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Learn-As-You-Fly: A Distributed Algorithm

for Joint 3D Placement and User Association

in Multi-UAVs Networks
Hajar El Hammouti, Member, IEEE, Mustapha Benjillali, Senior member, IEEE,

Basem Shihada, Senior member, IEEE, and Mohamed-Slim Alouini, Fellow, IEEE

Abstract—In this paper, we propose a distributed algorithm that
allows unmanned aerial vehicles (UAVs) to dynamically learn their
optimal 3D locations and associate with ground users while maximiz-
ing the network’s sum-rate. Our approach is referred to as ’Learn-
As-You-Fly’ (LAYF) algorithm. LAYF is based on a decomposition
process that iteratively breaks the underlying optimization into three
subproblems. First, given fixed 3D positions of UAVs, LAYF proposes
a distributed matching-based association that alleviates the bottle-
necks of bandwidth allocation and guarantees the required quality of
service. Next, to address the 2D positions of UAVs, a modified version
of K-means algorithm, with a distributed implementation, is adopted.
Finally, in order to optimize the UAVs altitudes, we study a naturally
defined game-theoretic version of the problem and show that under
fixed UAVs 2D coordinates, a predefined association scheme, and
limited interference, the UAVs altitudes game is a potential game
where UAVs can maximize the limited interference sum-rate by only
optimizing a local utility function. Our simulation results show that
the network’s sum-rate is improved as compared to both a centralized
suboptimal solution and a distributed approach that is based on
closest UAVs association.

Index Terms—UAV-assisted networks, UAV-user’s association, 3D
placement, matching game, potential game, best-response dynamics,
K-means.

I. INTRODUCTION

T
He first development and testing of drones, also known as

unmanned aerial vehicles (UAVs), can be traced back to

the inter-world-war period where the British army built radio-

controlled aircrafts to use them as targets during military train-

ings [1]. Since then, the use of drones has been gradually

expanded to cover a countless number of applications that range

from military services to humanitarian purposes and commercial

applications [2], [3], [4]. As an example, one of the most beneficial

applications of drones is for search and rescue operations where

UAVs can access remote areas, provide supplies, and find missing

people [5]. The continuous advancement in technology has also

extended the use of drones to shipping applications that allow

customers to receive their requested products rapidly through

drone delivery services [6] (see some UAVs use cases in Fig. 1).

Telecommunications are another important area where drones

powered solutions are flourishing [7], [8]. The use of drones as ad-

hoc networks that provide on-demand connectivity to the ground

users has drawn significant attention from researchers in both
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academia and industry in the last few years. Essentially, drones

can be used as temporary support to the terrestrial network for

different use cases. As an example, UAVs can be useful to replace

damaged cellular infrastructure after a natural disaster. They can

also be used to extend coverage to remote areas where natural

obstacles may restrain operators from deploying a ground cellular

network [9], [10]. In temporary mass events (sport games and

festivals), UAVs can be easily deployed to satisfy the high demand

for mobile data and expand the cellular network capacity. By

virtue of their high flexibility, drones can also serve as dynamic

relays that move toward the ground users (e.g. Internet of Things

devices), collect data and transmit it to an out-of-range receiver

(e.g. sink node) [11].

However, deploying UAVs poses a number of challenges [12],

[13]. Clearly, when a drone is used to accomplish a number of

tasks, it is essential to design its trajectory [14], minimize its

energy [15], and maximize the profit of its mission [16]. Further-

more, in order to control the drone remotely and communicate

with ground users, it is important to study the nature of the

air-to-ground channel [17], [18], manage interference [19], and

achieve the quality of service that satisfies the communication

requirements [20].

In the context of multi-UAVs systems, two fundamental chal-

lenges arise. The first is how to position UAVs optimally in a way

that guarantees a balanced tradeoff between the shadow-fading

effects, the path loss and the interference. Previous studies have

shown that increasing the UAV’s altitude has a double effect:

on one hand, it improves the probability of line-of-sight (LoS)

between the drone and the ground user, on the other hand, it results

in additional path loss [21], [19]. In a multi-UAVs system, more

complexity is added to the network as drones positioning should

also be favorable to a reduction of the overall interference [22].

The second challenge naturally follows from the first one. Indeed,

in order to reap the benefits of a multi-UAVs system, reduce

interference and improve the network performance, drones should

either (i) rely on a centralized ground controller that has a global

view on the network and defines the optimal drone strategies,

or (ii) autonomously decide about their positions based on local

observations of the surrounding environment [23], [24], [25].

With the growing size of today’s networks and the dynamic

characteristic of connected systems, a distributed realization is

considered as the best solution to cope with the ever-changing

nature of the wireless environment, especially in UAVs-assisted

networks where UAVs need to quickly adapt to the user’s density

variations, a base station failure, communication bottlenecks,

etc. In such a context, distributed algorithms present numerous
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Fig. 1: UAVs use cases in the context of smart cities.

advantages against centralized ones that we summarize as follows.

• Scalability: the architecture of a decentralized system is

very flexible and more adapted to large scale networks. The

network can be expanded by adding new UAVs that will

autonomously converge to a stable and efficient state without

resulting in additional load to a centralized entity (as it is the

case for centralized networks).

• Robustness to failure: in centralized networks, a failure

of the centralized node may result in the failure of the

whole system as the network architecture depends on a single

centric point (e.g. a ground base station) that computes the

best strategies for all the UAVs. In contrast, in distributed

schemes, if a UAV node fails, only its neighbors have to

update their strategies.

• Robustness to bottlenecks: centralized networks are sen-

sitive to bottlenecks as a large amount of overhead needs

to be exchanged from the UAVs to the centralized entity

and vice versa. A decentralized approach makes it easier to

UAVs to communicate with each other without overloading

a particular component of the network.

• Computational efforts: centralized schemes require high

computational efforts to process the collected information,

whereas distributed ones necessitate less computational ca-

pacity as computations are distributed among all the network

agents (i.e. UAVs).

• Synchronization: unlike centralized approaches where a

global clock is needed to synchronize the centralized entity

with the UAV nodes, a distributed realization allows to each

UAV to build its strategy depending on its own clock. There-

fore, each UAV can decide about its strategy by collecting

local information without any need of synchronization with

the entire system.

Moreover, in most multi-UAVs systems, the UAV-user’s associ-

ation rule is an important component. This is because the overall

network performance relies on the number of connected users and

their perceived quality of service [26]. Thus, the 3D placement is

tightly coupled with the UAV-user’s association problem. It would,

therefore, be a requirement to define a practical association rule

that can jointly operate with the 3D placement algorithm in order

to enhance the number of connected users, satisfy their quality

of service, and respect the maximum bandwidth allowed for each

aerial vehicle.

Although a number of recent works have provided various

approaches to approximately solve 3D placement problems, the

majority of these works typically set up centralized algorithms to

reach the best network performance. We believe that the dynamic

nature of the surrounding environment and the growing size of

today’s networks make it extremely difficult to implement such

schemes to achieve optimal/near-optimal solutions. Therefore, the

main thrust of this paper is to design a distributed algorithm that

can be implemented on UAVs in order to achieve reliable and

efficient solutions by only using local information.

In this paper, we are interested in an urban type environ-

ment where aerial base stations are deployed to support dam-

aged/overloaded ground base stations. Our objective is to effi-

ciently place the UAVs in the 3D plan and associate the users

in order to reach an efficient value of the downlink sum-rate of

the network. Being non-convex and NP-hard, the studied problem

cannot be solved using classical convex optimization methods.

Therefore, we propose an algorithm referred to as ’Learn-As-You-

Fly’ (LAYF) that iteratively breaks the underlying optimization

problem into three subproblems: 2D UAVs positioning, the altitude

optimization, and the UAV-user’s association. At each iteration,

1) LAYF addresses the UAV-user’s association by leveraging a

distributed matching scheme that alleviates the bottlenecks of

the bandwidth and guarantees the required quality of service.

2) It also updates the 2D coordinates using a modified K-means

approach where UAVs dynamically change their 2D positions

in order to reach the barycenter of the served ground users.

3) Finally, LAYF adjusts UAVs altitudes by only optimizing a

local utility function based on a neighborhood structure that

depends on interference.

4) The last step of the algorithm is justified by the fact that under

fixed UAVs 2D coordinates, a predefined association scheme,
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and limited interference, the UAVs altitudes subproblem

can be seen as a non-cooperative potential game where

the players (UAVs) can reach the optimum of the limited-

interference sum-rate by only looking for a Nash equilibrium

of a local utility function.

5) Our simulation results show that a good performance can

be reached as compared to both a centralized suboptimal

solution and a distributed approach that is based on closest

UAVs association.

This paper builds on our short version of the work in [27]

where we present a distributed approach for joint 3D placement

and UAV-user’s association. In the current paper, we discuss

the convergence aspect of the proposed algorithm, provide more

details on its implementation and exhibit its qualitative properties.

This version also includes extensive simulation results where

comparison is performed with a centralized approach.

The rest of the paper is organized as follows. The next section

presents related work. Section III describes the studied system

model. Section IV presents the general optimization problem.

Section V decomposes the underlying optimization problem and

provides local solutions to each subproblem. In section 3 the

global approach is described and its qualitative properties along

with its limitations are provided. Simulation results are described

in Section VII. Finally, concluding remarks and possible exten-

sions of this work are provided in section VIII.

Notations: let M and mi j denote the matrix and its (i, j)-th entry

respectively. The set denoted by S × C represents the Cartesian

product of S and C. Eg is the expectation regarding random

variable g. Vectors are denoted using boldface letters x whereas

scalars are denoted by x. |C| denotes the cardinality of the set

C. Throughout the paper, the words UAVs and drones are used

interchangeably.

II. RELATED WORK

Several optimization problems that are related to UAVs place-

ment and resource allocation can be found in the literature. We

classify them into three categories: resource allocation for fixed

UAV positions, 3D placement and UAV trajectory optimization,

and joint resource allocation and UAV 3D placement. In the

following, we review the papers that are the most relevant to our

work. A summary of this review is provided in TABLE I.

Resource allocation for fixed UAV positions: In [26], authors

present a distributed greedy approach to improve the users sum-

rate under backhaul capacity, bandwidth constraint, and maximum

number of links limitation. The optimal power and spectrum

allocation are investigated in [28] where the authors minimize

the mean packet transmission delay for uplink communications.

In [29], the authors goal is to minimize the maximum energy

needed to ensure a certain bit error rate target. To this end, they

propose a global scheduling technique using standard optimiza-

tion, and provide a light version of the algorithm to reach a

suboptimal solution.

3D placement and UAV trajectory: Unlike the previous works

where the 3D placement of UAVs is not considered, authors

in [31] investigate the 3D placement of UAVs while maximizing

the number of covered users. The UAV horizontal and vertical

locations are optimized separately. The optimal altitude is found

by solving a convex decoupled optimization problem, while the

optimal 2D location is achieved by finding a solution to the

smallest enclosing circle problem. In [34], authors optimize the

UAV trajectory to accurately learn the environment propagation

parameters. They introduce a map compression method and use

dynamic programming to efficiently design the UAV trajectory.

The optimal UAV position to maximize the end-to-end throughput

is studied in [35] where information provided by the signal

strength radio map is leveraged. In line with the previous cited

work, authors in [33] provide an online algorithm, based on the

theory of asynchronous stochastic approximation, for a fast de-

ployment of flying relays, that minimizes the power consumption

under constraints of outage probability and number of deployed

drones.

Joint resource allocation and 3D placement: When con-

sidering the 3D placement, the aforementioned works either

assume a single UAV setup or multiple UAVs in interference-

free environment. In general, optimizing the UAV placement, in

isolation, is equivalent to finding the optimal 3D location that

provides a good probability of line-of-sight, but at the same time,

does not result in an important path loss. In the presence of

interference, an additional constraint should be considered as any

improper adjustment of UAVs locations may severely affect the

network performance. Authors in [37] present a heuristic particle

swarm optimization algorithm to find the 3D placement of UAVs

in order to maximize, under interference, the users sum-rate. In

their problem formulation, the authors consider the presence of a

macro base station with a large backhaul bandwidth to serve delay-

sensitive users. Under this assumption, the optimal proportion

of resources allocated to UAVs backhaul is determined through

a decomposition process that yields in a convex optimization

problem. Although the proposed algorithm provides appreciable

performance, it suggests a centralized implementation which can

involve a large number of signaling messages and require a

high computational effort. A distributed algorithm to improve

the coverage region of drones is especially considered in [38].

The authors assume that the positions of Internet of Things (IoT)

devices are permanently changing and provide a feedback based

distributed algorithm to maximize the coverage region of drones

while keeping them associated in clusters. The proposed algorithm

still requires a centralized information pertaining the coordinates

of the cluster centers in order to reach a good network configura-

tion. Furthermore, the algorithm focuses on the 2D positions and

does not optimize the UAVs altitudes.

Although the problems of resource allocation and UAV 3D

placement have been widely discussed in the literature, the major-

ity of existing works either consider a single UAV or assume an

interference-free environment. Under such assumptions, the sum-

rate problem is quickly reduced to a disk coverage optimization.

The closest works to our paper are [37] and [38] where inter-

ference, joint association and UAV positioning are considered.

Unlike [37], we propose a distributed algorithm and thoroughly

discuss its practical implementation. Our paper is also different

from [38] as it deals with the downlink sum-rate, instead of the

coverage region, and optimizes the UAVs altitudes as well.

It is important to note that, in general, meta-heuristic approaches

can be proposed to study NP-hard problems [40]. However, these

approaches are generally designed to solve either discrete or

continuous optimization. When considering the joint association

and 3D placement problem, both discrete (association matrix)

and continuous (3D positions) variables are involved. This re-
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Type of problem Reference Objective Technique Comment

[26] -Maximize the sum-rate -Greedy knapsack -Distributed algorithm for
algorithm UAVs small-cells

Resource allocation association
for fixed UAVs [28] -Minimize the mean packet -Bisection method and -Centralized approach for

positions transmission delay gradient descent power & spectrum
allocation

[29] -Minimize the maximum -Transform to standard -Centralized approach for
energy integer programming users scheduling

[30] -Maximize a lower bound -Line search based -Centralized and offline for
of the uplink sum-rate algorithm the trajectory of a UAV

[31] -Maximize the number of -Decoupling horizontal -Centralized and designed
covered users and vertical positions and for a single UAV

convex optimization
3D placement [32] -Minimize the deployment -Dynamic programming -Centralized algorithm for

and UAV trajectory delay multiple UAVs deployment
optimization [33] -Minimize the power -Online algorithm based -A learning algorithm for

consumption on the theory of stochastic a single UAV
approximation

[34] -Build a LoS map -Dynamic programming -Centralized and online for
and map compression a single UAV to optimize
method the channel measurements

[35] -Maximize the end-to -Convex optimization -Centralized and online
-end throughput for a single UAV

[36] -Maximize the sum-rate -Adaptive weighted -Centralized approach for
coordinates based on joint power allocation and
gradient ascent 3D placement

[37] -Maximize sum-rate -Particle swarm -Centralized approach for
Resource allocation optimization user’s association and
and 3D placement 3D placement

[38] -Maximize the coverage -Matching and control -Distributed approach for
region of drones theory user’s association and 2D

placement, altitude is not
optimized

[39] -Collision avoidance -Conflict detection -Distributed alerting
framework algorithm

TABLE I: Summary of the state of the art.

sults, in addition to the NP-hardness, in a mixed integer non-

linear programming (MINLP) problem that can be solved using

advanced software such as CPLEX and SCIP from IBM (mainly

based on hybrid meta-heuristics) [41]. However, the convergence

to the global optimum is not guaranteed as the software can halt

at a local optimum. Furthermore, the convergence time can be

long and the implementation is definitely centralized. Throughout

this article, our objective is to propose a practical, distributed

and easy-to-use algorithm to reach an efficient sum-rate of the

downlink communication in a multi-UAVs environment. Although

the proposed approach relies on combining existing algorithms, it

suggests a feasible way to implement and merge them, and it

investigates their global convergence. Furthermore, to the best of

our knowledge, this is the first time the altitudes problem is shown

to be a potential game where the UAVs can reach the optimum

of the limited-interference sum-rate by only looking for a Nash

equilibrium of a local utility function.

III. SYSTEM MODEL

A. Base Stations Deployment

Consider an area A where the ground base stations (GBSs)

form a homogeneous Poisson point process (HPPP), ΦG , of

intensity λG . Assume that a number of GBSs is not operational

or under-functioning due to a congestion (e.g. during a temporary

mass event) or a malfunction (e.g. a post-disaster scenario) of the

infrastructure. The overloaded/damaged base stations are modeled

by an independent thinning of ΦG with a probability p. In order to

support the terrestrial network, a number K of drones, randomly

scattered in the 3D area, is deployed. The optimal number of

required drones can be estimated roughly by taking into account

the number of ground users, the average capacity of the network

and the average target rate of the users. More advanced techniques,

based on heuristics, can also be used as proposed in reference [42].

Let BG be a realization of ΦG and BA the set of UAVs. We

denote by (xA, yA, h) the 3D positions matrix of all UAVs, with

(xA, yA) the 2D locations of UAVs and h their altitudes vector.

Let U be the set of ground users that need to be served by the

UAVs. Although not all the GBSs are overloaded/damaged, we

assume, throughout the paper, that ground users are allowed to

associate with UAVs only in order to avoid any additional load

to the terrestrial network. An illustration of the system model is

given in Fig. 2 (a).

B. Air-to-Ground Channel Model

In order to capture the distortion of the signal due to obstruc-

tions, we consider the widely adopted air-to-ground channel model

where the communication links are either line-of-sight (LoS) or

non-line-of-sight (NLoS) with some probability that depends on

both the UAV’s altitude and the elevation angle between the user

and the UAV. Given a UAV j with an altitude hj and a user i with

a distance ri j from the projected position of the UAV on the 2D

plan, the probability of LoS is given by [43]

pLoS
i j (ri j, di j) =

1

1 + ǫ · exp

(

−β 180
π

arctan

√

r2
i j
−d2

i j

di j
− ǫ

) , (1)
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Fig. 2: (a) System model, (b) distances notations.

with di j the distance from the projected position of the UAV on

the 2D plane, ǫ and β are environment dependent parameters.

Accordingly, the path loss between UAV j and user i, can be

written

Li j(ri j,di j)=

(

4πf ri j

c

)−α
(

ζLoSpLoS
i j (ri j,di j)+ζNLoS(1−pLoS

i j (ri j,di j))
)−1
, (2)

where the first term formulates the free space path loss that

depends on the carrier frequency f , the speed of the light c and

the path loss exponent α. Parameters ζLoS and ζNLoS represent the

additional losses due to LoS and NLoS links respectively. The

distance notations are described in Fig 2 (b).

It is worth noting that to account for interference from GBSs,

we consider the same channel model where the GBSs altitudes

are assumed negligible compared with distances from the users.

C. Average Spectral Efficiency

We consider the downlink channel and assume that each

ground/aerial base station j transmits with power Pj . Hence, when

a frame is transmitted by a UAV j, it is received at user i with

the power Pjgi jLi j(ri j, di j), where gi j accounts for the multipath

fading that is considered to follow an exponential distribution with

mean µ1. We assume that the drones move sequentially. Therefore,

during their stopping periods, the communication channels are

1Our proposed approach is independent of the small-scale fading model. Our
simulation results show that the proposed approach is also valid for a Rician
channel.

supposed stationary and known at both the UAVs and the users.

The quality of the wireless link is measured in terms of signal-

to-interference-and-noise-ratio (SINR), γi j , defined as follows

γi j =
Pjgi jLi j(ri j, di j)

σ2
+

∑

k,j,k∈BA∪BG

PkgikLik(rik, dik)
, (3)

where σ2 represents the power of an additive Gaussian noise.

Accordingly, the average spectral efficiency received at a user i

from a UAV j, ηi j , can be defined using Shannon’s capacity bound

as the following

ηi j = Eg

[

log2(1 + γi j)
]

. (4)

Assume each ground user i has a rate request of Ri . Then, in

order to satisfy the user’s request, UAV j needs to adjust the

allocated bandwidth bi j according to the quality of the link such

that Ri = bi jηi j .

IV. PROBLEM FORMULATION

Let A = (ai j) be the UAV-user’s association matrix. Our

objective is to maximize the aggregate downlink rates requested

by all the ground users by optimizing, jointly, the UAV-user’s

association (i.e. A = (ai j)) and the 3D placement of UAVs (i.e.

(xA, yA, h)) in a way that the bandwidth limitation for all UAVs is

always respected and the constraint on the quality of service is not

violated. Let H be the set of allowed altitudes. Our constrained

optimization problem is formulated as follows.
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maximize
A, (xA, yA, h)

∑

j∈BA

∑

i∈U

ai jRi (5a)

subject to Ri = bi jηi j, ∀i ∈ U, ∀ j ∈ BA, (5b)
∑

i

ai jbi j ≤ Bj, ∀ j ∈ BA, (5c)

ai j

ηi j
≤

1

ηmin
, ∀(i, j) ∈ U × BA, (5d)

xmin ≤ xA
j ≤ xmax

∀ j ∈ BA, (5e)

y
min ≤ y

A
j ≤ y

max
∀ j ∈ BA, (5f)

hj ∈ H ∀ j ∈ BA, (5g)
∑

j

ai j ≤ 1, ∀i ∈ U, (5h)

ai j ∈ {0, 1}, ∀(i, j) ∈ U × BA. (5i)

Constraint (5b) guarantees that the requested rate can be provided

by the UAV. Constraint (5c) ensures that the limitation on the

bandwidth resource of each UAV is respected (each UAV j has a

bandwidth limit Bj). Constraint (5d) guarantees that the average

spectral efficiency is no less than a predefined threshold ηmin.

Constraint (5e) and (5f) show that it is necessary that the UAV

2D coordinates belong to the target area. Moreover, constraint (5g)

ensures that the UAVs altitudes will belong to the allowed flying

altitude values described in the set of discrete UAVs altitudes H .

Constraints (5h) and (5i) restrict the ground user to be associated,

at most, with one UAV.

In practice, problem (8) is mathematically challenging as it in-

volves a non-convex objective function, and non-convex and non-

linear constraints. Clearly, the underlying optimization problem

is a MINLP that is, moreover, NP-hard (due to the UAV-user’s

association that can be formulated as the well-known knapsack

problem [44]). Finding the global optimal solution to such a

problem may involve searching over 3D coordinates for all UAVs

and for every possible UAV-user’s association. In the following,

we propose a distributed approach based on a decomposition

process to achieve a suboptimal, yet efficient, solution that costs

few numbers of iterations. To this purpose, the studied optimiza-

tion is decoupled into three subproblems. First, the association

problem is solved while assuming fixed 3D locations of UAVs.

This subproblem is described as follows.

maximize
A

∑

j∈BA

∑

i∈U

ai jRi (6a)

subject to Ri = bi jηi j, ∀i ∈ U, ∀ j ∈ BA, (6b)
∑

i

ai jbi j ≤ Bj, ∀ j ∈ BA, (6c)

ai j

ηi j
≤

1

ηmin
, ∀(i, j) ∈ U × BA, (6d)

∑

j

ai j ≤ 1, ∀i ∈ U, (6e)

ai j ∈ {0, 1}, ∀(i, j) ∈ U × BA. (6f)

Second, we deal with the 2D positioning of UAVs for fixed

altitudes and association, which is expressed as follows,

maximize
(xA, yA)

∑

j∈BA

∑

i∈U

ai jRi (7a)

subject to xmin ≤ xA
j ≤ xmax

∀ j ∈ BA, (7b)

y
min ≤ y

A
j ≤ y

max
∀ j ∈ BA. (7c)

Finally, we optimize the UAVs heights given fixed 2D coordinates

of the UAVs and a predetermined association scheme. The sum-

rate is therefore maximized with respect to the UAVs altitudes as

follows

maximize
h

∑

j∈BA

∑

i∈U

ai jRi (8a)

subject to hj ∈ H ∀ j ∈ BA. (8b)

V. PROPOSED APPROACH

As stated before, the problem under analysis is mathematically

challenging. Finding a global optimal solution cannot be achieved

using classical convex optimization methods. Our idea is to break

the studied problem into subproblems that are locally solvable us-

ing combined low-complexity algorithms, and iterate the process

in order to reach a stable solution.

A. Efficient UAVs-Users Matching

Algorithm 1 Users-UAVs Matching

1: Initialization

2: For each user i, sort ηi j =
Ri

bi j
in a decreasing order such that

ηi j > ηmin, and establish a list Li

3: For each UAV j, sort bi j =
Ri

ηi j
in an increasing order, and

establish a list L j , ai j = 0 for each user i and UAV j

4: repeat

5: for i ∈ U do

6: i requests to connect to j = argmaxk∈Li
{ηik}

7: if i=argmins∈L j
{bs j} &

∑

c∈U,
c,i

ac jbc j+bi j≤Bj then

8: ai j = 1

9: else
∑

c∈U,
c,i

ac jbc j + bi j > Bj

10: if There exists a user s s.t. bi j < bs j & as j = 1

&
∑

c∈U,
c,i,s

ac jbc j − bs j + bi j < Bj then

11: ai j = 1, as j = 0

12: else

13: Li = Li\{i} & L j = L j\{ j}

14: until Bandwidth limit is reached or each user has been either

connected, or rejected by all its preferred UAVs.

To deal with the target optimization, we first assume fixed 3D

locations of UAVs and propose a suitable distributed mechanism

for UAV-user’s association. The proposed mechanism is achieved

using Gale-Shapley matching [45] where the preferences of the

UAVs, on one hand, and the users on the other hand, are both

based on the quality of service (i.e. the average spectral efficiency).

A description of the proposed algorithm is given in Algorithm 1.

First, each user selects the UAVs that satisfy constraint (5d),

and sorts them in a decreasing order by comparing their spectral
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efficiencies. At this step, each user has its own list of preferred

UAVs (line 2). Similarly, each UAV establishes its list of preferred

users by comparing the requested bandwidths (line 3). Each user

sends a request to connect to its most preferred UAVs (line 6).

Each UAV accepts its most preferred users one by one until its

bandwidth limit is reached and rejects the remaining users (lines 7

and 8). Each rejected user attempts to connect to its second most

preferred UAV, if no more bandwidth is left on this UAV, the

drone can disconnect a less desired user and replace it by the

new one (lines 10 and 11)). Otherwise, the user and UAV are

mutually removed from their respective preference lists (line 13).

The algorithm stops when all UAVs have reached their bandwidth

limit or each user has been either connected, or rejected by all its

preferred UAVs (line 14).

The number of iterations needed for convergence is, at most,

equal to |U| × |BG |, since each user can propose to at most |BA|

UAVs.

B. 2D Placement

At this stage of the paper, we will only deal with the 2D

placement of UAVs. In particular, we assume that the UAV-user’s

association scheme is the one described in Subsection V-A and

that the altitudes for all UAVs are fixed at some random values.

The UAVs altitudes are addressed separately in Subsection V-C.

Our objective is to move the UAVs towards their served ground

users in the 2D plan, in sequential steps, so that the quality of the

link for each group is improved, and eventually, more bandwidth

is left to serve additional users.

To this end, we propose a modified version of K-means al-

gorithm [46] (with K = |BA|) that operates in a distributed and

sequential fashion. This modified version positions the UAVs at

the barycenter of the served users instead of the barycenter of the

closest users as it is the case for the classical K-means algorithm.

The procedure of the UAVs 2D placement via the modified version

of K-means is presented in Algorithm 2.

Algorithm 2 2D Placement Optimization

1: Initialization

2: For each UAV j, (xA
j
(0), yA

j
(0)) are chosen randomly within

the target area A

3: For each UAV j, Cj = �

4: repeat

5: for j in BA do

6: for i in U do

7: Update ηi j , update A with Algorithm 1

8: if ai j = 1 then

9: Cj = Cj ∪ {i}

10: xA
j
← 1

|Cj |

∑

i∈Cj

xi , y
A
j
← 1
|Cj |

∑

i∈Cj

yi

11: until UAVs cannot improve their 2D locations or number of

iterations reaches a predetermined value.

Given K initial positions of UAVs (xA(0), yA(0)) (line 2), the

algorithm groups the users with their serving UAVs using the as-

sociation scheme described in Algorithm 1 (line 7). Accordingly,

each UAV’s 2D position is updated as a barycenter of its cluster

Cj (lines 10). When the position of the UAV is updated, the user’s

association is updated as well. This process is then repeated until

none of the UAVs 2D locations are updated or the number of

iterations reaches a predefined value (line 11).

C. Altitude Optimization

In this subsection, we optimize the UAVs altitudes given fixed

2D coordinates of UAVs and a predefined association scheme,

specifically, the one described in Subsection V-A.

1) Definitions: Throughout this section, we adopt the following

definitions.

• Neighborhood: two base stations j and k are considered

neighbors if there exist two heights hj and hk , where at least

one user is covered by both base stations. In mathematical

words, the neighborhood of a UAV j can be defined as

follows.

Nj(τ)= {k ∈B
A ∪BG, ∃i ∈ U s.t. ∃(hj, hk) ∈ H

2

PjLi j(ri j,di j) > τ and PkLik(rik,dik) > τ}, (9)

where τ is the received signal threshold. Note that such a

threshold is defined on the received power averaged over

small-scale (multipath) fading. For ease of notation, we will

remove the ’dependency’ on τ in the rest of the paper, and

note Nj instead of Nj(τ). Furthermore, let us denote by Ñj

the neighboring UAVs of UAV j, therefore

Ñj = B
A ∩ Nj . (10)

• Local sum-rate function: is the function that computes

the sum-rate over a local neighborhood set. Thus, instead

of considering the social welfare of all base stations with

interference, only rates from neighboring base stations with

limited interference (coming from neighbors) are considered.

Accordingly, for each UAV j, the local sum-rate is given by

Uj(h)=
∑

l∈Ñj

∑

i∈U

ailbilEg

[

log2

(

1+
PlgilLil(ril,dil)

σ2
+

∑

k∈Nl,
k,l

PkgikLik(rik,dik)

)

]

.

(11)

Note that when τ = 0 the local sum-rate function coincides

with the social welfare provided by the global objective

function in equation (5a).

• Nash equilibrium (NE) [47]: a strategy profile h is a Nash

equilibrium of a game G if for each player j, ∀hj , h∗
j

Uj(h
∗
j, h
∗
−j) ≥ Uj(hj, h

∗
−j), (12)

where h−j refers to the altitude vector of UAVs other than j.

• Potential game [48]: in game theory, an interesting class

of games called potential games has a specific property:

the NE is a local optimum of the social welfare function

also called a potential function. Let X be a set of strategy

profiles of a game G. G is a potential game if there exists a

potential function F : X −→ R such that for each player j,

∀(hj, h−j) and (h′
j
, h−j) ∈ X

F(hj, h−j)−F(h′j, h−j)=Uj(hj, h−j)−Uj(h
′
j, h−j). (13)
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2) Altitudes Adjustment: Let F(h) be the sum-rate of all

users where only interference from neighboring base stations are

considered. This function is given by

F(h) =
∑

j∈BA

∑

i∈U

ai jbi jEg

[

log2

(

1 +
Plgi jLi j(ri j,di j)

σ2
+

∑

k∈Nj,

k,j

PkgikLik(rik,dik)

)

]

. (14)

In order to account for the neighborhood and altitudes in the

average spectral efficiency, we set the following notation

η
Nj

i j
(hj, h−j) = Eg

[

log2

(

1 +
Plgi jLi j(ri j,di j)

σ2
+

∑

k∈Nj,

k,j

PkgikLik(rik,dik)

)

]

, (15)

where Li j is the path loss when UAV j is at altitude hj . Hence,

when a UAV j changes its altitude given fixed altitudes of its

opponents, the difference in the limited-interference sum-rate can

be written

F(hj, h−j) −F(h′j, h−j) =
∑

l∈BA\Ñj

∑

i∈U

ailbilη
Nl

il
(hj, h−j)+

∑

l∈Ñj

∑

i∈U

ailbilη
Nl

il
(hj, h−j) −

∑

l∈BA\Ñj

∑

i∈U

ailbilη
Nl

il
(h
′

j, h−j)−

∑

l∈Ñj

∑

i∈U

ailbilη
Nl

il
(h
′

j, h−j). (16)

Notice that the term
∑

l∈BA\Ñj

∑

i∈U

ailbilη
Nl

il
(hj, h−j) is independent of

(hj, h−j) as it does not involve UAV j neighborhood. Therefore,

F(hj, h−j) −F(h′j, h−j)

=

∑

l∈Ñj

∑

i∈U

ailbilη
Nl

il
(hj, h−j) −

∑

l∈Ñj

∑

i∈U

ailbilη
Nl

il
(h
′

j, h−j)

=Uj(hj, h−j)−Uj(h
′
j, h−j). (17)

The following Proposition arises from the previous analysis.

Proposition 1. Let G be the game where the UAVs are considered

as players and the altitudes are their playing strategies. The

game G is a potential game where the function F defined by

equation (14) is the potential function.

The following result is an immediate consequence of Proposi-

tion 1 [48].

Corollary 1. In a potential game, a global optimum of the

potential function is a Nash equilibrium. Moreover, any Nash

equilibrium is a local optimum.

Accordingly, in order to reach a local optimum of the limited-

interference sum rate F, we can only target a NE. To this end,

we adopt Algorithm 3, based on best-response dynamics, to help

UAVs to adaptively learn how to play a NE over iterations [49].

The best-response dynamics are based on computing the best

strategy that maximizes the utility of the player (i.e. a UAV) for

fixed strategies of its opponents. Since the set of altitudes is finite,

this maximum is simply determined using exhaustive search over

the set of altitudes.

Assume fixed 2D locations of UAVs (line 2), each UAV

maximizes its utility Uj over a set of discrete altitude’s values H

given fixed altitudes of other UAVs (line 6). Subsequent changes

are therefore fed back to the neighbors resulting in updates of the

Algorithm 3 Best-Response Dynamics for Altitudes Adjustment

1: repeat

2: Let (xA, yA) be the 2D locations vector obtained using

Algorithm 2

3: For each UAV j, determine its neighborhood

4: repeat

5: for j ∈ U do

6: h∗
j
= argmaxh∈HUj(h, h−j)

7: Update ηik for all neighbors of k ∈ Nj

8: Update A using Algorithm 1

9: until A NE is reached.

10: until Sum-rate is not significantly improved over a given

number of iterations.

association matrix using Algorithm 1. This process is repeated

until convergence to a NE2 (line 9). Such process results in a

local optimum of F given fixed 2D positions of the UAVs and the

predefined association scheme.

VI. LEARN-AS-YOU-FLY ALGORITHM (LAYF)

The general proposed approach to solve the joint 3D placement

and association problem, LAYF algorithm, is described in details

in Fig. 3. Indeed, the interdependency between the UAV-user’s

association problem and the 3D placement makes it conspicuously

obvious that it is not possible to address each problem separately

in only one shot. Our approach is built in a way that allows

to the UAVs to test, as they fly, various association options and

3D locations while preserving the distributed aspect of both the

association scheme and the placement policy. First, the matching-

based association scheme is fully distributed as both users and

UAVs rely on local information to make the association decision.

Then the UAVs are moved, in the 2D plan, next to their served

users to potentially improve the quality of the link, reduce the

requested bandwidth, and free some resource to satisfy additional

users demands. Furthermore, the altitudes are adjusted to reduce

interference in the neighborhood of each UAV. This process

is repeated until none of the UAVs positions is improved or

the algorithm reaches a predefined number of iterations. Next,

we analyze the complexity of the proposed algorithm, show its

qualitative properties and discuss its limitations.

A. Complexity Analysis

In this subsection we analyze the performance of LAYF al-

gorithm in terms of worst case complexity. First, the worst case

complexity of the matching algorithm is N × K , where N is the

number of ground terminals and K is the number of UAVs [50],

whereas the time complexity of K-means algorithm is known to

be equal to O(N × K) [51]3. The complexity of the best response

dynamics has been studied in [52] where the authors show that

the worst case complexity of the algorithm is exactly K × |H |K−1,

where |H | is the set of discrete altitudes.

2Convergence of best response dynamics to a NE has been proved in many
works, e.g. [49].

3This complexity can be improved using directional movements of the clusters
as shown in [51].
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Fig. 3: LAYF algorithm. Dashed line boxes correspond to the matching-based association scheme, the dotted ones illustrate the modified K-means for UAVs 2D positioning, and the solid line

rectangles correspond to the response-dynamics based altitudes adjustment.

Assume the number of running iterations of the algorithm is

fixed, and is equal to T . Then the worst case complexity Cp of

LAYF is given by

Cp = TO(N × K + N × K + K × |H |K−1)

= TO(N × K + K × |H |K−1).
(18)

B. Qualitative Properties

1) Distributed Implementation: Unlike centralized algorithms

where UAVs need to know the 3D positions and associated users

of all other UAVs at each time slot, LAYF algorithm assumes

limited knowledge for all aerial base stations. Indeed, each UAV

needs only to observe the result of the strategy (3D position) it

has picked as well as the results of the strategies of its neighbors

in order to estimate its utility, and decides its next strategy.

Depending on the stage of LAYF algorithm optimization (UAV-

user’s association, 2D placement or altitudes adjustment), the

utility of a UAV j is either based on the throughput of neighboring

users (for association and 2D placement), or composed of the sum-

rate of the tagged UAV in addition to the sum-rates of neighboring

UAVs (for altitudes adjustment). Therefore, an overhead, first,

occurs when a user sends its spectral efficiency and the required

rate (or equivalently its throughput) to neighboring UAVs (the

ones that satisfy the required quality of service). The second kind

of signaling overhead is triggered when a neighboring UAV sends

its sum-rate to the tagged UAV through its air interface.

In order to reduce exchanged messages, an overhead can be

sent only when the throughput of a given user has changed (for

association and 2D placement), or when the difference between

the previous rum-rate of a neighboring UAV and its current one

has evolved (for altitudes adjustment). It is to be noted that, in

order to optimize the overhead packet size, only the difference

between current and previous state can be sent.

2) Asynchronous Performance: LAYF algorithm can be imple-

mented on board of each UAV in an asynchronous way where each

UAV updates its state depending on its own clock. Each UAV has

two states: active and dormant. During the active state, the UAV

updates its 3D coordinates. During the dormant state, the UAV

sleeps in order to save its energy and reduce exchanged signaling

messages.

C. Limitations

1) Convergence: It is important to note that it is not guaranteed

that the algorithm will iterate until reaching fixed UAVs positions.

The reason is that when a UAV moves next to its served users,

it might cause additional interference to neighboring UAVs. Al-

though this issue might be bypassed by adjusting UAVs altitudes,

the interference can trigger the movement of another UAV and

thus, the algorithm can oscillate infinitely between these two

states. To circumvent this problem, the algorithm can keep track

of the number of iterations and halts if no significant improvement

is noticed in the sum-rate function, or if the counter of iterations

reaches a certain predetermined value.

2) Dynamic Nature of the Environment: LAYF algorithm as-

sumes that when the UAV is fixed, the propagation channel is

stable. Indeed, in UAV based networks, the dynamic nature of the

propagation environment is tightly related to the type of the UAV

application. For example, when a UAV hovers over a damaged area

to provide connectivity, the propagation channel is most probably

stable. Unlike when UAVs are deployed for search and rescue
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applications or as relays for IoT devices, the UAV has to constantly

move over the field in order to take measurements and collect

information. In these cases, it would be a requirement to design

robust algorithms that considers the varying nature of the channel

and selects the best UAVs moves in an uncertain environment.

3) UAVs Trajectory Optimization: Optimizing the UAVs tra-

jectory is a challenging task as it involves various parameters

including the energy consumption, the flights constraints and the

mobility dynamics. In this work, we do not take into account the

trajectory optimization of UAVs when they update their coordi-

nates. Introducing such constraint (i.e. trajectory minimization) to

the studied optimization problem is envisioned as a part of our

future works.

VII. SIMULATION RESULTS

In order to study the performance of LAYF algorithm, we

consider a 150m × 150m area. Let U be the set of ground

users assumed as a realization of a HPPP with intensity λu =

16 ∗ 10−4 user/m2. To position ground base stations, we consider

a realization of PPP with intensity λG = 3.44 ∗ 10−4 BS/m2.

Damaged/overloaded base stations are obtained with a thinning

of probability p = 0.45. Next, UAVs are generated using a 3D

PPP with intensity pλG . We assume the same transmit power

P = 10 dBm for all base stations. In order to compute the average

spectral efficiency in equation (4), we use Monte Carlo simulations

with 5000 runs, the average is computed over the small-scale

fading. The simulation settings are summarized in TABLE. II.

To assess the performance of the proposed algorithm, we build 4

benchmarking scenarios.

1) LAYF scenario: for this scenario, we implement the proposed

LAYF algorithm to solve problem (8).

2) LAYF-Nearest scenario: in this scenario, instead of the

matching based association, we use the commonly adopted

association scheme that assigns users to their nearest UAV.

The remaining process is the same as for the proposed LAYF

algorithm.

3) Centralized scenario: in this scenario, we sub-optimally solve

the problem described in (8) by using a combined centralized

approach. The approach alternates between solving the asso-

ciation problem using intlinprog (an optimization function

from the integer-linear-programming toolbox of Matlab®),

and the UAVs 3D positioning by using fmincon (an optimiza-

tion function for continuous optimization from the Matlab®

optimization toolbox, this function is based on the interior-

point algorithm).

4) Random scenario: at each iteration, we generate a random

feasible solution. To this end, we first create a random

matrix of UAVs 3D positions within the studied area. Second,

we randomly assign users to UAVs such that each user

is assigned to exactly one UAV. Then, we check if the

constraints on bandwidth and spectral efficiency are satisfied.

If the spectral efficiency constraint is not satisfied for a given

user, we disconnect it. Similarly, if the constraint on the

bandwidth is not verified for a given UAV, we randomly

disconnect users until the bandwidth limit of this UAV is

respected.

Parameter Value Parameter Value

Ri Random in [90, 100] Mbps P 10 dBm

ηmin -3 dB τ -69 dBm

µ 1 p 0.9

λu 16 ∗ 10−4 user/m2 σ2 -100 dBm

Bandwidth {1070, 1151, 927, 941, 1021, 1004}(MHz)

H {100, 160, 120, 180}m

TABLE II: Simulation settings.

Fig. 4 plots the initial and final positions of UAVs for the first

3 studied scenarios. As depicted in Fig. 4(a), (b), (d), (e), (g), and

(h), for all the studied scenarios, the UAVs dynamically change

their positions starting from their initial points, and move towards

their served users in a few steps before reaching their final best

locations. Clearly, the number of users that are connected under

LAYF scenario is higher than the number of served users under

both LAYF-Nearest and centralized scenarios. This is mainly due

to the fact that LAYF can better handle the bandwidth resource.

Under the nearest UAV association, a user is either connected to

its closest UAV or not connected if the UAV has already reached

its bandwidth limit. On the other side, under the matching based

association, a user has more potential serving UAVs as it can

select among a list of preferred UAVs. It can also be seen from

the figure that some users are left without connectivity either due

to bandwidth limitation or quality of service constraint. The final

heights of UAVs are better shown in Fig. 4(c), (f) and (i) where

these altitudes are plotted vs UAVs x-coordinates. It can be seen

from the figure that UAVs adjust their heights in order to reduce

interference. For example, one can remark from Fig. 4(c) that

UAVs 1 and 2 that are neighbors have converged to different height

values in order to alleviate interference.

The occupied bandwidth of UAVs is plotted in Fig. 5. The

figure shows that the bandwidth constraint is respected for all

scenarios. Again, it can be seen from the figure that the number of

connected users is higher when using LAYF approach. As depicted

in Fig. 5(b), for LAYF-Nearest scenario, no user is served by

UAVs 1 and 5 as the required bandwidth of nearby users is above

the bandwidth limit of these UAVs. Furthermore, it can be seen

from the figure that LAYF approach is favorable to more fairness

in the network as the number of served users is higher and their

required bandwidth is lower when compared with LAYF-Nearest

and centralized scenarios.

Fig. 6 plots the convergence the sum-rate function vs the num-

ber of iterations under two small-scale fading models: Rayleigh

channels in Fig. 6(a) and Rice channels in Fig. 6(b). The figures

show how the sum-rate evolves over iterations. Clearly, LAYF

approach significantly improves the overall sum-rate as compared

with the studied scenarios. It can also be seen from the figure that

the random approach always yields a suboptimal result.

In order to study the effect of the bandwidth constraint on the

studied scenarios, we set all UAVs to the same bandwidth and

plot the sum-rate vs bandwidth values for each UAV in Fig. 7(a).

As depicted from the figure, in general, the sum-rate increases

when the bandwidth per UAV increases, except for the random

scenario, where the sum-rate decreases at some points of the

curve. This is mainly due to the random suboptimal solutions that

this scenario proposes. It can also be noticed that when enough

bandwidth is supplied to the network, LAYF, LAYF-Nearest and

centralized approaches provide the same solution which coincides

with the maximum network sum-rate. Finally, in Fig. 7(b), we
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Fig. 4: (a) 2D configuration with UAVs trajectories for LAYF approach, (b) 3D network configuration for LAYF approach, (c) Heights of UAVs for LAYF approach (d) 2D configuration with
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also plot the final value of the sum-rate after convergence of the

algorithms against the number of the ground users while assuming

fixed bandwidth of the UAVs (450 MHz). The figure shows that

LAYF approach provides a better performance as compared to

centralized, LAYF-Nearest and random approaches.

VIII. CONCLUSION

In this paper, we have studied the joint 3D placement and

UAV-user’s association in multi-UAVs networks. Our proposed

LAYF algorithm relies on a iterative three steps mechanism that

reaches an efficient and stable solution of the studied optimization

problem. Indeed, in order to maximize the network sum-rate under

bandwidth limitation and quality of service constraint, LAYF

approach proposes a matching-based UAVs-users associations, a

distributed version of K-means for the 2D positioning of UAVs,

and dynamic best-response for altitudes adjustment. The whole

approach is fully distributed and requires only a few iterations to

reach an efficient network performance. Simulation results show

that appreciable performance is obtained as compared with the

trivial case where users are associated, over iterations, to the clos-

est UAV, and when compared to a combined centralized approach

where UAV-user’s association and 3D positioning problems are

solved separately using centralized metaheuristics.

In ongoing works, we will introduce more uncertainty to the

system model and propose a robust approach that considers the

dynamic nature of the network environment. We will also study

UAVs trajectory optimization while updating UAVs coordinates.
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