough)

for this reporter system. Independent mRNA measurements were

carried out multiple times for each construct with similar results,

and the data is expressed as the mean ± standard deviation (SD).

Statistical analysis using the Mann-Whitney nonparametric test

was carried out using the InStat 3 program (GraphPad Software).

Luciferase assays and Northern analysis

Dual luciferase reporter plasmids expressing either a stop codon or

a sense codon were transformed into the indicated yeast strains,

and transformants were selected on SMD dropout plates lacking

uracil (Adams et al. 1997). Transformed strains were grown in

liquid SMD medium to a cell density of 0.5–0.7 A600 units/mL as

measured using a Shimadzu UV-1201 spectrophotometer. The lu-

ciferase assay was performed using the Dual-Luciferase Reporter

Assay System (Promega). Approximately 104 yeast cells from each

strain expressing the indicated dual luciferase reporter were lysed

using 100 µL of Passive Lysis Buffer. Two microliters of the lysate

were added to 10 µL of the Luciferase Assay Reagent II. Relative

luminescence units (RLUs) produced by firefly luciferase activity

were then measured for 10 sec using a Berthold Lumat LB9507

luminometer. Ten microliters of Stop&Glo buffer was then added

to quench the firefly activity and activate the Renilla luciferase

activity. RLUs were again measured for 10 sec to determine the

Renilla luciferase activity. Negative controls that contained all the

reaction components except cell lysates were used to determine the

background for each luciferase reaction and were subtracted from

the experimental values obtained. In all cases, the background

units were less than 0.5% of the experimental values. The percent

readthrough is expressed as the mean ± the standard deviation.

To calculate the Renilla specific activity and translational effi-

ciency for each yeast strain, 104 cells were lysed using 100 µL of

Passive Lysis Buffer. Two microliters of each lysate were used to

determine the total protein concentration (in quadruplicate) using

the Bio-Rad Protein Assay. The protein concentrations were then

used to calculate the Renilla specific activity (RLU/min/ng total

protein) and to determine the total Renilla produced per unit RNA

(the translational efficiency). The translational efficiency values are

expressed as the mean ± the standard deviation.

For Northern blot analysis of the dual luciferase mRNAs, strains

were grown under the same conditions used as the cells harvested

for readthrough assays. The RNA was isolated and analyzed as

described in the preceding section. The probe for the Renilla lu-

ciferase was constructed by PCR amplification of a 935-bp frag-

ment from the dual luciferase reporter plasmid using DB907 (5�-
GGCCGGATCCATGACTTCGAAAGTTTATGA-3�) and DB908

(5�-GGCCGTCGACATTTGTTCATTTTTGAGAAC-3�). For all

samples, the luciferase mRNA levels were normalized to actin

mRNA on the same blot. Independent mRNA measurements were

carried out multiple times for each construct with similar results,

and the data is expressed as the mean ± standard deviation (SD).
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