
Lean Software Management: BBC Worldwide Case Study

Middleton, P., & Joyce, D. (2012). Lean Software Management: BBC Worldwide Case Study. IEEE Transactions
on Engineering Management, 59(1), 20-32. https://doi.org/10.1109/TEM.2010.2081675

Published in:
IEEE Transactions on Engineering Management

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:05. Aug. 2022

https://doi.org/10.1109/TEM.2010.2081675
https://pure.qub.ac.uk/en/publications/81dd55aa-b5e8-469a-b433-1d53ec38b037

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 1

Lean Software Management: BBC Worldwide
Case Study

Peter Middleton and David Joyce

Abstract—This case study examines how the lean ideas behind
the Toyota production system can be applied to software project
management. It is a detailed investigation of the performance of a
nine-person software development team employed by BBC World-
wide based in London. The data collected in 2009 involved direct
observations of the development team, the kanban boards, the daily
stand-up meetings, semistructured interviews with a wide variety
of staff, and statistical analysis. The evidence shows that over the
12-month period, lead time to deliver software improved by 37%,
consistency of delivery rose by 47%, and defects reported by cus-
tomers fell 24%. The significance of this work is showing that
the use of lean methods including visual management, team-based
problem solving, smaller batch sizes, and statistical process control
can improve software development. It also summarizes key differ-
ences between agile and lean approaches to software development.
The conclusion is that the performance of the software develop-
ment team was improved by adopting a lean approach. The faster
delivery with a focus on creating the highest value to the customer
also reduced both technical and market risks. The drawbacks are
that it may not fit well with existing corporate standards.

Index Terms—Agile, capability maturity model integrated
(CMMI), development, lead time, lean, process, software, statis-
tical process control.

I. INTRODUCTION

L
EAN thinking is important because it can reduce error

rates to one per million units. It has been shown to have

the potential to at least double the productivity of both manufac-

turing and service organizations. It also significantly reduces the

time taken to deliver new products while substantially reducing

cost. The evidence from Toyota (Japan), Porsche (Germany),

and Pratt & Whitney (U.S.) confirms this [1], [2].

Applying the ideas from the Toyota production system (TPS)

[3] or lean thinking to the management of software projects,

therefore, promises great improvements. This case study records

the practical experience gained between April 2008 and October

2009 by the London-based BBC Worldwide when it applied lean

thinking for managing software development.

BBC Worldwide is the main commercial arm and a wholly

owned subsidiary of the British Broadcasting Corporation

(BBC). Its mission is to create, acquire, develop, and exploit

Manuscript received February 10, 2010; revised June 26, 2010, August 24,
2010, and September 2, 2010; accepted September 8, 2010. Review of this
manuscript was arranged by Department Editor J. K. Liker.

P. Middleton is with the School of Electronics, Electrical Engineering,
and Computer Science, Queen’s University Belfast, Belfast, BT7 1NN, U.K.
(e-mail: p.middleton@qub.ac.uk).

D. Joyce was with the BBC Worldwide, London, W12 8QT, U.K. He
is now with the ThoughtWorks, Melbourne, Vic. 3000, Australia (e-mail:
dpjoyce@googlemail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEM.2010.2081675

media content and brands around the world in order to maxi-

mize the value of the BBC’s assets for the benefit of the U.K.

license payer. In 2008/09, BBC Worldwide generated profits

of £103 million (U.S.$ 147 million) (before exceptionals) on

revenues of £1.004 billion. (U.S.$ 1.4 billion) [4].

The basis of lean is the continuous elimination of waste [5].

This requires a focus on the flow of work through the system to

ensure that material is produced only when it is needed and in

the exact quantities required. This enables near-zero inventory

levels to be approached, which makes production more flexible

and also allows sources of defects to be quickly identified.

II. LITERATURE REVIEW

Lean emerged in 1990 as a term to describe the automobile

production processes developed, since 1950 by Toyota. Toyota

is generally regarded as the most efficient and highest quality

producer of motor vehicles in the world. The term lean refers to

the fact that Toyota was observed to use less space, manpower,

materials, and time to make their products than their Western

competitors [6].

The success of Toyota has generated a substantial literature on

every facet of their approach. Schonberger [7] focused on how

‘‘just-in-time’’ production forces problems to the surface so en-

abling a habit of improvement. Imai [8] identified the ‘‘Kaizen’’

philosophy of continuous improvement as being the primary key

to success. Rother and Shook [9] focused on value stream map-

ping as a process for identifying waste and envisioning a future

state, thus enabling an organization to ‘‘see’’ their production

from a new perspective.

Lean practices have been developed over the last 60 years.

There is no pure lean approach as demonstrated by the dif-

ferent descriptions of lean in the literature, which identifies a

range of overlapping lean principles. For example, Liker [1] has

14 principles, Womack and Jones [2] have five principles, and

Shingo [3] also has five but different principles. Ohno’s [5] focus

was to reduce the time from customer order to product deliver

by eliminating waste. Arguably he preached many principles,

even though they are not laid out as such. The complexity of an-

alyzing lean is due to the specifics of each lean implementation

being context-dependent.

When Toyota was setting up a new plant in America, Liker and

Hoseus noted that Toyota ‘‘. . .were not interested in teaching

us to copy. They were trying to teach us to think and act in the

Toyota Way’’ [10, p. xxii]. Therefore, for Toyota, it was more a

philosophy of management combined with their experience of

what was successful that was important.

For an organization to adopt a new philosophy and ‘‘see’’

their task differently is a major change management exercise.

0018-9391/$26.00 © 2010 IEEE

2 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

The lean deployment literature, therefore, includes stories il-

lustrating the hurdles [11], [12] and detailed practical guides

[13]–[15].

Lean development of new products is significantly different

to conventional Western approaches [6], [16], [17]. Key ele-

ments include heavyweight project managers, integrating sys-

tems, cultivating organizational knowledge, and long-term staff

deployment patterns. The techniques of deliberately delaying

decisions [18] and set-based concurrent engineering [19] also

provide substantial benefits.

Software is more malleable and cheaper to distribute than

manufactured products. Software development is therefore,

somewhat different to conventional product development and

production. However, at a higher level, the principles are still

the same in any specific application area [1]. It has been more

common in software development to draw on concepts from the

Toyota Production System [3] [5], such as kanban, with fruitful

results. But some core concepts from lean product development

like front-end loading using set-based methods are particularly

important for software development [17].

If user requirements, likely patterns of use, and technology

performance are unclear, then good initial design is difficult

[20]. An alternative to ‘‘paralysis by analysis’’ is to have a fast

process that produces software deliverables quickly to respond,

as understanding of the business increases. Lean offers a way to

optimize and discipline this process.

Lean as an approach to management can travel globally, and

when combined with lower labor costs in developing countries

can be a major threat to Western jobs [21]. Workers have also

experienced lean as a mechanism for capital to exploit and stress

the labor force; therefore, it has not been universally welcomed

[22]. Lean has been successfully applied to aerospace [23] and

services [24], [25]. By focusing on increasing the speed from

‘‘order to cash’’ and the continuous elimination of waste, there

is no theoretical reason it cannot be applied to any area [5].

The first recorded experiments with lean software develop-

ment were by Middleton [26]. Microsoft reported how the lean

mistake proofing of a software process eradicated whole classes

of errors [27]. The U.S. Department of Defense (DoD) con-

cluded lean techniques were the only way forward [28]. The

Cummins Engine Company ‘‘. . .provides some compelling ev-

idence that the ideas of lean manufacturing are indeed appli-

cable, in principle, to software development.’’ [29]. The DoD

concluded that ‘‘. . .shifting to lean principles improves cycle

time reduction and overall quality in the software development

process.” [30].

Lean software development is an evolutionary, incremental

approach as advocated by Gilb [31]. The mathematical basis

of lowering batch size to reduce lead time has been well de-

scribed [32]. Although it has different intellectual roots, it has

much in common with Agile software development. The Agile

Manifesto, which was produced in 2001 [33] contains no refer-

ences to lean. Agile was mainly a reaction against the document

heavy, plan driven software development approaches that were

frequently not successful. However, lean ideas helped provide

a context and specific tools for the development of Agile. For

example “scrumban” [40] is derived from kanban. The scrum

itself is similar to Toyota’s small work groups with their daily

stand-up meetings.

The use of statistical process control in lean software de-

velopment means that it has the quantitative rigor required by

Capability Maturity Model Integrated (CMMI) level 4 [34].

CMMI is important because is it mandatory for the U.S. DoD

software contracts and has also been adopted by some large com-

panies. After 20 years in existence, the independent evidence

that CMMI leads to improvements in product cost, quality, and

timeliness is ‘‘slowly accumulating’’ [35].

Lean software is, therefore, attractive to both defense con-

tractors obliged to use CMMI and corporations who use lean to

manage their manufacturing operations. They both also usually

have a large proportion of the value of their products created by

the software embedded in them. A lean software process can,

therefore, offer them three benefits.

1) The statistical process control in lean software could al-

low them to quantify their software development pro-

cess, which may enable them to achieve certification to

CMMI level 4. This would allow them to bid for the DoD

contracts.

2) Using lean for both their manufacturing and software

development would provide a common approach and

language, therefore, simplifying management of their

operations.

3) If lean does quickly enable an intrinsically lower risk and

more productive approach to develop software, then it will

increase profits.

Timberline Software in Oregon in 2002 with 450 staff was the

first recorded full industrial implementation of lean software de-

velopment. They reported considerable improvement, but their

focus on setting a common tempo or ‘‘Takt" time for software

development based on creating similar-sized work units was not

easy to implement [36].

Early lean software ideas were developed by Poppendieck

[37] and Middleton and Sutton [38]. These books explored how

lean thinking could be transferred from manufacturing to the

more intangible world and different culture of software engi-

neers. Specific techniques on how the concept of kanban could

be applied to software were also developed [39], [40]. Note

that the use of these methods is partly a metaphor rather than

a direct copying. For example, kanban in factories literally is

a binary signal to replenish an inventory buffer, based on what

the customer has taken away. In software it performs a similar

function, but more broadly displays information on the status of

the process and potential problems.

Moving upstream and applying lean thinking to influence

project selection and definition also creates great benefits [41].

The proceedings of the first Lean & Kanban Software confer-

ence [42] and the work of Shalloway et al. [43] show adoption

is spreading. However, there is a clear need for more rigorous

case studies of implementations.

III. RESEARCH METHODOLOGY

The research hypothesis was that the application of lean

ideas would improve the capability of a software development

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 3

process. In operational terms this meant that implementing lean

practices, which included low work in progress (WIP), and

pulling work into the process only when there was capacity,

would show evidence of reduced lead times, error rates, and

variability, while demonstrating continuous process improve-

ment. The null hypothesis was that the application of lean ideas

would have no or a negative impact on the capability of a soft-

ware process.

The research method was for an experienced researcher to

observe and write up the operation of the BBC Worldwide

Webmedia Department’s software processes. The seven visits

to London of 2–3 days each took place between June and Oc-

tober 2009. These were supplemented by numerous phone calls

and e-mails.

The advice that with case study research ‘‘. . .close adherence

to the data keeps researchers “honest”.” was followed [44]. The

pure positivist approach is that truth can always be discerned

from untruth, and that the truth can be discerned either by de-

duction or by empirical support and by no other means [45]. The

interpretivist model is that that an in-depth understanding of a

phenomenon may only be gained by studying it in context from

the participants’ perspectives [46]. For this study, the position

that both approaches are useful was adopted [47].

Triangulation, gathering data from as many different sources

as possible to assist accuracy was used [48]. Data were collected

from:

1) the most mature software development team, called

Digi-Hub;

2) semistructured interviews with developers, project man-

agers, business analysts, and managers;

3) walking through the operation of the kanban boards that

visually displayed the flow of work so enabling it to be

controlled;

4) recording the precise operation of the lean system;

5) observing the daily “stand-up” meetings where work al-

locations were discussed and agreed;

6) review of statistical analysis of the outputs from the

system;

7) a brief review of the work of four other lean software

teams was carried out.

This is an exploratory case study [49]. The research is asking

knowledge questions focused on recording and understanding

how the system was operating.

Lean is an integrated system and impacts on all aspects of

an organization, particularly in its selection and development of

people [10], [50]. This case study focuses only on a software

development team, as this was not an organization-wide lean

implementation. This meant the team had to work within their

existing framework to adopt lean practices, where they had dis-

cretion in how to manage their own work, and try to influence

other parts of the organization where possible.

Given the constraint of working within an existing framework

rather than a lean organization, the following of Liker’s 14 lean

principles [1] were focused on.

1) Principle 2: Levels of WIP, e.g., requirements, designs,

and code, were deliberately kept as low as possible to

create continuous flow and bring problems to the sur-

face. Process improvement and waste elimination were

routine.

2) Principle 3: Work was “pulled” into the software develop-

ment system only when there was capacity to work on it,

rather than “pushed” in regardless of capacity available.

3) Principle 4: Level out the workload by working with users

upstream in the process to try and smooth future demands.

4) Principle 5: Build a culture of stopping to fix problems.

For example, fixing poorly structured legacy code that was

hindering productivity and product reliability.

5) Principle 6: Continuous improvement and employee em-

powerment by actively looking for “blockers” and insist-

ing all work was handled through the agreed process.

6) Principle 7: Visual controls were used extensively. This

accounts for the reliance on kanban boards as they were

ideal for making the intangible software process visible.

7) Principle 8: Ensure technology serves your people and

process. “Autonomation” [5] where technology can pre-

vent problems was used, for example, to enable the fre-

quent release of software.

The principles of adopting a long-term orientation and creat-

ing a learning organization were invaluable within the team to

guide their behavior.

IV. RELIABILITY OF THE DATA COLLECTED

With a case study, there is a danger of bias in the data col-

lected, which would undermine or destroy the validity of the

results reported. The following areas were reviewed to identify

any possible distortions in the data.

A. Time Line

The implementation of lean was started in April 2008. Due to

the necessity to stabilize the processes and adapt to the changes,

data collection did not start until three months later in August

2008. The data used in this paper refer to the 12 months from

October 2008 to October 2009.

B. Size and Volume of Work Started

The underlying work did not change, but the way it was

managed altered significantly. The approach was to identify the

most valuable feature a customer needed and aim to keep each

software unit being built as small as possible. This focus on

Minimum Marketable Features (MMFs) [39] aimed to deliver

the maximum value as quickly as possible.

Both the size and the volume of work allowed into the devel-

opment system were greatly reduced. In the first five months,

November 2008–March 2009 inclusive, 84 features were started

of which 52% were classified as small. In last five months of

the study, July 2009–November 2009, 64 features (24% fewer)

were started of which 75% were classified as small (see Fig. 1).

C. Complexity of Work

The list of all the work undertaken was reviewed. It was

clear the work was very varied and came from different sources.

There was no evidence to suggest the complexity of the work

4 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

required by customers had changed. However, by altering the

focus to deliver the highest value, but in as small as possible

features, the reduced size would make the complexity easier

to handle. This “divide and rule” strategy in effect reduced the

complexity of each unit of software being delivered. Once the

structure of the legacy software had been improved and

the automated tools were in place, the integration of these fre-

quent small deliverables into the large body of live code was not

observed to cause difficulties.

D. Governance Arrangements

The structure was:

1) Business Board (strategy and budget);

2) Project Board (detail and authorize specific work);

3) Product Owner (reconcile business and customer wants);

4) users requesting work (sign off work completed);

5) end users (200–300 people).

End users are those internal to BBC Worldwide. The digital

assets created were ultimately used by millions of people.

This governance structure had been unchanged since before

April 2008, but over the period of the study, it was reported

that stricter identification of the business benefits was required

before projects were authorized. This may mean projects are

better thought through as regards return on investment, but at

the technical level, the work required by the customers was

unchanged.

E. Composition of Team

The team personnel were the same, since October 2008 with

the same project manager. The data reflect the work of all the

team, not just selected high performers. Also, all work carried

out, including low priority and legacy improvements tasks, were

recorded. All the members of the team interviewed reported their

skills had improved over the 12 months.

F. Engineering Practices

Work to improve engineering practices started in April 2008,

which involved the following:

1) test-driven development (unit tests);

2) automated acceptance testing (main suite completed April

2009);

3) source control software;

4) bug-tracking software;

5) decoupling–improving legacy software (April–July 2008)

6) MMF concept introduced April 2009.

This resulted in higher test coverage and releases increasing

from monthly to almost daily. The same engineering practices

were in place, but their use was consolidated and improved

during the study period.

V. DIGITAL HUB (DIGI-HUB) TEAM

In 2009, the team had an annual operating cost of £1.5 million

(US$ 2.2 million) and a development budget of £675K (U.S.$

965K). It was made up of nine staff: project manager, business

analyst, software architect, tester, lead developer, three develop-

Fig. 1. Size and volume of work started.

ers, and a support developer. It was working on a mix of devel-

oping new software and software maintenance. The technology

used was C#, .NET, MS SQL Server, and legacy connected ser-

vice framework (CSF) code. The Project Board agreed priorities

to be released over the next three months.

In April 2008, all the stages of the development life cycle

(value stream map) were drawn onto the kanban boards. All

work at each stage was then recorded on cards and placed on the

boards. This exercise immediately showed that there was more

WIP and more bottlenecks of work than previously realized.

Restrictions on the amount of WIP allowed at each stage were

put in place. The team determined the WIP levels by starting with

their constraints. They had fewer quality assurance/testing staff

and business analysts than software developers. They were now

seen to be bottlenecks; therefore, the WIP limits were derived

from how much work they could handle. This evened out the

flow of work through the process. The WIP limits were then

revised as constraints moved and more experience was gained.

To break the work down into smaller units that could be

delivered more quickly, the concept of MMF was adopted [39],

[40]. An MMF is a chunk of functionality that delivers a subset

of the customer’s requirements that is capable of returning value

to the customer when released as an independent entity. These

are then broken down into stories (new features) and then further

into tasks, which are just “to do” items.

A. Office Layout and Work Flow

Office layout is a key component. In the Toyota production

lines there are andon lights displaying the status of production

at any time; the same idea can be applied to software develop-

ment. Information radiators and kanban boards were placed all

around the work space to ensure that progress on a project was

completely transparent and available for all to see (see Fig. 2).

This enabled team members to be self-managing.

The strategic direction and prioritization of work was still

set by the Business and Project Boards, but the software team

now had a much clearer idea of their capacity and current WIP.

In the Digi-Hub project, two kanban boards (A,B) and four

information radiators (C,D,E,F) were used and positioned as

shown in the Fig. 2. The layout of the boards evolved as the

projects and staff understanding progressed.

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 5

Fig. 2. Layout of kanban boards and information radiators.

It is important that work flows are kept as stable as possible.

This is because sudden peaks and troughs of work are disruptive

and will damage productivity. It is, therefore, necessary to try

and influence the upstream work flows as much as possible.

This information is captured on kanban board A: the ideation

pipeline (see Fig. 3).

Any ideas or potential work from customers were recorded

on a card and retained in proposed ideas’ in case they trigger

suggestions from the team. Any work, which is abandoned or

has its priority changed is also recorded. Once the ideas have

been clarified and broken down into small deliverable units, then

they are ready to be “pulled” to the next board when the team

has capacity to work on them. This kanban board B (see Fig. 4)

tracks the progress of MMFs, Stories, and Tasks.

If there are problems in development (Dev.), these will

quickly become apparent, as they will reach their WIP limit

and become a visible bottleneck.

B. Daily Standup

The daily stand-ups last for about 15 minutes, and normally

start at 10.15 A.M. each morning. They are carried out with all

team members standing in front of kanban board B, which tracks

the development phase (see Fig. 4). This is because this is where

the bulk of the work is carried out. The daily stand-up is vital

for the operation of the lean system. It is essential to facilitate

the identification and removal of blockages and bottlenecks, and

update the status and prioritization of work items.

The structure of the daily stand-up rhythm is given on infor-

mation radiator C (see Fig. 5). First, everyone checks to ensure

their work status is correctly displayed. Second, anyone who

is “blocked,” unable to progress due to something outside their

control reports this, and appropriate action is decided to remove

the obstruction. Third, any clusters of cards indicating a bot-

tleneck are noted and the people reorganize to alleviate this.

Finally, the work is reviewed to see if priorities have changed or

if the work flow can be improved. There is an expedite work flow

that can be used in exceptional circumstances to accommodate

urgent items or if there is a high-priority late change.

There is no need or time in a large team for an individual report

from each person. It is more effective to just flag problems to

be resolved. The kanban boards make it clear to all the team

the exact status of progress, blockages, bottlenecks and they

also signal possible future issues to prepare for. This shared

information enables the team to self-organize to ensure the work

flows smoothly. The different colored cards used are listed below

(see Fig. 5) and enable the exact status of all the team’s work to

be seen at any time.

No work was allowed to be carried out that was not recorded

on the boards otherwise the system would be undermined. A

typical “blocker” would be a slow or poor-quality delivery from

a customer or supplier that the team member could not resolve.

Another example would be a system that a developer had to

interface with, but was having trouble obtaining passwords or

technical data. Blockers could either be caused by a “special”

one off or a repeated problem. The team would then confirm

this was holding them back, explore alternative solutions, and

if necessary, request a line manager with greater seniority and

access to facilitate progress.

Information radiator D: Release notification and daily sup-

port process tasks board are used to ensure that any scheduled

releases or other operations that have to be carried out during

the week are visible. It acts as a reminder and check.

Information radiator E (Architecture, estimating, and break-

ing down projects): The board was used to record decisions on

the architecture for the software, initial estimates, and how the

work had been broken down into MMFs.

Information radiator F (Kaizen Board and Technical Debt):

The team vote on which items they wish to work on to reduce

technical debt or improve the lean system. Reducing techni-

cal debt involves work, such as improving poor legacy code or

making a modification that could increase future productivity.

Legacy software can be a severe constraint on current productiv-

ity. It is, therefore, necessary to explicitly reduce any technical

debt by allowing time for improvements to be made, even though

these are invisible to, and not requested by the customers.

VI. PERFORMANCE DATA ON THE LEAN SOFTWARE SYSTEMS

To evaluate the effectiveness of lean software management

over 12 months of operation, some of the data used by the

team are presented here. The team monitored the time taken for

work to flow through various parts of the value stream. They

also tracked quality and throughput measures using time-series

statistical process control charts [51]. These charts have two im-

portant elements. First, the horizontal upper control limit lines

show variance. The higher the line, the more variance, which

severely damages productivity, is in the process. Second, the av-

erage is shown as the lower horizontal line over time. Much data

used for management purposes are misleading unless presented

in this way due to the statistical noise of natural variation [52].

A. Lead Time

Lead time is the total elapsed time from when a customer

requests software to when the finished software is released to

the customer. It is measured because it tracks how quickly and

reliably software is delivered to customers. Lead Time is defined

as the number of working days the work takes measured from

6 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Fig. 3. Kanban board A: ideation pipeline.

Fig. 4. Kanban board B: (development phase).

Fig. 5. Information radiator C: kanban board and team performance indicators.

kanban board A: “decomposed engineering ready” (see Fig. 3)

to kanban board B: “release ready” (see Fig. 4).

The main work requests are new features, which are a sub-

set of an MMF. Other work would include technical features

and live defects. “Decomposed engineering ready” means the

customer has agreed to proceed and then the lead time clock

starts. The items are then created for the engineering-ready in-

put queue. Items are pulled into “engineering ready” only when

capacity becomes available. The lead time clock stops when

user acceptance testing (UAT) is complete and the items have

reached release ready.

A reliable process will have low variance; therefore, a key

objective is to continually reduce variance. Fig. 6 illustrates how

the top lines, upper control limits, continually decline meaning

that lead times are becoming more consistent and predictable.

To show trends, the periods on the charts have been split from

November 2008 to March 2009, April to June 2009, and July

to October 2009. The results show software is being delivered

with 47% less variance and on average 37% quicker.

B. Development Time

The Development Time measure gives insight into the effi-

ciency of development. This portion of the value stream was

directly under the team’s control and not subjected to delays

from upstream, downstream or third parties. It does not include

engineering ready, quality assurance (QA), or related queuing

times. Development time is recorded in working days, from

kanban board B stages: Dev. ready to Dev. complete. The work

units are either stories or tasks, which can be either standalone

or part of an MMF.

The nine months for which data were available are shown on

the statistical process control chart (see Fig. 7). The data has

been split from February to March 2009, April to June 2009,

and July to October 2009 to show trends. The declining upper

control limits show variation in delivery times has reduced by

78% from 30.5 to 6.8. The mean time to develop fewer and

smaller software features has declined by 73% from 9.2 to 2.5

working days.

C. Release Frequency Per Month

Release Frequency is defined as the number of items released

to customers. An upward trend would be expected, as projects

were broken into the smaller units and cycle time was reduced.

The chart in Fig. 8 shows the number of releases per month

increased by a factor of 8 from 2 in November 2007 to 16

in October 2009. There was a blanket release freeze on all

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 7

Fig. 6. Lead time: variance and average.

Fig. 7. Development time: variance and average.

releases in February 2009 to ensure complete priority was given

to the production of year-end financial data, hence the drop in

releases that month. The key issue of whether increased value

was delivered is discussed later in the Analysis section.

D. Live Defects Per Week

Live Defects are the bugs reported by customers during a

week plus the bugs still open. It is vital that the reductions in

lead and development times are not at the expense of quality.

Live defects are recorded on red kanban cards and added to

the Dev. (Development) stage of kanban board B. The chart in

Fig. 9 is split between October 2008 and June 2009 and July

and September 2009. The reduction in variation indicates bugs

were being fixed more quickly. The mean numbers of bugs open

each week also slightly declined.

E. Continuous Improvement Per Month

The daily stand-up is concerned to identify and remove any-

thing that is preventing progress. To do this, “blockers” are

actively identified, assigned, tracked, escalated, and removed.

This is a mechanism for making continuous improvement rou-

tine. Evidence of the effectiveness of this is shown in a statistical

process control chart (see Fig. 10). The periods on the chart have

been split from September 2008 to March 2009; April to June

2009, and from July to October 2009. The variance reduced

indicating that problems with the process were being resolved

more quickly. While the total number of problems identified

increased, the average number of days work was “blocked” fell

sharply.

VII. ANALYSIS

The underlying type and complexity of work did not change

significantly over the 12 months studied. The team and the

governance structure remained comparable. The engineering

practices were improved, but most were in place by October

2008, which was the start of the period studied. This was a

stable team with better tools whose skill levels increased during

the 12-month period studied. However, lean with its low WIP

8 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

Fig. 8. Release frequency per month.

Fig. 9. Live defects per week: variance and average.

and “pull” approach meant that the size, complexity, and volume

of work input were all materially reduced.

An integral part of any lean manufacturing implementation is

a variability reduction effort, to enable a process to achieve the

same (or greater) throughput with less WIP. Little’s Law shows

that the way to make a process more productive is to ensure

the amount of WIP is not above the constraints of the system,

and to also focus on reducing cycle time. Little’s Law is a basic

manufacturing principle that states there is a fundamental long-

term relationship between throughput (output), WIP, and cycle

time of a production system in a steady state [32]

Throughput = WIP/cycletime.

Throughput is defined as average output; WIP is the inventory

between the start and finish points of a production process; cycle

time is the time a unit spends as WIP. This equation shows that

to drive productivity, cycle time must be continually reduced

while ensuring WIP does not exceed the capacity available to

process it.

Given the nature of software, the precise unit size and the

value of the output cannot be measured exactly, but Little’s

Law appears to be working. Using the kanban boards to only

“pull” work into the system when there was capacity to work

on it ensured WIP was always at the optimum level. Cycle time

was constantly improved by reducing variance through the daily

continual improvement activities and minimizing the size of the

units of work. The resulting rapid increase in the number of

these smaller deliverables can be seen in Fig 8.

The team believed greater value was being delivered for the

following reasons.

1) Only the work of highest value to customers was being

processed.

2) This work was being delivered and deployed quickly so

delivering value sooner.

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 9

Fig. 10. Continuous improvement: issues identified and time to resolve.

3) The risk of waste by working on misunderstood or incor-

rect requirements was minimized.

4) Customers were reported to be happier and prefer this

approach.

Software was produced more consistently with variability of

delivery of lead time reduced by 47% from 70.7 to 37.3 working

days over the year (see Fig. 6). This graph also shows that the

mean time to deliver software features was reduced by 37%

or 8.4 days from 22.8 to 14.4 working days. This means the

team was more able to respond to the needs of the business by

delivering new functionality faster and with more predictability.

The development time data shows even better improvement.

The variance of development time fell by 78% from 30.5 days to

6.8 days (see Fig. 7). The mean development time was reduced

73% from 9.2 to 2.5 working days over the nine months. The

bigger improvement in development time over lead time is felt

to be because this part of the process was purely under the team’s

control.

The release frequency chart (see Fig. 8) does not show how

much value is being delivered, but it does show an eight-fold

increase in releases from 2 in November 2007 to 16 in October

2009. This indicates an improvement in configuration manage-

ment discipline and capability. The more frequent releases re-

duce both technical and market risk by allowing customers to

evaluate tangible product rather than just progress reports.

The measure of bugs opened each week, which includes those

bugs not closed from previous weeks, showed improvement (see

Fig. 9). The number of bugs reported by customers was low;

therefore, data collected over a longer period of time would be

preferred to confirm the trends. Variance fell by 33% as the

upper control limit reduced from 7.6 to 5.1 open bugs per week.

Defects still open and reported each week fell by 24% from 2.9

to 2.2.

This data (see Fig. 9) indicates bugs were fewer and being

fixed more quickly, possibly due to the improving structure of

the code base. The necessity of allowing software developers

time to improve the quality of their code was mentioned by

the team, as a factor in the improved bug rates. As legacy is-

sues (technical stories) were resolved, the bug rate had fallen,

thus, allowing more customer stories to be completed. There-

fore, while the team was customer-focused and responsive to

customer needs, they needed to pay down any technical debt to

increase their productivity levels.

The data on continuous improvement (see Fig. 10) shows the

variance in time taken to resolve issues shortened significantly.

Over the 12 months, the mean number of working days items

were blocked was reduced by 81% from a mean of 25.8 days to

4.9 days per month. The outlier in 2008 was a result of waiting

for a third party to complete their work (a special cause). This

does illustrate that actively looking for and recording problems

increased the number of “blockers” raised, which is beneficial.

These were then being removed at a faster rate by the team.

This data was also used in retrospectives and quarterly reviews.

Reoccurring blockers were investigated and root-cause analysis

was performed.

Lean systems are typically rich in data, which could enable a

team to be self-organizing and initiate continual improvement.

However, as Adler and Cole identify data alone is not enough,

there must be “effort to constantly improve the details of the

production process” [53, p. 163]. By explicitly identifying and

removing “blockers” on a daily basis, the BBC Worldwide team

was constantly improving their processes.

It was not just data that was important, but the adoption of

a short work cycle, which meant that: “. . .it is easy to identify

problems, define improvement opportunities, and implement

improved processes” [ibid, p.164]. By restricting the work-in-

progress and improving the speed of flow through their pro-

cesses, the context of a shorter cycle time enabled changes to be

made.

Finally, Adler and Cole point out that by using data to focus

on the progress of the work, rather than the performance of

individuals, “. . .the knowledge required to make improvements

could be used . . . by the joint efforts of workers, managers, and

engineers to fuel a continuous improvement. . .” [ibid, p.168].

10 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

It is, therefore, not only the data generated that is important but

who is allowed to see and act on it. The software team studied

was all able to see and act on their data to improve their work

on a daily basis.

The main use of the kanban boards was to control the level of

work in process and enable bottlenecks to be quickly identified.

Customers rarely visited the kanban boards and did not attend

the daily stand-up meetings, as they both contained more detail

than customers needed and would be time-consuming. Also,

the team would be working for several customers; therefore,

much of the meeting would not be of interest. Customers were

encouraged to attend, but overall, it was not feasible for them to

be closely involved with the kanban boards.

Managers can see the status of projects on the kanban boards,

but this was not the boards’ primary function. Managers may ask

questions when the kanban board shows several red notes, denot-

ing live defects, or if excessive “waste” was being recorded, but

otherwise they would not be closely involved with the kanban

board. The regular meetings for the Steering Group or Project

Committee would not be held at the kanban boards.

The boards evolved with changes to layout being made

roughly on a weekly basis. They were a living tool reflecting

both the evolving projects and the peoples increasing under-

standing of their work. The social value of the daily standup

also cannot be underestimated. The requirement to daily share

the progress of your work with your peers was a powerful mo-

tivator and source of discipline.

The lean approach can handle big, complex projects. The

constraint is the ability of the human mind to handle complex-

ity. Therefore, any large project can be broken up into smaller

projects. A master kanban board can then be used to record and

summarize the progress of all the smaller projects. There is no

need or benefit from one gigantic kanban board recording ev-

erything. Scale or complexity of projects was not observed to

be a problem.

Lean requires a stable, experienced team with low staff

turnover and a project manager who knows the skills and abil-

ities of their team. Given the wide variance in the talents of

software developers and the people-intensive nature of software

development, this is vital. Lean is not a substitute for profes-

sional software engineering practice. Effective tools for source

control, bug tracking, testing, release, and deployment, were all

critical enablers of the lean software process.

Using short-cycle times and the kanban boards to reduce WIP

did accelerate the software development team’s learning. This

enabled a rapid rise in the maturity level of their development

process. The learning curve was increased by the effect of Lit-

tle’s Law [32], which facilitates learning by shorter cycle times

and the transparency resulting from reduced WIP.

One area that could possibly be improved is the “fuzzy front

end” [54] by adopting “front-end loading” [17]. This refers to

the time from when an idea is first discussed to when work

is started on it. The time taken to move on kanban board A

from “proposed ideas” to “decomposed engineering ready” is

currently not recorded, and this time could be significant. Lead

time could also potentially be further reduced, as customers

were batching work for user acceptance testing (UAT), which

was slowing the process before release ready. An investigation

of how to make UAT easier for customers could be beneficial.

The concept of a fixed “heart beat” of production or Takt time

used in lean manufacturing to ensure that the rate of production

meets the rate of demand was used by analogy. Small chunks of

work were continually released, but not in a precise, regimented

way. Takt time can work more literally to pace the operation in

repetitive service transactions, where the variation in the time

taken for each operation is relatively low. With software, each

unit of work is different as are the abilities of each software

engineer; therefore, unit development times can vary widely. It

would, therefore, be difficult to schedule software production

using Takt time [36].

The solution was the use of MMFs [39], which could vary

considerably in size and complexity. This created small defin-

able chunks of work that reduced work in process and increased

the frequency of releases allowing short-feedback loops. This

provided a rhythm to production and ensured a direct connec-

tion in small high-value deliverables with the customer. When

this is combined with the daily stand-ups, the work effort can

be directed and controlled as the customer requires.

The normal types of obstacle to organizational change were

observed. The tension with the existing standards and processes

is why lean is about culture change rather than simply imple-

menting tools. Specifically:

1) while capital costs were trivial, there is a need for consider-

able space to display the kanban and information boards.

Organizations with offices designed around a corporate

“look” may not welcome walls of post-it notes;

2) if the organization has a heavy plan driven process with

standardized corporate reporting on projects, then this

emergent approach will not fit easily. Lean handles risk by

being highly transparent, reducing WIP, breaking projects

into small parts, and frequent deliveries. Lean does not

work well with targets, milestones, Gantt charts and traf-

fic light reporting methods;

3) to truly deliver value to customers will require the devel-

opment team to proactively move upstream to work with

customers to define and analyze their problems and then

work downstream after release to see if business value was

actually created. Organizations may feel the IT teams are

going beyond their remit;

4) A self-managing team can be challenging as managers

need to move toward a facilitating role, which they may

feel uncomfortable with. Staff may not be used to being

encouraged to identify problems or having to multiskill.

VIII. AGILE VERSUS LEAN

The dearth of data in the Agile community generally is re-

markable. A major study seeking evidence to support Agile

reported “the strength of evidence is very low, which makes it

difficult to offer specific advice to industry” [55, p. 853]. This

BBC Worldwide case study may appear to record an Agile-

/Scrum-like approach, where care has been taken to collect data.

However, the lean approach described here does have significant

differences from Agile.

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 11

A. Push Versus Pull

Scrum has time-boxed iterations or sprints with a fixed release

cadence [56]–[58]. It is, therefore, in essence still a push, batch

model. This lean software team lean used WIP limits to ensure a

team was not overloaded. Work was “pulled” in when the team

had capacity. The team did not sign up for arbitrary deadlines,

as support issues could occur that could blow things off course.

Arbitrary deadlines were avoided, as they tend to lead to game

playing and poor quality, as attempts are made to shoehorn work

into the reduced time [51].

B. Reliance On Data

Scrum has “inspect and adapt” in their retrospectives, which

is a trailing indicator [59]. The boards are not so important with

Scrum, because the focus is more on the people rather than the

work. The Scrum “stand-up” directs attention to the people and

what they did yesterday and what they are doing today [56].

In contrast, the lean team studied here enumerated the work,

not the people. In the lean approach adopted data was seen

primarily as a source of empowerment for the team, not as a

control tool for management. The team was expected to collect

and analyze their own data; so they could control and improve

their own work. This lean approach used the kanban boards

to expose problems and expected the team to take action. The

stand-ups used the kanban boards to provide leading indicators

of issues to be addressed. The lean team’s “standup” focused

on their work and what the team was going to release. The data

was used to help the team look up and down stream to enable

innovation.

C. Continual Improvement

Scrum uses “retrospectives” [60], [61], but benefits from these

are largely anecdotal and not quantifiable. The concept of “ve-

locity” measured as number of feature/story points delivered

per iteration is often used. However, there is a risk that velocity

estimates, number of features, or story points delivered are too

subjective and easy to manipulate. Agile teams do not put the

number of feature/story points delivered under statistical pro-

cess control. The power of this technique to identify trends and

variation in results is well established [51], [52].

In contrast, the lean team studies used “lead time,” which

is much harder to game, as it records total time from when a

customer requested the work to when the finished work was

received by the customer. They looked at “blockers” or imped-

iments as first-class items to be addressed on a daily basis, and

this drove their continual improvement activities. The lean team

actively sought out data they could use for self-management and

to make process improvement explicitly part of their routine.

D. Multiskilling/Collaboration

With Agile, the scrum master has the “impediment list” or

“improvement backlog” [59], [60], but the responsibility for

working on it can be diffuse. With this lean team because of

the WIP limits and the visibility due to the kanban boards, the

staff could not “cherry pick” what they would like to work on,

if they were blocked. They all had to help with the bottlenecks

and items blocking the work. The focus of the daily “stand-

ups” was on the flow of work and not on the individual reports

and performances. All staff members, regardless of their skill

profiles were expected to help eliminate the bottlenecks. The

objective was to deliver value as quickly as possible to the

customer.

IX. CONCLUSION

The research hypothesis was that the application of lean ideas

would improve the capability of a software development pro-

cess. This would be measured in terms of reductions in lead

time, error rates, and variability, combined with evidence of

continuous improvement. Considering all the quantitative and

qualitative data collected, the research hypothesis was supported

by this single case study.

The way the work was handled did change significantly. The

volume of work that was allowed to enter the process was sig-

nificantly reduced to ensure the workload was not beyond the

capacity of the system. The reduced cycle time meant the cus-

tomer quickly received high value, small incremental deliver-

ables. This reduced both technical and market risk.

Continuous improvement was carried out by the team on a

daily basis and this may well account for the increased pre-

dictability in delivery observed. Statistical process control was

seen to work well and provide useful data on trends and vari-

ance. Lean also provided a framework that encouraged other

beneficial improvements, such as rewriting parts of the legacy

code, developing team skills, and reducing staff turnover.

Actual business value delivered was largely influenced by the

areas selected to be worked on. These strategic priorities were

decided by the Business and Project Boards, not the software

team. However, it is likely that as the lean software develop-

ment process reduced risk, was faster, and more consistent, then

greater value was being delivered to the business.

ACKNOWLEDGMENT

The authors exceptionally value the contribution of Prof. Jef-

frey Liker and the anonymous reviewers in improving and de-

veloping this paper.

REFERENCES

[1] J. K. Liker, The Toyota Way: 14 Management Principles from the World’s

Greatest Manufacturer. New York: McGraw-Hill, 2004.
[2] J. P. Womack and D. T. Jones, Lean Thinking. London: Touchstone

Books, 1997.
[3] S. Shingo, A Study of the Toyota Production System. Portland, Oregon:

Productivity Press, 1981.
[4] (2010). BBC Worldwide website [Online]. Available:

www.bbcworldwide.com/about-us.aspx.
[5] T. Ohno, Toyota Production System: Beyond Large-Scale Production.

Portland, Oregon: Productivity Press, 1988.
[6] J. P. Womack, D. T. Jones, and D. Roos, The Machine that Changed the

World. New York: Rawson Associates, 1990.
[7] R. J. Schonberger, Japanese Manufacturing Techniques. New York:

Free Press, 1982.
[8] M. Imai, Kaizen, the Key to Japan’s Competitive Success. New York:

McGraw-Hill, 1986.

12 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT

[9] M. Rother and J. Shook, Leaning to See: Value Stream Mapping to Add

Value and Eliminate Muda. Cambridge, MA: The Lean Enterprise In-
stitute, 1999.

[10] J. K. Liker and M. Hoseus, Toyota Culture: the Heart and Soul of the

Toyota Way. New York: McGraw-Hill, 2008.
[11] J. K. Liker and Ed, Becoming Lean: Inside Stories of U. S. Manufacturers.

Portland, Oregon: Productivity Press, 1998.
[12] J. Drew, B. McCallum, and S. Roggenhofer, Journey to Lean: Making

Operational Change Stick. Basingstoke, U.K.: Palgrave MacMillan,
2004.

[13] J. Allen, C. Robinson, and D. Stewart, Eds., Lean Manufacturing: A Plant

Floor Guide. Michigan: Society of Manufacturing Engineers, 2001.
[14] G. Conner, Lean Manufacturing for the Small Shop. Michigan: Society

of Manufacturing Engineers, 2001.
[15] M. Baudin, Lean Assembly: The Nuts and Bolts of Making Assembly

Operations Flow. New York: Productivity Press, 2002.
[16] M. N. Kennedy, Product Development for the Lean Enterprise: Why Toy-

ota’s Systems is Four Times More Productive and How You Can Implement

it. Virginia: Oaklea Press, 2003.
[17] J. M. Morgan and J. K. Liker, The Toyota Product Development System:

Integrating People, Process and Technology. New York: Productivity
Press, 2006.

[18] A. Ward, J. K. Liker, J. J. Cristiano, and D. K. SobekII, “The second
toyota paradox: How delaying decisions can make better cars faster,”
Sloan Manage. Rev., vol. 36, no. 3, pp. 43–61, 1995.

[19] D. K. Sobek II, A. C. Ward, and J. K. Liker, “Toyota’s principles of
set-based concurrent engineering,” Sloan Manage. Rev., vol. 40, no. 2,
pp. 67–83, 1999.

[20] D. Kirkpatrick, The Facebook Effect: The Inside Story of the Company

that is Connecting the World. Chatham, England: Virgin Books, 2010.
[21] R. Kaplinsky, Easternisation: The Spread of Japanese Management Tech-

niques to Developing Nations. Ilford, U.K.: Frank Cass & Co., 1994.
[22] P. Stewart, K. Murphy, A. Danford, T. Richardson, M. Richardson, and

V. Wass, We Sell Our Time no More: Workers’ Struggles Against Lean

Production in the British Car Industry. London, U.K.: Pluto Press,
2009.

[23] E. Murman, T. Allen, K. Bozdogan, J. Cutcher-Gershenfeld, H. Mc-
Manus, D. Nightingale, E. Rebentisch, T. Shields, F. Stahl, M. Walton,
J. Warmkessel, S. Weiss, and S. Widnall, Lean Enterprise Value: Insight’s

from MIT’s Lean Aerospace Initiative. Basingstoke, U.K.: Palgrave,
2002.

[24] M. L. George, Lean Six Sigma for Service. New York: McGraw-Hill,
2003.

[25] B. Price and D. Jaffe, The Best Service Is No Service. San Francisco,
CA: Jossey-Bass, 2008.

[26] P. Middleton, “Just-in-time software development,” in Proc. 2nd Int. Conf.

Achieving Softw. Quality Softw., Consorzio Quality I.E.I.-CNR, Venice,
Italy, Oct. 18–20,1993, pp. 49–56.

[27] J. Tierney, “Eradicating mistakes from your software process through
Poka Yoke,” in Proc. 6th Int. Softw. Quality Week, Softw. Res. Inst., San
Francisco, CA, 1993, pp. 300–307.

[28] A. C. Hou, “Toward lean hardware/software system development: An
evaluation of selected complex electronic system development methodolo-
gies,” Lean Aircraft Initiative, Center for Technology, Policy and Industrial
Development, Massachusetts Inst. Technol., Cambridge, MA, Report–
Lean 95–01, 1995.

[29] T. Morgan, “Lean manufacturing techniques applied to software devel-
opment,” M.Sc. thesis, Massachusetts Inst. Technol., Cambridge, MA,
1998.

[30] T. Hamilton, “A lean software engineering system for the department of
defense,” M.Sc. thesis, Massachusetts Inst. Technol., Cambridge, MA,
1999.

[31] T. Gilb, Principles of Software Engineering Management. Wokingham,
U.K.: Addison-Wesley, 1988.

[32] W. J. Hopp and M. L. Spearman, Factory Physics. New York: McGraw-
Hill, 2001.

[33] A. Cockburn, Agile Software Development. Boston, MA: Addison-
Wesley, 2002.

[34] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI Guidelines for Process

Integration and Product Improvement. Boston, MA: Addison-Wesley,
2004.

[35] P. S. Adler, “The evolving object of software development,” Organisation,
vol. 12, no. 3, pp. 401–435, 2005.

[36] P. Middleton, A. Flaxel, and A. Cookson, Lean Software Management

Case study: Timberline Inc.. Lecture Notes in Computer Science, New
York: Springer-Verlag, 2005.

[37] M. Poppendieck and T. Poppendieck, Lean Software Development: An

Agile Toolkit. Boston, MA: Addison-Wesley, 2003.
[38] P. Middleton and J. Sutton, Lean Software Strategies. New York: Pro-

ductivity Press, 2005.
[39] D. Anderson, Agile Management for Software Engineering –Applying

the Theory of Constraints for Business Results. Englewood Cliffs, NJ:
Prentice-Hall, 2003.

[40] C. Ladas, Scrumban: Essays on Kanban Systems for Lean Software De-

velopment. Seattle, WA: Modus Cooperandi Press, 2008.
[41] J. Seddon, Freedom from Command & Control. Buckingham, U.K.:

Vanguard Education, 2005.
[42] E. Willeke, D. Anderson, and E. Landes, Proceedings of Lean & Kanban

Software Conference, Miami, Bloomington, Indiana: Wordclay, 2009.
[43] A. Shalloway, G. Beaver, and J. Trott, Lean-Agile Software Development:

Achieving Enterprise Agility. Boston, MA: Pearson Education, 2010.
[44] K. M. Eisenhardt and M. E. Graebner, “Theory building from cases:

Opportunities and challenges,” Acad. Manage. J., vol. 50, no. 1, pp. 25–
32, 2007.

[45] A. D. Jankowicz, A.D. Business Research Projects. London, U.K.:
Chapman & Hall, 1991.

[46] G. Walsham, “The emergence of interpretivism in is research,” Inf. Syst.

Res., vol. 6, no. 4, pp. 376–394, 1995.
[47] J. L. Wynekoop and N. L. Russo, “Studying system development method-

ologies: An examination of research results,” Inf. Syst. J., vol. 7, no. 1,
pp. 47–65, 1997.

[48] C. B. Seaman, “Qualitative methods in empirical studies of software engi-
neering,” IEEE Trans. Softw. Eng., vol. 25, no. 4, pp. 557–572, Jul./Aug.
1999.

[49] S. Easterbrook, J. Singer, M. Storey, and D. Damian, “Selecting empir-
ical methods for software engineering research,” in Guide to Advanced

Empirical Software Engineering, F. Shull, J. Singer, and J. Sjoberg, Eds.
London, U.K.: Springer-Verlag, 2008.

[50] J. K. Liker and D. P. Meier, Toyota Talent: Developing Your People the

Toyota Way. New York: McGraw-Hill, 2007.
[51] W. E. Deming, Out of the Crisis. Cambridge, MA: MIT Press, 2000.
[52] D. J. Wheeler, Understanding Variation: The Key to Managing Chaos.

Knoxville, TN: SPC Press, 1993.
[53] P. S. Adler and R. E. Cole, “Designed for learning: A tale of two auto

plants,” Sloan Manage. Rev., vol. 34, no. 3, pp. 157–177, 1993.
[54] P. G. Smith and D. G. Reinertsen, Developing Products in Half the Time.

New York: Wiley, 1998.
[55] T. Dyba and T. Dingsoyr, “Empirical studies of agile software develop-

ment: a systematic review,” Inf. Softw. Technol., vol. 50, pp. 833–859,
2008.

[56] K. Schwaber and M. Beedle, Agile Software Development with Scrum.
Englewood Cliffs, NJ: Prentice-Hall, 2002.

[57] B. Boehm and R. Turner, Balancing Agility and Discipline. Boston,
MA: Addison-Wesley, 2004.

[58] T. Stober and U. Hansmann, Agile Software Development: Best Practices

for Large Software Development Projects. Berlin, Germany: Springer-
Verlag, 2010.

[59] M. Cohn, Succeeding With Agile: Software Development Using Scrum.
Boston, MA: Addison-Wesley, 2010.

[60] K. Tate, Sustainable Software Development: An Agile Perspective. New
Jersey: Addison-Wesley, 2006.

[61] J. Shore and S. Warden, The Art of Agile Development. Sebastopol, CA:
O’Reilly, 2008.

Peter Middleton received the M.B.A. degree from
the University of Ulster, Northern Ireland, in 1987,
and the Ph.D. degree in software engineering from
Imperial College, London, U.K., in 1998.

He is currently a Senior Lecturer in computer sci-
ence at Queen’s University Belfast, Northern Ireland.
He is the coauthor of the book Lean Software Strate-

gies published in 2005, and the Editor of a book of
case studies on applied systems thinking: the Deliver-

ing Public Services that Work published in 2010. His
research interests include combining systems think-

ing with lean software development to help organizations significantly improve
their performance.

MIDDLETON AND JOYCE: LEAN SOFTWARE MANAGEMENT: BBC WORLDWIDE CASE STUDY 13

David Joyce is a Systems Thinker and Agile prac-
titioner with 20 years software development experi-
ence of which 12 years is technical team management
and coaching experience. In recent years, David has
led both onshore and offshore teams and success-
fully led an internet video start-up from inception to
launch. More recently David has coached teams on
Lean, Kanban and Systems Thinking at BBC World-
wide in the U.K. He is a Principal Consultant at
ThoughtWorks.

Mr. Joyce was awarded the Lean SSC Brickell
Key award for outstanding achievement and leadership.

pmiddleton
Note
Accepted for publication September 2010.

