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Abstract

Background: Development of the soil amoeba Dictyostelium discoideum is triggered by starvation. When placed on

a solid substrate, the starving solitary amoebae cease growth, communicate via extracellular cAMP, aggregate by

tens of thousands and develop into multicellular organisms. Early phases of the developmental program are often

studied in cells starved in suspension while cAMP is provided exogenously. Previous studies revealed massive shifts

in the transcriptome under both developmental conditions and a close relationship between gene expression and

morphogenesis, but were limited by the sampling frequency and the resolution of the methods.

Results: Here, we combine the superior depth and specificity of RNA-seq-based analysis of mRNA abundance with

high frequency sampling during filter development and cAMP pulsing in suspension. We found that the developmental

transcriptome exhibits mostly gradual changes interspersed by a few instances of large shifts. For each time point we

treated the entire transcriptome as single phenotype, and were able to characterize development as groups of similar

time points separated by gaps. The grouped time points represented gradual changes in mRNA abundance, or

molecular phenotype, and the gaps represented times during which many genes are differentially expressed rapidly,

and thus the phenotype changes dramatically. Comparing developmental experiments revealed that gene expression

in filter developed cells lagged behind those treated with exogenous cAMP in suspension. The high sampling

frequency revealed many genes whose regulation is reproducibly more complex than indicated by previous studies.

Gene Ontology enrichment analysis suggested that the transition to multicellularity coincided with rapid accumulation

of transcripts associated with DNA processes and mitosis. Later development included the up-regulation of organic

signaling molecules and co-factor biosynthesis. Our analysis also demonstrated a high level of synchrony among the

developing structures throughout development.

Conclusions: Our data describe D. discoideum development as a series of coordinated cellular and multicellular

activities. Coordination occurred within fields of aggregating cells and among multicellular bodies, such as mounds or

migratory slugs that experience both cell-cell contact and various soluble signaling regimes. These time courses,

sampled at the highest temporal resolution to date in this system, provide a comprehensive resource for studies of

developmental gene expression.
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Background
The social amoeba D. discoideum exhibits a develop-

mental program unique among model organisms [1-3].

Solitary amoebae grow vegetatively, consuming bacteria

by phagocytosis. When food is exhausted, starvation

triggers D. discoideum to cease growth and begin devel-

opment. Cells signal to one another with cyclic adeno-

sine monophosphate (cAMP) and migrate by chemotaxis

into aggregation centers. Aggregates then tighten into

mounds that proceed through differentiation and mor-

phogenesis as physiologically integrated multicellular

organisms.

This remarkable choreography is robust to most varia-

tions in the genetic makeup, environmental substratum,

and nutritional history [4]. Some laboratory strains have

been selected that grow in nutrient media, but undergo

the same morphological progression as bacteria-fed

amoebae when their food source is removed [5,6]. Per-

haps even more impressive than watching the entrain-

ment and chemotaxis of an entire population of cells to

a centrally emitted cAMP signal, is that the multicellular

organisms that arise from aggregation centers continue

to develop with lock-step synchrony [1,7]. Its develop-

mental coordination makes D. discoideum a desirable

model for studying intercellular signaling pathways

(reviewed in [8]).

Changes at the level of morphology reflect the molecu-

lar genetic physiology of the cells. The molecular milieu

can be understood via complementary approaches—

treatment of the entire transcriptome as a phenotype,

and consideration of expression profiles of individual

genes [9]. The global approach takes into account the

vast amount of information available by high-throughput

assays or next generation sequencing, and enables the

precise grouping of molecular states even when the gross

phenotype is subtle or uninterpretable. For example,

Hughes and colleagues (2000) compiled the transcriptome

profiles for 300 mutants and chemical treatments of

Saccharomyces cerevisiae. Each transcriptome profile was

treated as a single phenotype. This compendium of tran-

scriptomes enabled them to discern affected genetic path-

ways by matching the global expression phenotypes of

different mutants and treatments.

One challenge of global analyses is that these data sets

contain many more variables or measurements than the

number of samples or treatments to be compared.

Methods to simplify the high-dimensional data so that

they may be understood in more approachable two-

dimensional (2D) representations include principle com-

ponent analysis (PCA) and multi-dimensional scaling

(MDS) [10,11]. PCA is a statistical procedure that identi-

fies linear combinations of data variables that explain

the largest proportion of variation. By charting the data

according to the first two principal components we can

obtain a simple 2D plot that displays the predominant

relationships between samples [10]. MDS accomplishes a

similar feat by arraying samples in 2D based on the simi-

larity, or distances, between their transcriptomes [11].

Focusing the analysis at the level of individual genes is

critical for assigning causative effects to specific genes or

mutations. In the yeast compendium study, examining

individual gene expression profiles was required to con-

firm various metabolic and regulatory roles [9]. Today’s

bioinformatics resources, including fully sequenced, an-

notated genomes, and relational databases such as Gene

Ontology, help illuminate the biological relevance of co-

incident changes in expression of many individual genes.

By examining which biological process or molecular

function terms are enriched for coordinately expressed

genes, we can make inferences about changes in the cells

that generate the observed phenotypes.

Previous Dictyostelium studies employed transcriptome-

wide profiling to understand the global changes in gene

expression that coincide with developmental progression

and patterning [4,12]. A microarray time course study re-

vealed that one-quarter to half of the predicted genes in

the genome are developmentally regulated, with the great-

est change in expression occurring upon multicellular dif-

ferentiation [4]. These analyses pre-dated the completion

of the genome sequencing effort. Instead of focusing on

individual gene profiles, each time point was treated as a

quantitative global phenotype, thereby relating the mo-

lecular genetic physiology of the cell population to the

gross morphology over developmental time.

A subsequent microarray experiment examined tran-

scriptional changes in response to cAMP signaling [12].

Rather than developing on solid support, cells were

starved in shaking suspension, and cAMP was added ex-

ogenously at concentrations and with a periodicity

meant to mimic natural pulsatile signaling [13-15]. Puls-

ing cAMP in suspension is useful for synchronizing cells

for chemotaxis or aggregation assays, or for specifically

studying cAMP responses. Iranfar and coworkers (2003)

confirmed the involvement of several critical cAMP-

regulatory and responsive genes, and identified many

more by clustering co-regulated expression profiles.

Later, deep RNA sequencing (RNA-seq), in conjunction

with a completed genome, produced highly quantitative

expression profiles for every gene model in the genome

[16]. Nearly three quarters of the predicted gene models

were expressed at some point in the D. discoideum life

cycle, with many of these developmentally regulated.

We wished to build on the strengths of these previous

studies, and address possible gaps in the existing data [17].

The microarray experiments were sampled every two

hours, while the published RNA-seq data was sampled

more sparsely, at 4-hour intervals. The cells used in the

RNA-seq experiments were grown on bacteria. While this
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is common in the laboratory, many groups use nutrient

medium as well, and thus expression data for medium

grown cells would complement our understanding of the

experimental system. In our study, cells were grown in nu-

trient medium, and either developed on solid substrate or

treated with cAMP in suspension. Samples were collected

for RNA-seq every hour for the first half of each time

course, and every two hours thereafter. Thus we generated

data with the depth and quantitative specificity of RNA-

seq, at a high temporal resolution, for cells grown by a

common laboratory standard.

We hypothesized that more frequent sampling would

reveal unappreciated patterns in gene expression, and pro-

vide a more precise understanding of the transcriptional

dynamics that govern major developmental transitions.

The high temporal resolution revealed transcriptome tra-

jectories with gradual changes interspersed with a few

large shifts in global gene expression. Individual gene pro-

files were examined that corresponded to major changes

in transcriptome and morphological progression. Further,

we highlighted a selection of biological processes that turn

on and off throughout development, relating population-

wide physiological phenotypes with known gene functions

and morphology.

Results

Fine-scale temporal transcriptome profiling reveals an

uneven progression of developmental gene expression

We analyzed transcriptome time courses of D. discoideum

under two experimental conditions: development on

nitrocellulose filters for 24 hours (filter), and treatment

with exogenous cAMP in shaking suspension for 12 hours

(suspension). Samples were collected hourly for the first

half of each time course and every other hour thereafter

(Additional file 1: Table S1). Gene expression was analyzed

by RNA-sequencing, resulting in a high dimensional data

set of transcript abundance values for over 12,000 genes

measured from 67 samples (Additional files 2 and 3). Over

8,000 genes in the genome were expressed and displayed

some change in mRNA abundance in both experiments

(Additional file 1: Figure S1, Additional files 4, 5 and 6),

consistent with the results obtained by Parikh, et al.

(2010). In that study, at 4-hour resolution, genes could be

visually assigned into groups with distinct expression pat-

terns. In the new 1-hour data, similar boundaries seemed

apparent (Additional file 1: Figure S1), suggesting that de-

veloping populations of amoebae progress synchronously

through discrete transcriptional stages.

To explore how transcriptome-wide expression changed

across development, we sought to visualize the main rela-

tionships between the time-course samples. We used prin-

cipal component analysis (PCA) to reduce the complexity

of the data (Figure 1). The entire collection of transcript

abundance data at each time point is described as one

entity–the transcriptome, which represents the phenotype

or physiological state of the cells at a given time. The first

two principal components (PCs) accounted for nearly half

of the variation in the entire data set (Filter development:

PC1 = 28.6%, PC2 = 19.6%; Suspension: PC1 = 31.2%,

PC2 = 17.3%). We projected the sample transcriptomes in

a two-dimensional (2D) plane with axes corresponding to

PC1 and PC2. The more similar the transcriptomes were

at any two time points, the closer they appeared on the

plots. In this simplified view, we compared transcriptome

changes from one sample to the next within a time course,

and compared the trajectories of transcriptional change

between experiments (Figure 1). For example, the 0-hour

(h) time points of the filter experiment and the suspension

experiment are very close to each other, because in both

cases the samples were collected from cells grown in nu-

trient medium before development. On the other hand,

the 24-hour time point of the filter development is far

removed from the 0-hour time point, consistent with a

continuous accumulation of transcriptional changes

during the course of development. To confirm the PCA

Figure 1 Uneven developmental progression is revealed by

transcriptome time course trajectories. We developed cells on filters

(yellow circles) and treated cells with cAMP in suspension (orange

circles) in separate experiments. We analyzed the transcriptomes by

RNA-sequencing and performed principal component analysis (PCA)

to reduce the high dimensionality of the data. Both experiments

were analyzed using 8,040 expressed genes intersecting the two

data sets. For the filter time series, principal component 1 (PC1) and

PC2 accounted for 28.6% and 19.6% of the variation, respectively.

For the suspension experiment, PC1 and PC2 encompassed 31.2%

and 17.3% of the variation, respectively. Plotting the second principal

component (PC) (vertical axis) versus the first PC (horizontal axis)

illustrates the prevailing patterns in transcriptional progression. The

filter series contains two replicates of 19 time points. The suspension

series contains two replicates with 10 time points and a third

replicate with 9 time points (missing hour 12). For every time point

we projected each sample transcriptome as a small black circle

connected by whiskers to the other replicate(s). Large colored circles

are placed at the center of the transcriptome projection replicates.

The axes units are arbitrary.
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visualization, we performed multidimensional scaling

(MDS), a distinct mathematical approach that yielded a

similar 2D projection in which the distance between

points relates to similarity between transcriptomes

(Additional file 1: Figure S2). The time course topolo-

gies were highly similar in both analyses.

Two main observations emerged from the 2D plots.

First, the two treatments followed similar overall tran-

scriptional trajectories, progressing in a mostly linear

fashion (along PC1) but changing direction (along PC2)

near the end of the experiments (Figure 1, Additional

file 1: Figure S2). The directional spread of time points

suggests that as cells proceed through development, ei-

ther on filters or in suspension, their transcriptional

state becomes increasingly different from the vegetative

condition. The second notable feature of the 2D time

course projections was uneven spacing of samples, many

of which were grouped into clusters separated by gaps.

In the filter series, for example, time points 9 h, 10 h

and 11 h were very near one another, with 9 h and 10 h

overlapping significantly. This group was separated by a

considerable distance from the cluster of time points

12 h, 14 h and 16 h. We interpreted these clusters as

representing stages of development in which the

population-wide transcriptional state changed rather

slowly. The gaps between clusters signified concerted

changes in gene expression between developmental

stages (Additional file 1: Supplementary results, Add-

itional file 1: Figures S3–S5). Thus the overarching

structure of the transcriptome time courses could be

summarized as groups of time points with gradually

changing cellular physiologies interspersed with dramatic

shifts in gene expression. This description is consistent

with the clustering of transcriptome samples based on

Spearman’s correlations (Additional file 1: Figure S6, S7).

Together, these findings suggest that the rate of develop-

ment as a whole is uneven–some stages progress faster

than others.

Transcription profile inference depends on temporal

resolution

Previous RNA-seq studies described mRNA abundance

with rather sparse sampling [16,18], so it was interesting

to examine the behavior of genes with known functions at

higher temporal resolution. We selected 32 well-

characterized, developmentally regulated genes (Additional

file 1: Table S3) and plotted their mRNA abundance ver-

sus time. First we asked whether the inferred transcription

profiles were sensitive to the frequency of sampling, i.e.,

1-, 2- and 4-hour time intervals (Figure 2, Additional

file 1: Figures S8, S9 and S10). Generally speaking, profiles

that changed monotonically or with a simple “on then off”

modality were fairly robust to sampling interval, while

others displayed more complex patterns only discernible

at higher temporal resolution.

The master transcriptional regulator gtaC, and several

of its putative target genes involved in aggregation (such

as the cell-cell adhesion gene csaA), looked markedly

different at different time scales (Figures 2A, B). The

shape of the expression curve, as well as amplitude and

timing of peak expression, varied between 1-hour and 4-

hour sampling. However, 2-hour sampling was nearly

identical to the 1-hour curve, suggesting that 2-hour in-

tervals are sufficiently frequent to accurately describe

population-level changes in mRNA abundance.

Identifying the timing of up- or down-regulation can

impact the interpretation of gene function or cellular dy-

namics. The genes cotB and ecmB are often used to

mark the differentiation of prespore and prestalk cell-

types, respectively [19]. At 4-hour resolution, the up-

regulation of these genes could be inferred to begin

sometime between 8 h and 12 h, whereas 1-hour sam-

pling placed their up-regulation precisely between 11 h

and 12 h (Figures 2C, D). These analyses revealed the

expression of cell-type specific genes was coincident

with the major transcriptome shift at that time.

For other genes, such as the chemotaxis-related phdA,

the 4-hour sample frequency captured the overall shape

of the profile, even if small changes were missed

(Additional file 1: Figure S8). Likewise, 4-hour sampling

of the allorecognition determinants tgrB1 and tgrC1 was

consistent with the overall shape, but not the precise

timing of expression changes, at 1-hour frequency

(Additional file 1: Figure S8). Still others, sigB for ex-

ample, were equally well described at all time scales we

tested (Additional file 1: Figure S9).

Transcription profiles during early development reflect

differences in exposure to cAMP and physical contact

We compared the transcription profiles of selected genes

expressed at 0 h–12 h between cAMP treatment in sus-

pension and development on filters (Figure 3, Additional

file 1: Table S3). Many of these genes displayed qualita-

tively similar profiles between treatments, though inter-

esting differences were observed as well. Several

transcription factors (TFs) (reviewed in [20]) were ini-

tially up-regulated during starvation and the beginning

of development (Figure 3A). The precise timing of onset

and peak expression varied between the experimental

treatments, however. The genes mybB and srfB peaked

at 3 h in the suspension series, and at 4 h or 5 h on fil-

ters; crtf and gtaC peaked at 6 h in the suspension, and

at 10 h in the filter data. This temporal delay in peak ex-

pression on filters was consistent with other groups of

surveyed genes.

Cells in suspension were treated with 30 nM exogen-

ous cAMP, applied at a fixed 6-minute period to all cells

Rosengarten et al. BMC Genomics  (2015) 16:294 Page 4 of 16



in the flask equally. Thus developmental processes that

require pulsatile cAMP or entrainment to this signal

might be expected to respond more rapidly. Indeed, the

most pronounced difference in transcript abundance be-

tween treatments was observed among genes that medi-

ate aggregation towards pulsatile cAMP [12] (Figure 3B).

Specifically, carA, csaA, dia2 and pdsA were expressed

earlier, more rapidly and to higher levels in the first

6 hours of the suspension treatment than during any

time in the filter development. The lower amplitude on

filters might be attributable to spatial variation in a field

of cells, which likely encounter local differences in cell

density and substrate topography, thus resulting in less

uniform cAMP signaling and slower entrainment to-

wards synchronicity.

The delivery of cAMP to suspension cells was de-

signed to mimic conditions in actual development—

starvation, followed by cAMP pulsing, then by high

constant levels of cAMP. We asked whether the effects

of changing the cAMP regime from pulsing to constant

levels were indeed mirrored in the filter-developed

samples. In the suspension samples, expression of ag-

gregation genes peaked at 6 h, followed by a sharp

down-regulation between 6 h and 8 h (Figure 3B [ii]).

The downturn corresponded to the change from pulsa-

tile to bulk cAMP. A similar down-regulation in tran-

script abundance was observed in the filter samples

between 10 h and 12 h (Figure 3B [i]). During this time

interval, cells on filters developed into tight aggrega-

tions and mounds, where they were expected to experi-

ence higher levels of accumulated cAMP. Together

these data further indicate that the exogenous cAMP

regimen elicits a transcriptional response highly similar

to early development on solid support. This result is

Figure 2 Temporal resolution affects the interpretation of transcription profiles. The standardized mRNA abundance of four developmentally

regulated genes (y-axis) is plotted versus time (hours, x-axis). Data are from the filter development experiment. For each gene—gtaC (A), csaA (B),

cotB (C), and ecmB (D)—expression values are included for time points at 1-, 2- and 4-hour intervals, as indicated in the legend below the figure.

Each data point represents the average of 2 independent biological replicates. The y-axis scale varies between plots. The insets in (C) and (D)

highlight the 8 h – 12 h time frame.
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Figure 3 (See legend on next page.)
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consistent with the earliest comparisons between cells

signaling in suspension and those undergoing develop-

ment [21].

Developmental gene expression not only depended on

cAMP, but also on physical cues such as contact with

the substratum. Pulsed cells displayed differential ex-

pression of the chemotaxis-related genes sodC and

phdA, but not of the cytoskeletal genes abpA or mhcA,

which are also required for motility [22-26] (Figure 3C

[ii]). All four of these genes were differentially regulated

in the filter-developed cells (Figure 3C [i]). The failure to

turn on these cytoskeletal genes in suspension repre-

sents a major difference in transcriptional response be-

tween the two experimental treatments.

In order for D. discoideum to develop beyond the ag-

gregation stage into mounds, amoebae must clear a

checkpoint established by the allorecognition genes

tgrB1 and tgrC1 [27,28]. The tgr genes were expressed

nearly identically between treatments, though they accu-

mulated to higher levels on filters (Figure 3D). Two

transcription factors involved in the transition from ag-

gregates to mounds, gbfA and comH [29,30], also dis-

played temporally consistent expression between

treatments, though comH abundance spiked higher on

filters. Thus the expression of genes required for mound

formation and tissue-grade organization was largely ro-

bust to differences in cAMP regimen and substratum

contact.

Late development mRNA abundance marks timing of cell

differentiation and morphogenesis

We examined the transcription profiles of select genes

involved in later cell-type differentiation, morphogenesis,

and culmination (Figure 4), searching for shifts in

mRNA abundance coincident with major developmental

transitions. We first considered the expression of several

transcription factors that regulate late developmental

events [20]. All of the plotted TFs began to accumulate

transcripts gradually prior to the multicellular transition.

At 16 h, cudA and mybE were up-regulated sharply,

while dimB and dstC continued on a more graded tra-

jectory (Figure 4A). The difference in temporal dynamics

of TF expression might reflect the nature of regulatory

interactions with their targets. Even at peak expression,

the mRNA abundance of the transcription factors was

lower than that of other classes of genes, especially

genes whose products contribute to structural compos-

ition. This finding is consistent with previous observa-

tions about the relationships between level of transcript

abundance and predicted gene function [16].

Examples of highly expressed structural genes in-

cluded the prespore genes cotB and pspA [31]. Both

showed rapid accumulation beginning between 10 h and

12 h, leading to high levels between 16 h and 18 h

(Figure 4B). Highlighting its utility as a sporulation

marker [32,33], spiA was up-regulated between 18 h and

20 h, and accumulated rapidly through 24 h. The expres-

sion profile of acbA was consistent with its known

housekeeping function during vegetative growth, and a

signaling function in terminal spore differentiation

[34,35] (Figure 4B). Expression of the prestalk genes

ecmA, ecmB and ecmF ([19,36], could be detected as

early as 12 h, but were up-regulated more dramatically

between 16 h and 18 h (Figure 4C). Structural prestalk

transcripts accumulated to levels an order of magnitude

less than those of the surveyed prespore genes, probably

due in part to the 1:4 ratio of prestalk to prespore cells

in the multicellular body. The gene expressed the latest

among this set was rtaA, thought to indicate the differ-

entiation of the prestalk subset pstU cells [37]. In gen-

eral, the initial up-regulation of cell-type specific genes

between 10 h and 12 h, and 16 h and 18 h, coincided

with the gaps and rapid differential expression intervals

in Figure 1 and Additional file 1: Figure S5.

Lastly, various transcription factors and membrane-

associated proteins involved in culmination and fruiting

body formation were expressed in the last 4 to 6 hours

of development (Figure 4D). These data suggest that our

samples followed stereotypic developmental progression.

Prespore and prestalk cell types could be differentiated

by changes in expression between hours 11 and 12, coin-

cident with the transition between tight aggregate and

mound stages of development. Specific subtypes of cells

continued to differentiate with the expected timing

through the slug and culmination stages.

Overlapping biological processes are regulated at

variable time scales

To explore what biological processes are regulated during

development, we tabulated lists of differentially expressed

(See figure on previous page.)

Figure 3 Early development mRNA abundance reflects cAMP experience and physical contact. The standardized mRNA abundance of genes involved

in early development (y-axis) is plotted versus time (hours, x-axis). We grouped the genes based on general functional class or developmental process

in which they are involved, as indicated above the panels. Legends above the panels indicate the gene names. For each gene category (A – D), data

from the filter experiment are shown in the top panel (i) and data from the suspension experiment in the bottom panel (ii). Within each category, the

vertical axis scale is constant to facilitate direct comparisons between filter development and liquid suspension. Between categories, the vertical axis

scale varies to accommodate different levels of gene expression. Each data point represents the average of 2–3 independent biological replicates as

indicated in Figure 1.
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genes counted in each k-hop comparison throughout de-

velopment (Additional file 1: Figure S5, Additional file 7)

and performed Gene Ontology (GO) enrichment analysis

to identify biological processes up- or down-regulated at

various intervals in development (Additional file 8). Rather

than treating GO enrichment as a definitive result, we

approached this analysis as an exercise in hypothesis

generation.

By comparing some of these processes with the devel-

opmental timeline, we were able to postulate which cel-

lular and biochemical activities align with morphological

progression (Figure 5). Of the subset of enriched GO

terms illustrated here, some were well known and ex-

pected. We observed an expected reduction in ribosome

biogenesis at 0–2 h, an increase in cAMP metabolism

mRNA abundance at 4–8 h, increased Differentiation

Inducing Factor 1 (DIF-1) biogenesis between 16–18 h

and an increase in sporulation morphogenesis mRNA

abundance toward the end of development. We also ob-

served others, such as reactive oxygen response at 8-

12 h, that have received less attention in the field.

The rapid intervals of highest synchrony were 10 h–

12 h and 16 h–18 h. These contained DE genes enriched

for GO terms related to mitosis, and to organic signaling

molecule pathways and co-factor synthesis and trans-

port, respectively (Figure 5A). GO terms related to man-

aging cellular energetics and redox chemistry, such as

reactive oxygen species and oxidation-reduction pro-

cesses, were up-regulated at more than one interval over

the course of development. The two intervals of major

down-regulation included enriched terms pertaining to

ribosome biogenesis from 0 h–2 h, and genes associated

Figure 4 Cell-type specification coincides with major changes in transcriptome phenotype. The standardized mRNA abundance of genes

involved in later development (y-axis) is plotted versus time (hours, x-axis). Data are from the filter development experiment. We grouped the

genes based on general functional class or developmental process in which they are involved (A – D), as indicated above the panels. Legends

above the panels indicate the gene names. The vertical axis scale varies to accommodate different levels of gene expression. Each data point

represents the average of 2 independent biological replicates.
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with mitosis and DNA replication, repair and elongation

between 16 h and 20 h. Many genes in this latter set were

among those up-regulated between 10 h and 12 h, during

which time the prespore cells, already in G2-phase,

undergo cell division and transition to G1-phase [38-40].

Visual inspection of development on filters confirmed

the highly reproducible morphological progression. We

observed tight aggregates at 10 h–14 h (Figure 5C), fin-

gers at 16 h–18 h (Figure 5D) and fruiting bodies at

22 h–24 h (Figure 5E). The uniformity of the filters

underscored the synchrony of structural changes within

and between multicellular bodies in a developing field.

Discussion

Cellular transitions are reflected in unevenly spaced

transcriptome trajectories

Dictyostelium discoideum development requires coordin-

ation between many tens of thousands of individual cells

coalescing to form multicellular organisms [1,3]. The de-

veloping field continues to display remarkable synchrony

Figure 5 Differential expression of functional modules during development. For the filter development experiment, we analyzed the GO term

enrichment for all DE genes in the rapid and gradual k-hop intervals at each time point (see Additional file 1: Figure S5A). (A) Selected terms are

illustrated over the 24-hour developmental timeline. Solid blue boxes correspond to up-regulated genes and dashed orange boxes to down-regulated

genes. The width of each box indicates the time delta in which the corresponding GO term is enriched. (B) A cartoon of developmental

morphogenesis, with micrographs corresponding to (C) 12-hour mounds, (D) 16-hour slugs, and (E) 24-hour fruiting bodies. Micrograph scale bars

represent 1 mm.
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within and between distinct multicellular structures as

they pass through each morphological stage. Recent

RNA-seq time course studies offered significant gains in

detail over previous microarray efforts, but lacked the

temporal resolution to address how changes in gene ex-

pression precisely correspond to developmental progres-

sion [4,12,16-18].

The data generated in our current study complement

previous efforts, clarifying the relationships between

transcriptome and morphology during development, and

greatly expanding the community’s resources to study

developmental gene expression. We benefited from the

quantitative depth of RNA-seq and sampled every hour

or two, the highest temporal frequency of any study in

the field to date. But our analysis also surpasses previous

work in our ability to link detailed mRNA abundance

profiles to global trends, biological process enrichment

and morphological progression. We found that the de-

velopmental transcriptome is characterized by intervals

of gradual change punctuated by concerted shifts in gene

expression. Consistent with previous studies, the major

changes in transcriptome state corresponded to starva-

tion, multicellular differentiation and culmination.

The transcriptome is only one aspect of development,

however. Global patterns of gene expression alone do

not reveal the regulation or governance of the stereo-

typic developmental progression. Rather, it may be more

useful to think of the transcriptome as a quantitative

phenotype, a read-out of the population average of cellu-

lar behavior or physiology [4,41]. Intervals of gradual

transcriptional change might result from the need to en-

train a dispersed population to a soluble signal [7,8,15].

For example, the differential expression of genes during

cAMP-mediated aggregation was relatively gradual, pos-

sibly reflecting heterogeneity in the sensing, processing

and propagation of this signal in the developing field of

cells. This interpretation is supported by the observation

of nearly twice as many DE genes up-regulated in the

suspension treatment relative to the filter development

experiment. In suspension the application of cAMP was

uniform, and the DE response more immediate and in-

tense than on the spatially heterogeneous filters.

Times of rapid mRNA accumulation, alternatively,

might fulfill a need to quickly generate sufficient macro-

molecules, i.e. signaling compounds such as DIF-1 or

structural components like spore coat proteins, before

cells transition to a new identity [42-44]. The two most

predominant instances of differential up-regulation in

our data coincided with the transition from aggregates

to mounds and the transition from finger to culminate

stage. Both of these morphological transitions involve

cell-type specification, and thus the adoption of specific

molecular identities by large subsets of cells in the popu-

lation (reviewed in [19]). Another possibility is that rapid

shifts in mRNA abundance occur once a critical propor-

tion of the cell population reaches a transcriptional

checkpoint. If this were the case, one would expect the

population average transcriptome to change at some

background pace until the checkpoint threshold is

reached, then the cells quickly transition to a new state.

Temporal coincidence of mRNA abundance associated

with multicellularity, energetics and signaling

We expected to see considerable transcriptional changes

at the beginning of the time series. Much of this should re-

flect the starvation response, while some undoubtedly re-

sults from the experimental manipulation of the cells.

Significant down-regulation of ribosome biogenesis genes

was consistent with known physiological changes charac-

teristic of starvation [45,46], and suggests that other pro-

cesses enriched for DE genes might be part of the

starvation response as well. Enrichment of up-regulated

genes confirmed that cells are primed from the onset of

starvation to receive external cues, including calcium and

cAMP [15,47,48]. These results corroborate published

findings that some of the core cAMP relay genes, such as

acaA and carA, are initially expressed prior to cAMP puls-

ing, and then accumulate further in response to continued

cAMP exposure [12,49].

The timing of the most dramatic up-regulation of

mRNA abundance took place between 10–11 h and 12–

14 h of development. This interval appears as the largest

gap on the 2D plots. Comparing these data with ob-

served morphological changes indicates that the largest

change in transcriptome state of any time in develop-

ment coincides with the transition from aggregates to

multicellularity. Van Driessche and colleagues (2002)

demonstrated that this major transcriptional shift at the

transition to multicellularity is robust to both amoebae

strain and nutritional history. This timing also overlaps

with a major burst of mitochondrial DNA replication

that occurs prior to prespore cell division [38-40,50].

Other reports argue that nuclear DNA replicates during

this time as well, although newly synthesized DNA

labeled with 5-bromo-2-deoxyuridine has been observed

only in the mitochondrial fraction [50,51]. Differentially

expressed genes between these time points are strongly

enriched for GO terms related to DNA replication, mi-

tosis and associated processes and reactive oxygen

response.

When D. discoideum begin to develop, they no longer

consume food. Thus the energy required for aggregation

and multicellular development must come from internal

stores [52]. Cellular energetics requires considerable

mitochondrial and cell membrane activity [53-57]. In

Dictyostelium, mitochondria genome encoded tran-

scripts are not poly-adenylated, and therefore cannot be

quantitatively analyzed in our data due to the poly-A
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selection used for mRNA purification. However, prior

work suggests that some of these genes are essential for

development and differentiation [57]. In addition to po-

tentially causing cellular harm, byproducts of respiration

such as reactive oxygen species (ROS), may play an ac-

tive role in developmental signaling [58]. One recent

study in mice concluded that mitochondria-derived ROS

were critical mediators of epithelial and hair follicle dif-

ferentiation [59,60]. During early development in D.

discoideum, ROS are thought to play a signaling role re-

lated to cAMP-mediated aggregation [61]. Ectopic

superoxide scavengers or over-expression of a dismutase

enzyme inhibited aggregation. This result is consistent

with the observed differential expression of the super-

oxide dismutase gene sodC during aggregation.

We found that genes related to ROS and redox chemis-

try were differentially expressed at multiple time points,

namely around the time of mtDNA replication and mi-

tosis and later during the generation of soluble signaling

macromolecules such as DIF-1 (16 h — 20 h). Among the

genes turned on was the prespore specific catalase catB, a

target of SrfA that catalyzes the decomposition of hydro-

gen peroxide and is essential to late development and

spore viability [62,63]. Of the seven superoxide dismutase

genes annotated in the D. discoideum genome, sodD was

differentially expressed during this later stage of develop-

ment as well. The overlap of redox processes with the ex-

pression of various cell-signaling pathways in D.

discoideum could indicate that ROS modify signaling mac-

romolecules in some functional way [58]. Interactions be-

tween ROS and transcription factors are also well

documented in various higher eukaryote models [64].

These possibilities remain to be tested in Dictyostelium,

and might represent interesting examples of evolutionary

conservation in the interplay between metabolism and de-

velopmental signaling.

Synchrony between developing structures

Development in D. discoideum is so well synchronized

from aggregation through fruiting body maturation that

Sydney Brenner, tongue-in-cheek, dubbed it “molecular

fascism” [65]. The entrainment of aggregating cells to

pulsatile cAMP is a well-characterized process [8,15].

Numerous pathways also have been identified that gov-

ern multicellular signaling (reviewed in [8]). Some of

these are mediated by membrane bound proteins and re-

quire cell-cell contact [27,28]. Others use soluble mole-

cules such as various polyketides that direct prestalk and

prespore fates, and spore maturation, i.e. DIF-1, Spore

Differentiation Factor 1 (SDF-1) and SDF-2 [66,67].

Additional signals are relayed by gamma-aminobutyric

acid (GABA), glutamate, and steroids [68-70].

Despite a fairly robust picture of signaling within de-

veloping structures, little is known about how distinct

multicellular structures arising from the same popula-

tion develop in tight lock-step with one another. Perhaps

the initial cAMP-mediated coordination sets a precise

molecular clock that keeps time in each aggregate

through late development. Alternatively, multicellular

structures might be kept in sync by shared environmen-

tal cues such as ammonia, alkalinity, moisture and light

[71-74]. Another possibility still is that the organisms

signal to one another using volatile compounds. For in-

stance, ROS have been implicated in regulating long dis-

tance signaling between developing leaves in Arabidopsis

[75]. These molecules conceivably could be involved in

synchronizing culmination and fruiting body formation

between multicellular structures. Alternatively, the Dic-

tyostelium genome encodes numerous enzymes that

synthesize aromatic compounds, several of which are de-

velopmentally regulated [76,77]. Perhaps some of these

produce cues that help synchronize late development. The

transcriptome time course data enable us to determine

which candidate genes are expressed at the appropriate

times to contribute to developmental coordination. Un-

derstanding the molecular genetic bases for late develop-

mental synchrony, and the evolutionary fitness benefits of

such a system, offer promising opportunities for future

research.

Comparisons between experimental treatments

Directly comparing the transcriptome dynamics between

cells developed on filters with those treated with cAMP

in suspension yielded some interesting biological obser-

vations and useful technical information. The inclusion

of the suspension data provided a time series with de-

fined inputs that mimicked morphological or behavioral

transitions. These proved consistent with our inference

that clustering of transcriptome trajectory points repre-

sented gradual change in mRNA abundance at the popu-

lation level, while gaps in the trajectory reflected major

physiological changes. Despite the major differences in

assay set-up, the suspension transcriptomes represented

the progression of early development quite well [21].

Many genes show the same profiles in cells pulsed in

suspension as cells developed on filters. The cumulative

data increases our confidence in the patterns, and tell us

that there are few significant signals that the cells pulsed

in suspension do not get in the first half of development.

Further, the high temporal resolution of these data al-

lows us to recognize more clearly those genes that start

to accumulate mRNAs at the same time. Going forward,

researchers who rely on suspension cAMP treatment to

prime cells for chemotaxis or other developmental as-

says may benefit from knowing exactly how genes and

processes behave relative to solid-support development.

The major difference in transcriptional response be-

tween experiments was the differential expression of
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approximately twice as many genes in the suspension

treatment than the filter treatment. As mentioned above,

we suggest that this result reflects the uniformity of

cAMP experience among the population of cells in sus-

pension, both in terms of the concentration and the

periodicity of the signal. Further, the transcriptional pat-

terns were more advanced in cAMP pulsed cells relative

to filter-developed cells by about 4 hours. Could this

speed up be the consequence of having full amplitude

pulses starting at 2 h in suspension but maybe not until

6 h on solid support? On filters the cells have to entrain

each other for the whole filter to get a full amplitude

pulse. Or could it be the result of having regular 6-

minute pulses when cAMP is added exogenously, while

on filters the signal might be more irregular? The regu-

larity and amplitude of the cAMP pulse could affect the

level of nuclear active GtaC, which would have major

consequences for the transactivation and repression of

certain genes [78]. Consistent with this hypothesis, we

observed roughly 2-fold more gtaC mRNA in the sus-

pension treatment. The four “aggregation” genes shown

in the expression profile panels are all putative transcrip-

tional targets of GtaC [78,79], and also displayed 2-fold

higher transcript abundance in suspension.

Further analyses of these data may focus on identifying

additional co-regulated transcriptional regulators and

target genes. The enhanced temporal resolution of these

data provides more informative transcription profiles

than previous studies. Perhaps clustering of genes by ex-

pression pattern will yield improved hypotheses regard-

ing shared regulation and function. As future studies

examine the phenotypic consequences of transcription

factor knockout mutations, as well as the binding speci-

ficity of important transcriptional regulators, these data

will serve as a critical reference point for inferring regu-

latory interactions. To facilitate exploration by the larger

community, user-friendly analysis tools for these data

are available at dictyExpress [www.dictyExpress.org], and

the complete time series data sets are accessioned at the

NCBI Gene Expression Omnibus [GEO: GSE61914;

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=glcluooejnuhdmd&acc=GSE61914].

Conclusions

Our data provide detailed molecular support for the

established model of D. discoideum development as a

series of coordinated cellular and multicellular activities.

The population-average transcriptome changed rather

gradually within the field of cells during cAMP relay,

and at times within multicellular bodies, such as mounds

or migratory slugs, that experience both cell-cell contact

and various soluble signaling regimes [8]. Concerted

transcriptome shifts marked the transition to multicellu-

larity and culmination. From these observations we

conclude that developmental gene expression in D.

discoideum progresses unevenly. We further propose

that the data reported here provides a substantial re-

source for future studies in developmental gene regula-

tion, signaling and mechanisms of intercellular synchrony.

Methods

Growth, development, cAMP treatment and cDNA library

preparation

For both filter and suspension development experiments

we used Dictyostelium discoideum strain AX4 grown in

HL-5 nutrient medium in shaking culture at 22°C to

mid-log phase. We developed cells on nitrocellulose fil-

ters (5 × 107 cells per 5 cm filter) saturated in PDF buf-

fer by standard methods, detailed in [18]. Every hour

from zero to 12, and every two hours thereafter, we

scraped the cells from a single filter into 1 mL Trizol re-

agent (Life Technologies), vortexing to disrupt the cells

and homogenize the solution. Samples were immediately

stored at -80°C. In total, we collected 19 time points

from two independent biological replicates on different

days, yielding 38 samples. We developed cells in suspen-

sion with exogenous cAMP as in [12]. Briefly, cells were

washed, resuspended and shaken at 125 RPM for a total

of 12 hours (h). We began pulsing 30 nM cAMP at the

2 h time point with a six minute period until 6 h. From

6 h on, we applied 300 μM cAMP every two hours. We

harvested 5 × 107 cells every hour from 0 h to 6 h, and

every two hours thereafter until 12 h. Cells were pel-

leted, resuspended in 1 mL Trizol reagent, disrupted by

vortexing, and immediately stored at -80°C. In total, we

collected 10 time points from three independent bio-

logical replicates on different days, except for hour 12 in

replicate 3, yielding 29 samples. We extracted, precipitated

and resuspended total RNA in 10 mM Tris–HCl (pH 7.5).

Next we isolated and fragmented mRNA, and constructed

multiplexed cDNA libraries according to [80].

Sequencing, mapping and read count standardization

We sequenced the cDNA libraries by high throughput

Illumina Genome Analyzer II with read length of 50

base pairs (bp). We mapped the resulting FASTQ files

using bowtie, version 0.12.7 [81], allowing for single hits

(−m 1). Unmapped reads were trimmed by 2 bp and re-

mapped iteratively up to five times. The total number of

uniquely mapped reads constituted a gene’s transcript

abundance. We standardized the abundance levels as

reads per kilobase per million (RPKM) by accounting for

the mapable lengths of genes and the total number of

mapped reads in a given RNA-seq run. The data have

been accessioned at the NCBI Gene Expression Omnibus

[GEO: GSE61914]. The sampling effort and sequencing

output are summarized in Additional file 1: Table S1.
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Transcriptome trajectory analysis by PCA, MDS and linear

regression

We filtered the experimental transcriptome data for

genes that had fewer than 30 reads at all time points,

leaving 8,766 genes in the filter development set and

8,593 in the cAMP suspension set, with 8,040 genes

intersecting both. We implemented principal component

analysis (PCA) and multidimensional scaling (MDS) al-

gorithms using the Orange data-mining suite with de-

fault parameters [82]. PCA enumerates vectors that

capture the variation among the datasets, while MDS

returns a measure of distance, or similarity, between

datasets (i.e. time points). For PCA, we transformed an

input data matrix of size 69 × 8040 (samples × genes)

into a matrix of size 69 × 2, where each of 69 sample cell

populations was characterized by the first two principal

components. For MDS, transcriptional distance was esti-

mated using (1 minus the absolute value of a Spearman’s

rank correlation). The MDS projection positioned each

sample transcriptome in a two-dimensional plot such

that the Euclidean distance between any two points is

proportional to the distance between two associated

transcriptional profiles. We then developed models to

predict the developmental time of a cell population

given its transcriptional profile. Linear regression was

implemented via scikit-learn [83]. Models were con-

structed (or trained) using data from one experiment (e.

g., filter) and the prediction accuracy was tested on the

data from the other experiment (e.g., suspension). Ac-

curacy was assessed by measuring the Spearman rank

correlation between predicted and true development

times of the cell populations in the test set, and, due to

differences in the time scales, taking into account the

developmental order of samples rather than the actual

prediction of developmental time.

Differential expression analysis

We analyzed differential expression (DE) using baySeq

(R package version 1.16.0) [84], comparing the expres-

sion of each gene at each time point versus all other

time points. We selected a false discovery rate (FDR)

threshold ≤ 0.01 to identify genes differentially expressed

in each time point comparison. We used a k-hop ap-

proach to count the number of DE genes in all k = 1-, 2-,

3- and 4-hour windows. The direction of fold change

was also determined for each gene at each time point

comparison. For up-regulation, we counted DE genes

looking back from each reference time point, i.e. 4-hour

versus 3 h, 2 h, 1 h and 0 h. We counted down-regulated

genes looking forward in time, i.e. 0-hour versus 1 h, 2 h,

3 h and 4 h. Genes were only counted once per reference

time point for the smallest time delta in which it appeared.

For example, if a gene was DE between 4 h and 3 h, as well

as between 4 h and 2 h, we counted it in the 1-hour bin.

Correlation analyses, cluster visualizations and gene

ontology enrichment

We calculated Spearman rank correlations and per-

formed hierarchal clustering for heatmaps and dendro-

grams using the visual programming environment

Orange [82]. Approximately Unbiased (AU) p-value

scores were calculated for the dendrograms by multi-

scale bootstrap resampling using the pvclust package in

R [85]. We tabulated a list of all DE genes in each 1- to

4-hour window and analyzed the gene ontology term en-

richment using both the GO widget in Orange as well as

the topGO R package version 2.14.0, with a p-value

threshold of 0.05. Significantly enriched terms were se-

lected based in part on the number of genes contribut-

ing to enrichment, and in part on the annotations.

Data availability

The additional material includes the Additional file 1:

Figures (S1 to S10) and Tables (S1 and S2) referred to in

the main text. We have also included additional data files as

downloadable spreadsheets. These contain the read counts,

gene lists and other data analyses described in text. Please see

the section “Description of Additional Data Files” below for

more information. The read count data from Additional files

2 and 3, as well as individual sequencing reads files, have been

accessioned at the NCBI Gene Expression Omnibus [GEO:

GSE61914; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=glcluooejnuhdmd&acc=GSE61914]. These data may

also be viewed and analyzed using the dictyExpress toolkit

[www.dictyExpress.org].

Additional files

Additional file 1: Contains the supplementary results, Additional

file 1: Figures S1 – S10 and Additional file 1: Tables S1 – S3 as

referenced in the text.

Additional file 2: Contains three worksheets with data from the

filter development experiment: Worksheet 1—“filter_raw”—

contains the raw read counts for all gene models (column header =

“locus_tag”) in the D. discoideum genome. Column headings indicate

the time point, followed by the suffix r = raw, followed by the replicate

number. For instance: 00hr_r1 = zero hours, raw data, replicate 1.

Worksheet 2—“filter_normal”—contains the normalized read counts (akin

to reads per kilobase per million [RPKM], adjusted for mapability) for all

gene models (column header = “locus_tag”) in the D. discoideum

genome. Column headings indicate the time point, followed by the suffix

n = normal, followed by the replicate number 1 or 2. For instance:

00hr_n1 = zero hours, normalized data, replicate 1. Worksheet 3

—“filter_average”—contains the normalized read counts for all gene

models (column header = “locus_tag”) in the D. discoideum genome,

averaged among replicates. Column headings indicate the time point,

followed by the suffix avg = average. For instance: 00hr_avg = zero

hours, averaged read count.

Additional file 3: Contains three worksheets with data from the

suspension experiment: Worksheet 1—“suspension_raw”—contains

the raw read counts for all gene models (column header =

“locus_tag”) in the D. discoideum genome. Column headings indicate

the time point, followed by the suffix r = raw, followed by the replicate

number. For instance: 00hr_r1 = zero hours, raw data, replicate 1.
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Worksheet 2—“suspension_normal”—contains the normalized read

counts (akin to reads per kilobase per million [RPKM], adjusted for

mapability) for all gene models (column header = “locus_tag”) in the D.

discoideum genome. Column headings indicate the time point, followed

by the suffix n = normal, followed by the replicate number 1 or 2. For

instance: 00hr_n1 = zero hours, normalized data, replicate 1. Worksheet 3

—“suspension_average”—contains the normalized read counts for all

gene models (column header = “locus_tag”) in the D. discoideum

genome, averaged among replicates. Column headings indicate the time

point, followed by the suffix avg = average. For instance: 00hr_avg =

zero hours, averaged read count.

Additional file 4: Contains a worksheet listing the 8,040 genes that

met the minimum expression threshold in both filter and

suspension experiments, and were thus included in PCA and MDS

analyses.

Additional file 5: (filter development) Contains the differential

expression analysis false discovery rate (FDR) values determined by

baySeq for all genes at all time point differences of k = 1-, 2-, 3-,

and 4-hour, or “k-hops”. We analyzed all-versus-all time points, but only

used the 4-hour delta for all reported DE analyses. Due to constraints on the

size of additional files, we have not included the baySeq output for the

other time comparisons here. Further, due to the same size constraints, only

the false discovery rate (FDR) for the “Differentially Expressed” model is given

here. Other statistics, i.e. likelihood, and other models, i.e. “Not Differentially

Expressed,” were also calculated. The complete baySeq output including all

time point comparisons for both statistics and both models are available

directly from the authors upon request.

Additional file 6: (suspension) Contains the differential expression

analysis false discovery rate (FDR) values determined by baySeq for

all genes at all time point differences of k = 1-, 2-, 3-, and 4-hour,

or “k-hops”. We analyzed all-versus-all time points, but only used the

4-hour delta for all reported DE analyses. Due to constraints on the size

of additional files, we have not included the baySeq output for the other

time comparisons here. Further, due to the same size constraints, only

the false discovery rate (FDR) for the “Differentially Expressed” model is

given here. Other statistics, i.e. likelihood, and other models, i.e. “Not

Differentially Expressed”, were also calculated. The complete baySeq

output including all time point comparisons for both statistics and both

models are available directly from the authors upon request.

Additional file 7: Lists the differentially expressed genes (DDB_G

identities) tabulated for each reference time point during the k-hop

analysis. This workbook contains four data worksheets. The name of

each sheet describes the experiment “filter” or “suspension”, followed by

“UP” or “DOWN”, indicating the direction of change in differential gene

expression. In each sheet, the columns correspond to reference time

points, and either the list of “gradual” or “rapid” DE genes, as tabulated in

the k-hop analysis (Figure 2 in the main text).

Additional file 8: Provides the gene ontology (GO) enrichment

output for each of the DE gene lists in Additional file 7, above. This

workbook contains four data worksheets. The name of each sheet

describes the experiment “filter” or “suspension”, followed by “UP” or

“DOWN”, indicating the direction of change in differential gene

expression.
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