
Chapter 16

LEAP-UCD-2017 Centrifuge Test at KAIST

Seong-Nam Kim, Jeong-Gon Ha, Moon-Gyo Lee, and Dong-Soo Kim

Abstract Since the earthquakes of Niigata (Japan, 1964) and Alaska (USA, 1964),

the dangers of liquefaction have been highlighted and research into liquefaction has

been actively performed. Particularly, as part of the provision and verification of

liquefaction data through physical modeling by using centrifuge and numerical

prediction, the Liquefaction Experiments Analysis Project (LEAP) was launched.

The purpose of the recent LEAP-UCD-2017, in which nine facilities participated,

was to evaluate the uncertainty and repeatability of response in a previous study for

LEAP-GWU-2015. The ground models were prepared in a rigid box with a 5�

sloping model with relative densities of 85 and 50% by using Ottawa sand. The

models were subjected to nondestructive and destructive motions based on a ground

motion consisting of a tapered 1 Hz sine wave. This paper describes not only the

experimental procedure in detail but also the difference in the sensor response of the

ground model corresponding to the relative density of 85 and 50% during liquefac-

tion. Moreover, it provides data for permanent horizontal–vertical displacement

through liquefaction and for validation of the numerical model.
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16.1 Introduction

Liquefaction is a phenomenon in which the strength and stiffness of soil is reduced

because of the occurrence of earthquakes or other loading. Damage and ground

failure due to liquefaction remain a major concern to the geotechnical engineers.

Various methods, such as field investigation and laboratory tests, have been

conducted to evaluate the phenomenon and consequences of liquefaction. Simulta-

neously, studies involving various numerical analyses have produced various

insights on liquefaction.

Constitutive models and numerical analysis techniques that simulate complex

liquefaction phenomena must be validated using well-defined experimental results

(Ueda and Iai 2018). Under such a demand, a collaborative study between numerical

modelers and centrifuge experimenters was conducted 20 years ago, termed

VELACS (Arulanandan and Scott 1993–1994). The Liquefaction Experiments and

Analysis Project (LEAP) is an ongoing project to reduce the inconsistency in the

experimental results and to provide high-quality experimental results to numerical

modelers. In LEAP-GWU-2015, various institutions conducted the centrifuge tests

on liquefaction of sloping ground in a rigid box (Manzari et al. 2015).

Following LEAP-GWU-2015, the nine facilities participated in LEAP-2017

which includes RPI, Kyoto University, KAIST, Zhejiang University, UC Davis,

Cambridge University, National Central University, IFSTTAR, and Ehime Univer-

sity. The purpose of LEAP-2017 was to characterize the sensitivity of the liquefac-

tion phenomena according to the relative density of the sloping ground and input

motion intensity. Through centrifuge model tests, the displacement and deformation

of the sloping ground were mainly evaluated, and accelerations and pore water

pressure records were compared.

Researchers from KAIST developed a centrifuge facility with 5 m radius and

240 g-ton capacity in 2009, and participated in LEAP 2017. By considering the

various conditions of LEAP-2017, KAIST researchers selected two cases of different

relative densities (dense and loose) with the same input motion intensity of 0.15 g.

This paper provides details of the centrifuge model tests conducted by KAIST for

LEAP 2017, including facility and equipment, test procedure, and results.

16.2 Centrifuge Facility and Earthquake Simulator

at KAIST

A dynamic geotechnical centrifuge facility at KAIST was utilized to perform tests

for LEAP 2017. An electrohydraulic earthquake simulator was mounted on the

centrifuge with a platform radius of 5 m and a maximum capacity of 240 g-tons.

The main body of the centrifuge has the unique feature of an automatic balancing

system and includes parts, such as fluid rotary joints, slip rings, and a fiber optic
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rotary, for general testing purposes (Kim et al. 2013a). The centrifuge test of KAIST

was conducted with a gravitational acceleration of 40 g.

Target excitations were applied using an earthquake simulator that adopted a

dynamic self-balancing technique to eliminate a large portion of the undesired

reaction forces and vibrations transmitted to the main body. The earthquake simu-

lator was designed to operate at up to 100 g centrifugal acceleration, and the base

shaking acceleration can be exerted to a maximum value of 20 g at 40 g of

centrifugal acceleration with a maximum payload of 700 kg. The dimensions of

the slip table were 670 mm (length) � 670 mm (width) (Kim et al. 2013b)

(Fig. 16.1).

16.3 Physical Modeling

16.3.1 Soil Material and Density

Ottawa F-65 sand was used as the standard sand for LEAP-2017. The grain size

characteristics and property of the soil are as follows: Gs ¼ 2.665, D10 ¼ 0.13 mm,

D30 ¼ 0.17 mm, D50 ¼ 0.20 mm and D60 ¼ 0.21 mm (Kutter et al. 2018). Based on

the preliminary test results of the participating facilities of LEAP-2017, the mini-

mum and maximum densities of sand were determined as ρdmax¼ 1752 kg/m3 and

ρdmin¼ 1470 kg/m3, respectively. The target soil densities of the dense and loose

centrifuge test conditions in KAIST were specified as 1703 and 1599 kg/m3 and the

relative densities were equivalent to 81% and 50%, respectively.

The sand model was constructed by dry pluviation through a screen with an

opening size of approximately 1.20 mm; the screen was partially blocked to limit the

flow. The density of the soil model was determined by the size of the opening slot

and the drop height, and a calibration test is necessary when the geometry is

Fig. 16.1 Dynamic geotechnical centrifuge facility at KAIST centrifuge testing center: (a) centri-

fuge main body, (b) earthquake simulator
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changed. Figure 16.2 shows the geometry of the opening slots and the calibration test

results by trial and error adjustments of the pluviation drop height for constructing

the dense and loose soil models for the KAIST experiment.

The sizes of the opening slot were 3 mm � 100 mm for the dense soil and

40 mm � 100 mm for the loose soil. The drop heights in the calibration test were

varied from 30 to 70 cm. From the calibration test results in shown Fig. 16.2, the

final drop height was set to 55 cm in both cases.

The measured dry unit weights of soil grounds constructed in the rigid box were

1701.2 and 1592.5 kg/m3 for dense and loose conditions, respectively. After the sand

was pulviated to the target height, a 5� inclined guide was installed on the top of the

box. The manufactured scraper was connected directly to the inclined guide and was

carefully scraped according to the slope. The soil generated by the scraping was

removed as carefully as possible by using a vacuum cleaner so that the possible

ground was not disturbed, and a 5� ground model was achieved.

16.3.2 Viscous Fluid

The viscous fluid was a mixture of water and methylcellulose F-65, and the target

viscosity was set to 40 cSt as dictated by the scaling law defined by Garnier et al.

(2007). The temperature and concentration are the influencing factors of the fluid

viscosity; thus, the calibration tests were performed before model construction, as

shown in Fig. 16.3. The viscosity was measured using a falling ball viscometer,

which applies the Newton’s law of motion under force balance when the falling

spherical ball reaches its terminal velocity. The equation for calculating viscosity is

expressed in Eq. (16.1) (Viswanath et al. 2007):

μ ¼ K ρf � ρð Þt, ð16:1Þ

Fig. 16.2 Density versus drop height relationship for two sieve designs. (a) Dense case with small

opening slots. (b) Loose case with large opening slots
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where K is the viscometer constant, ρf is the ball density, ρ is liquid density, and t is

the time of descent (in minutes).

At a constant concentration, the viscosity increases with the decrease in temper-

ature (Fig. 16.3a), and the concentration increases at a constant temperature

(Fig. 16.3b). The viscous fluid of the centrifuge test was prepared based on the

calibration result, and the final viscosities of the dense and loose test cases were

37.45 and 35.87 cSt, respectively. These viscosities were slightly lower than the

target viscosity of 40 cSt because of the sensitivity to temperature.

16.3.3 Model Description and Instrumentations

The condition for model construction in LEAP-2017 was the construction of a 5�

sloping sand ground in a rigid box. A new rigid box with a transparent window was

manufactured (Fig. 16.4a) with internal dimensions of 570 mm� 225mm� 450mm

(length � width � depth). The model constructed through dry pluviation is

Fig. 16.4 Image of used rigid model box and the schematic of centrifuge test model and instru-

ments. (a) Model container. (b) Schematic diagram of test at KAIST

Fig. 16.3 Calibration tests for viscosity according to temperature and concentration. (a) Viscosity

and temperature. (b) Viscosity and concentration (at 13 �C)
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described in Fig. 16.4b, with the following dimensions in the prototype scale:

22.8 m � 4 m � 9 m (length � depth at midpoint � width). The length of the

slope (22.8 m) was about 15% greater than the specified length (20 m). In the KAIST

centrifuge facility, the 5� inclination along the length of the model was not curved

because the shaking plane was perpendicular to the plane of rotation of the centri-

fuge. The specifications suggested that the surface should be curved in the end view

(right side of Fig. 16.4b); however, the KAIST models were not curved because the

error due to lack of curvature was thought to be negligible for this small model in a

large centrifuge. A 4 m radius curve across the 225 width of the container would only

result in about 1.5 mm elevation difference between the middle and the side of the

container (75 mm in prototype scale).

The responses of the soil model during shaking were monitored using eight

accelerometers along the direction of shaking (AH1–AH4 in the soil mass and

AH11–AH12 on the rigid container), two vertical accelerometers (AV1 and AV2),

and six pore pressure transducers (P1–P6, P9–P10). These instruments were required

in LEAP-2017, and their layout is shown in Fig. 16.4. To check the variation of shear

wave velocity, one pair of bender elements was installed at the same depth as that of

accelerometer AH3. Table 16.1 lists the details of the instruments used.

The required 18 surface markers were installed on the ground uniformly with a

spacing of 2 m � 2 m. The markers, with a diameter of 26 mm, were manufactured

using PVC material and were designed to be anchored to the soil and provide

minimal restriction to pore pressure drainage. A high-speed camera was mounted

at the centrifuge arm to measure the plan view lateral displacements of the surface

markers during shaking. The high-speed camera at KAIST is a Phantom v5.1 HI-G,

which can record videos at 1200 frames per second at a resolution of 1024 � 1024

pixels. The self-balanced system of the shaking table and the hinges connecting the

basket to the centrifuge arm may isolate the camera from vibrations.

16.3.4 Saturation and Container Modifications

Figure 16.5 shows the schematic of the saturation system at KAIST. Before saturat-

ing, the box was confirmed to be completely sealed from external air. The procedure

for the saturation process is as follows: vacuum pressure (>94 kPa) was applied and

Table 16.1 Detailed information of instruments

Instrument Type Name Description

Accelerometer 353B17 AH1–AH4 Soil horizontal acc.

AH11–AH12 Box horizontal acc.

AV1–AV2 Box vertical acc.

Pore pressure

transducer

PDCR 81 P1–P4 Pore water pressure in soil

EPB-PW-3.5BS-V5/ L5M P9–P10 Pore water pressure at boundary
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low pressure CO2 (<15 kPa) was flooded in the box repeatedly. This process was

performed five times for 20 min each. In addition, a strong vacuum pressure was

applied to eliminate the trapped air in the viscous fluid container. While maintaining

vacuum pressure in the rigid box and viscous fluid container, the viscous fluid slowly

dripped into the ground model (Madabhushi et al. 2018). The dripped point was in

the downward direction of the slope, and to minimize the impact of gravity, sponge

was installed on the ground surface. After filling the fluid up to 5 cm higher than the

soil, Okamura’s method was used to measure the degree of saturation (Okamura and

Inoue 2012). After the rigid box was released to the atmospheric pressure, a low

vacuum pressure (<15 kPa) was applied, and a change in the level of viscous fluid

was observed. At this time, the volume change of the viscous fluid was the same as

the volume change of the air trapped in the ground, and the degree of saturation

measurement was calculated based on this result, indicating more than 99.2% and

99.4% in both models, respectively.

16.3.5 Sequence of the Centrifuge Test

Table 16.2 summarizes a typical sequence of the centrifuge tests. In each of the

centrifuge tests of dense and loose ground model, four seismic excitations of two

nondestructive and two destructive motions were applied. The frequency wavelets

covering a wide range were used to represent the nondestructive motion to identify

ground system before and after liquefaction. A tapered sine wave with a frequency of

1 Hz was designated as the destructive wave. In the KAIST tests, the target intensity

was determined as 0.15 g for both the first (Motion #2) and second (Motion #3)

destructive waves. By applying the destructive motions of the same intensity, the

first and post liquefaction phenomena can be compared.

Cone penetration tests were conducted before and after the first destructive

motion (Motion #2) to evaluate the soil condition. The cone was connected with

Fig. 16.5 Saturation system. (a) Schematic of saturation system (b) Actual saturation system
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the load cell and designed so that the strain gauge was not attached to the cone tip.

The length of the cone was 200 mm, and the diameter of the cone tip was 6 mm. The

penetration velocity was slow at 5 mm/s (model scale), and the penetration depth

was above 75 mm (model scale). The CPTs were conducted at locations selected to

avoid the sensor installed in the ground model and the marker on the ground surface.

As shown in Fig. 16.6, because it was necessary to install the guide rack and loading

actuator above the box for the CPT, the rotation of the centrifuge was stopped and

restarted. When the centrifuge spinning was stopped, the position of the surface

marker was also investigated.

16.4 Centrifuge Test Results

16.4.1 Achieved Input Motion

In the previous study, the shakers of most facilities had generated high-frequency

motions superimposed on the smooth ramped sine wave motion. Therefore, the

PGAeff concept was introduced in the current project to attempt to compare the

results among the facilities that generated different amounts of high-frequency

content in the input motion:

Fig. 16.6 (a) Rack installation onto the box. (b) Cone penetration test

Table 16.2 Experimental procedure of dense and loose ground model

Event g-level Event description

Event #1 (CPT) 40 g CPT (before motion)

Event #2 (seismic excitations) 40 g Motion #1 and motion #2 (target: 0.15 g)

Event #3 (CPT) 40 g CPT(after motion)

Event #4 (seismic excitations) 40 g Motion #3 (target: 0.15 g) and motion #4
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PGAeff ¼ PGA1Hz þ 0:5� PGAhf , ð16:2Þ

where PGA1Hz is a component in the frequency band of 1 Hz, and PGAhf is the peak

acceleration of the high-frequency components of the input motion (Kutter et al.

2018).

The main input motions (Motions #2 and #3) that were achieved for dense and

loose models are shown in Fig. 16.7a. These motions were respectively measured by

AH11 and AH12 accelerometers attached to the bottom side of the model box. The

acceleration response spectra for the input motions presented in Fig. 16.7b show that

the input motions applied to a series of tests contain some high-frequency compo-

nents. However, accurately controlling the high-frequency components of the base

acceleration by using the hydraulic shaker on the end of a spinning centrifuge is

difficult. Therefore, compared to the deviation from the input motions of other

facilities participating in LEAP-2017, the input motions applied to KAIST tests

are reasonable.

Table 16.3 lists the details of main motions. The PGAeff of the input motions

applied in the tests were slightly higher than the target PGAeff (i.e. 0.15 g).

16.4.2 Investigation of Soil Model

In the dense and loose sand models, CPT and the bender elements test (BET) were

performed before and after Motion #2. The CPT results and shear wave velocity (Vs)

profiles, which were deduced from the CPT results, are shown in Fig. 16.8. Here, the

Vs values were derived from the method suggested from Eq. (16.3) by Kim et al.

Fig. 16.7 Main input motion (Motions #2 and #3) as recorded using AH11 and AH12: (a) time

history, (b) response spectrum
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(2017). Moreover, the Vs values obtained at a measurement depth through BET are

also plotted in Fig. 16.8 for comparison, and are confirmed to be similar to those

derived from the CPT results at the same depth.

Fig. 16.8 qc and Vs profiles before and after Motion #2 deduced from CPT and BET results

Table 16.3 Details of main input motions applied to tests

Target

PGAeff (g)
a

PGAraw

(g)b
PGAeff

(g)c
PGAhf

(g)d
PGA1Hz

(g)e
PGV

(m/s)f
CAVs

(m/s)g

Dense Motion

#2

0.15 0.178 0.168 0.098 0.119 0.209 7.18

Motion

#3

0.15 0.192 0.182 0.096 0.124 0.216 7.49

Loose Motion

#2

0.15 0.185 0.166 0.092 0.120 0.210 7.30

Motion

#3

0.15 0.192 0.174 0.107 0.121 0.210 7.25

aTargeted PGA of the 1 Hz component plus half the PGA of the higher frequency component
bMaximum horizontal acceleration recorded at the container base
cPGA of the 1 Hz component plus half the PGA of the higher frequency component
dPGA of the higher frequency component
ePGA of the 1 Hz component
fPeak velocity of the base input motion obtained by integration and base line correction
gCumulative absolute velocity of the base input motions with a threshold of 0.005 g (prototype)
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The qc and Vs values increased after Motion #2, indicating that the soil stiffness

was increased by Motion #2 owing to some densification. To quantitatively present

the change in the soil stiffness by Motion #2, the relative densities for each soil depth

derived from the qc profile (Kim et al. 2017) are summarized in Table 16.4. In

addition, Table 16.5 describes the site periods of the soil model calculated using

Eq. (16.4), in which the Vs used is converted from the CPT results:

V s1 ¼ 125:8 qc1ð Þ0:15 dry sandð Þ,V s1 ¼ 108:2 qc1ð Þ0:15 Saturated sandð Þ ð16:3Þ

T ¼ 4
X

n

i¼1

Di

V si

� �

ð16:4Þ

where T is the site period of the soil model (s),Di is the thickness of ith layer (m), and

Vsi is the shear wave velocity of the ith layer (m/s).

16.4.3 Excess Pore Water Pressure

Comparison of Central Array Pore Pressure Ratio with Respect to Depth

Figure 16.9 shows the response of pore pressure sensors installed in the central

array at each depth. In the prototype scale, P1–P4 are excess pore water pressure

response records at depths of 4, 3, 2, and 1 m, respectively. The pore pressure ratio

(Ru ¼ Δu=σ0vo
�

is defined as ratio of the excess pore pressure to the initial vertical

effective stress. This is generally used in liquefaction evaluation, and the liquefaction

can be assumed to occur when Ru ¼ 1. The black and red lines indicate the pore

pressure responses in dense and loose sand, respectively. The responses of all the

sensors included the generation of excess pore water pressure, generation of cycle

components by dilatancy of soil during the shaking, and dissipation process after the

shaking. In the dense soil condition, for the sensor closer to the ground surface, the

pore pressure ratio increases and a few negative spikes occured in P4 because of

dilatancy. These spikes can occur after the excess pore pressure approaches the

initial effective stress and is termed as the de-liquefaction shock waves (Kutter and

Wilson 1999). However, the maximum Ru value of P4 is less than 1.0, and a spike

was clearly observed during the shaking, indicating that the soil behavior at a depth

of 1 m is similar to that during liquefaction. In the loose soil condition, the pore

pressure ratios of P2, P3, and P4 show the dilatancy spikes with the Ru value

exceeding 1; thus, the liquefaction can be said to occur from the depth of 3 m

based on the Ru value. However, the spikes in the positive direction occurred

contrary to the negative pore pressure spikes, which was observed in the result of

LEAP-GWU-2015.

Generally, it is impossible for the Ru value to exceed 1 and for the de-liquefaction

shock wave to occur in the positive direction. The cause of this is presumed to be
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local dynamic compressive stress around sensors due to sensor installation and hand

pluviation. Also sensors wire stiffness may be somewhat affecting the response.

Sensor P2 dissipated immediately after the earthquake at approximately 30 s.

Therefore, the presence or absence of liquefaction based on the depth should be

examined from other aspects also. Unlike P2, P3, and P4, P1 is installed at the

bottom of the box and is not surrounded by sand in all directions, thus it has a

relatively low cyclic response.

The pore pressure ratios in the dense soil condition during Motion #3 are

described in Fig. 16.9b, which shows not only the overall low pore pressure ratio

but also faster dissipation rate than that of Motion #2. In case of the loose soil

Table 16.5 Site periods of soil model using shear wave velocity converted from the CPT results

Before motion

#2 dense

After motion

#2 dense

Before motion

#2 loose

After motion

#2 loose

Site period (s) 0.144 0.142 0.159 0.156

Fig. 16.9 Response of pore water pressure is divided by effective stress, and represented according

to the time histories at specific depth by pore pressure ratio (Black and red lines represent the

responses of the dense and loose models, respectively): (a) Motion #2, (b) Motion #3
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condition during Motion #3, similar responses were generated as those in Motion #2;

however, the spike shapes were slightly changed asymmetrically. This may be

because the void ratio of soil decreased in both cases, and because the geometry of

the sloping ground was changed by the movement from the previous shaking in

Motion #2.

Dissipation Time of Pore Pressure

Figure 16.10 shows the variations in excess pore water pressures of the central array

with respect to time according to the soil relative density and main input motion.

Figure 16.10a-1 and b-1 show response graphs in the dense and loose models when

Motion #2 is imposed on the ground model. Similarly, Fig. 16.10a-2 and b-2 show

response graphs when Motion #3 is imposed on the ground model.

In Fig. 16.10a-1 and b-1 displaying Motion #2, the excess pore water pressure,

which was measured at a deeper depth, appeared higher and was dissipated at the

end of the motion (28 s). The dissipation time in the loose model was longer than that

Fig. 16.10 Excess pore water pressure data with respect to the depth of main input motion

(Motions #2 and #3). P1, P2, P3, and P4 are the pore water pressure responses at depths of 4, 3,

2, and 1 m, respectively. (a-1) Motion #2 of dense model, (a-2) Motion #3 of dense model, (b-1)

Motion #2 of loose model, and (b-2) Motion #3 of dense model
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in the dense model. Almost all the excess pore water pressure was dissipated at 150 s

in the dense model; however, the dissipation in the loose model took more than

150 s. In Fig. 16.10a-2 and b-2, showing the imposition of Motion #3, the dissipation

rate patterns accelerated because of the change of void ratio and permeability

following liquefaction.

Effect of Radial Gravity Field on P9 and P10

Figure 16.11 shows the results of time histories P9 and P10 installed in the side

boundary of the rigid box (Hung et al. 2018). The figure shows the characterization

of the radial gravity field generated by the change in the g-level while conducting the

spinning centrifuge test. P9 and P10 are located at a position where the water level is

relatively lower than P1 during spinning. As shown in Fig. 16.11, the pore pressure

responses of P9 and P10 are smaller than that of P1. Similar with LEAP-GWU-2015

results, all facilities in LEAP-2017 showed this trend.

16.4.4 Acceleration Responses

Comparison of Central Array Accelerations Based on Depth

Figure 16.12 shows the acceleration time histories when Motion #2 is applied to the

ground model. The black and red lines represent the acceleration responses in the

dense and loose models, respectively, and the depths from AH1 (4 m) to AH4 (1 m

Fig. 16.11 Comparison of excess pore water pressure of P1, P9, and P10. Verification of water

level change due to radial gravity field during rotation of centrifuge
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deep) are continuously increased by 1 m. Figure 16.12a on the left shows the

occurrence of spike due to soil dilatancy, caused by a de-liquefaction shock wave.

The sharp spike in the dense model began to appear gradually at a depth of 3 m

(AH2) but occurred from the depth of 4 m (AH1) in the loose model. In addition, the

closer to the ground surface, the more the spike is amplified. This response is

presented asymmetrically owing to the sloping ground model.

Figure 16.12b shows the response spectrum with respect to depth based on the

measured acceleration record. The spectral acceleration tend to increase at approx-

imately 0.1, 0.5, and 1 s. In the loose model, at approximately 0.1 s, the spectral

acceleration response was larger than that in the dense model. This is because the

de-liquefaction shock wave, which is a high-frequency component, was larger in the

loose model. Moreover, for the loose model, the peak in the response spectrum near

1 s period was observed to increase above 1 s.

Fig. 16.12 Acceleration response recorded with respect to depth when Motion #2 of target PGA of

0.15 g was applied to the ground model. The black and red lines indicate the responses of

acceleration for the dense and loose models, respectively. Graphs of (a) acceleration, (b) response

spectrum, and (c) ratio response spectrum with respect to time
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The ratio of response spectrum in Fig. 16.12c is defined as the ratio of the

response spectrum of the ground to the input motion measured by AH11 and

AH12. This ratio is considerably similar to the trend of the response spectrum in

Fig. 16.12b, except for the response near 1 s.

Figure 16.13 shows the acceleration response when Motion #3 is imposed on

the model. In Fig. 16.13a, the spike due to soil dilantacy did not appear in the dense

model. This implies that the relative density increases during the ground consolida-

tion after application of Motion #2. Table 16.4 presents the quantitative values.

In the loose model, the spike still occurred at all depths but was relatively smaller,

and the occurrence phase became faster compared with the acceleration response of

Motion #2. Figure 16.13b are response spectra, showing the same tendency as in

Motion #2. Compared with Motion #2, the peak point at approximately 0.1 s for

Motion #3 was relatively small in both models. This is also presumed to increase the

relative density of the ground due to the soil consolidation. Therefore, the ratio

response spectrum Fig. 16.13c was also smaller when compared with that in Motion

#2 near 0.1 s.

Fig. 16.13 Acceleration response recorded with respect to depth when Motion #3 of target PGA of

0.15 g was applied to the ground model. Black and red lines indicate the responses of acceleration in

the dense and loose models, respectively. Graphs of (a) acceleration, (b) response spectrum, and (c)

ratio response spectrum with respect to time
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Vertical Acceleration of the Rigid Box from AV1 and AV2

Figure 16.14 shows the rocking behavior measured using AV1 and AV2 acceler-

ometers installed at the top and outside of the box. The gray lines indicate the

unfiltered motions and the black lines represent the filtered band pass to show the

components of motion between 0.3 and 3 Hz. Due to the rocking effect, an

overturning moment can be induced by the inertial force between the ground

model and box, and can be amplified by the resonance frequency.

The vertical acceleration has a peak, which is far lower than that in the base input

motion, and AV1 (the upslope side of the model) and AV2 (the downslope side of

the model) are asymmetrical in the loose model. The rocking accelerations are

expected to be of the opposite sign (180� out of phase) for AV1 and AV2 (Kutter

et al. 2018). Based on the measured acceleration, the rocking effect was seen because

the phase difference of the two vertical accelerometers was contradictory in Motion

#2. The results of Motion #3 show the rocking effect due to the asymmetric

acceleration records AV1 and AV2, and future research is needed to determine

how this rocking effect will affect the liquefaction behavior.

16.4.5 Comparison Between Acceleration and Pore Water

Ratio

Figure 16.15 shows the superimposed acceleration and pore pressure ratio time

histories. This figure shows that the spike of the acceleration record, which is the

Fig. 16.14 Vertical acceleration record measured using AV1 and AV2 for verifying the rocking

effect. The black lines represent raw data, while the gray lines show the 0.3–3 Hz band pass

filtered data
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de-liquefaction shock wave, coincides with the pulse where the excess pore water

pressure is temporarily reduced. Such a phenomenon can be seen at the depth of

AH4, with P4 installed on the ground surface of the dense model. In the loose model,

the de-liquefaction shock wave appeared from P2 at the AH2 depth.

De-liquefaction is described as the temporary solidification of soil caused by

dilatancy at large shear strains, and re-liquefaction is described as the return to a state

with effective stress of zero due to the unloading of the shear stress (Kutter and

Wilson 1999). That is, the spike pulses in the acceleration record coincide with

pulses of negative pore pressure; this is called the de-liquefaction shock wave.

As shown in Fig. 16.15, the point of occurrence of the de-liquefaction shock wave

in the loose model differs for each depth. For the depth of AH4, P4 is closest to the

ground surface and the de-liquefaction shock wave occurred in approximately 17 s.

In contrast, it occurred at approximately 18 s at the AH3 depth for P3. Moreover, it

was generated at 24 s in AH2 for P2. The deeper it is from the ground surface, the

more the generation time of the spike is delayed.

Fig. 16.15 Acceleration and pore water ratio records superimposed by depth
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16.4.6 Displacement of Surface Marker

Comparison of Vertical Displacement

Figure 16.16 shows the measured vertical displacements of loose and dense ground

models after Motions #2 and #3. The vertical displacement measurement was

performed at 1 g after complete stopping of the centrifuge, and the displacement

was directly measured from the front of the box according to the markers position.

The dashed line represents the original ground model before motion was applied,

and the geometries of both models were the same. The red and blue lines show the

change in the vertical displacement of the dense and loose models, respectively, after

the shakings.

When Motion # 2 was imposed on the model, vertical displacements of 9 and

223 mm were generated in the dense and loose models, respectively, at the prototype

scale. In the dense model, almost no vertical displacement occurred compared to that

in the loose model. As shown in Fig. 16.16, the vertical settlements in Motion #3

were smaller in both models compared to those in Motion #2. The dense model had

showed a slight change in displacement, while the loose model produced an overall

97 mm (prototype) displacement. This implies that the relative density of the ground

increased after Motion #2. In the loose model, the vertical settlement at the lower

slope near the x-coordinates of 5–8 m was negative, because it is assumed that the

sand of the upslope part drifted down, and the ground level was raised.
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Fig. 16.16 Measurement is executed at 1 g-level after completely stopping the centrifuge opera-

tion, and vertical displacement was measured directly from the front of the box (Dashed, red, and

blue lines represent displacement of original ground model, dense model, and loose model,

respectively)
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Comparison of Horizontal Displacement

The TEMA software was used to track targets and measure horizontal displacement

of the makers based on the saved video. Before using this tool, the box width was

fixed with two reference points, and the actual length was set by entering it. Actually,

the box width was 225 mm and was scaled according to this length; the displacement

was calculated by tracking the displacement of the marker. Figure 16.17 shows the

reference points (points #1 and #2) and marker tracking point (point #3). After

measuring the reference points of the width of the box to the scaling points, a

permanent horizontal displacement, which was tracked by a marker point, was

detected in real time. To achieve high-quality displacement results, a lighting system

was built by installing LEDs on the rigid box.

Figure 16.18 shows the typical time histories of horizontal displacements

obtained using the TEMA software. Permanent displacements during shaking are

shown with respect to the time histories. The measured time was longer than the

displayed time but was terminated at 40 s because of the difficulty in accurately

measuring displacement due to water wave. It is recommended to install the thick

cover plate presented in the LEAP guideline to minimize the water wave.

The changes in horizontal displacement before and after Motions #2 and #3 for

the dense and loose models are shown in Fig. 16.19 through contour lines. Fig-

ure 16.17 shows a total of 18 surface markers installed on the ground surface, and the

red part indicates the center markers where the displacement occurred relatively

more than at other points. The contour line was presented by tracking the horizontal

displacement for each marker during shaking. Notably, there was hardly any occur-

rence of displacement in the dense model. In contrast, in the loose model, the

markers moved on average in the downslope direction by 134 mm (prototype).

Especially, the horizontal displacement of the markers installed in the middle

slope was 169 mm (prototype), which is higher than the average. A special point

is that the displacement of the first horizontal marker line tends to occur significantly.

Fig. 16.17 Surface markers coordinate system (the markers included in the red line have a

relatively large permanent horizontal displacement) and TEMA software sets the points (points

#1 and #2 are the reference points and point #3 is the tracking point)
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In this part, as the front of the box, the contact between the front part of the acrylic

material and the soil particles makes the friction force smaller than the other parts.

Therefore, there is possibility that a larger horizontal displacement may occur

compared with other parts. The horizontal displacement of the markers placed at
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the other edge of the box was suspected to be smaller than other markers owing to the

boundary effect.

The amount of displacement after Motion #3 is 50% or smaller than the displace-

ment after Motion #2. Since a considerable amount of time passed after Motion #2,

the ground stiffness is suspected to increase due to the rearrangement of particles. As

shown in Table 16.4, relative density was measured through the CPT after Motion

#2, and it is found that the relative density increased. Therefore, even with a similar

PGA in Motion #3, the horizontal displacement occurred in both models was slight.

However, the marker horizontal displacement of the dense model seemed to be

moved toward the upslope direction. This reflects the difficulty of the accurate

measurement by water wave (Kokkali et al. 2018).

16.5 Conclusion

Facilities in each country participated in LEAP-2017, and the same sand, viscous

fluid, type of input motion, and box conditions were used to ensure data reliability.

However, the relative density of the soil and the input motion intensity were set as

variations and the liquefaction behavior by these two variations was evaluated.

KAIST evaluated the liquefaction behavior at two different densities: a dense

model (Dr ¼ 85%) and loose model (Dr ¼ 50%). Two destructive motions with

amplitude of about 0.15 g (Motions #2 and #3) were applied to both models. By

participating for the first time in this project, KAIST performed physical modeling

by using a technical method described in the LEAP guidelines. The technical method

for the liquefaction experiment was described in detail in Sect. 16.2.

There are three important results of this project: response of pore pressure,

response of acceleration, and displacement.

1. De-liquefaction shock wave occurred in pore pressure response, and the spikes in

the loose model were larger than that in the dense model. In addition, the

dissipation time of the excess pore water pressure was relatively greater in the

loose model.

2. In the acceleration response, a de-liquefaction shock wave occurred largely in the

loose model. The spectral accelerations of the ground motions show the fre-

quency content of the input motion and the de-liquefaction shock waves.

3. As a result of the displacement, vertical and horizontal displacements occurred in

the loose model. In particular, the displacement of the markers near the center of

the ground was relatively larger than the displacement of the markers located at

the edge. This phenomenon was caused by the boundary conditions imposed by

the rigid model container.

Both Motions #2 and #3 have the same input motion component and PGA. The

comparison of the response to these motions showed that the responses of acceler-

ation, pore water pressure, and displacement indicated less nonlinearity during

Motion #3 than Motion #2. Densification or strengthening of the models is also
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consistent with the increase in cone penetration resistance due to applying Motion #2

before Motion #3.

As an organization that participated in LEAP project for the first time, there are

some suggestions for the betterment of the project; this includes technical limitation

and difficulties of KAIST while experimenting.

1. In the course of the creating of the ground model, there was a great difficulty in

installing sensors. The line of the sensor is not flexible, and it is difficult to place

the sensor at the accurate position. This may lead to ground disturbances and

cause the relative density per layer to be asymmetric. Therefore, it is important to

think about how you can safely and accurately position the sensor installation.

2. There was an insufficient quantity of light, an insufficient contrast of markers, and

an error disturbing accurate measurement with respect to water wave in measur-

ing displacement. If these problems are solved, better quality data could be

extracted.
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