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Lean buffering is the smallest buffer capacity necessary to ensure the desired production

rate of a manufacturing system. In this paper, analytical methods for selecting lean buffer-

ing in serial production lines are developed under the assumption that the machines obey

the Bernoulli reliability model. Both closed-form expressions and recursive approaches

are investigated. The cases of identical and nonidentical machines are analyzed. Results

obtained can be useful for production line designers and production managers to main-

tain the required production rate with the smallest possible inventories.

Copyright © 2006 A. B. Hu and S. M. Meerkov. This is an open access article distributed

under the Creative Commons Attribution License, which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Production lines with unreliable machines usually contain finite capacity buffers intended

to attenuate mutual perturbations of the machines due to breakdowns. It is well known

that the capacity of the buffers should be as small as possible, that is, lean. But how lean

can lean be? This question was addressed in [2] where a method for selecting lean buffer-

ing in production systems with identical machines obeying the exponential reliability

model has been developed. A generalization for machines with reliability models de-

scribed by other continuous random variables (such as Weibull, gamma, and log-normal)

has been reported in [3]. However, the issue of lean buffering with machine reliability

models described by discrete random variables has not been addressed. In this paper, we

analyze lean buffering in serial lines with Bernoulli machines and, along with identical

machines, consider the case of nonidentical ones as well.

The reason for considering Bernoulli machines is that in many assembly operations

the downtime is short and comparable with the cycle time. This happens because the

stoppage of an assembly line is often due to a pallet being jammed on a conveyor or due

to the desire of an operator to complete the operation with the highest possible quality. In

these cases, the Bernoulli reliability model [7], according to which the probability that a
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machine produces a part during a cycle time is p and that a machine fails to do so is 1− p,

is more appropriate than the exponential one where up- and downtimes of the machine

are distributed exponentially.

The reason for considering nonidentical machines is due to the fact that in most pro-

duction systems the machines cannot be viewed as identical, as far as their efficiency is

concerned. Indeed, even if originally the line was designed having machines with identi-

cal performance, in the course of time their characteristics drift (due, e.g., to wear and/or

various adjustments during maintenance), which results in nonidentical performance.

Thus, considering production lines with nonidentical Bernoulli machines is of practical

importance. This paper is intended to contribute to this end.

To place the current paper in the framework of existing literature, we remark that the

problem of buffer capacity allocation in serial lines has been studied quantitatively for

over 50 years, and a large number of publications are available. The part of the literature,

which is the closest to the current work, seeks the smallest total buffer capacity and its

allocation so that the desired throughput is achieved. Both algorithmic and rule-based

approaches to this problem have been investigated in [1, 4–6, 9–11], respectively. In these

publications, machine reliability models are characterized by continuous random vari-

ables, in most cases, exponential ones. The current work contributes to this literature by

analyzing a discrete random variable case.

The outline of this paper is as follows. Section 2 below presents the problem formula-

tion. In Section 3, the approach is described. Sections 4 and 5 present the main results—

for identical and nonidentical machines, respectively. Finally, in Section 6 the conclusions

are formulated. All proofs are given in the appendix.

2. Problem formulation

Consider a serial production line shown in Figure 2.1, where the circles represent the

machines and the rectangles are the buffers. Assume the line operates according to the

following assumptions.

(i) The system consists of M machines arranged serially, and M− 1 buffers separat-

ing each consecutive pair of machines.

(ii) The machines have identical cycle time Tc. The time axis is slotted with the slot

duration Tc. Machines begin operating at the beginning of each time slot.

(iii) Each buffer is characterized by its capacity, Ni <∞,1≤ i≤M− 1.

(iv) Machine i is starved during a time slot if buffer i− 1 is empty at the beginning of

the time slot. Machine 1 is never starved for parts.

(v) Machine i is blocked during a time slot if buffer i has Ni parts at the beginning of

the time slot, and machine i+ 1 fails to take a part during the time slot. Machine

M is never blocked by ready goods buffer.

(vi) Machines obey the Bernoulli reliability model, that is, machine i, i = 1, . . . ,M,

being neither blocked nor starved during a time slot, produces a part with prob-

ability pi and fails to do so with probability 1− pi. Parameter pi is referred to as

the efficiency of machine i.

Let PR denote the production rate of this line, that is, the average number of parts pro-

duced by the last machine in the steady state. Let PR∞ be the production rate of the line
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m1 b1 m2 b2

· · ·

mM−2 bM−2 mM−1 bM−1 mM

Figure 2.1. Serial production line.

consisting of the same machines but having buffers with infinite capacity (and, therefore,

having the largest possible production rate; see [7]). Following [2], introduce the notion

of line efficiency:

E = PR

PR∞
. (2.1)

Given the production line defined by (i)–(vi) and line efficiency E, the lean buffer capacity

(LBC) is the sequence

N1,E, . . . ,NM−1,E (2.2)

such that the desired line efficiency E is achieved while
∑M−1

i=1 Ni,E is minimized.

The problem addressed in this paper is to develop analytical methods for calculating

LBC as a function of machine efficiency pi, i= 1, . . . ,M, line efficiency E, and the number of

machines in the system M. The case of identical machines, that is, pi =: p, i= 1, . . . ,M, is

carried out in Section 4 while the case of nonidentical machines, pi �= p j , i, j,= 1, . . . ,M,

is addressed in Section 5.

3. Approach

The approach of this paper is based on a method for performance analysis of serial lines

with Bernoulli machines developed in [7]. To make this paper self-contained, it is briefly

reviewed below.

For M = 2, using Markov chain analysis, the production rate, PR, of a serial line de-

fined by assumptions (i)–(vi) has been shown to be

PR= p1

[
1−Q

(
p2, p1,N

)]
= p2

[
1−Q

(
p1, p2,N

)]
, (3.1)

where

Q(x, y,N)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− x)(1−α)

1− (x/y)αN
, x �= y,

1− x

N + 1− x
, x = y,

(3.2)

α= x(1− y)

y(1− x)
. (3.3)
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For M > 2, no closed formulas for PR can be derived, and, therefore, a recursive ag-

gregation procedure, which leads to an estimate of PR with accuracy typically within 1%,

has been developed. This procedure consists of two parts—the backward and forward ag-

gregations. Within the backward aggregation, the last two machines are aggregated into a

single machine, using expressions (3.1). Then, this aggregated machine is aggregated with

the (M− 2)th machine and so on, until all machines are aggregated into a single one. The

efficiencies of the aggregated machines are denoted as pbi , i= 1, . . . ,M− 1, where b stands

for “backward.” In the forward aggregation, the first machine is aggregated with the ag-

gregated machine representing the last M− 1 machines. Then this machine is aggregated

with the aggregation of the last M − 2 machines and so on, until all machines are again

aggregated into one. The efficiencies of these aggregated machines are denoted as p
f
i ,

i= 2, . . . ,M, where f stands for “forward.” Then the procedure is repeated again, alternat-

ing between the backward and forward aggregations. Formally, this process is represented

as

pbi (s+ 1)= pi
[

1−Q
(
pbi+1(s+ 1), p

f
i (s),N

)]
, i= 1, . . . ,M− 1,

p
f
i (s+ 1)= pi

[
1−Q

(
p
f
i−1(s+ 1), pbi (s),N

)]
, i= 2, . . . ,M, s= 1,2, . . . ,

(3.4)

with function Q defined in (3.2) and the initial and boundary conditions given by

p
f
i (0)= pi, i= 1, . . . ,M, (3.5)

p
f
1 (s)= p1, pbM(s)= pM , s= 1,2, . . . . (3.6)

It has been shown in [7] that this recursive procedure is convergent and the following

limits exist:

lim
s→∞

p
f
i (s)= : p

f
i , lim

s→∞
pbi (s)= : pbi , i= 1, . . . ,M. (3.7)

Moreover,

p
f
M = pb1 . (3.8)

In terms of these limits, the production rate estimate of the M-machine line has been

defined as follows:

PR= p
f
M = pb1 = pbi+1

[
1−Q

(
p
f
i , pbi+1,Ni

)]
= p

f
i

[
1−Q

(
pbi+1, p

f
i ,Ni

)]
, i= 2, . . . ,M− 1.

(3.9)
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m1 b1 m2 b2 m3 b3 m4

0.85 2 0.9 2 0.6 2 0.8

ST j : 0 0.0179 0.0071 0.2296

BL j : 0.2798 0.3181 0.0228 0

Figure 3.1. Bottleneck identification rules.

Expressions (3.1)–(3.9) are used throughout this paper for evaluating lean buffering of

serial lines with Bernoulli machines.

In addition to the above, in Section 5 of this paper we use a method for bottleneck

machine (BN) identification developed in [8], where the BN is defined as the machine i,

such that

∂PR
(
p1, . . . , pM ,N1, . . . ,NM−1

)

∂pi
>
∂PR
(
p1, . . . , pM ,N1, . . . ,NM−1

)

∂p j
, ∀ j �= i. (3.10)

To outline this method, we note that, as it has been shown in [7], aggregation procedure

(3.4)–(3.6) can be used to evaluate the probabilities of blockage, BLi, i = 1, . . . ,M − 1,

and starvation, STi, i= 2, . . . ,M, of all machines in the system. Specifically, the estimates

of these probabilities are

BLi = piQ
(
pbi+1, p

f
i ,Ni

)
, i= 1, . . . ,M− 1,

STi = piQ
(
p
f
i−1, pbi ,Ni−1

)
, i= 2, . . . ,M,

(3.11)

where pbi , p
f
i , and Q are defined by (3.7) and (3.2), (3.3), respectively. Using these prob-

abilities, the bottleneck machine is identified as follows.

Consider a production line and place the probabilities of starvations and blockages

under each machine as shown in Figure 3.1. Assign the arrows directed from one machine

to another according to the following rule. If BLi > STi+1, the arrow is pointing from mi to

mi+1. If BLi < STi+1, the arrow is pointing from mi+1 to mi. It is shown in [8] that if there

is a unique machine with no emanating arrows, it is the BN in the sense of (3.10). Thus,

m3 is the BN of the production line of Figure 3.1. If there are multiple machines with

no emanating arrows, the one with the largest severity is the primary bottleneck (PBN),

where the severity is defined by

Si =
(

BLi−1 +STi+1

)
−
(

BLi +STi

)
, i= 2, . . . ,M− 1,

S1 = ST2−BL1, SM = BLM−1−STM .
(3.12)
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4. Lean buffering in serial lines with identical Bernoulli machines

In this section, we assume that all machines have identical efficiency,

pi =: p, i= 1, . . . ,M, (4.1)

and, in addition, all buffers are of identical capacity,

Ni =: N , i= 1, . . . ,M− 1. (4.2)

Assumption (4.2) is introduced in order to obtain a compact representation of the results.

It should be pointed out that, as it is well known [7], a more efficient buffer allocation

in systems satisfying (4.1) is the so-called inverted bawl pattern, whereby buffers in the

middle of the line are larger than those at the edges. However, this leads to just a small

improvement of the production rate in comparison with the uniform allocation (4.2)

(typically within 1%) and, therefore, is not considered here.

4.1. Two-machine lines. In the case of two identical machines, function Q becomes

Q
(
p1, p2,N

)
=Q(p,N)= 1− p

N + 1− p
. (4.3)

Therefore, using (2.1) and (3.1), we obtain the following equation for lean buffer capacity,

NE, which ensures line efficiency E:

E = 1− 1− p

NE + 1− p
. (4.4)

Solving for NE and taking into account that NE is an integer, we obtain the following.

Proposition 4.1. The lean buffer capacity (LBC) in serial lines defined by assumptions

(i)–(vi) with M = 2 and p1 = p2 = p is given by

NE(M = 2)=
⌈
E(1− p)

1−E

⌉
. (4.5)

Here and throughout this paper, ⌈x⌉ denotes the smallest integer larger than x.

Note that according to (4.5), NE cannot be less than 1. Buffering NE = 1 implies that

the machine itself stores a part being processed and no additional buffering between the

machines is required. This can be interpreted as just-in-time (JIT) operation.

Figures 4.1(a) and 4.2(a) illustrate the behavior of the lean buffer capacity as a func-

tion of machine efficiency p and line efficiency E, respectively. From these figures and

expression (4.5), we observe the following.

(α) LBC is a monotonically decreasing function of p, with a practically constant

slope.

(β) LBC is a monotonically increasing function of E, exhibiting a hyperbolic behav-

ior in 1−E.
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(c) M = 10

Figure 4.1. Lean buffering as a function of machine efficiency.

(γ) JIT operation is acceptable only if p’s are sufficiently large. For instance, if the

desired line efficiency is 0.85, JIT can be used only if p > 0.83, while for E = 0.95,

p must be larger than 0.95.

(δ) In a practical range of p’s, for example, 0.6 < p < 0.98, relatively small buffers

are required to achieve a large E. For instance, N0.95 = 6 if p = 0.7; if p = 0.9,

N0.95 = 2.

4.2. Three-machine lines. For a three-machine line, using the aggregation procedure

(3.4)–(3.6), the following can be derived.
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(c) M = 10

Figure 4.2. Lean buffering as a function of line efficiency.

Proposition 4.2. The lean buffering in serial lines defined by assumptions (i)–(vi) with

M = 3 and p1 = p2 = p3 = p is given by

NE(M = 3)=
⌈

ln((1−
√
E)/(1−E))

ln((1− p)
√
E/(1− p

√
E))

⌉
. (4.6)

For the proof, see the appendix.

The behavior of this NE is illustrated in Figures 4.1(b) and 4.2(b). Obviously, for most

values of p, the lean buffer capacity is increased, as compared with the case of M = 2,
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and the range of p’s, where JIT is possible, is decreased. For instance, if p = 0.95, JIT is

acceptable for E < 0.91, while for p = 0.85 it is acceptable for E < 0.77.

4.3. M > 3-machine lines. For M > 3, no closed-form expression for the lean buffering

can be derived. However, using aggregation procedure (3.4)–(3.6), the following estimate

of NE can be obtained.

Proposition 4.3. The lean buffering in serial lines defined by assumptions (i)–(vi) with

M > 3 and pi = p, i= 1, . . . ,M, is given by

N̂E(M > 3)=
⌈

ln
(
(1−E− Q̂)/(1−E)(1− Q̂)

)

ln
(
(1− p)(1− Q̂)/

(
1− p(1− Q̂)

))
⌉

, (4.7)

where Q̂ = Q̂(p,M,E) is defined as

Q̂ = 1−E(1/2)[1+(M−3/M−1)M/4] +
(
E(1/2)[1+(M−3/M−1)M/4]−E(M−2/M−1)

)
exp

{
− E1/(M−1)− p

(1−E)(1/E)2E

}
.

(4.8)

For the proof, see the appendix.

The accuracy of estimates (4.7) and (4.8) has been evaluated numerically by calculat-

ing the exact value of NE (using the aggregation procedure (3.4)–(3.6)) and comparing it

with N̂E as follows:

∆E =
N̂E−NE

NE
× 100%. (4.9)

The values of ∆E have been calculated for p ∈ [0.85,0.9,0.95], M ∈ [5,10,15,20,25,30],

and E ∈ [0.85,0.9,0.95]. It turned out that ∆E = 0 for all combinations of these param-

eters except when {p = 0.85, M = 5, E = 0.85}, where it is equal to 50%. Thus, we con-

clude that N̂E provides a sufficiently accurate estimate of NE.

The behavior of N̂E for M = 10 is illustrated in Figures 4.1(c) and 4.2(c). Clearly, the

buffer capacity is increased as compared with M = 3, and JIT operation becomes unac-

ceptable for all values of p and E analyzed.

Using (4.7) and (4.8), the behavior of lean buffering as a function of M can be an-

alyzed. This is illustrated in Figure 4.3. Interestingly, and to a certain degree unexpect-

edly, N̂E is constant for all M > 10. This implies that the lean buffering appropriate for

lines with 10 machines is also appropriate for lines with any larger number of machines.

Based on this observation, the following rule of thumb for selecting lean buffering can be

formulated. In serial production lines defined by assumption (i)–(vi) with M ≥ 10, the

capacity of the lean buffering can be selected as shown in Table 4.1.
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Figure 4.3. Lean buffering N̂E as a function of the number of machines in the system.

Table 4.1. Rule of thumb for selecting lean buffer capacity.

E = 0.85 E = 0.90 E = 0.95

p = 0.85 3 4 7

p = 0.90 2 3 5

p = 0.95 2 2 3
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5. Lean buffering in lines with nonidentical machines

5.1. Two-machine lines. In the case of nonidentical two-machine lines, as it follows from

(2.1) and (3.1), the equation that defines NE becomes

PR= PR∞E = p2

[
1−Q

(
p1, p2,NE

)]
= p2

[
1−
(
1− p1

)
(1−α)

1− (p1/p2)αNE

]
, (5.1)

where

PR∞ =min
(
p1, p2

)
, (5.2)

α= p1

(
1− p2

)

p2

(
1− p1

) . (5.3)

From here we obtain the following.

Proposition 5.1. The lean buffering in serial lines defined by assumptions (i)–(vi) with

M = 2 is given by

NE

(
p1, p2

)
=
⌈

ln
{(
p2/p1

)[(
p1−EPR∞

)
/
(
p2−EPR∞

)]}

lnα

⌉
, (5.4)

where PR∞ and α are defined by (5.2) and (5.3), respectively.

Figure 5.1 illustrates the behavior of NE as a function of p1 for various values of p2 and

E, while Figure 5.2 shows NE as a function of E for various p1 and p2. From these figures,

we conclude the following.

(α) For p2 sufficiently large, JIT operation is acceptable for all values of p1 and E.

(β) For small p2, JIT is acceptable only when p1 is sufficiently large. For instance,

if p2 = 0.75, JIT represents LBC only if p1 > 0.88 for E = 0.9 and p1 > 0.94 for

E > 0.95.

(γ) The maximum of NE tends to take place when p1 = p2.

Intuitively, it is expected that the lean buffering in a line {p1, p2} is the same as in the

reversed line, that is, {p2, p1}. It turns out that this is indeed true as stated below.

Proposition 5.2. Lean buffer capacity has the property of reversibility, that is,

NE

(
p1, p2

)
=NE

(
p2, p1

)
. (5.5)

Proof. The proof follows immediately from (5.4) by observing that α(p1, p2) is equal to

1/α(p2, p1) and PR(p1, p2) is equal to PR(p2, p1). �

5.2. M > 2-machine lines. Exact formulas for LBC in the case of M > 2 are all but im-

possible to derive. Therefore, we limit our attention to estimates of Ni,E. These estimates

are obtained based on both closed formulas (4.5)–(4.8), (5.4), and recursive calculations.

Each of them is described below.
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Figure 5.1. Lean buffering as a function of the first machine efficiency.

5.2.1. Closed-formula approaches. The following four methods have been investigated.

(I) Local pairwise approach. Consider every pair of consecutive machines, mi and

mi+1, i = 1, . . . ,M − 1, and select LBC using formula (5.4). This results in the

sequence of buffer capacities denoted as

N I
1,E, . . . ,N I

M−1,E. (5.6)

(II) Global pairwise approach. It is based on applying formula (5.4) to all possible

pairs of machines (not necessarily consecutive) and then selecting the capacity

of each buffer equal to the largest buffer obtained by this procedure. Clearly, this

results in buffers of equal capacity, which is denoted as N II
E .
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Figure 5.2. Lean buffering as a function of line efficiency.

(III) Local upper-bound approach. Consider all pairs of consecutive machines, mi and

mi+1, i= 1, . . . ,M− 1, substitute each of them by a two-machine line with iden-

tical machines defined by

p̂i :=min
{
pi, pi+1

}
, i= 1, . . . ,M− 1, (5.7)

and select LBC using formula (4.5) with p = p̂i. This results in the sequence of

buffer capacities

N III
1,E, . . . ,N III

M−1,E. (5.8)
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(IV) Global upper-bound approach. In stead of the original line, consider a line with

all identical machines specified by

p̂ :=min
{
p1, p2, . . . , pM

}
(5.9)

and select the buffer capacity, denoted as N IV
E , using expressions (4.7) and (4.8).

Due to the monotonicity of PR with respect to the machine efficiency and buffer

capacity, this approach provides an upper bound of LBC:

Ni,E ≤N IV
E , i= 1, . . . ,M− 1. (5.10)

If the desired line efficiency for two-machine lines, involved in approaches (I)–(III),

were selected as E, the resulting efficiency of the M-machine line would be certainly less

than E. To avoid this, the efficiency, E′, of each of the two-machine lines is calculated as

follows. For a given M-machine line, find the buffer capacity using approach (IV). Then

consider a two-machine line with identical machines, where each machine is defined by

p̂ =min{p1, . . . , pM}, and the buffer with the capacity as found above. Finally, calculate

the production rate and the efficiency of this two-machine line and use it as E′ in ap-

proaches (I)–(III).

To analyze the performance of approaches (I)–(IV), we considered 100000 lines

formed by selecting M and pi randomly and equiprobably from the sets

M ∈ {4,5, . . . ,30}, (5.11)

0.70≤ p ≤ 0.97. (5.12)

The desired efficiency for each of these lines was also selected randomly and equiprobably

from the set

0.80≤ E ≤ 0.98. (5.13)

For each kth line thus formed, we calculated the vector of buffer capacities,

N
j
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

N
j

1,k

N
j

2,k

. . .

N
j
M−1,k

⎤
⎥⎥⎥⎥⎥⎥⎦

, k = 1, . . . ,100000, j = (I), (II), (III), (IV), (5.14)

using the four approaches introduced above. The subscripts of N
j
i,k represent ith buffer,

i∈ {1, . . . ,Mk−1}, of the kth line, k ∈ {1,2, . . . ,100000}; the superscript j ∈ {(I), (II), (III),

(IV)} represents the approach used for this calculation. In addition, we calculated the

production rate, PR
j
k, and the efficiency, E

j
k, using expressions (3.4)–(3.9) and (2.1), re-

spectively.

The efficacy of approaches (I)–(IV) has been characterized by the following two met-

rics.
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Table 5.1. Performance characteristics of approaches (I)–(IV).

Method (I) (II) (III) (IV)

N
j

ave 2.0 6.2 5.3 7.2

∆ j 97.3 0.1 0.1 0.0

(1) The average buffer capacity per machine:

N
j

ave = 1

K

K∑

k=1

N
j
k , (5.15)

where K = 100000 and

N
j
k =

1

Mk − 1

Mk−1∑

i=1

N
j
i,k. (5.16)

(2) The frequency of E
j
k being less than the desired efficiency Ek:

∆
j = 1

K

K∑

k=1

Sg
(
Ek −E

j
k

)
· 100%, (5.17)

where K = 100000 and

Sg(x)=
⎧⎨
⎩

1, x > 0,

0, x ≤ 0.
(5.18)

The results are given in Table 5.1. Clearly, approach (I) leads to the smallest average

buffer capacity but, unfortunately, almost always results in line efficiency less than de-

sired. Thus, a “local” selection of LBC (i.e., based on the two machines surrounding the

buffer) is unacceptable. Approaches (II) and (III) provide line efficiency less than de-

sired in only a small fraction of cases and result in the average buffer capacity 2–3 times

larger than approach (I). Approach (IV), as expected, always guarantees the desired per-

formance but requires the largest buffering.

To further differentiate between the four approaches, we considered their performance

as a function of M. To accomplish this, we formed 1000 lines for each M ∈ {4,6,8,10,15,

20,25,30,80} by selecting pi’s and E’s randomly and equiprobably from sets (5.12) and

(5.13), respectively. For each of these lines, we calculated buffer capacities using ap-

proaches (I)–(IV) and evaluated the performance metrics (5.15) and (5.17). The results

are shown in Table 5.2. Examining these data, we conclude the following.

(α) The local pairwise approach in most cases leads to a lower line efficiency than

desired.

(β) The global pairwise approach results in good performance from the point of view

of both Nave and ∆. For M ≤ 10, it outperforms approach (III) from the point of

view of Navg. However, it is quite sensitive to M: Nave increases substantially with

M.
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Table 5.2. Effect of M on the performance of approaches (I)–(IV).

M 4 6 8 10 15 20 25 30 80

N I
ave 1.7 1.9 2.0 2.0 2.0 2.1 2.0 2.1 2.1

N II
ave 3.0 4.2 4.8 5.2 5.9 6.4 6.5 7.1 7.6

N III
ave 4.2 5.0 5.2 5.2 5.2 5.4 5.3 5.7 5.6

N IV
ave 5.0 6.3 6.7 6.8 7.0 7.4 7.3 7.9 7.9

∆I 88.7 92.8 95.6 97.1 98.4 98.0 99.2 99.3 100.0

∆II 3.1 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0

∆III 0.0 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.3

∆IV 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(γ) The local upper-bound approach is less sensitive to M and outperforms ap-

proach (II) for M > 10.

(δ) The global upper-bound approach substantially overestimates the LBC.

Based on the above, it is recommended to use the global pairwise approach in systems

with M ≤ 10 and local upper-bound approach in systems with M > 10.

5.2.2. Recursive approaches. The following two recursive methods have been investigated.

(V) Full-search approach. Start from all buffers of capacity 1. Increase the capacity of

the first buffer by 1 and, using the aggregation procedure (3.4)–(3.9), calculate

the production rate of the system. Return the first buffer capacity to its initial

value, increase the second buffer capacity by 1, and calculate the resulting pro-

duction rate. Repeat the same procedure for all buffers, determine the buffer that

leads to the largest production rate, and permanently increase its capacity by 1.

Repeat the same procedure until the desired line efficiency is reached. This will

result in the sequence of buffer capacities

NV
1,E, . . . ,NV

M−1,E. (5.19)

(VI) Bottleneck-based approach. Consider a production line with the buffer capacity

calculated according to approach (I) but rounded down in formula (5.4) rather

than up. Although being relatively small, this buffering often leads to line effi-

ciency less than desired. Therefore, to improve the line efficiency, increase the

buffering according to the following procedure. Using the technique described

in Section 3, identify the bottleneck (or, when applicable, primary bottleneck)

and increase the capacity of both buffers surrounding this machine by 1. Repeat

this procedure until the desired line efficiency is reached. This will result in the

sequence of buffer capacities denoted as

NVI
1,E, . . . ,NVI

M−1,E. (5.20)
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Table 5.3. Performance characteristics of approaches (I)–(VI) in 5-machine lines.

Approaches (I) (II) (III) (IV) (V) (VI)

(a) E = 0.80

N
j

ave 1.5 2.2 2.4 2.9 1.4 1.5

∆ j 27.8 0.2 0.0 0.0 0.0 0.0

t j 8 8 8 8 59 28

(b) E = 0.85

N
j

ave 1.7 2.7 3.0 3.6 1.7 1.8

∆ j 36.0 0.2 0.0 0.0 0.0 0.0

t j 8 8 8 8 91 38

(c) E = 0.90

N
j

ave 2.2 3.6 4.2 5.0 2.0 2.3

∆ j 33.8 0.0 0.0 0.0 0.0 0.0

t j 6 6 6 6 91 27

(d) E = 0.95

N
j

ave 3.2 6.0 7.9 9.5 2.8 3.3

∆ j 25.5 0.0 0.0 0.0 0.0 0.0

t j 6 6 6 6 150 29

Clearly, approach (V) results in a smaller buffer capacity than approach (VI). How-

ever, the latter might require a shorter computation time than the former. Therefore, in

order to compare (V) with (VI), the computation time should be taken into account. This

additional performance metric is defined as the total computer time necessary to carry

out the computation

t j = t
j
end− t

j
start, (5.21)

where t
j
start and t

j
end are the times (in seconds) of the beginning and the end of the com-

putation.

Based on performance metrics (5.15), (5.17), and (5.21), we compared approaches

(I)–(VI) using the production systems generated by selecting pi’s randomly and equip-

robably from set (5.12). The results are shown in Tables 5.3, 5.4, and 5.5. Specifically,

Tables 5.3 and 5.4 present the results obtained using 5000 randomly generated 5- and

10-machine lines, respectively, while Table 5.5 is based on the analysis of 2000 randomly

generated 15-machine lines. Examining these data, we conclude the following.

(α) Full-search approach, as expected, results in the smallest buffer capacity and the

longest calculation time.
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Table 5.4. Performance characteristics of approaches (I)–(VI) in 5-machine lines.

Approaches (I) (II) (III) (IV) (V) (VI)

(a) E ∈ [0.80,0.89]

N
j

ave 1.8 3.5 3.2 4.1 1.8 1.9

∆ j 66.7 0.0 0.0 0.0 0.0 0.0

t j 15 15 15 15 757 76

(b) E ∈ [0.89,0.98]

N
j

ave 3.2 8.0 8.2 10.6 2.7 3.2

∆ j 48.5 0.0 0.0 0.0 0.0 0.0

t j 26 26 26 26 2339 124

Table 5.5. Performance characteristics of approaches (I)–(VI) in 15-machine lines.

Approaches (I) (II) (III) (IV) (V) (VI)

(a) E ∈ [0.80,0.89]

N
j

ave 1.8 3.8 3.3 4.2 1.8 2.0

∆ j 81.0 0.0 0.0 0.0 0.0 0.0

t j 18 18 18 18 2452 107

(b) E ∈ [0.89,0.98]

N
j

ave 3.2 9.0 8.2 10.9 2.6 3.2

∆ j 57.6 0.0 0.0 0.0 0.0 0.0

t j 24 24 24 24 5837 138

(β) Approaches (II)–(IV), being based on closed-form expressions, are much faster

than (V) (up to two orders of magnitude for long lines) but lead to the average

buffering 2–3 times larger than that of (V).

(γ) Approach (VI) provides a good tradeoff between the calculation time and buffer

capacity. In long lines, it is about 20 times faster than (V) and results in the

average buffering almost the same as (V) (about 10% difference). Also, it is about

6 times slower than (I)–(IV) but gives buffering 2–3 times smaller than (II)–(IV).

5.2.3. Illustrative examples. To illustrate particular cases of lean buffering designed using

approaches (I)–(VI), we provide several examples.

Consider the four production lines with machines specified in Table 5.6 along with

the desired line efficiency. The estimates of LBC for each of these lines, calculated using

approaches (I)–(VI), are shown in Tables 5.7, 5.8, 5.9, and 5.10; these tables include also

the resulting line efficiency, E j . These examples clearly show the efficacy of the bottleneck

approach, which is based on the closed formula (5.4) and the BN identification method

described in Section 3.
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Table 5.6. Desired line efficiencies and machine parameters of case studies.

Line E m1 m2 m3 m4 m5

1 0.80 0.78 0.88 0.75 0.91 0.83

2 0.85 0.79 0.84 0.85 0.94 0.76

3 0.90 0.72 0.85 0.74 0.82 0.84

4 0.95 0.77 0.87 0.90 0.90 0.72

Table 5.7. LBC estimates for line 1.

Buffer b
j
1 b

j
2 b

j
3 b

j
4 E j

Desired — — — — 0.80

N I
i 1 1 1 1 0.71

N II
i 2 2 2 2 0.90

N III
i 3 3 3 2 0.96

N IV
i 3 3 3 3 0.96

NV
i 1 2 2 1 0.83

NVI
i 1 2 2 1 0.83

Table 5.8. LBC estimates for line 2.

Buffer b
j
1 b

j
2 b

j
3 b

j
4 E j

Desired — — — — 0.85

N I
i 2 2 1 1 0.84

N II
i 3 3 3 3 0.99

N III
i 3 2 2 3 0.96

N IV
i 3 3 3 3 0.99

NV
i 1 2 2 1 0.85

NVI
i 1 2 2 1 0.85

Table 5.9. LBC estimates for line 3.

Buffer b
j
1 b

j
2 b

j
3 b

j
4 E j

Desired — — — — 0.90

N I
i 2 2 3 3 0.90

N II
i 4 4 4 4 0.97

N III
i 5 5 5 4 0.99

N IV
i 5 5 5 5 0.99

NV
i 2 3 2 2 0.90

NVI
i 2 3 3 2 0.92
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Table 5.10. LBC estimates for line 4.

Buffer b
j
1 b

j
2 b

j
3 b

j
4 E j

Desired — — — — 0.95

N I
i 3 3 4 2 0.98

N II
i 5 5 5 5 1.00

N III
i 9 5 4 10 1.00

N IV
i 10 10 10 10 1.00

NV
i 2 2 2 2 0.96

NVI
i 2 2 3 2 0.97

6. Conclusions

For serial production lines with identical Bernoulli machines, this paper provides closed-

from expressions (4.7) and (4.8) for calculating the lean buffer capacity as a function of

the line and machine efficiency and the number of machines in the system. For nonidenti-

cal machines, closed-form expression (5.4) has been derived only for two-machine lines.

For longer lines, several approximations have been explored. Some of them utilize closed

formulas mentioned above while others are based on recursions. As a result, it has been

shown that

(i) if closed formulas are to be used for selecting lean buffering, the global pairwise

and the local upper-bound approaches are recommended for M ≤ 10 and M >

10, respectively;

(ii) if recursive approaches are to be employed, the bottleneck-based approach is

preferred.

Appendix

We first prove Proposition 4.3 and then specialize it to Proposition 4.2.

Proof of Proposition 4.3. From (3.9) with i=M− 1, we obtain

PR= pbM
[

1−Q
(
p
f
M−1, pbM ,NM−1

)]
= p
[

1−Q
(
p
f
M−1, p,NE

)]
. (A.1)

Using (2.1), (3.2), and (3.3), we find

1−E =Q
(
p
f
M−1, p,NE

)
=
(
1− p

f
M−1

)
(1−α)

1−
(
p
f
M−1/p

)
αNE

, (A.2)

α= p
f
M−1(1− p)

p
(
1− p

f
M−1

) . (A.3)

Solving (A.2) for NE yields

NE =
ln
[(
p/p

f
M−1

)((
E− p

f
M−1−α+αp

f
M−1

)
/(E− 1)

)]

lnα
. (A.4)
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The steady state of (3.4) gives

p
f
M−1 = p

[
1−Q

(
p
f
M−2, pbM−1,NE

)]
= p[1−Q], (A.5)

where

Q =Q
(
p
f
M−2, pbM−1,N

)
. (A.6)

Substituting (A.5) into (A.4) finally yields

NE =
⌈

ln
(
(1−E−Q)/(1−E)(1−Q)

)

ln
(
(1− p)(1−Q)/

(
1− p(1−Q)

))
⌉
. (A.7)

Following the derivation of Q̂ for exponential machines in [2], we approximate Q as

Q̂ = a+ bexp

{
− α− p

β

}
, (A.8)

where

a= 1−E(1/2)[1+((M−3)/(M−1))M/4],

b= E(1/2)[1+((M−3)/(M−1))M/4]−E((M−2)/(M−1)),

α= E1/(M−1).

(A.9)

By trial and error, we select β as

β = (1−E)(1/E)2E

. (A.10)

Thus, the approximation for Q is

Q̂ = 1−E(1/2)[1+((M−3)/(M−1))M/4]

+
(
E(1/2)[1+((M−3)/(M−1))M/4]−E((M−2)/(M−1))

)
exp

{
− E1/(M−1)− p

(1−E)(1/E)2E

}
.

(A.11)

Figure A.1 shows Q̂ by broken lines and true Q, obtained through recursive aggrega-

tion, by solid lines. Tables A.1, A.2, and A.3 show that the accuracy of this approximation

is within a 4% error, with the percent error as (Q̂−Q)/Q× 100%. Thus, we can replace

Q in (A.7) with Q̂ to obtain (4.7). �

Proof of Proposition 4.2 In three-machine lines, (A.5) becomes

p
f
2 = p

[
1−Q

(
p
f
1 , pb2 ,NE

)]
= p
[

1−Q
(
p, pb2 ,NE

)]
, (A.12)

and, in addition,

p
f
2 = pb2 . (A.13)
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(c) M = 10, E = 0.95

Figure A.1. Functions Q and Q̂ versus p.

Therefore,

PR= p
f
2

[
1−Q

(
p, p

f
2 ,NE

)]
= p
[

1−Q
(
p, p

f
2 ,N
)]2

= p[1−Q]2, (A.14)

where Q was defined in (A.6).

From (A.14) and (2.1), we find

Q = 1−
√
E. (A.15)

Substituting this into (A.5), and then substituting the resulting expression for p
f
M−1 into

(A.4), we obtain (4.6). �
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Table A.1. Accuracy of approximating Q by Q̂ (percent error) when M = 5.

p E = 0.85 E = 0.90 E = 0.95

0.1 2.79 2.87 2.95

0.2 2.71 2.82 2.92

0.3 2.60 2.74 2.88

0.4 2.46 2.64 2.83

0.5 2.28 2.50 2.76

0.6 2.04 2.31 2.66

0.7 1.75 2.04 2.48

0.8 1.47 1.74 2.18

0.9 1.32 1.55 1.77

Table A.2. Accuracy of approximating Q by Q̂ (percent error) when M = 10.

p E = 0.85 E = 0.90 E = 0.95

0.1 0.69 0.75 0.82

0.2 0.52 0.63 0.76

0.3 0.30 0.48 0.68

0.4 0.05 0.29 0.57

0.5 −0.29 0.03 0.43

0.6 −0.68 −0.31 0.22

0.7 −1.06 −0.75 −0.10

0.8 −1.13 −1.11 −0.62

0.9 0.08 −0.41 −0.96

Table A.3. Accuracy of approximating Q by Q̂ (percent error) when M = 20.

p E = 0.85 E = 0.90 E = 0.95

0.1 2.63 2.74 3.72

0.2 2.40 2.59 3.18

0.3 2.14 2.40 2.68

0.4 1.80 2.15 2.55

0.5 1.36 1.83 2.37

0.6 0.82 1.37 2.11

0.7 0.22 0.76 1.69

0.8 −0.15 0.13 0.99

0.9 0.53 0.40 0.28

Acknowledgments

This work was supported by NSF Grant DMI 0245377. In addition, A. B. Hu was sup-

ported in part by the Dwight F. Benton Fellowship from the Department of Electrical

Engineering and Computer Science at the University of Michigan in Ann Arbor.



24 Lean buffering in serial production lines

References

[1] J. A. Buzacott, Automatic transfer lines with buffer stocks, International Journal of Production

Research 5 (1967), 183–200.

[2] E. Enginarlar, J. Li, and S. M. Meerkov, How lean can lean buffers be?, IIE Transactions 37 (2005),

no. 4, 333–342.

[3] , Lean buffering in serial production lines with non-exponential machines, Stochastic Mod-

eling of Manufacturing Systems (G. Liberopoulos, C. T. Papadopoulos, B. Tan, J. MacGregor

Smith, and S. B. Gershwin, eds.), Springer, New York, 2006, pp. 29–53.

[4] E. Enginarlar, J. Li, S. M. Meerkov, and R. Q. Zhang, Buffer capacity for accommodating machine

downtime in serial production lines, International Journal of Production Research 40 (2002),

no. 3, 601–624.

[5] S. B. Gershwin and Y. Goldis, Efficient algorithms for transfer line design, Report LMP-95-005,

Laboratory of Manufacturing and Productivity, MIT, Massachusetts, 1995.

[6] S. B. Gershwin and J. E. Schor, Efficient algorithms for buffer space allocation, Annals of Opera-

tions Research 93 (2000), no. 1–4, 117–144.

[7] D. Jacobs and S. M. Meerkov, Mathematical theory of improvability for production systems, Math-

ematical Problems in Engineering 1 (1995), no. 2, 95–137.

[8] C.-T. Kuo, J.-T. Lim, and S. M. Meerkov, Bottlenecks in serial production lines: a system-theoretic

approach, Mathematical Problems in Engineering 2 (1996), no. 3, 233–276.

[9] J. MacGregor Smith and F. R. B. Cruz, The buffer allocation problem for general finite buffer queue-

ing networks, IIE Transactions 37 (2005), no. 4, 343–365.

[10] J. O. McClain, R. Conway, W. Maxwell, and L. J. Thomas, The role of work-in-process inventory

in serial production lines, Operations Research 36 (1988), no. 2, 229–241.

[11] H. Yamashita and T. Altiok, Buffer capacity allocation for a desired throughput in production lines,

IIE Transactions 30 (1998), no. 10, 883–892.

A. B. Hu: Department of Electrical Engineering and Computer Science, University of Michigan,

Ann Arbor, MI 48109-2122, USA

E-mail address: alexhu@umich.edu

S. M. Meerkov: Department of Electrical Engineering and Computer Science,

University of Michigan, Ann Arbor, MI 48109-2122, USA

E-mail address: smm@eecs.umich.edu

mailto:alexhu@umich.edu
mailto:smm@eecs.umich.edu


Submit your manuscripts at

http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


