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ABSTRACT
In this paper, we describe LEAP (Localized Encryption and
Authentication Protocol), a key management protocol for
sensor networks that is designed to support in-network pro-
cessing, while at the same time restricting the security im-
pact of a node compromise to the immediate network neigh-
borhood of the compromised node. The design of the pro-
tocol is motivated by the observation that different types
of messages exchanged between sensor nodes have different
security requirements, and that a single keying mechanism
is not suitable for meeting these different security require-
ments. LEAP supports the establishment of four types of
keys for each sensor node – an individual key shared with
the base station, a pairwise key shared with another sensor
node, a cluster key shared with multiple neighboring nodes,
and a group key that is shared by all the nodes in the net-
work. The protocol used for establishing and updating these
keys is communication- and energy-efficient, and minimizes
the involvement of the base station. LEAP also includes an
efficient protocol for inter-node traffic authentication based
on the use of one-way key chains. A salient feature of the
authentication protocol is that it supports source authenti-
cation without precluding in-network processing and passive
participation. We analyze the performance and the secu-
rity of our scheme under various attack models and show
our schemes are very efficient in defending against many at-
tacks.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection

General Terms
Design, Security
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1. INTRODUCTION
Many sensor systems are deployed in unattended and of-

ten adversarial environments. Hence, security mechanisms
that provide confidentiality and authentication are critical
for the operation of many sensor applications. Providing se-
curity is particularly challenging in sensor networks due to
the resource limitations of sensor nodes. As a specific exam-
ple, it is not practical to use asymmetric cryptosystems in a
sensor network where each node consists of a slow (4 MHz)
under-powered processor with only 8 KB of memory [22].
Thus, key management protocols for sensor networks are
based upon symmetric key algorithms.

A fundamental issue that must be addressed for using key
management protocols based on symmetric shared keys is
the mechanism used for establishing the shared keys in the
first place. The constrained energy budgets and the lim-
ited computational and communication capacities of sensor
nodes make protocols such as TLS [7] and Kerberos [15] de-
veloped for wired networks impractical for use in large-scale
sensor networks. At present, the most practical approach
for bootstrapping secret keys in sensor networks is to use
pre-deployed keying in which keys are loaded into sensor
nodes before they are deployed. Several solutions based on
pre-deployed keying have been proposed in the literature in-
cluding approaches based on the use of a global key shared
by all nodes [5, 2], approaches in which every node shares a
unique key with the base station [22], and approaches based
on random key sharing [9, 6].

An important design consideration for security protocols
based on symmetric keys is the degree of key sharing be-
tween the nodes in the system. At one extreme, we can have
network-wide keys that are used for encrypting data and for
authentication. This key sharing approach has the lowest
storage costs and is very energy-efficient since no communi-
cation is required between nodes for establishing additional
keys. However, it has the obvious security disadvantage that
the compromise of a single node will reveal the global key(s).

At the other extreme, we can have a key sharing approach
in which all secure communication is based on keys that
are shared pairwise between two nodes. From the security
point of view, this approach is ideal since the compromise
of a node does not reveal any keys that are used by the
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other nodes in the network. However, under this approach,
each node will need a unique key for every other node that it
communicates with. Moreover, in many sensor networks, the
immediate neighbors of a sensor node cannot be predicted in
advance; consequently, these pairwise shared keys will need
to be established after the network is deployed.

A unique issue that arises in sensor networks that needs
to be considered while selecting a key sharing approach is
its impact on the effectiveness of in-network processing [16].
In many applications, sensors in the network are organized
into a data fusion or aggregation hierarchy for efficiency.
Readings or messages from several sensors are processed at
a data fusion node and aggregated into a more compact
report before being relayed to the parent node in the data
fusion hierarchy [13]. Passive participation is another form
of in-network processing in which a sensor node can take
certain actions based on overheard messages [14, 20], e.g.,
a sensor can decide to not report an event if it overhears a
neighboring node reporting the same event.

Particular keying mechanisms may preclude or reduce the
effectiveness of in-network processing. To support passive
participation, it is essential that intermediate nodes be able
to decrypt or authenticate a secure message exchanged be-
tween two other sensor nodes. Thus, passive participation
of secure messages is only possible if multiple nodes share
the keys used for encryption and authentication. On the
other hand, if a pairwise shared key is used for encrypting
or authenticating a message, it effectively precludes passive
participation in the sensor network.

In this paper, we describe LEAP (Localized Encryption
and Authentication Protocol), a key management protocol
for sensor networks that is designed to support in-network
processing, while at the same time providing security prop-
erties similar to those provided by pairwise key sharing sche-
mes. In other words, the keying mechanisms provided by
LEAP enable in-network processing, while restricting the
security impact of a node compromise to the immediate net-
work neighborhood of the compromised node.

LEAP includes support for multiple keying mechanisms.
The design of these mechanisms is motivated by the obser-
vation that different types of messages exchanged between
sensor nodes have different security requirements, and that
a single keying mechanism is not suitable for meeting these
different security requirements. Specifically, our protocol
supports the establishment of four types of keys for each sen-
sor node – an individual key shared with the base station,
a pairwise key shared with another sensor node, a cluster
key shared with multiple neighboring nodes, and a group
key shared by all the nodes in the network. Moreover, the
protocol used for establishing these keys for each node is
communication- and energy-efficient, and minimizes the in-
volvement of the base station.

LEAP also includes an efficient protocol for inter-node
traffic authentication based on the use of one-way key chains.
A salient feature of the authentication protocol is that it sup-
ports source authentication (unlike a protocol where a glob-
ally shared key is used for authentication) without prevent-
ing passive participation (unlike a protocol where a pairwise
shared key is used for authentication).

The rest of this paper is organized as follows. We dis-
cuss our design goals and assumptions in Section 2, before
describing the LEAP protocol in detail in Section 3. The
inter-node traffic authentication protocol is described in Sec-

tion 3.3. In Section 4 and 5, we analyze the performance
and security of our protocol. We discuss related work in
Section 6 before concluding the paper in Section 7.

2. ASSUMPTIONS AND DESIGN GOALS
We describe below our assumptions regarding the sensor

network scenarios in which our keying protocols will be used,
before discussing the design goals of our protocol.

2.1 Network and Security Assumptions
We assume that the sensor network is static, i.e., sensor

nodes are not mobile. The base station, acting as a con-
troller (or key server), is assumed to be a laptop class device
and supplied with long-lasting power. The sensor nodes are
similar in their computational and communication capabili-
ties and power resources to current generation sensor nodes,
e.g. the Berkeley MICA motes [12]. We assume that every
node has space for storing up to hundreds of bytes of key-
ing materials. The sensor nodes can be deployed via aerial
scattering or by physical installation. However, we assume
that the immediate neighboring nodes of any sensor node
will not be known in advance.

Because wireless communication is not secure, we assume
an adversary can eavesdrop on all traffic, inject packets or
replay older messages. We assume that if a node is com-
promised, all the information it holds will also be compro-
mised. However, we assume the base station will not be
compromised.

2.2 Design Goals
The main goal of LEAP is to design efficient security

mechanisms for supporting various communication models
in sensor networks. The security requirements not only in-
clude authentication and confidentiality but also robustness
and survivability. In other words, the sensor network should
be robust against various security attacks, and if an attack
succeeds, its impact should be minimized. For example, the
compromise of a single node should not break the security
of the entire network.

The protocol should also support sensor network opti-
mization mechanisms such as in-network processing. Since
the resources of a sensor node are very constrained, the key
establishment protocols should be lightweight and minimize
communication and energy consumption. It should be pos-
sible to add new sensor nodes incrementally to the sensor
network. The keying protocols should be scalable, i.e., the
size of the sensor network should not be limited by the per-
node storage and energy resources.

3. LEAP: LOCALIZED ENCRYPTION AND
AUTHENTICATION PROTOCOL

As discussed in the introduction, LEAP provides multiple
keying mechanisms that can be used for providing confi-
dentiality and authentication in sensor networks. We first
motivate and present an overview of the different keying
mechanisms in Section 3.1 before describing the protocols
used by LEAP for establishing these keys. The inter-node
traffic authentication mechanism that is part of LEAP is
discussed separately in Section 3.3.
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3.1 Overview
The packets exchanged by nodes in a sensor network can

be classified into several categories based on different crite-
ria, e.g. control packets vs data packets, broadcast packets
vs unicast packets, queries or commands vs sensor readings,
etc. The security requirements for a packet will typically de-
pend on the category it falls in. Authentication is required
for all type of packets, whereas confidentiality may only be
required for some types of packets. For example, routing
control information usually does not require confidentiality,
whereas (aggregated) readings transmitted by a sensor node
and the queries sent by the base station may need confiden-
tiality.

We argue that no single keying mechanism is appropriate
for all the secure communication that is needed in sensor
networks. As such, LEAP supports the establishment of four
types of keys for each sensor node – an individual key shared
with the base station, a pairwise key shared with another
sensor node, a cluster key shared with multiple neighboring
nodes, and a group key that is shared by all the nodes in
the network. We now discuss each of these keys in turn and
describe our reasons for including it in our protocol.

Individual Key Every node has a unique key that it shares
pairwise with the base station. This key is used for
secure communication between a node and the base
station. For example, a node may send an alert to the
base station if it observes any abnormal or unexpected
behavior by a neighboring node. Similarly, the base
station can use this key to encrypt any sensitive in-
formation, e.g. keying material or special instruction,
that it sends to an individual node.

Group Key This is a globally shared key that is used by
the base station for encrypting messages that are broad-
cast to the whole group. For example, the base station
issues missions, sends queries and interests. Note that
from the confidentiality point of view there is no ad-
vantage to separately encrypting a broadcast message
using the individual key of each node. However, since
the group key is shared among all the nodes in the net-
work, an efficient rekeying mechanism is necessary for
updating this key after a compromised node is revoked.

Cluster Key A cluster key is a key shared by a node and
all its neighbors, and it is mainly used for securing
locally broadcast messages, e.g., routing control infor-
mation, or securing sensor messages which can benefit
from passive participation. Researchers have shown
that in-network processing techniques, including data
aggregation and passive participation are very impor-
tant for saving energy consumption in sensor networks
[13, 14, 20]. For example, a node that overhears a
neighboring sensor node transmitting the same read-
ing as its own current reading can elect to not trans-
mit the same. In responding to aggregation opera-
tions such as MAX, a node can also suppress its own
reading if its reading is not larger than an overheard
one. For passive participation to be feasible, neigh-
boring nodes should be able to decrypt and authen-
ticate some classes of messages, e.g., sensor readings,
transmitted by their neighbors. This means that such
messages should be encrypted or authenticated by a

locally shared key. Therefore, in LEAP each node pos-
sesses a unique cluster key that it uses for securing its
messages, while its immediate neighbors use the same
key for decryption or authentication of its messages.

Pairwise Shared Key Every node shares a pairwise key
with each of its immediate neighbors. In LEAP, pair-
wise keys are used for securing communications that
require privacy or source authentication. For example,
a node can use its pairwise keys to secure the distribu-
tion of its cluster key to its neighbors, or to secure the
transmissions of its sensor readings to an aggregation
node. Note that the use of pairwise keys precludes
passive participation.

3.2 Key Establishment
In this section, we describe the schemes provided by LEAP

for sensor nodes to establish and update individual keys,
pairwise shared keys, cluster keys, and group keys for each
node. We note that the key establishment (and re-keying)
protocol for the group key uses cluster keys, whereas cluster
keys are established (and re-keyed) using pairwise shared
keys.

Notation We list below notations which appear in the rest
of this discussion.

• N is the number of nodes in the network
• u, v (in lower case) are principals such as communi-

cating nodes.
• {fk} is a family of pseudo-random functions [10].
• {s}k means encrypting message s with key k.
• MAC(k, s) is the message authentication code (MAC)

of message s using a symmetric key k.

From a key K a node can derive other keys for various
security purposes. For example, a node can use K0 = fK(0)
for encryption and use K1 = fK(1) for authentication. For
ease of presentation, in the following discussion, we simply
say that a message is encrypted or authenticated with key
K, although the message is really encrypted with K0 and
authenticated with K1 respectively.

3.2.1 Establishing Individual Node Keys
Every node has an individual key that is only shared with

the base station. This key is generated and pre-loaded into
each node prior to its deployment.

The individual key Km
u for a node u (each node has a

unique id) is generated as follows: Km
u = fKm

s
(u). Here f is

a pseudo-random function and Km
s is a master key known

only to the controller. In this scheme the controller might
only keep its master key to save the storage for keeping all
the individual keys. When it needs to communicate with an
individual node u, it computes Km

u on the fly. Due to the
computational efficiency of pseudo random functions, the
computational overhead is negligible.

3.2.2 Establishing Pairwise Shared Keys
In this paper, unless otherwise specified, a pairwise shared

key belonging to a node refers to a key shared only between
the node and one of its direct neighbors (i.e. one-hop neigh-
bors).

For nodes whose neighborhood relationships are predeter-
mined (e.g., via physical installation), pairwise key estab-
lishment is simply done by preloading the sensor nodes with
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the corresponding keys. Here we are interested in establish-
ing pairwise keys for sensor nodes unaware of their neigh-
bors until their deployment (e.g., via aerial scattering). Our
approach exploits the special property of sensor networks
consisting of stationary nodes that the set of neighbors of
a node is relatively static, and that a sensor node that is
being added to the network will discover most of its neigh-
bors at the time of its initial deployment. Second, it is our
belief that a sensor node deployed in a security critical en-
vironment must be designed to sustain possible break-in at-
tacks at least for a short interval (say several seconds) when
captured by the adversary; otherwise, the adversary could
easily compromise all the sensor nodes in a sensor network
and then take over the network. Therefore, instead of as-
suming that sensor nodes are tamper resistant which often
turns out not to be true [1], we assume there exists a lower
bound on the time interval Tmin that is necessary for an ad-
versary to compromise a sensor node, and that the time Test

for a newly deployed sensor node to discover its immediate
neighbors is smaller than Tmin. In practice, we expect Test

to be of the order of several seconds, so we believe it is a
reasonable assumption that Tmin > Test.

We now describe our scheme in detail, given this lower
bound Tmin. Note that the approach used by key establish-
ment by nodes that are incrementally added to the network
is identical to the approach used at the time of initial net-
work deployment. Below, we describe the four steps for
adding a new node u to the sensor network.

Key Pre-distribution The controller generates an initial
key KI and loads each node with this key. Each sensor
node u derives a master key Ku = fKI (u).

Neighbor Discovery When it is deployed, node u first ini-
tializes a timer to fire after time Tmin. It then tries to
discover its neighbors. It broadcasts a HELLO mes-
sage which contains a nonce, and waits for each neigh-
bor v to respond with its identity. The reply from each
neighbor v is authenticated using its master key Kv.
Since node u can compute Kv using KI , it is able to
verify node v’s identity independently.

u −→ ∗ : u, Nonceu.

v −→ u : v, MAC(Kv, Nonceu|v).

Pairwise Key Establishment Node u computes its pair-
wise key with v, Kuv, as Kuv = fKv (u). Node v can
also compute Kuv independently. No message is ex-
changed between u and v in this step. Note that node
u does not have to authenticate itself to node v ex-
plicitly and immediately, because any future messages
authenticated with Kuv by node u will prove node u’s
identity. No other nodes can compute Kuv after the
key erasure phase below.

Key Erasure When its timer expires, node u erases KI

and all the keys Kv it computed in the neighbor dis-
covery phase.

After the steps above, node u will have established a pair-
wise shared key with each of its neighbors. Further, no node
in the network possesses KI . An adversary may have eaves-
dropped on all the traffic in this phase, but without KI it
cannot inject erroneous information or decrypt any of the
messages. An adversary compromising a sensor node after

Tmin has expired will only obtain the keying material of the
compromised node, and not that of any other node. Thus,
this scheme localizes the security impact of a node compro-
mise. When a compromised node is detected, its neighbors
simply delete the keys that were shared with this node.

The above scheme can be further simplified when two
neighboring nodes, say u and v, are added at the same time.
For example, if u receives v’s response to u’s HELLO before
u responds to v’s HELLO, u will suppress its own response.
However, if u and v finish their neighbor discovery step sep-
arately, in the pairwise key establishment step they will have
two different pairwise keys, Kuv and Kvu. In this case, they
may choose Kuv as their pairwise key if u < v.

Discussion A critical assumption made by our scheme is
that the actual time Test to complete the neighbor discov-
ery phase is smaller than Tmin. We believe that this is a
reasonable assumption for most sensor networks and adver-
saries. The current generation of sensor nodes can transmit
at the rate of 19.2 Kbps [24] whereas the size of an id an-
nouncement message is very small (12 bytes if an id is 4
bytes and the MAC size is 8 bytes). The probability of col-
lision is quite small when a non-persistent CSMA protocol is
used for medium access control [25]. Moreover, a node can
broadcast its id multiple times to increase the probability
that it is received by all its neighbors. We expect the total
time in this phase should be of the order of several seconds.

Furthermore, to increase the difficulty for an adversary to
recover KI after it has physically capturing a sensor node,
the node can copy KI from non-volatile memory into volatile
memory as soon as it is powered on, while erasing the copy of
the key in the non-volatile memory. An implicit assumption
here is that a sensor node is able to erase a key completely.
While this may not be true for keys stored on disk, we believe
that this is true for keys stored in memory. Another implicit
assumption is that is a node u will not compute and then
keep the master key of another node v. We believe as long
as the program loaded in a sensor node is executed correctly,
this situation will not occur.

Node Addition For a very dense sensor network, re-
searchers suggest that maintaining only a necessary set of
working nodes while turning off redundant ones would ex-
tend the lifetime of a network [3, 27]. To employ our scheme
in these applications, a new node u can establish pairwise
keys with the working nodes. However, node u will not
be able to establish pairwise keys with nodes that are in
sleep mode during the initial Tmin. To address this issue,
we let node u obtain neighbor lists from the working nodes
which will include most of the nodes within two hops of
node u. Node u can then proceed to compute its pairwise
keys for the sleeping nodes and then erase KI and other
intermediate keys. Alternatively, the multi-path scheme in
Section 3.2.4 can be used to establish a pairwise key on the
fly for two nodes even though they have not established one
within Tmin.

3.2.3 Establishing Cluster Keys
The cluster key establishment phase follows the pairwise

key establishment phase, and the process is very straight-
forward. Consider the case that node u wants to establish
a cluster key with all its immediate neighbors v1, v2, ..., vm.
Node u first generates a random key Kc

u, then encrypts this
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key with the pairwise key of each neighbor, and then trans-
mits the encrypted key to each neighbor vi.

u −→ vi : (Kc
u)Kuvi

.

Node vi decrypts the key Kc
u and stores it in a table. When

one of the neighbors is revoked, node u generates a new
cluster key and transmits to all the remaining neighbors in
a same way.

3.2.4 Establishing Multi-hop Pairwise Shared Keys
When a node wants to send its sensor readings to an ag-

gregation node (or its cluster head) that is multiple hops
away, to achieve privacy or strong source authentication, it
has to use a pairwise key that is shared only between itself
and the aggregation point. We call such keys multi-hop pair-
wise shared keys to distinguish them from pairwise shared
keys established with immediate neighbors.

We can simply extend the (one-hop) pairwise shared key
establishment scheme discussed above for the establishment
of two-hop pairwise keys. Specifically, once a node discovers
its neighbors in the neighbor discovery phase, it then broad-
casts their ids. As a result, a node discovers all the nodes
that can be reached in two hops. It can then establish a
pairwise shared key with all the nodes that are two hops
away using the same scheme it used for one-hop pairwise
key establishment. This scheme works well if (i) two-hop
pairwise shared keys can be established within Tmin and (ii)
a node has memory space to store these two-hop pairwise
shared keys, in addition to all the other keys it needs to
store.

If these two conditions cannot be satisfied, we can use the
following scheme to establish a two-hop pairwise shared key
on the fly. A node u broadcasts a QUERY message which
contains its own id u and the id of the cluster head c. All
the nodes that are a neighbor to both the node u and the
cluster head c sends back a REPLY, authenticated with their
pairwise keys shared with node u. We call the intermediate
nodes proxies.

Using this procedure, node u may find multiple (say m)
proxies, denoted as v1, v2, ..., vm. To establish a pairwise
key S with node c, node u first splits S into m shares, i.e.,
sk1, sk2, ..., skm such that S = sk1 ⊕ sk2... ⊕ skm; it then
forwards each share ski to the cluster head c through the
ith proxy vi. Namely,

u −→ vi : {ski}Kuvi
, fski(0).

vi −→ c : {ski}Kvic , fski(0).

Here fski(0) is called the verification key of key ski because
it allows the cluster head c to verify immediately if ski is
valid. A compromised node vi may change ski to sk′

i and
attach fsk′

i
(0), but node u will detect this attack by over-

hearing node vi’s transmission. Node vi is required to erase
ski after it has done the forwarding for node u, which is
important to prevent ski from being disclosed if node vi

is compromised later. After the cluster head c receives all
shares, it re-constructs S. The cluster head can send back a
DONE message authenticated with S, which allows node u
to detect if the established pairwise key is correct. Clearly,
this scheme is secure when up to m− 1 proxies are compro-
mised.

The scheme described above can be extended for estab-
lishing a pairwise key on the fly for two nodes that are more

than two hops away. Its performance overhead will depend
on the desired security level m. An alternative approach for
establishing multi-hop pairwise keys is to use the base sta-
tion as a helper [22]. However, it is unclear if this approach
will outperform our multiple path scheme. Designing a more
efficient scheme for this purpose without the involvement of
the base station is an interesting research problem.

3.2.5 Establishing Group Keys
A group key is a key shared by all the nodes in the net-

work, and it is necessary when the controller is distributing
a secure message, e.g., a query on some event of interest or
a confidential instruction, to all the nodes in the network.

One way for the base station to distribute a message M
securely to all the nodes is using hop-by-hop translation.
Specifically, the base station encrypts M with its cluster
key and then broadcasts the message. Each neighbor re-
ceiving the message decrypts it to obtain M , re-encrypts M
with its own cluster key, and then re-broadcasts the mes-
sage. The process is repeated until all the nodes receive
M . However, this approach has a major drawback, that is,
each intermediate node needs to encrypt and decrypt the
message, thus consuming a non-trivial amount of energy on
computation. Therefore, using a group key for encrypting a
broadcast message is preferable from the performance point
of view.

A simple way to bootstrap a group key for a sensor net-
work is to pre-load every node with the group key. An im-
portant issue that arises immediately is the need to securely
update this key when a compromised node is detected. In
other words, the group key must be changed and distributed
to all the remaining nodes in a secure, reliable and timely
fashion. The naive approach in which the base station en-
crypts the updated group key using the individual key of
each node and then sends the encrypted key to each node
separately is not scalable because its communication and
computational costs increase linearly with the size of the
network.

Below we propose an efficient key updating scheme based
on cluster keys. We first discuss authentic node revocation
that is a prerequisite for group keying, then describe the
secure key distribution mechanism in detail.

3.2.5.1 Authentic Node Revocation.
In a sensor network, all the messages the base station

broadcasts to the sensors should be authenticated; other-
wise, an outsider adversary or a compromised node may
impersonate the base station. Therefore, a node revocation
announcement must be authenticated when distributed.

We employ µTESLA [22], a broadcast authentication pro-
tocol proposed by Perrig et al, due to its efficiency and tol-
erance to packet loss. µTESLA is based on the use of a
one-way key chain along with delayed key disclosure. To
use µTESLA, we assume that all the sensor nodes and the
key server are loosely time synchronized, i.e., a node knows
the upper bound on the time synchronization error with the
key server.

To bootstrap its µTESLA key chain, the controller pre-
loads every node with the commitment (i.e., the first key)
of the key chain prior to the deployment of the network.
The base station then discloses the keys in the key chain
periodically in the order reverse to the generation of these
keys. The use of µTESLA allows the key server to broad-
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cast authenticated packets (including keying materials and
data messages) efficiently. Since µTESLA uses delayed key
disclosure, a node needs to buffer a received message until it
receives the µTESLA key used for authenticating this mes-
sage. Thus, there is a one µTESLA interval latency for node
revocation.

Let u be the node to be revoked, and k′
g the new group key.

Let the to-be-disclosed µTESLA key be kT
i . The controller

broadcasts the following message M :

M : Controller −→ ∗ : u, fk′
g
(0), MAC(kT

i , u|fk′
g
(0)).

Again, here we refer to fk′
g
(0) as the verification key because

it enables a node to verify the authenticity of the group key
k′

g that it will receive later. The key server then distributes

the MAC key kT
i after one µTESLA interval. After a node

v receives message M and the MAC key that arrives one
µTESLA interval later, it verifies the authenticity of M us-
ing µTESLA. If the verification is successful, node v will
store the verification key fk′

g
(0) temporarily. In addition, if

node v is a neighbor of node u, v will remove its pairwise
key with u and updates its cluster key.

3.2.5.2 Secure Key Distribution.
Secure key distribution does not require the use of a spe-

cific routing protocol. However, for concreteness, in this
paper we assume the use of a routing protocol similar to
the TinyOS beaconing protocol [12, 17]. In this protocol,
the nodes in the network are organized into a breadth first
spanning tree on the basis of routing updates that are peri-
odically broadcast by the base station and recursively prop-
agated to the rest of the network. Each node keeps track of
not only its parent and its children in the spanning tree, and
also other immediate neighbors. Note that in the TinyOS
beaconing protocol a node does not maintain any informa-
tion regarding any non-parent nodes in the spanning tree;
however, this information is necessary for secure key distri-
bution below and for defending against various attacks in
Section 5.

The new group key k′
g is distributed to all the legitimate

sensor nodes via a recursive process over the spanning tree
set up by the routing protocol. The base station (controller)
initiates the process by sending k′

g to each of its children in
the spanning tree using its cluster key for encryption. Note
that a node v that receives k′

g can verify the authenticity
of k′

g by checking if fk′
g
(0) is the same as the verification

key it received earlier in the node revocation message. The
algorithm continues recursively down the spanning tree, i.e.,
each node v that has received k′

g transmits k′
g to its children

in the spanning tree, using its own cluster key for encryption.
Note that although we pointed out that the hop-by-hop

encryption and decryption overhead for translating broad-
cast messages is non-trivial for sensor nodes, we believe it
is still affordable for distributing a new group key. This
is because the distributed message contains only one key.
Moreover, group rekeying events in most sensor networks
can be expected to be relatively infrequent.

Finally, we note that it is desirable that the group key
be updated more frequently even when no revocation event
occurs. This is important to defend against cryptanalysis
and to prevent the adversary from decrypting all the previ-
ously distributed messages by compromising a sensor node.
In our scheme, the controller can periodically broadcast an

authenticated key updating instruction. Alternatively, ev-
ery node can update the group key periodically. Every node
generates a new group key K′

g = fKg (0) and then erases the
old key Kg.

3.3 Inter-node Traffic Authentication
We now consider the issue of inter-node traffic authenti-

cation that is critical in defending against various attacks
such as DoS. A mandatory requirement for a secure sen-
sor network is every message in the network must be au-
thenticated before it is forwarded or processed. Otherwise,
an adversary can simply deplete the energy of the sensor
nodes by injecting spurious packets into the network, even
without compromising a single node. Moreover, the authen-
tication scheme must be computationally very lightweight,
otherwise, a sensor node may be engaged in verifying a large
number of packets from the adversary leading to its energy
being depleted.

We have discussed the issue of authentic node revocation
in Section 3.2.5. We employ µTESLA for broadcast authen-
tication for the controller. Given the loose time synchro-
nization condition, µTESLA assures the authenticity of a
broadcast message by using one-way key chain and delayed
key disclosure. Unfortunately, µTESLA is not suitable for
inter-node traffic authentication because it does not provide
immediate authentication. This is because a node receiving
a packet has to wait for one µTESLA interval to receive the
delayed disclosed MAC key; as a result, a message travers-
ing l hops will take at least l µTESLA intervals to arrive
at the destination. Moreover, a sensor node has to buffer
all the unverified packets. Both the latency and the storage
requirements of this scheme make it unsuitable for authen-
ticating all traffic, although it suffices when authenticating
infrequent messages (e.g., rekeying messages) broadcast by a
base station. Therefore, we need authentication mechanisms
other than µTESLA for immediate traffic authentication.

One solution to this problem is to use pairwise keys for
authentication. Using pairwise keys provide source authen-
tication, but it precludes passive participation. To enable
passive participation, it is necessary to use cluster keys for
authentication. The basic scheme is as follows. Every node
authenticates a packet it transmits using its own cluster key
as the MAC key. A receiving node first verifies the packet
using the same cluster key it obtained from the sending node
in the cluster key establishment phase, then authenticates
the packet to its own neighbors with its own cluster key.
Thus, a message gets authenticated repeatedly in a hop-by-
hop fashion if it traverses multiple hops.

The above approach provides immediate authentication,
and its communication overhead is small because a node
only adds one MAC to each packet. However, although this
approach defends against outsider attacks in which the ad-
versary does not hold any keys, insider attacks are possible
after the adversary compromises a sensor node. The ad-
versary could inject spurious packets into the network, au-
thenticated with the cluster key of the compromised node or
with the cluster keys of the neighbors of the compromised
node. The former attack exists in both pairwise key based
and cluster key based authentication schemes, and it is very
hard to prevent and detect. We do not address this attack in
this work. However, the latter impersonation attack only ex-
ists in the cluster key based authentication scheme because
a cluster key is shared between a node and all its neighbors.
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Figure 1: Triangular Inequality

Below we propose a scheme to thwart this impersonation
attack.

3.3.1 One-way Key Chain Based Authentication
To address the impersonation attack described above, we

propose to use one-way hash key chain [18] for one-hop
broadcast authentication. Unlike µTESLA, this technique
does not use delayed key disclosure and does not require time
synchronization between neighboring nodes. Basically, ev-
ery node generates a one-way key chain of a certain length,
then transmits the commitment (i.e., the first key) of the
key chain to each neighbor, encrypted with their pairwise
shared key. We refer to a key in a node’s one-way key chain
as its AUTH key. Whenever a node has a message to send,
it attaches to the message the next AUTH key in the key
chain. The AUTH keys are disclosed in an order reverse to
their generation. A neighbor receiving the message can ver-
ify its authenticity based on the commitment or a recently
disclosed AUTH key of the sending node.

Our authentication scheme is motivated by two observa-
tions. First, since packets are authenticated hop-by-hop, a
node only needs to authenticate a packet to its immediate
neighbors. Second, when a node sends a packet, a neighbor
will normally receive the packet before it receives a copy
forwarded by any other nodes. This is true due to the trian-
gular inequality among the distances of the involved nodes,
which is demonstrated in Fig. 1. When node u sends a
packet that contains the content M and an AUTH key K,
node v will receive the packet before it receives a forwarded
copy from node x because |uv| < |ux| + |xv|. This means,
the adversary x cannot reuse node u’s AUTH keys to im-
personate node u.

The above authentication scheme provides source authen-
tication (like an authentication scheme based on pairwise
shared keys) while not precluding passive participation (un-
like an authentication scheme based on pairwise shared keys).
However, we note that there is a possible impersonation at-
tack on this scheme. For example, an adversary can shield
node v or jam node v by letting another node w transmitting
to v at the same time when node u is transmitting. Later
the adversary sends a modified packet to node v imperson-
ating node u. Because node v has not received a packet with
the same AUTH key, it will accept the modified packet.

If this attack is launched by an outsider adversary, we
can simply prevent it as follows. Node u combines its AUTH
keys with its cluster key (e.g., XORing them together), then
authenticates the packets it sends using the combined keys
as the MAC keys. The outsider adversary does not know

node u’s cluster key thus is unable to launch this attack.
Unfortunately, we do not have a lightweight countermea-
sure to prevent the attack by an insider adversary. However,
we note that (i) The maximum number of erroneous pack-
ets that a compromised node x can inject into the network,
while impersonating node u, is bounded by the number of
packets node u has transmitted, due to the one-wayness
property of hash functions (ii) The compromise of a sen-
sor node only allows the adversary to launch such attack in
a two-hop zone of the compromised node x, because node x
only has the cluster keys of its one-hop direct neighbors. To
further deter this attack, we present below a probabilistic
scheme for detecting it.

3.3.2 Probabilistic Challenge Scheme
In this scheme, a node challenges the authenticity of a

received packet with a certain probability. More specifically,
when node v receives a packet P (we assume every packet
includes a count C for message freshness [22]) with AUTH
key K from (claimed) node u, it challenges node u for the
authenticity of packet P with probability pc, using their
pairwise key Kuv as the MAC key. The process is as follows.

v
pc−→ u : C, Nv, MAC(Kuv, C|Nv)

u −→ v : Nu, MAC(Kuv, C|Nv|Nu) (1)

Here Nu and Nv are the nonces generated by node u and
node v respectively. The compromised node x cannot forge
the response impersonating node u because it does not have
the pairwise key Kuv. Thus, the insider adversary takes
the risk of being detected when it launches the above im-
personation attack, subject to the challenge probability pc.
We note the choice of pc should make a tradeoff between
security and performance, because a larger pc leads to a
stronger security, but incurs a larger overhead for exchang-
ing the challenges and responses.

In our scheme, it is desirable to control the probability
pr that a node receives a challenge. This can be achieved if
every node broadcasts its degree of connection d to its neigh-
bors after the neighbor discovery phase and every neighbor
then sets its probability to challenge this node as pc = pr/d.

After a node detects an impersonation attack, it knows
one of its neighbors is compromised, although it does not
know which one. In this case, it increases its challenge
probability pc. It can also send a notice encrypted with
its pairwise keys to each neighbor, so that every node will
be aware of the compromise. Finally, it sends a notice to the
controller, encrypted with its individual key. The controller
can then take any necessary actions to detect and recover
from the compromise.

4. PERFORMANCE EVALUATION
In this section we analyze the computational and com-

munication cost of our key establishment and key updating
schemes. We note that the individual key of a node and
the pairwise shared keys are usually not updated after the
neighbor discovery phase, whereas the cluster key is updated
if this node is a neighbor of the node being revoked and the
group key is updated in every group rekeying. Therefore,
we only consider the cost involved in updating the cluster
keys and the group key.

Our rekeying protocol does not require the use of a spe-
cific routing protocol; however, its communication costs will
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depend upon the routing protocol. In our analysis below,
we assume that the rekeying protocol uses a spanning tree
constructed as discussed in Section 3.2.5 for delivering the
new group key to the nodes in the system.

4.1 Computational Cost
While updating a cluster key, a node that is a neighbor of

the node being revoked needs to encrypt its new cluster key
using the pairwise key shared with each neighbor. There-
fore, the number of such encryptions is determined by the
number of neighbors, which depends on the density of the
sensor network. Let d0 be the number of neighbors of the
node being revoked, and di, i = 1, 2, ..., d0 the number of le-
gitimate neighbors of each of these d0 neighbors. The total
number of encryptions is simply Se =

∑d0
i=1 di. The total

number of decryptions is the same, although the number of
decryptions for an individual node that is a neighbor to any
of these d0 nodes depends on its location. In the worse case
where a node is a neighbor to all these d0 nodes, it needs
to decrypt d0 keys. For an individual node, the total num-
ber of symmetric key operations it performs is bounded by
(max(di) + d0 − 1). For a network of size N , the average
number of symmetric key operations a node performs while
updating a cluster key is 2Se

N
.

The number of decryption operations in the secure distri-
bution of a group key is equal to the network size N because
every node needs to decrypt once. Recall that we are using
cluster keys for secure forwarding of the group key, which
means a parent node only needs to encrypt once for all its
children. Thus the total number of encryptions depends on
the network topology and is at most N . Therefore, the to-
tal number of symmetric key operations is at most 2N and
the average cost is at most 2 symmetric key operations per
node.

From the above analysis, we know that the computational
cost in a cluster and group rekeying is determined by the
network density. In a network of size N where every node
has a connection degree d, the average number of symmetric
key operations for every node is about 2(d−1)2/(N −1)+2.
For a network of reasonable density, we believe that compu-
tational overhead will not become a performance bottleneck
in our schemes. For example, for a network of size N = 1000
and connection degree 20, the average computational cost is
2.7 symmetric key operations per node per revocation. A
larger N will further reduce this cost.

4.2 Communication Cost
The analysis of communication cost for a group rekeying

event is similar to that of computational cost. For updating
a cluster key, the average number of keys a node transmits
and receives is equal to (d−1)2/(N−1) for a network of con-
nection degree d and size N . For the secure distribution of a
group key, the average number of keys a node transmits and
receives is equal to one. For example, for a network of size
N = 1000 and connection degree d = 20, the average trans-
mission and receiving costs are both 1.4 keys per node per
revocation. The average communication cost increases with
the connection degree of a sensor network, but decrease with
the network size N . Note that in a group rekeying scheme
based on logical key tree such as LKH [26], the communica-
tion cost of a group rekeying is O(logN). Thus, our scheme
is more scalable than LKH if LKH is used for group rekeying
in sensor networks.

4.3 Storage Requirement
In our schemes, a node needs to keep four types of keys.

If a node has d neighbors, it needs to store one individual
key, d pairwise keys, d cluster keys and one group key.

In addition, for our inter-node authentication scheme, a
node also keeps the commitment or the most recent AUTH
key of each neighbor and its own one-way key chain. In
a sensor network the packet transmission rate is usually
very small. For example, the readings may be generated
and forwarded periodically, and the routing control infor-
mation may be exchanged less often. Thus, a node could
store a reasonable length of key chain. After the keys in
the key chain are used up, it can generate and bootstrap a
new key chain. To avoid storing the entire key chain, we
can deploy the optimization algorithm by Coppersmith and
Jakobsson [4] to trade storage and computation cost. Their
algorithm performs O(log2

√
n) hashes per output element,

and uses O(log2 n) memory cells, where the size of each cell
is slightly larger than that of a key and n is the length of the
key chain. Let L be the number of keys a node stores for its
key chain. Thus, the total number of keys a node stores is
3d + 2 + L.

Although memory space is a very scarce resource for the
current generation of sensor nodes (4 KB SRAM in a Berke-
ley Mica Mote), for a reasonable degree d, storage is not an
issue in our scheme. For example, when d = 20 and L = 20,
a node stores 82 keys (totally 656 bytes when the key size is
8 bytes).

Overall, we conclude our scheme is scalable and efficient
in computation, communication and storage.

5. SECURITY ANALYSIS
In this section, we analyze the security of the keying mech-

anisms in LEAP. We first discuss the survivability of the net-
work when undetected compromises occur, and then study
the robustness of our scheme in defending against various
attacks on routing protocols.

5.1 Survivability
When a sensor node u is compromised, the adversary can

launch attacks by utilizing node u’s keying materials. If
the compromise event is detected somehow, our scheme can
revoke node u from the group efficiently. Basically, every
neighbor of node u deletes its pairwise key shared with u and
updates its cluster key. The group key is also updated effi-
ciently. After the revocation, the adversary cannot launch
further attacks.

However, compromise detection in sensor systems is more
difficult than in other systems because sensor systems are
often deployed in unattended environments. Thus, we be-
lieve survivability under undetected node compromises is one
of the most critical security requirements for any sensor net-
works. Below we first consider in general what the adver-
sary can accomplish after it compromises a sensor node. We
then discuss some detailed attacks on routing protocols in
Section 5.2.

First, because the individual key of a node is only shared
between the node and the base station, obtaining this key
usually does not help the adversary to launch attacks. Sec-
ond, possessing the pairwise shared keys and cluster keys of
a compromised node allows the adversary to establish trust
with all the neighboring nodes. Thus the adversary can in-
ject some malicious routing control information or erroneous
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sensor readings into the network. However, in our scheme
the adversary usually has to launch such attacks by using
the identity of the compromised node due to the use of our
inter-node authentication scheme. We note a salient feature
of our protocol is its ability in localizing the possible dam-
age, because after a node joins the network, it keeps a list
of trusted neighboring nodes. Thus, the compromised node
cannot establish trust relationship with any nodes except its
neighbors, which means the adversary cannot jeopardize the
secure links among any other nodes.

Third, possessing the group key allows the adversary to
decrypt the messages broadcast by the base station. Since
a broadcast message, by its nature, is intended to be known
by every node, compromising one single node is enough to
reveal the message, no matter what security mechanisms are
used for secure message distribution. Moreover, possessing
the group key does not enable the adversary to flood the en-
tire network with malicious packets impersonating the base
station, because any messages sent by the base station are
authenticated using µTESLA. Finally, because we deploy a
periodic group rekeying scheme, the adversary can decrypt
only the messages being encrypted using the current group
key.

5.2 Defending against Various Attacks on Se-
cure Routing

Karlof and Wagner [17] have studied various possible at-
tacks on security of routing protocols for wireless sensor net-
work. We now show how our schemes can defend against the
attacks they described. Recall that in our scheme routing
control information is authenticated by the inter-node au-
thentication scheme, which prevents most outsider attacks
(with the exception of the wormhole attack which we intro-
duce in Section 5.2.1). Therefore, in the discussion below
we mainly consider attacks launched by an insider adver-
sary that has compromised one or more sensor nodes.

An insider adversary may attempt to spoof, alter or re-
play routing information, in the hope of creating routing
loops, attracting or repelling network traffic, generating false
error messages. The adversary may also launch the Se-
lective Forwarding attack in which the compromised node
suppresses the routing packets originating from a select few
nodes while reliably forwarding the remaining packets. Our
scheme cannot prevent the adversary from launching these
attacks. However, our scheme can thwart or minimize the
consequences of these attacks. First, our inter-node authen-
tication scheme makes these attacks only possible within a
two-hop zone of the compromised node. Second, because
the attacks are localized in such a small zone, the adversary
takes a high risk of being detected in launching these at-
tacks. For example, our probabilistic challenge scheme make
the spoofing attacks difficult to go undetected. The alter-
ing attack is also likely to be detected because the sending
node may overhear its message being altered while being
forwarded by the compromised node. Third, once a com-
promised node is detected, our group rekeying scheme can
revoke the node from the network very efficiently.

Our scheme can prevent the following attacks. The ad-
versary may try to launch HELLO Flood Attack in which it
sends a HELLO message to all the nodes with transmission
power high enough to convince all the nodes that it is their
neighbor. If this attack succeeds, all the nodes may send
their readings or other packets into oblivion. However, this

attack will not succeed in our schemes because the adver-
sary does not have a network-wide authentication key (note
that the group key in our scheme is only used for secure
distribution of messages from the base station, not for au-
thentication purpose). Our scheme can also prevent Sybil
attacks [8]. In this attack, the adversary may replicate the
compromised node and add multiple replicas into the net-
work. A replica node then tries to establish pairwise keys
with nodes that are not the neighbors of the compromised
node with the help of the base station, if the base station
does not know precisely the topology of the network. This
attack may work in schemes [22] that use a Kerberos-like
protocol for pairwise key establishment, but it will not work
in our scheme because in our scheme every node knows its
neighbors and we do not use the base station for pairwise
key establishment.

5.2.1 Dealing with Wormhole and Sinkhole Attacks
The attack that is most difficult to detect or prevent is

one that combines the Sinkhole and the Wormhole attacks.
In a sinkhole attack, a compromised node may try to attract
packets (e.g., sensor readings) from its neighbors and then
drop them, by advertising information such as high remain-
ing energy or high end-to-end reliability. This information is
hard to verify. In the wormhole attack, typically two distant
malicious nodes, which have an out-of-band low latency link
that is invisible to the underlying sensor network, collude
to understate their distance form each other. When placing
one such node close to the base station and the other close
to the target of interest, the adversary could convince the
nodes near the target who would normally be multiple hops
away from the base station that they are only one or two
hops away. Thus this creates a sinkhole. Similarly, nodes
that are multiple hops away from each other may believe
they are neighbors via the wormhole. The wormhole attack
is very powerful because the adversary does not have to
compromise any sensor nodes to be able to launch it. In the
literature, Hu, Perrig, and Johnson [11] propose two schemes
to detect wormhole attacks for ad hoc networks. The first
scheme requires every node to know its geographic coordi-
nate (using GPS). The second scheme requires an extremely
tight time synchronization between nodes and is thus infea-
sible for most sensor networks.

In our scheme, an outsider adversary cannot succeed in
launching wormhole attacks in any time other than the neigh-
bor discovery phase of the pairwise key establishment pro-
cess. After that phase, a node knows all its neighbors. Thus
the adversary cannot later convince two distant nodes that
they are neighbors. Since the time for neighbor discovery is
very small (usually of the order of seconds) compared to the
lifetime of the network, the probability that the adversary
succeeds in such attacks will also be very small. We note
that the authenticated and initial neighborhood knowledge
is critical to defend against wormhole attacks.

An insider adversary needs to compromise at least two
sensor nodes to create a wormhole in our schemes. Even
so, it still cannot convince two distant nodes that they are
neighbors after they have completed their neighbor discovery
phases. However, if the adversary compromises one node u
that is close to the base station, the other one v in the area
of interest, it may succeed in creating node v as a sinkhole
because the number of hops between the node v and the base
station becomes smaller, making node v especially attractive
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to surrounding nodes. In applications where the location of
a base station is static, a node will know the approximate
number of hops it is away from the base station after the
network topology is constructed. Thus it is difficult for the
adversary to create a very attractive sinkhole without being
detected.

6. RELATED WORK
Stajano and Anderson discuss the various issues that arise

for secure devices consisting of “peanut nodes” [23]. In par-
ticular, they propose that nodes bootstrap trust relationship
through physical contact. Zhu et al [28] propose an efficient
scheme for bootstrapping trust among mobile nodes based
on the combination of TESLA [21] and one-way hash chain.
Carman, Kruus and Matt have analyzed several approaches
for key management and distribution in sensor networks [5].
In particular, they discuss the energy consumption of three
different approaches for key establishment – pre-deployed
keying protocols, arbitrated protocols involving a trusted
server, and autonomous key agreement protocols. Basagni
et al [2] discuss a rekeying scheme for periodically updating
the group-wide traffic encryption key in a sensor network.
However, they assume that the sensor nodes are tamper-
free and can trust each other. In contrast, our pairwise key
establishment scheme only requires that a sensor node not
be compromised for a short time interval at the time of its
deployment.

Eschenauer and Gligor [9] present a key management scheme
for sensor networks based on probabilistic key predeploy-
ment. Chan et al [6] extend this scheme and present three
new mechanisms for key establishment based on the frame-
work of probabilistic key predeployment. Zhu et al [29]
present an approach for establishing a pairwise key that
is exclusively known to a pair of nodes with overwhelm-
ing probability, based on the combination of probabilistic
key sharing and (threshold) secret sharing. We note most
of these schemes only provide probabilistic security in the
sense that the compromise of a fraction of sensor nodes may
expose other nodes’ keys with some probability. In contrast,
our schemes provide deterministic security because the com-
promise of a fraction of sensor nodes does not reveal the
pairwise keys between other nodes.

Perrig et al present security protocols for sensor networks
[22]. In particular, they describe SNEP, a protocol for data
confidentiality and two-party data authentication, and µTES-
LA, a protocol for broadcast data authentication. We note
that their scheme uses the base station to help establish a
pairwise key between two nodes, which limits its scalability
and make it subject to Sybil attacks [8]. In contrast, in our
scheme pairwise keys are established in a distributed fashion
without the involvement of the base station.

Liu and Ning [19] present a multi-level key chain scheme
for µTESLA. Karlof et al [16] describe TinySec, the link
layer security mechanism that is part of the TinyOS plat-
form. They also discuss the impact of different keying mech-
anisms on the effectiveness of in-network processing in sen-
sor networks. In a recent paper [17], Karlof and Wagner
discussed several security attacks on routing protocols for
sensor networks. As we have shown in Section 5.2, our
scheme can prevent or thwart many of these attacks very
efficiently.

7. CONCLUSIONS
In this paper, we have presented LEAP (Localized En-

cryption and Authentication Protocol), a key management
protocol for sensor networks. LEAP has the following prop-
erties:

• The design of the protocol is motivated by the ob-
servation that different types of messages exchanged
between sensor nodes have different security require-
ments, and that a single keying mechanism is not suit-
able for meeting these different security requirements.
Consequently, LEAP includes support for establishing
four types of keys per sensor node – individual keys
shared with the base station, pairwise keys shared with
individual neighboring nodes, cluster keys shared with
a set of neighbors, and a group key shared with all
the nodes in the network. These keys can be used to
increase the security of many non-secure protocols.

• LEAP includes an efficient protocol for inter-node traf-
fic authentication based on the use of one-way key
chains.

• A distinguishing feature of LEAP is that its key shar-
ing approach supports in-network processing, while at
the same time restricting the security impact of a node
compromise to the immediate network neighborhood
of the compromised node.

• The key establishment and key updating procedures
used by LEAP are efficient and the storage require-
ments per node are small.

• LEAP can prevent or increase the difficulty of launch-
ing many security attacks on sensor networks.
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