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Abstract

We present two new approaches to improving the in-
tegrity of network broadcasts and multicasts with low stor-
age and computation overhead. The first approach is aleap-
frog linking protocol for securing the integrity of packets
as they traverse a network during a broadcast, such as in
the setup phase for link-state routing. This technique al-
lows each router to gain confidence about the integrity of
a packet before passing it on to the next router; hence, al-
lows many integrity violations to be stopped immediately
in their tracks. The second approach is a novel key pre-
distribution scheme that we use in conjunction with a small
number of hashed message authentication codes (HMACs),
which allows end-to-end integrity checking as well as im-
proved hop-by-hop integrity checking. Our schemes are
suited to environments, such as in ad hoc and overlay net-
works, where routers can share only a small number of sym-
metric keys. Moreover, our protocols do not use encryption
(which, of course, can be added as an optional security en-
hancement). Instead, security is based strictly on the use of
one-way hash functions; hence, our algorithms are consid-
erably faster than those based on traditional public-key sig-
nature schemes. This improvement in speed comes with only
modest reductions in the security for broadcasting, as our
schemes can tolerate small numbers of malicious routers,
provided they don’t form significant cooperating coalitions.

1 Introduction

The integrity of messages in network broadcasts and
multicasts is an essential component of communication, as
false or modified packets contribute to congestion and net-
work overhead. Moreover, falsified packets can be used in

denial-of-service attacks or network infrastructure attacks.
In ad hoc networks, for example, manufactured false broad-
casts can be used to run down the batteries of devices being
used as routers. In addition, the network infrastructure it-
self is vulnerable to falsified broadcasts, as the algorithms
that form the basis of most routing protocols, such as OSPF
and BGP, use broadcasts as a primitive (e.g., see [15, 25]).
Indeed, some of these algorithms have been compromised
by routers that did not follow the respective protocols cor-
rectly. Fortunately, network malfunctions resulting from
faulty routers have to date been shown to be the result of
misconfigured routers, not malicious attacks. Nevertheless,
these failures show the feasibility of malicious broadcastor
multicast attacks, for they demonstrate that compromising
a single router can undermine the performance of an entire
network.

We are therefore interested in studying ways of improv-
ing the integrity of packets in network broadcasts and mul-
ticasts where routers can store a small number of keys and
can perform a limited number of computations using those
keys. Here we use the term “router” fairly loosely to refer to
any device that receives and forwards packets in a network
broadcast or multicast, even if this routing takes place at the
application layer. Such a network could be an autonomous
system on the Internet, an ad hoc network, or an overlay net-
work used for multicasting or peer-to-peer applications. In
many of these applications, the routers are potentially low-
computation devices or have limited computing resources
that they can devote to routing packets. Thus, we desire
solutions that are efficient. Indeed, we would like to limit
the security computations that routers make for achieving
integrity to use only the fastest of cryptographic primitives,
such as one-way hash functions. We are not explicitly re-
quiring that we also achieve confidentiality for the broadcast
messages, however, since in many applications integrity is
more important than confidentiality.



1.1 Prior Related Work

Network broadcast security was first studied in the sem-
inal work of Perlman [24] (see also [25]), who studied
flooding algorithms that are resilient to faulty routers. Her
schemes are based on using a public-key infrastructure
where each routerx is given a public-key/private-key pair
and must sign each message that originates fromx. Like-
wise, in her schemes, any routery that wants to authen-
ticate a messageM checks the signature of the routerx
that originated it. Such a signature-based approach is suffi-
cient, therefore, to achieve integrity in a broadcast or mul-
ticast algorithm. Even so, several researchers have com-
mented that, from a practical point of view, requiring full
public-key signatures on all broadcast messages is probably
not efficient, particularly for environments where routers
are low-computation devices. Signing and checking signa-
tures are expensive operations when compared to the sim-
ple table lookups and computations performed in the well-
known routing algorithms. Nevertheless, there has been
considerable previous work discussing the details of pro-
tocols that would implement integrity through the use of
digital signatures, including work by Guerrero-Zapata and
Asokan [11], Kentet al. [16], Konh et al. [17], Murphyet
al. [20, 22, 21], Papadimitratos and Haas [23], Sanzgiriet
al. [27], and Smithet al. [29].

Motivated by the desire to create efficient and secure
broadcast or multicast algorithms, several researchers have
designed algorithms that achieve security at computational
costs that are argued to be superior to those of Perlman.
Given that the signature-based design of Perlman is already
highly-secure, this research has used fast cryptographic
tools, such as one-way hash functions, instead of public-
key digital signatures on all messages. Nevertheless, since
there is a natural trade-off between computational speed and
security, this research has also involved the introductionof
additional assumptions about the network or restrictions on
the kinds of network attacks that one is likely to encounter.
The challenge, then, is to create practical and secure broad-
cast algorithms using fast cryptographic tools while limit-
ing the security assumptions needed for these algorithms to
maintain packet integrity.

Cheung [4] shows how to use hash chaining to secure
broadcast algorithms, assuming that the routers have syn-
chronized clocks. His scheme is not timely, however, as
it can only detect attacks long after they have happened.
Hauser, Przygienda, and Tsudik [12] avoid that defect by
using hash chains to instead reveal the status of specific
links in a link-state algorithm. That is, their protocol is
limited to simple yes-no types of messages. In addition,
because of the use of hash chains, they also require that the
routers in the network be synchronized. Zhang [33] extends
their protocol for more complex messages, but does so at the

expense of many more hash chains, and his protocol still re-
quires synchronized routers. It is not clear, in fact, whether
his scheme would actually be faster than a full-blown digital
signature approach, as advocated in the early work of Perl-
man. Also of related interest, is work of Bradleyet al. [2],
who discuss ways of improving the security of packet deliv-
ery after the routing tables have been built. In addition, Wu
et al. [32] and Vetteret al. [31] discuss some practical and
empirical issues in securing routing algorithms.

Recently, Hu, Perrig, and Johnson [13] show how to use
chains of one-way hash functions to improve the integrity
of the setup packets used to build routing tables for distance
vector and path vector routing. Likewise, Zhuet al. [35]
show how to use one-way hash chains for hop-by-hop au-
thentication. Our first approach complements these recent
works, in that we use small sets of one-way hash functions
to improve the integrity of packets as they are being used
for broadcasts.

Since our second scheme involves the use of a novel
randomized key pre-distribution method, previous work on
randomized key pre-distribution is also relevant to the top-
ics of this paper. Eschenauer and Gligor [8] propose a
randomized key pre-distribution scheme based on creating
a large pool of potential keys and having each device (or
router) select a random subset of this pool as its keys. These
keys are used for point-to-point unicast routing by having a
sender use a key known to be shared by the receiver, for
encryption or integrity. Chanet al. [3] improve and ana-
lyze several of the features of the Eschenauer-Gligor ap-
proach for unicast routing algorithms, keeping to the ba-
sic framework of using a single key pool. Zhuet al. [34]
show how improve the key identification computation for
these unicast routing schemes by using a pseudo-random
number generator seeded with each node’s ID to choose
the keys from the key pool. Duet al. [7] show how to
combine the Eschenauer-Gligor scheme and a pairwise key-
generation scheme of Blom [1] to allow unicast routing with
guaranteed shared keys between sender-receiver pairs, us-
ing less memory. Likewise, Liu and Ning [18] use a pooled
polynomial-based key distribution scheme to achieve sim-
ilar results. Hwang and Kim [14] study the connectivity
properties of these key-distribution schemes for establish-
ing pairwise secure connections. All of these schemes are
effective for unicast routing, but they are not directly appli-
cable for efficient broadcast or multicast routing.

1.2 Our Results

In this paper we describe two new approaches to improv-
ing the data integrity of broadcast and multicast algorithms
on devices with low storage and computational resources.
After a preliminary setup that involves distributing a set
of small set of secret keys to the routers, our schemes use



simple cryptographic hashed message authentication codes
(HMACs) to achieve security.

Our first approach involves the use of a technique we call
leap-frog linking between hops of a packet as it is routed,
for it allows parties in a broadcast tree to authenticate
messages between every other member in a path from the
source. This scheme achieves data integrity using hashed
message authentication codes (HMACs) in broadcast mes-
sages under the assumption that there are no two adjacent
malicious routers that are colluding with each other. Such
a strategy would even be effective, for example, for broad-
casts and multicasts in peer-to-peer networks, which are no-
toriously insecure but are likely to experience few collusion
attacks. Our algorithms allow a router to receive messages
from an untrusted neighbor in such a way that the neighbor
cannot modify the message contents without being detected.
The number of keys used per router in this scheme is at most
its network degree, which is the minimum storage need per
device just to route messages.

The second approach is adiverse key distribution
scheme that uses a small number of keys per device and
HMACs to achieve end-to-end integrity checking as well as
improved hop-by-hop integrity checking for network broad-
casts and multicasts. The main idea of this approach is to
distributeL keys to each router in a diverse way, so that the
intersection of the sets of keys between two routers is nei-
ther too small nor too big (we make this notion more formal
in the paper). This approach differs from previous random-
ized key pre-distribution schemes [3, 7, 8], in that it is based
on the use ofL sets ofcoloredkeys, with devices picking
one color from each set, rather than a large pool of similar
keys from which devices choose a subset. We show that our
distribution scheme can in fact be done using only a loga-
rithmic or fewer number of keys. Such a distribution allows
a filtering scheme, whereby routers can be confident of the
data integrity of packets, subject to the (stronger) assump-
tion that at mostΩ(log L) malicious routers are colluding
with each other to spoof this filtering scheme. It also guar-
antees that even though we are using only a small number
of keys for authentication, every node in a broadcast or mul-
ticast will be guaranteed to be able to share a key with the
sender (in fact, they will share several keys).

Our protocols do not use encryption (which, of course,
can be added as an optional security enhancement); the
only cryptographic primitive utilized is the use of one-
way hash functions in hashed message authentication codes
(HMACs). This usage allows our algorithms to be consid-
erably faster than those based on traditional public-key sig-
nature schemes.

2 Leap-Frog Packet Linking

We begin by discussing a low-cost way of making broad-
cast flooding and multicast routing more secure. Our
method involves the use of a novel “leap frog” message-
authenticating scheme.

2.1 The Network Framework

Let G = (V, E) be a network whose vertices inV are
considered as routers and whose edges inE are connec-
tions between these routers. We assume that the routers
have some convenient addressing mechanism that allows
us without loss of generality to assume that the routers are
numbered1 to n. We assume the network allows for the
routing or flooding of messages. We also assume (for the
basic leap-frog scheme) that the network topology is static.

For completeness, let us briefly review the broadcast
flooding algorithm, so that we can identify how data in-
tegrity plays an important role in its correctness. The flood-
ing algorithm is initiated by some routers creating a mes-
sageM that it wishes to send to every other router inG. The
typical way the flooding algorithm is implemented is thats
incrementally assigns sequence numbers to the messages it
sends. So that if the previous message thats sent had se-
quence numberj, then the messageM is sent with sequence
numberj + 1 and an identification of the message source,
that is, as the message(s, j +1, M). Likewise, every router
x in G maintains a cacheSx that stores the largest sequence
number encountered so far from each recently-encountered
broadcast source router inG. Thus, any time a routerx re-
ceives a message(s, j+1, M) from an adjacent routery the
routerx first checks ifSx[s] < j + 1. If so, thenx assigns
Sx[s] = j + 1 andx sends the message(s, j + 1, M) to all
of its adjacent routers, except fory. If the test fails, how-
ever, thenx assumes it has handled this message before and
it discards the message.

If all routers perform their respective tasks correctly, then
the flooding algorithm will send the messageM to all the
nodes inG. Indeed, if the communication steps are syn-
chronized and done in parallel, then the messageM propa-
gates out froms in a breadth-first fashion.

If the security of one or more routers is compromised,
however, then the flooding algorithm can be successfully
attacked. For example, a routert could spoof the routers
and send its own message(s, j + 1, M ′). If this message
reaches a routerx before the correct message, thenx will
propagate this imposter message and throw away the correct
one when it finally arrives. Likewise, a corrupted router can
modify the message itself, the source identification, and/or
the sequence number of the full message in transit. Each
such modification has its own obvious bad effects on the
network. For example, incrementing the sequence number



to j+m for some large numberm will effectively block the
nextm messages froms. Indeed, such failures have been
documented (e.g., [32, 31]), although many such failures
can be considered router misconfigurations not malicious
intent. Of course, from the standpoint of the source routers
the effect is the same independent of any malicious intent—
all flooding attempts will fail untils completesm attempted
flooding messages ors sends a sequence number reset com-
mand (but note that the existence of unauthenticated reset
commands itself presents the possibility for abuse).

2.2 The Basic Leap-Frog Protocol

One possible way of avoiding the possible failures that
compromised or misconfigured routers can inflict on a
flooding algorithm is to take advantage of a public-key in-
frastructure defined for the routers. In this case, we would
haves digitally sign every flooding message it transmits,
and have every router authenticate a message before send-
ing it on [24, 25]. Unfortunately, this approach is more com-
putationally expensive than a scheme based instead on cryp-
tographic hashing. For example, benchmarking tests (e.g.,
see [6, 26]) support the working assumption that crypto-
graphic hash functions are 5,000 to 10,000 times faster than
most public-key signature verification algorithms and 500
to 1,000 times faster than RSA signature verification with a
simple public exponent (such as216 + 1).

Our scheme is based on a light-weight cryptographic
hashing strategy, which we callleap-froglinking. The ini-
tial setup for our scheme involves a simple key distribution.
Specifically, we define for each routerx the setN(x), which
contains the vertices (routers) inG that are neighbors ofx
(which does not include the vertexx itself). That is,

N(x) = {y: (x, y) ∈ E andy 6= x}.

The security of our scheme is derived from a secret keyk(x)
that is shared by all the vertices inN(x), but not byx itself.
These keys can be created in a setup phase, when the rout-
ing devices are first deployed, or can be maintained by a
network administrator. Note, in addition, thaty ∈ N(x) if
and only ify ∈ N(y).

Now, whens wishes to send the messageM as a flooding
message to a neighboring router,x, it sends

(s, j + 1, M, h(s||j + 1||M ||k(x)), 0),

whereh is a cryptographic hash function that is collision
resistant (e.g., see [28]). Any routerx adjacent tos in G can
immediately verify the authenticity of this message (except
for the value of this application ofh), for this message is
coming tox along the direct connection froms. But nodes
at distances greater than1 from s cannot authenticate this
message so easily when it is coming from a router other than

s. Fortunately, the propagation protocol will allow for all of
these routers to authenticate the message froms, under the
assumption that at the malicious routers along routing paths
do not collaborate during the computation.

Let (s, j + 1, M, h1, h2) be the message that is received
by a routerx on its link from a routery. If y = s, thenx
is directly connected tos, andh2 = 0. But in this casex
can directly authenticate the message, since it came directly
from s. In general, for a routerx that just received this mes-
sage from a neighbory with y 6= s, we inductively assume
thath2 is the hash valueh(s||j + 1||M ||k(y)). Sincex is
in N(y), it shares the keyk(y) with y’s other neighbors;
hence,x can authenticate the message fromy by usingh2.
This authentication is sufficient to guarantee correctness,
assuming no more than one router is corrupted at present,
even thoughx has no way of verifying the value ofh1. So
to continue the propagation assuming that flooding should
continue fromx, the routerx sends out, to the next router
w on the path (in the case of a unicast) or eachw that isx’s
neighbor (in the flooding case), the message

(s, j + 1, M, h(M ||j + 1||k(w)), h1).

Note that this message is in the correct format for each such
w, for h1 should be the hash valueh(s||j + 1||M ||k(x)),
whichw can immediately verify, since it knowsk(x). Note
further that, just in the flooding case, the first time a router
w receives this message, it can process it, updating the se-
quence number fors and so on. (See Figure 1.)
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Figure 1. Illustrating leap-frog packet linking.
We show the hops in the route from A to E us-
ing solid lines. The leap-frog linking in the in-
tegrity validation is shown using dotted lines.

This simple protocol has a number of performance ad-
vantages. First, from a security standpoint, inverting or find-
ing collisions for a cryptographic hash function is compu-
tationally difficult. Thus, it is infeasible for a router to fake
a hash authentication value without knowing the shared key
of its neighbors, should it attempt to alter the contents of the
messageM .

Another advantage of this protocol is its computational
efficiency. The only additional work needed for a router
x to complete its processing for a flooding message is for



x to perform one hash computation for each of the edges
of G that are incident onx. That is,x need only perform
degree(x) hash computations, wheredegree(x) denotes the
degree ofx. Likewise,x need only storedegree(x) keys in
order to perform this protocol (which is the minimum stor-
age needed just to forward broadcast flooding messages).
Typically, for communication networks, the degree of a
router is kept bounded by a constant. Thus, this work and
storage compares quite favorably in practice to what would
be required to verify a full-blown digital signature from a
message’s source.

The leap-frog routing process can detect a router mal-
function in the flooding algorithm, for any routery that
does not follow the protocol will be discovered by one of
its neighborsx. Assuming thatx andy do not collude to
suppress the discovery ofy’s mistake in this case, thenx
can report tos or even a network administrator that some-
thing is potentially wrong withy. For in this case,y has
clearly not followed the protocol. In addition, note that this
discovery will occur in just one message hop fromy.

2.3 Chromatic Leap-Frog Packet Linking

In some contexts it might be too expensive for a router
to perform as many hash computations as it has neighbors
in the case of a broadcast flooding message. Thus, we
might wonder whether it is possible to reduce the number of
hashes that an intermediate router needs to do to one even
for flooding messages. In this subsection we describe how
to achieve such a result, albeit at the expense of increas-
ing the size of the message that is sent (but still keeping the
storage per device to be at most equal to its network degree).
Since our method is based on a coloring of the vertices ofG,
we refer to this scheme as thechromatic leap-frogapproach.

In this scheme, we change the preprocessing step to that
of computing a small-sized coloring of the vertices inG
so that no two adjacent nodes are assigned the same color.
Algorithms for computing or approximating such colorings
are known for a wide variety of graphs. For example, ev-
ery tree can be colored with two colors. Such colorings
might prove useful in applying our scheme to multicasting
algorithms, since multicasting communications often take
place in trees. In addition, every planar graph can be col-
ored with four colors with some difficulty and easily with
five. Such graphs could arise naturally from distributed
sensor networks. Finally, it is easy to color a graph that
has maximum degreed using at mostd + 1 colors by a
straightforward greedy algorithm. This last class of graphs
is perhaps the most important for general networking ap-
plications, as most communications networks bound their
degree by a constant.

Let the set of colors used to colorG be simply numbered
from 1 to c and let us denote withVi the set of vertices in

G that are given colori, for i = 1, 2, . . . , c, with c ≥ 2.
As a preprocessing step, we create a secret keyki for the
color i. We do not share this color with the members ofVi,
however. Instead, we shareki with all the vertices that are
not assigned colori.

When a routers wishes to route or flood a messageM
with a new sequence numberj + 1, in this new secure
scheme, it creates a full message as

(s, j + 1, M, h1, h2, . . . , hc),

where eachhi = h(s||j + 1||M ||ki). There is one problem
for s to build this message, however. It does not know the
value ofki, wherei is the color fors. So, it will set that
hash value to0. Then,s sends this message to each of its
neighbors.

Suppose now that a routerx receives a message of the
form

(s, j + 1, M, h1, h2, . . . , hc)

from its neighbors. In this casex can verify the au-
thenticity of the message immediately, since it is coming
along the direct link froms. Thus, in this case,x does not
need to perform any hash computations to validate the mes-
sage. Still, there is one hash entry that is missing in this
message (and is currently set to zero): namely,hi = 0,
wherei is the color ofs. In this case, the routerx com-
puteshj = h(s||j + 1||M ||kj), since it must necessarily
share the value ofkj , by the definition of a vertex col-
oring. The routerx then sends out the (revised) message
(s, j + 1, M, h1, h2, . . . , hc).

Suppose then that a routerx receives a message(s, j +
1, M, h1, h2, . . . , hc) from its neighbory 6= s. In this case
we can inductively assume that each of thehi values is de-
fined. Moreover,x can verify this message by testing if
hi = h(s||j + 1||M ||ki), wherei is the color fory. If this
test succeeds, thenx accepts the message as valid and sends
it on to all of its neighbors excepty, to continue the broad-
cast. In this scheme, the message is easily authenticated,
sincey could not manufacture the value ofhi.

If a router modifies the contents ofM , the identity of
s, or the value ofj + 1, this alteration will be discovered
in one hop. Nevertheless, we cannot immediately implicate
a routerx if its neighbory discovers an invalidhi value,
wherei is the color ofx. The reason is that another router,
w, earlier in the flooding could have simply modified this
hi value, without changings, j + 1, or M . Such a modifi-
cation will of course be discovered byy, buty cannot know
which previous router performed such a modification. Thus,
we can detect modifications to content in one hop, but we
cannot necessarily detect modifications tohi values in one
hop. Even so, if there is at most one corrupted router inG,
then we will discover a message modification if it occurs.
If the actual identification of a corrupted router is important



for a particular application, however, then it might be better
to use the non-chromatic leap-frog scheme, since it catches
and identifies a corrupted router in one hop.

2.4 Dealing with Network Updates

Since networks are rarely static, it is natural to address
the computations that are needed for leap-frog linking to
deal with network updates. Since there is no revocation
mechanism in our scheme, deleting nodes and edges from
the network requires no changes.

Inserting new nodes and edges with respect to the ba-
sic leap-frog linking scheme requires some work, however.
Adding a new nodex, with neighbor setN(x), to the net-
work requires that the administrator compute a new key
k(x) and distribute it to all the nodes inN(x). Likewise,
adding a new edge(x, y) to the network requires that the
administrator informx of k(y) and informy of k(x). These
communications are assumed to be done out of band (or us-
ing encryption).

Inserting a new nodex with respect to chromatic leap-
frog linking is more efficient than in the basic scheme. In
this case, we assignx a colori that is different from all of
x’s neighbors and we communicate tox all the of color keys
except for the keyki.

Adding a new edge(x, y) in the chromatic scheme is
potentially more problematic. Ifx andy are colored dif-
ferently, then there is nothing to do, with respect to the keys
stored atx andy. The previously-distributed color keys will
still work. But if x andy are currently the same color, then
we need to recolor the graph and distribute new color keys
based on this new coloring.

Thus, the leap-frog schemes are best suited to contexts
where the network topology is fairly static. Incidentally,
our scheme based on diverse key distributions, which we
describe in Section 3, is more tolerant of arbitrary network
topology changes.

2.5 Evaluation and Analysis

The principle advantage of the leap-frog scheme is that
allows for immediate integrity checking, without waiting
for the future revelation of the pre-image of a one-way
hash function (as in the previous schemes based on hash
chains [13, 35]). Thus, comparing with a previous solution
for immediate integrity checking, we compare our solutions
with the public-key signature scheme of Perlman [24] (see
also [25]). In either case, whether we are using an HMAC
or digital signature to authenticate a message, we are most
likely going to be first producing a digest of the message us-
ing a cryptographic hash function. Table 1 shows estimates,
based on the Crypto++ 5.2.1 Benchmarks [6], of the time

needed to construct such a digest, depending on the size of
the messageM .

Alg. 10 B 100 B 1 KB 10 KB 100 KB
MD5 .046 .46 4.6 46 460

SHA1 .147 1.47 14.7 147 1,470

Table 1. Running times, in microseconds, for
computing a digest of a message of various
sizes, based on the Crypto++ 5.2.1 Bench-
marks [6].

Moreover, since the prime alternative to the leap-frog
scheme is full digital signatures, we show in Table 2 the
benchmark times for digital signatures.

Alg. Sign Verify
RSA 1024 4,750 180
RSA 2048 28,130 450
DSA 1024 2,180 2,490

Table 2. Digital signature computation and
verification times, in microseconds, based on
the Crypto++ 5.2.1 Benchmarks [6], for a di-
gested message.

Efficiency. In the standard leap-frog scheme, a router
needs to perform a number of hash computations equal to
its degree in order to forward a broadcast message to its
neighbors. That is, a routerx processing a broadcast per-
formsd cryptographic hashes, whered is the number ofx’s
neighbors in the network. Using the heuristic that comput-
ing a cryptographic hash function is1, 000 times faster than
a digital signature check, we can conclude for the additional
time required for authenticating a digest, that leap-frog in-
tegrity checking is faster than digital signature checking
whenever the degree of routers in the network is less than
1, 000, which should be the case in most instances. Be-
ing more specific, each of thed hashes must be performed
on a string of roughly 50 bytes. Table 3 shows the esti-
mated time needed to perfom these hashes as a function of
d, the degree of the router. The setup for performing the ba-
sic leap-frog scheme is just a single hash, of course, which
is benchmarked as .23 microseconds for MD5 or .74 mi-
croseconds for SHA1 [6].

The additional time for the routing step in the chro-
matic version of leap-frog integrity checking will always
be faster than digital signature checking, of course, since
each router need perform only one hash computations per



5 10 20 50 100 200
MD5 1.15 2.3 4.6 11.5 23 46
SHA1 3.7 7.4 14.7 36.8 73.5 147

Table 3. Times for performing d hashes on
50 B data, in microseconds, based on the
Crypto++ 5.2.1 Benchmarks [6].

broadcast message—either to authenticate the message us-
ing the color key of the sending router (which that router
doesn’t know) or one to produce an HMAC with the color
key of the sending router (in the direct connection to the
sender case). That is, the verfication step for the chromatic
leap-frog scheme involves computing a single hash, which
is benchmarked as .23 microseconds for MD5 or .74 mi-
croseconds for SHA1 [6]. The setup step for the chromatic
leap-frog scheme requiresd−1 hashes, whered is the num-
ber of colors used in our scheme. Thus, we can use Table 3
to estimate the additional setup time for performing a broad-
cast in the chromatic leap-frog scheme.

Like standard digital signatures, the leap-frog scheme re-
quires a non-trivial static key pre-distribution to the routers,
namely each of the keys for each neighbor set. Such a distri-
bution scheme might be appropriate for a LAN or even a set
of wireless base stations. Thus, leap-frog checking would
be an efficient means to achieve integrity in network broad-
casts. But leap-frog checking is not an efficient solution in
dynamic networks, including peer-to-peer and ad hoc net-
works, where routers can be added to the network dynam-
ically. For such dynamic scenarios, the integrity checking
scheme we describe in Section 3 would be a better choice.

Security. We claim that our leap-frog schemes can detect
the existence of a malicious router that attempts to modify a
broadcast message from a different sender or that attempts
to inject a spoofed message with a source ID other than it-
self. This claim can of course be extended to multiple ma-
licious routers, assuming that they do not collude (that is,
a malicious router is willing to implicate a malicious router
other than itself). Of course, if the network is not bicon-
nected and a malicious router is an articulation point, then
it can drop messages without being detected. So let us as-
sume that the network is biconnected (which is usually the
case in practice).

Assuming that a routerx has no knowledge of the key
k(x) shared byx’s neighbors (or the keyki corresponding
tox’s color), the message sent byx contains a keyed HMAC
that uses a key unknown tox, but known to the predecessor
and successor ofx on this path. Thus, without inverting a
cryptographic hash function, ifx modifies a broadcast mes-
sage or ifx attempts to send a spoofed message, it will be

caught.
Of course, if two malicious routersx andy are adjacent

and colluding, thenx can change a message and compute an
HMAC for it usingk(y). If y is then willing to compute an
HMAC for this changed message using a keyk(z) and send
this to a third routerz, thenz will accept the false message.
Indeed, if the colluding and adjacent routersx andy simply
report their respective neighbor keysk(x) andk(y) to the
other, then eitherx or y can create a falsified message with-
out any additional help from the other router. So we must
assume in the leap-frog scheme that malicious routers do
not collude. This is likely a reasonable assumption in prac-
tice, and we should not be surprised that this scheme has
reduced security over a scheme based on public-key digital
signature verification, which would be many times slower.

3 Diverse Key Distribution

Let us now discuss the technique ofdiversekey distribu-
tion. As mentioned above, the main idea of this technique
is to distribute a small number of keys to each router so that
every pair of routers shares a set keys, but it would take a
considerable number of routers to collude to cover all of
these keys.

3.1 Achieving Diversity Through Overlapping
and Uncensorable Key Sets

Let us begin with a few definitions. LetK be a set of
keys that are to be distributed to a setS of n devices so that
each devicei in S will store a setKi of L keys fromK.
We say that such a key distribution isd-overlappingif the
number of keys shared by any two devices is at leastd, that
is,

|Ki ∩ Kj | ≥ d,

for i 6= j. We define such a key distribution to beg-
uncensorable1 if, for any two devicesi andj, the number
of other devices needed to cover all of the keys in the inter-
section ofi andj’s key sets is at leastg, that is, we need at
leastg sets,Ki1 ,Ki2 , . . . ,Kig

so that

Ki ∩ Kj ⊆ Ki1 ∪Ki2 ∪ · · · ∪ Kig
.

A key distribution{K1,K2, . . . ,Kn} is (d, g)-diverseif it
is d-overlapping andg-uncensorable. The goal, of course,
is to construct a(d, g)-diverse key distribution of small size,
L, but with d andg being as large as possible. Before we
describe a way of constructing such a key distribution, let us
describe how we could use it to achieve improved integrity
in network routing.

1Our definition of ag-uncensorable key distribution is equivalent to
a (2, g − 1)-cover-free set system, using the terminology of Stinsonet
al. [30].



3.2 Broadcasting among Devices Having a Diverse
Key Distribution

A (d, g)-diverse key distribution allows us to have a rich
and robust set of keys to use in HMACs for any message
that is to be broadcast in our network. For example, sup-
pose a device,i, wants to broadcast a messageM . The
devicei can simply use all of the keys in itsKi set, creating
an HMAC for each one (this requiresL calls to a one-way
hash function). A devicej receiving the messageM and its
HMACs can then be assured that it has at leastd keys in its
Kj set that it shares withi; hence, these keys can be used to
validate at leastd of the HMACs thati sent (this takes be-
tweend andL calls to a one-way hash function). Moreover,
should all these HMACs (using keys inKi ∩ Kj) turn out
to be valid, then the devicej can place considerable trust in
the integrity of the messageM , for it would take at leastg
of the routers on the path fromi to j to collude in order to
changeM to some alternateM ′ in way that could still be
validated with all of the keys inKi ∩ Kj . (See Figure 2.)

Alice

Bob

`

Eve

A

E

B

Figure 2. An illustration of using HMACs with
a diverse key distribution. Notice that the
keys B1 and C0 are shared between Alice and
Bob but not Eve.

3.3 Achieving Greater Integrity Through Inter-
mediate Validations

The above scheme has the nice property that honest in-
termediate routers, sitting between the devicesi andj, need
do no additional work for the sake of validation. They just
need to forward the packets fromi to j. We can optionally
add intermediate validation to our scheme, however, with
modest overhead. This would allow us, for example, to stop
falsified packets supposedly being sent fromi to j long be-
fore they reachj. The idea would be to have each inter-
mediate routerm check the validity of the message coming
from i using the keys in the setKi∩Km (or even just a small
random sample from this set, since this validation will be re-

peated by the other honest routers on the path fromi to j). If
the devicem discovers that the message has been compro-
mised, then devicem can simply discard the packet, saving
devicej (and the other downstream routers) the trouble.

3.4 Constructing a Diverse Key Distribution

Of course, the efficiency of using HMACs with a diverse
key distribution depends on our being able to create such
a distribution using a small universe,K, of keys. That is,
we would likeL to be small, while allowing ford andg to
be relatively large. Fortunately, we can create such a key
distribution without too much overhead, for we show in this
section that can distribute to each routeri a suitably-chosen
random setKi of L keys, taken from a universeK of 2L
keys, in way that is likely to be(d, g)-diverse, whereL is
Θ(log n), d is Ω(log n), andg is Ω(log L).

Such a distribution would go as follows. We begin by
setting L as a security parameter, but keepingL to be
O(log n), wheren is the number of routers. For example,
as we show later in this section, we could chooseL to be
20 to achieve a 97% likelihood of detecting any falsified
packet, or we could setL to be8dlog ne to achieve a near
certain probability of detecting any falsified packet. Given
the security parameterL, we createK to be a set of2L
randomly-chosen keys. This will be our key universe.

We pair up the keys inK into L pairs, with one mem-
ber of each pair being viewed as a “0-bit” key and the
other being viewed as a “1-bit” key. We number these pairs
1, 2, . . . , L. We then assign to each devicei a random string
of L bits, b1b2 . . . bL, and we build the setKi by selecting
the keys fromK that correspond to the bits in this string.
That is, if bl = 0, then we include inKi the l-th 0-bit key;
otherwise, ifbl = 1, then we include inKi the l-th 1-bit
key. This simple random selection process is related to the
randomized bucketed key assignment scheme of Garayet
al. [9] and is likely to give us a diverse key distribution.

Theorem 1: For any pair of devicesi andj, |Ki ∩ Kj | ≥
L/8, with high probability. The probability this inequality
doesn’t hold is less than1/2L/4.

Proof: Since the keys inKi andKj are selected according
to the bits in randomL-bit strings, the expected size of|Ki∩
Kj | is L/2. By a Chernoff Bound (e.g., see [19]),

Pr(|Ki ∩ Kj | < L/8) <

(

4

e3

)L/8

,

wheree is the base of the natural logarithm. Using the ap-
proximatione = 2.71828 . . ., we can simplify this as

Pr(|Ki ∩ Kj | < L/8) <
1

2L/4
.

ut



So, for example, if we like to guarantee that any two
routers share at least2 keys with 97% likelihood, then we
should chooseL ≥ 20. Likewise, if want to guarantee that
two routers sharelog n keys with probability at least

1 −
1

n2
,

then we should chooseL ≥ 8 logn. Thus, we can use this
theorem and the security parameterL to derive bounds on
thed-overlap of our key distribution. The next theorem al-
lows us to derive similar bounds on theg-uncensorability of
our key distribution.

Theorem 2: For any subsetK′

i of N keys taken from a set
Ki, the expected number of otherKj sets needed to cover
K′

i is Ω(log N).

Proof: Since the odds of matching a particular key afterm
tries is1 − 1/2m, the probability of matching allN keys
afterm tries is

(

1 −
1

2m

)N

.

For this probability to reach1/2, m needs to beΩ(log N).
ut

So, we can conclude, then, that a randomly chosen key
distribution, as described above, will be likely to be(d, g)-
diverse, where we can, for example, choose the parameters
so thatL is Θ(log n), d is Ω(log n), andg is Ω(log L).

3.5 Dealing with Network Updates

Unlike our leap-frog scheme, the diverse key distribu-
tion scheme is quite tolerant of network updates. Adding
a new nodex to the network requires only that we provide
x with L keys so as to maintain the(d, g)-diverse property
for the set of distributed keys. The randomized construction
described above does this, with high probability (assuming
the current number of nodes is proportional to the original
number), and it does not require any changes to existing
keys. Likewise, adding or removing edges in the network
requires no changes to the key sets.

3.6 Evaluation and Analysis

Let us analyze the efficiency and security of our diverse
key distribution scheme.

Efficiency. In terms of efficiency, the prime competitor
with our key distribution scheme is the key distribution
scheme of Eschenauer and Gligor [8]. Their scheme dif-
fers from ours in two ways. First, they create a large

key pool from which they will sample keys for each de-
vice. For example, they advocate creating a key pool of
size roughly10n for use withn devices. Our key pool is
much smaller, as we advocate a key pool of sizeO(log n)
for creating a(log n, log log n)-diverse distribution of keys.
Thus, the key-pool overhead in our scheme improves on
that of Eschenauer and Gligor [8] by an exponential fac-
tor. To be fair, we should mention that the goals of Es-
chenauer and Gligor’s scheme are different than ours, since
their scheme is focused on secure point-to-point message
integrity, whereas we are interested in this paper on network
broadcast integrity.

Second, Eschenauer and Gligor [8] perform key distri-
bution by having devices select a set of keys randomly from
the pool, whereas we assign keys according to a random
bit ID assigned to the device. This difference is admittedly
subtle, but it allows for the possibility in our scheme that
a system manager could use a deterministically-chosen set
of error-correcting codes to determine the keys per device,
thereby avoiding the use of randomization. We leave as an
open problem, therefore, the construction of a set of error-
correcting codes that determine a(d, g)-diverse set of keys
for large values ofd andg.

In terms of implementation, the setup for a broadcast in
our scheme using a(d, g)-diverse key distribution requires
g hashes, and the verification step requiresd hashes, each
on strings of size roughly 50 bytes. Thus, we can reuse the
estimates from Table 3 to estimate both the setup and verifi-
cation times for this scheme. For example, ifd is 20 andg is
50, then the additional setup time is 36.8 microseconds for
SHA1 hashing and the additional time for the verification
step is 14.7 microseconds.

Security. As mentioned above, if the nodes in our net-
work have a(d, g)-diverse set of keys, then, in order to in-
ject a spoofed message or modify an existing message, an
adversary would have to captureg key sets (or haveg nodes
collude to perform the requested action). Moreover, in or-
der to falsify the broadcast of a message sent from nodei
and received by nodej, the set ofg malicious nodes would
have to be positioned along the path fromi to j.

4 Applications

In this section we detail how the above data integrity
techniques for routing packets can be used in conjunction
with simple data validation protocols for securing the well-
known link-state and distance-vector algorithms for build-
ing routing tables.



4.1 Achieving Integrity in the Setup for Link-
State Routing

Having discussed how to efficiently secure a broadcast
flooding message, we observe that this approach can be
used for the setup of the link-state algorithm. This algo-
rithm is the basis of the well-known and highly-used OSPF
routing protocol. In this algorithm, we build at each router
in a networkG a table, which indicates the distance to every
other router inG, together with an indication of which link
to follow out of x to traverse the shortest path to another
router. That is, we storeDx andCx at a routerx so that
Dx[y] is the distance to routery from x andCx[y] is the
link to follow from x to traverse a shortest path fromx to y.

These tables are built by a simple setup process, which
we can now make secure using the leap-frog or diverse key
distribution schemes described above. The setup begins by
having each routerx poll each of its neighbors,y, to deter-
mine the state of the link fromx to y. This determination
assigns a distance weight to the link fromx to y, which
can be0 or 1 if we are interested in simply if the link is
up or down, or it can be a numerical score of the current
bandwidth or latency of this link. In any case, after each
routerx has determined the states of all its adjacent links, it
floods the network with a message that contains a vector of
all the distances it determined to its neighbors. Under our
protected scheme, we now perform this flooding algorithm
using the leap-frog, chromatic leap-frog, or diverse key dis-
tribution methods. Once this computation completes cor-
rectly, we compute the vectorsDx andCx for each routerx
by a simple local application of the well-known Dijkstra’s
shortest path algorithm (e.g., see [5, 10]).

Thus, simply by utilizing a secure flooding algorithm we
can secure the setup for the link-state routing algorithm. Se-
curing the setup for another well-known routing algorithm
takes a little more effort than this, however, as we explore
in the next section.

4.2 Achieving Integrity in the Setup for Distance-
Vector Routing

Another important routing setup algorithm is the
distance-vector algorithm, which is the basis of the well-
known RIP protocol. As with the link-state algorithm, the
setup for distance-vector algorithm creates for each router
x in G a vector,Dx, of distances fromx to all other routers,
and a vectorCx, which indicates which link to follow from
x to traverse a shortest path to a given router. Rather than
compute these tables all at once, however, the distance vec-
tor algorithm produces them in a series of rounds.

4.2.1 Reviewing the Distance-Vector Algorithm

Initially, each router setsDx[y] equal to the weight,w(x, y),
of the link fromx to y, if there is such a link. If there is no
such link, thenx setsDx[y] = +∞. In each round each
routerx sends its distance vector to each of its neighbors.
Then each routerx updates its tables by performing the fol-
lowing computation:

for each routery adjacent tox do
for each other routerw do

if Dx[w] > w(x, y) + Dy[w] then
{It is faster to first go toy on the way tow.}
SetDx[w] = w(x, y) + Dy[w]
SetCx[w] = y

end if
end for

end for

If we examine closely the computation that is performed
at a routerx, it can be modeled as that of computing the
minimum of a collection of values that are sent tox from
adjacent routers (that is, thew(x, y) + Dy[w] values), plus
some comparisons, arithmetic, and assignments. Thus, to
secure the distance-vector algorithm, the essential computa-
tion is that of verifying that the routerx has correctly com-
puted this minimum value. We shall use the leap-frog idea
to achieve this goal.

4.2.2 Securing the Setup for the Distance-Vector Algo-
rithm

Since the main algorithmic portion in testing the correctness
of a round of the distance-vector algorithm involves validat-
ing the computation of a minimum of a collection of values,
let us focus more specifically on this problem. Suppose,
then, that we have a nodex that is adjacent to a collection
of nodesy0, y1, . . ., yd−1, and each nodeyi sends tox a
valueai. The taskx is to perform is to compute

m = min
i=0,1,...,d−1

{ai},

in a way that all theyi’s are assured that the computation
was done correctly. As in the previous sections, we will as-
sume that at most one router will be corrupted during the
computation (but we have to prevent and/or detect any fall-
out from this corruption). In this case, the router that we
consider as possibly corrupted isx itself. The neighbors of
x must be able therefore to verify every computation that
x is to perform. To aid in this verification, we assume a
preprocessing step has shared a keyk(x) with all d of the
neighbors ofx, that is, the members ofN(x), but is not
known byx.

The algorithm thatx will use to computem is the trivial
minimum-finding algorithm, wherex iteratively computes



all the prefix minimum values

mj = min
i=0,...,j

{ai},

for j = 0, . . . , d − 1. Thus, the output from this algorithm
is simplym = md−1. The secure version of this algorithm
proceeds in four communication rounds:

1. Each routeryi sends its valueai to x, as Ai =
(ai, h(ai||k(x)), for i = 0, 1, . . . , d − 1.

2. The routerx computes themi values and sends the
message(mi−1, mi, Ai−1 mod d, Ai+1 mod d) to each
yi. The validity of Ai−1 mod d and Ai+1 mod d) is
checked by each suchyi using the secret keyk(x).
Likewise, eachyi checks thatmi = min{mi−1, ai}.

3. If the check succeeds, each routeryi sends its
verification of this computation tox as Bi =
(“yes′′, i, mi, h(“yes′′||mi||i||k(x))). (For added se-
curity yi can seed this otherwise short message with a
random number.)

4. The router x sends the message
(Bi−1 mod d, Bi+1 mod d) to each yi. Each such
yi checks the validity of these messages and that they
all indicated “yes” as their answer to the check onx’s
computation. This completes the computation.

In essence, the above algorithm is checking each step of
x’s iterative computation of themi’s. But rather than do
this checking sequentially, which would takeO(d) rounds,
we do this check in parallel, inO(1) rounds.

5 Conclusion

We have described two techniques—leap-frog packet
linking and diverse key distributions—for improving the in-
tegrity of network broadcasts and multicasts, and we have
given applications of these techniques to the setup algo-
rithms for the link-state and distance vector routing algo-
rithms.

During routing phases, these two techniques offer use-
ful tradeoffs. Leap-frog packet linking adds only two ad-
ditional values to the payload of a packet and can tolerate
no adjacent colluding malicious routers on a path. The di-
verse key distribution technique, on the other hand, adds
up to O(log n) values to the data payload, but can toler-
ate small colluding sets of malicious routers. Both of these
techniques, however, provide data integrity at low storage
and computational overhead per device.
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