
1

Learn More, Sample Less:
Control of Volume and Variance in Network

Measurement
Nick Duffield, Carsten Lund, Mikkel Thorup

AT&T Labs—Research, 180 Park Avenue, Florham Park, NJ 07932, USA.
{duffield,lund,mthorup}@research.att.com

Abstract— This paper deals with sampling objects from a large
stream. Each object possesses a size, and the aim is to be able
to estimate the total size of an arbitrary subset of objects whose
composition is not known at the time of sampling. This problem is
motivated from network measurements in which the objects are
flow records exported by routers and the sizes are the number of
packet or bytes reported in the record. Subsets of interest could
be flows from a certain customer or flows from a worm attack.
This paper introduces threshold samplingas a sampling scheme
that optimally controls the expected volume of samples and the
variance of estimators over any classification of flows.

This paper provides algorithms for dynamic control of sample
volumes and evaluate them on flow data gathered from a
commercial IP network. The algorithms are simple to implement
and robust to variation in network conditions. The work reported
here has been applied in the measurement infrastructure of the
commercial IP network. To not have employed sampling would
have entailed an order of magnitude greater capital expenditure
to accommodate the measurement traffic and its processing.

Index Terms— Estimation, Flows, Internet Measurement, Sam-
pling, Variance Reduction

I. I NTRODUCTION

We wish to sample objects from a large stream. Each object
possess a size, and our aim is to be able to estimate the total
size of an arbitrary subset of objects whose composition is not
known at the time of sampling. More formally, consider the
following estimation problem. A set of objectsi = 1, 2, . . . , n,
each endowed with a sizexi ∈ N and a keyci taking values
in some setK. We wish to estimate subset sums of the form
X(C) =

∑
i:ci∈C xi, i.e., the total size of all objects with key

in someC ⊂ K which is not known at the time of sampling.
How should the sampling distribution be chosen in order to

jointly control both the variance of the estimatorŝX(C) of
X(C) and the number of samples taken? This is an abstract
version of a practical problem that arises in estimating usage
of network resources due to different users and applications.
The usage is determined from network measurements, and
sampling is employed to control the resources consumed
by the measurements themselves. We start this paper by
explaining the motivation behind the stated sampling problem,
and showing how the constraints imposed by the intended use
of the measurements lead us to employ flow sampling.

A. Motivation

1) The need for detailed network usage data:The collec-
tion of network usage data is essential for the engineering
and management of communications networks. Until recently,
the usage data provided by network elements (e.g. routers)
has been coarse-grained, typically comprising aggregate byte
and packet counts in each direction at a given interface,
aggregated over time windows of a few minutes. However,
these data are no longer sufficient to engineer and manage
networks that are moving beyond the undifferentiated service
model of the best-effort Internet. Network operators need more
finely differentiated information on the use of their network.
Examples of such information include (i) the relative volumes
of traffic that use different protocols or applications; (ii) traffic
matrices, i.e., the volumes of traffic originating from and/or
destined to given ranges of Internet Protocol (IP) addresses or
Autonomous Systems (AS’s); (iii) the packet and byte volumes
and durations of user sessions, and of the individual flows of
which they comprise. Such information can be used to sup-
port network management, in particular: traffic engineering,
network planning, peering policy, customer acquisition, usage-
based pricing, and network security; some applications are
presented in details in [3], [16], [17]. An important application
of traffic matrix estimation is to efficiently redirect traffic from
overloaded links. Using this to tune OSPF/IS-IS routing one
can typically accommodate 50% more demand; see [20].

From our point of view the central observation is that many
network management applications, the traffic is to be regarded
as divided into a large number of classes, where the divisions
may not be known at the time of measurement, and the input
data required by an application is the aggregate traffic volume
in each class, over some set of time periods. Satisfying the
data needs of the applications requires gathering usage data
differentiated by IP header fields (e.g. source and destination
IP address and Type of Service), transport protocol header
fields (e.g. source and destination TCP/UDP ports), router in-
formation specific to a packet (e.g. input/output interfaces used
by a packet), information derived from these and routing state
(e.g. source and destination AS numbers), or combinations of
these. Collecting the packet headers themselves as raw data
is infeasible due to volume: we expect that a single direction
of an OC48 link could produce as much as 100GB of packet
headers per hour, this estimate based on statistics collected for

2

the experiments reported later in this paper.
2) Flow level statistics: In this paper we focus on a

measurement paradigm that is widely deployed in the current
Internet and that offers some reduction in the volume of
gathered data. This is the collection—by routers or dedicated
traffic monitors–of IP flow statistics, which are then exported
to a remote collection and analysis system. (Some alternative
paradigms are reviewed in Section VIII).

Most generally, an IP flow is a set of packets, that are
observed in the network within some time period, and that
share some common property which we call a “key”. Par-
ticularly interesting for us are “raw” flows: a set of packets
observed at a given network element, whose common property
is the set of values of those IP header fields that are invariant
along a packet’s path. (For example, IP addresses are included,
Time To Live is not). The common property may include
joins with state information at the observation point, e.g., next
hop IP address as determined by destination IP address, and
routing policy. Thus the keys characterizing flows are complex
multidimensional objects, and the number of potential keys
is so enormous (2100 or more, depending on what fields are
included) as to preclude maintaining counters for each possible
key; see also the discussion in Section VIII.

The granularity at which a router differentiates keys is
configurable. Applications will typically want to aggregate
flows (i.e. form the total size) over subsets of keys specific
for their purpose. We can refer to these key subsets also as
“keys”; those which cannot be subdivided (i.e. the keys of raw
flows) will be termed primary. Since the required aggregations
vary across applications, and may not be known at the time of
sampling, differentiation of keys in the measurements should
be as fine as possible, distinguishing usage according to
primary key by collecting statistics on raw flows.

A router keeps statistics—including total bytes and
packets—for active flows passing through it. When a packet
arrives at the router, the router determines if a flow is active
for the packet’s key. If so, it updates statistics for that key,
incrementing packet and byte counters. If not, is instantiates
a new set of counters for the packet’s key. A router will
designate a flow as terminated if any of a number of criteria
are met. When the flow is terminated, its statistics are flushed
for export, and the associated memory released for use by new
flows. Termination criteria can include (i) timeout: the inter-
packet time within the flow will not exceed some threshold; (ii)
protocol: e.g., observation a FIN packet of the Transmission
Control Protocol (TCP) [31] that is used to terminate a TCP
connection; (iii) memory management: the flow is terminated
in order to release memory for new flows; (iv) aging: to prevent
data staleness, flows are terminated after a given elapsed time
since the arrival of the first packet of the flow.

Flow definition schemes have been developed in research
environments, see e.g. [1], [5], and are the subject of stan-
dardization efforts [23], [33]. Reported flow statistics typically
include the properties that make up flows defining key, its
start and end times, and the number of packets and bytes in
the flow. Examples of flow definitions employed as part of
network management and accounting systems can be found
in Cisco’s NetFlow [4], Inmon’s sFlow [22], Qosient’s Argus

Mediation

Measurement Traffic

Network Traffic

Sampling Location

Collector

Router

S

S
SS

Fig. 1. FLOW OF MEASUREMENT TRAFFIC, AND POTENTIAL SAMPLING

POINTS: (left to right) packet capture at router; flow formation and export;
staging at mediation station; measurement collector.

[32], Riverstone’s LFAP [35] and XACCT’s Crane [36].
Flow statistics offer considerable compression of informa-

tion over packet headers, since the flow key is specified once
for a given flow. For example the previous OC48 example,
the volume of flow statistics is roughly 3GB per hour, i.e., up
to a roughly 30-fold volume decrease compared with packet
headers, depending on the balance of long and short flows in
the traffic.

3) Measurement collection architecture:Figure 1 illustrates
an architecture for measurement collection that has been
realized in a commercial network. Flow level summaries are
constructed at a router from the packets that traverse it.
Records containing the summaries are transmitted to the mea-
surement collector, possibly through one or more mediation
stations. These may be employed for reasons of reliability:
measurement export commonly uses the User Datagram Proto-
col (UDP), which has no facility to detect and resend measure-
ments lost in transit. However, export to a nearby mediation
station over a Local Area Network (LAN) may in practice
be very reliable, as compared with export over the Internet
to a distant collection point. The mediation station may then
reliably transmit measurements to the ultimate collection point,
the requisite memory and processing resources being cheaper
in workstations than in the routers. The mediation station
can also perform aggregation to support distributed network
management applications.

4) Data volumes and the need for sampling:The volumes
of flow records generated by a large network with many
interfaces is potentially massive, placing large demands on
memory resources at routers, storage and computation re-
sources at the collector, and transmission bandwidth between
them. This motivatessamplingthe flow record to reduce data
volume, while at the same time maintaining a representative
view of raw flow data. Flow records can be sampled by
any system on the path from generation to collection. This
may be necessary for scaling reasons. The architecture forms
a tree, with multiple routers sending measurements to each
of several mediation stations. Progressive resampling can be
applied at each stage to avoid “implosion” as data progresses
up the tree. At the collector or mediation station, a typical
analysis application executes a query that performs a custom
aggregation (i.e. one not previously performed) over all flows

3

collected in a given time period. Here, the role of sampling
is to reduce the execution time of the query. For final storage
at the collector, sampling can be used to permanently reduce
the volume of historical flow data (non-sampled flows would
be discarded) while maintaining the ability to execute custom
queries at the finest differentiation of keys.

5) Effectiveness of sampling methods:An elementary sam-
pling method is to uniformly select1 in N of the flows, either
independently (i.e. each object is selected independently with
probability 1/N) or deterministically (objectsN, 2N, . . . are
selected and all others are discarded). The statistical properties
of any proposed sampling scheme must be evaluated. Do
inferences drawn from the samples reflect the properties of
the raw data stream? What is the impact of sampling on the
variance of usage estimates?

A striking feature of flow statistics is that the distributions of
the number of packet and bytes in flows are heavy-tailed [19].
This property contributes to the roughly 30-fold average com-
pression of data volumes when passing from packet headers to
flows that was remarked upon above. Uniform sampling from
heavy tailed distributions is particularly problematic, since the
inclusion or exclusion of a small number of data points can
lead to large changes in usage estimates; these are subject to
high variance due to the sampling procedure itself. Note that a
sampling strategy that samples all big flows and a fair fraction
of the smaller flows could reduce the estimator variance. This
raises the question: which is the best such sampling strategy?
This is the problem we study in this paper.

6) Knowledge of sampling parameters:Sampling param-
eters used for flow selection must be known when the data
is analyzed, in order that it can be interpreted correctly. For
example, to estimate the byte rate in a raw packet stream
from samples gathered through1 in N sampling, we need
to multiply the byte rate represented in the sampled stream by
N . Since raw traffic volumes vary by location and time, we
expect that sampling rates will have to vary in order to limit
resource usage due to measurement to acceptable levels. For
example, an unexpected surge in traffic may require dynamic
lowering of sampling rates.

Generally, then, sampling rates will not be global variables
independent of the data. We believe sampling parameters must
be bound to the data (e.g. to individual measurements, or
inserted into the stream of measurements). Each entity that
samples or resamples the flows must bind its sampling param-
eters to the data appropriately. We eschew keeping sampling
parameters in a separate database to be joined with the data
for analysis. This is not robust against bad synchronization
between the two data sets, or undocumented manual changes
of sampling parameters.

B. Contribution

1) Sampling requirements and the basic problem:The
contribution of this paper is to study what makes a good
flow sampling strategy. Here the flows are represented by
the flow records exported by the routers. We do not interfere
with the mechanism for creating these records. The goals are
fourfold: (i) to constrain samples to within a given volume;

(ii) to minimize the variance of usage estimates arising from
the sampling itself; (iii) to bind the sampling parameters to
the data in order that usage can be estimated transparently;
and (iv) with progressive resampling, the composite sampling
procedure should enjoy properties (i)–(iii).

To formalize the problem, recall the set of flows labeled
i = 1, 2, . . . , n equipped with a sizexi and key ci. We
wish to sample them in such a way that we can estimate
the total size of flows with keys in a setC, i.e., the sums
X(C) =

∑
i:ci∈C xi, knowing only the sampled sizes and

their sampling probabilities, without the need to retain other
information on the original set of flow sizes.

We propose to continuously stratify the sampling scheme
so the probability that an flow record is selected depends on
its size x. This attaches more weight to larger flows whose
omission could skew the total size estimate, and so reduce
the impact of heavy tails on variance. We must renormalize
the sampled sizesxi in order that their total over any key
set C becomes an unbiased estimator ofX(C); this will be
achieved by coordinating the renormalization with the sam-
pling probabilities. We will show that our sampling scheme
can be optimized in the sense of minimizing a cost function
that expresses the undesirability of having either a large
number of samples, or a large variance in estimates formed
from them. Sampling with this optimal choice of sampling
probabilities will be characterized by a certain threshold, and
we name itthreshold samplingand we shall use this term in the
paper.1 Finally, we require a mechanism to tune the sampling
probabilities in order that the volume of sampled records
can be controlled to a desired level, even in the presence of
temporal or spatial inhomogeneity in the offered load of flows.

2) Outline: Section II develops the basic theory of the
sampling method. Section II-A establishes a general relation-
ship between the sampling probabilities (as a function of
objects size) and the renormalization (applied to the sizes)
in order that the estimates ofX(C) be unbiased. We then
turn to examine the relationship between sample volume
and estimator variance due to sampling. In Section II-B we
point out that uniform sampling offers no further ability to
control the variance once the average sampling volume is
fixed. Instead, in Section II-C, we show how the sampling
probabilities should be chosen in order to minimize a cost
function that takes the form of a linear combination of sample
volume and estimator variance. In Section II-D we show that
optimizing the cost function for the total traffic stream, also
optimizes for each key individually.

We follow up with a number of subsidiary results. In
Section II-E we extend the formalism to multidimensional size
attributes, e.g. to use both packet and byte sizes of flows. In
Section II-F we describe unbiased estimators of the variance
of the sample volume and attribute total. In Section II-G we
show that the set of sampling operations considered is closed
under certain compositions; consequently, the total effect of
a set of sampling operations applied successively (e.g. at a
router, then at mediation station) is statistically equivalent to

1The termsmart samplinghas also been used to encompass this and other
related sampling methods.

4

a single sampling operation with appropriate parameters.
In Section III we demonstrate how the method achieves

our aims by applying it to datasets of NetFlow statistics
gathered on the backbone of a major service provider. In
Section III-A we show that the variance of usage estimation
from flow records is greatly reduced by using size dependent
sampling as opposed to uniform sampling. In Section III-
B we find that even when packet sampling is mandated at
a router (e.g. by software speed constraints), any further
desired reduction in measurement volume is best achieved (i.e.
with noticeably smaller usage estimator variance) by forming
flows and applying size dependent sampling, as opposed to
dispensing with flow formation altogether and just performing
further packet sampling. In Section III-C we describe an
efficient algorithm for size dependent sampling used in the
experiments that avoids the need for explicit pseudorandom
number generators.

In Section IV we extend the method to the dynamic control
of sample volumes. The cost function described above contains
a positive parameterz that encodes the relative importance we
attach to constraining sample volumes as opposed to reducing
sample variance. We present an iterative scheme by which
z can be adjusted in order that the expected sample volume
meets a given constraint. This is useful because even a static
flow length distribution may not be well characterized in ad-
vance. In this case it would be difficult to determine in advance
the value ofz needed in order to meet a given sampling volume
constraint. We analyze the rate of convergence of the iteration.

Substituting mean sample volume with the actual number
of samples taken in the iterative scheme yields an algorithm
to dynamically control sample volumes. This enables control
of sample volumes under variation in the offered load of
flows, e.g., during a sharp rise in the number of short traffic
flows commonly that can occur during denial of service
attacks [26]. Several variants of the control are discussed
in Section V. In Section VI we illustrate the effectiveness
of such controls with the NetFlow traces that exhibit large
transient phenomena. An efficient randomized algorithm for
a root finding problem that arises in our work in described
in Section VII, along with a Large Deviation-based analysis
of its performance under data resampling. The feasibility of a
number of alternative measurement schemes and related work
are discussed in Section VIII. We conclude in Section IX by
outlining a current application in a commercial network of the
work described here, and listing some further developments.

II. SAMPLING THEORY

A. Sampling and renormalization

The key elements of our algorithm are size-dependent
sampling, and renormalization of the samples. These are
described by the following two functions. Asampling function
is a function p : R+ → [0, 1]. The interpretation of the
sampling function is that attributex is to be sampled with
probability p(x). P will denote the set of sampling functions.
A renormalization functionr is a functionR+ → R+. A
sampled sizex is then renormalized by replacing it withr(x).

Consider a set ofn sizes{xi}i=1,...,n prior to sampling.
Initially we can think of this set either as the sizes of all

objects, or as the set sizes of objects of a particular key. The
total size of then objects is

X =
n∑

i=1

xi. (1)

Suppose first that we wish to obtain an estimate ofX from a
subset of sampled values, and, generally, without needing to
know the original numbern of sizes. Consider an estimate
of X comprising a sum of sampled sizes that are then
renormalized:

X̂ =
n∑

i=1

wir(xi) (2)

where the {wi}i=1,...,n are independent random indicator
variables,wi taking the value1 with probability p(xi) and
0 with probability 1− p(xi).

Denote byEX̂ the expected value of̂X over the distribution
of the random variables{wi}. In what follows we shall treat
the sizes{xi} as a given deterministic set: randomness resides
only in the{wi}. X̂ is said to be an unbiased estimator ofX
if EX̂ = X. SinceEwi = pi, X̂ is unbiased if

X =
n∑

i=1

xi =
n∑

i=1

p(xi)r(xi) = EX̂ (3)

This happens for all collections{xi} if and only if

r(x) = x/p(x) , for all x. (4)

In the rest of this paper we will assume that (4) holds.

B. Bounding sample volumes

The sample volume, i.e, the number of samples, isN̂ =∑n
i=1 wi. Suppose now that we wish to impose a limit on

the expected sample volumeEN̂ . Consider first the case of
drawing samples from a set known sizen. The expected
number of samples is thus less than some targetM if EN̂ =∑n

i=1 p(xi) ≤ M . For this to be true for all collections{xi}
requires thatp(xi) = M/n for all n: the sampling probability
p(x) is independent ofx.

The choice of a constant sampling function has an interest-
ing and potentially troubling consequence. This is that is there
is no further latitude in the choice of the sampling function
that could be used to attain some other desirable statistical
property of X̂, such as keeping its variance small. Indeed,
our motivating example comes from cases where the the{xi}
have a heavy tailed distribution, and hence the inclusion or
exclusion of a small number of sample points can have a great
influence onX̂.

One approach to this problem would be to explicitly take
into account the distribution ofx when choosing the sampling
function. This would entail choosing a non-constantp such
that the report volume constraint would be satisfied for a class
of size distributions, although not for all. This approach has
the potential disadvantage that if the size distribution does
not fall into the given class, the constraint will no longer
be satisfied. Furthermore, it is not clear in examples that the
byte or packet distributions can be characterized in a universal
fashion, independently in changes in network technologies and
applications.

5

C. Static control of sample volume and variance

Instead, we take an approach which allows us to jointly
control the volume of sampleŝN and the variance of the
estimatorX̂ without assumptions on the distribution of the
sizes{xi}. We form a cost functionC that embodies our aim
of controlling the variance of̂X and the expected number of
samplesEN̂ . For z ∈ R we define for eachp ∈ P

Cz(p) = Var X̂ + z2EN̂ . (5)

z is a parameter that expresses the relative importance attached
to minimizing EN̂ versus minimizingVar X̂. The variance of
X̂ is

Var X̂ = Var
n∑

i=1

wir(xi) =
n∑

i=1

r2(xi)Var wi

=
n∑

i=1

r2(xi)(1− p(xi))p(xi)

=
n∑

i=1

x2
i (1− p(xi))/p(xi). (6)

Thus

Cz(p) =
n∑

i=1

(
x2

i (1− p(xi))/p(xi) + z2p(xi)
)

(7)

Definepz ∈ P by pz(x) = min{1, x/z}.
Theorem 1:Cz(pz) ≤ Cz(p) for all p ∈ P and{xi}, with

equality only if p = pz.
Proof: q 7→ x2(1 − q)/q + z2q is strictly convex on(0,∞)
and minimized atq = x/z. Thus it is minimized on(0, 1] by
pz(q), and the result follows.

We can interpret the form ofpz as follows. High values
of the sizex, those greater than the thresholdz, are sampled
with probability 1, whereas lower values are sampled with
progressively smaller probability. Thus the contributions of
higher values ofx to the estimatorX̂ have greater reliability
than smaller values. This is desirable since uncertainty about
the higher values can adversely impact the variance ofX̂,
especially for heavy tailed distributions ofx. We note that for
the sampling functionpz, the renormalization function takes
the simple formrz(x) = max{x, z}. We write X̂z to denote
the specific random variable arising from the choice ofz.

It is worth noting that unbiased estimators formed usingany
renormalization function of the form (4) will have non-zero
variance in general. In the present case, the renormalization
x 7→ max{x, z} can give rise to a large estimated usagez of a
flow of small sizex. This might be though of as a disadvantage
for some applications, e.g., usage-based charging, where it is
important not to overestimate usage. However, it is possible
to couple charging scheme to the present threshold sampling
method in such a way that the estimated usage is relatively
insensitive to the inherent estimation variance from threshold
sampling; see [12] for further details.

D. Sampling and key partitions

Recall from the introduction, that in our typical application,
we think of the packets as being keyed, and that our aim is to

estimate the total sizes of the packets with keyc of interest. If
ci is the key of packeti, X(c) =

∑
ci=c xi is the total size of

packets with keyc, and our unbiased estimator is then̂X(c) =∑
ci=c wir(xi), that is,X̂(c) is obtained simply by summing

the sampled normalized sizes of keyc. Let N̂(c) =
∑

ci=c wi

be the number of sampled packets with keyc. By linearity of
expectation,EN =

∑
c EN̂(c). Also, since eachxi is picked

independently, thêX(c) are independent for eachc, and hence
Var X =

∑
c Var X̂(c). Thus,

Cz(p) = Var X̂ + z2EN̂ =
∑

c

{Var X̂(c) + z2EN̂(c)} (8)

That is, our objective functionCz(p) minimizes itself locally
over each key class. One could easily imagine scenarios where
one wanted different objectives for different keys. However, in
our application, the sampling device is not assumed to distin-
guish keys, and in addition, we imagine that our samples may
latter be analyzed with respect to many different aggregate key
definitions. Theorem 1 show that the strength of our sampling
strategy is that it is the unique optimal strategy with respect
to (8), no matter how the keys are defined.

Indeed, finer control of sampling by key, within a given vol-
ume constraint, can only increase estimator variance. Suppose
that we wish to control individually the sample volumeMc

arising from each keyc while achieving the same total sample
volume M =

∑
c Mc over all keys. This would be achieved

by applying a differing thresholdzc to the sampling packets
from each keyc. The price of imposing finer grained volume
control is to increase the aggregate variance of theX̂(c). The
following is a direct corollary of (8) Theorem 1 on noting that
the pzc 6= pz is suboptimal forCz(p).

Corollary 1: Let {Sc : c = 1, . . . , j} be a partition
of {1, . . . , n}, and for each memberc of the partition
let Mc < #Sc be a target sample volume. Supposez∗c
solves z =

∑
i∈Sc

min{xi, z}/Mc and z∗ solves z =∑n
i=1 min{xi, z}/

∑
c Mc. (Such z∗ and z∗c exist by Theo-

rem 4 following). LetX̂z(c) =
∑

i∈Sc
wirz(xi) with the wi

distributed according topz. Then
∑

c

Var X̂z∗(c) ≤
∑

c

Var X̂z∗c (c). (9)

Proof: Let N j
z =

∑
i∈Sj

wirz(xi) with the wi distributed
according topz. By Theorem 1,
∑

j

(Var Xj
z∗ + (z∗)2EN̂ j

z∗) ≤
∑

j

(Var Xj
z∗j

+ (z∗)2EN̂ j
z∗j

).

(10)
But

∑
j EN̂ j

z∗ = EN̂z∗ = M =
∑

j Mj =
∑

j EN j
z∗j

and
hence the result follows.

E. Multidimensional sizes

In practical cases, the sizesx can be multidimensional.
For example, a flow record can contain both byte and packet
counts for the flow. Estimation of multiple components of the
size may be required. One approach would be to apply the
foregoing analysis to each component independently. However,
this would require a separate sampling decision for each size,
leading to the creation of multiple sampled streams. This is

6

undesirable, both for the extra computation required, and the
increased volume of samples resulting. Another approach is to
base sampling on one componentxi (e.g. flow byte size) and
then use the factor1/pz(xi) to renormalize other components
yi. Although this results in an unbiased estimator for

∑
i yi,

it does not minimize the corresponding cost function for the
componentsyi.

Instead, we outline a simple extension of the previous
section that creates only single samples per size. Consider a
multidimensional sizex = (x(1), . . . , x(m)) ∈ Rm presented
by each potential sample. Analogous to the one-dimensional
case we have now the sampling functionp : Rm → [0, 1] and
renormalization functionr : Rm → Rm. Given a set of sizes
{xi}, the binary random variablewi takes the value1 with
probability p(xi).

Similar to before, one can show that̂X =
∑

i wir(xi) is
an unbiased estimator ofX =

∑
i xi for all size sets{xi} if

and only if r(x) = x/p(x) for all x. Let zj ∈ Rm denote
the vector with components(z(1)j , . . . , z(m)j). Suppose now
we wish to minimize a cost function of the form.

C1
z(p) = Var(X · z−1) +

n∑

i=1

p(xi) (11)

Similarly to Theorem 1, one finds thatCz(pz) ≤ Cz(p) for
all sampling functionp for the functionp1

z(x) = min{1, x ·
z−1}.

Variants of this approach are possible. Consider replacing
the variance of the single variableVar X ·z−1 with the sums of
variances of the form

∑
j Var(X(j)/z(j)). The corresponding

cost function is

C2
z(p) =

n∑

j=1

Var X(j)
z2(j)

+
n∑

i=1

p(xi). (12)

The sampling functionp that minimizesC2
z(p) is p2

z =
min{1,

√
x2 · z−2}.

F. Estimating variance from samples

Although Theorem 1 allows us to minimize a linear com-
bination of sample volume and variance, it does not provide a
means of estimating the variance ofX̂ direct from the sample
since the variance is expressed as a sum over all sizesxi, not
just those that have been sampled. However, we can apply the
same ideas as were used above to find an unbiased estimate
of X, but now finding an unbiased estimatêVX of Var X.

The restriction that̂VX be computed only from the samples
requires it to be of the form̂VX =

∑n
i=1 wiv(xi) for some

functionv. For unbiasedness we require thatEV̂X = Var X̂ for
all {xi}. This requirement is equivalent to

∑n
i=1 p(xi)v(xi) =∑n

i=1 x2
i (1− p(xi))/p(xi) for all {xi}. Hence

v(x) =
(

x

p(x)

)2

(1− p(x)), (13)

and

V̂X =
∑

wi

(
xi

p(xi)

)2

(1− p(xi)). (14)

The specific forms of̂VXz
andEV̂Xz

arising from the choice
p = pz reduce to

V̂Xz =
∑

i

wiz(z − xi)+, EV̂Xz =
∑

i

xi(z − xi)+, (15)

wherey+ = max{0, y}. It is interesting to note that there is
no contribution toV̂X for xi > z. This is because suchxi are
selected with probability1, and hence their contribution tôX
has no variance. Indeed, the summand in the expression for
EV̂X is zero forx ≥ z, and maximized whenx = z/2.

By similar reasoning we can find and unbiased estimatorV̂N

of the variance ofN . Writing V̂N =
∑

i wiu(xi) and requiring
EV̂N =

∑
i p(xi)u(xi) =

∑
i p(xi)(1− p(xi)) = Var(N̂) for

all {xi}, we obtainu(x) = (1− p(x)) and hence

V̂Nz
=

∑

i

wi(1− xi/z)+ = z−1V̂Xz
, (16)

and
EV̂Nz

=
∑

i

(xi/z)(1− xi/z)+ = z−1EV̂Xz . (17)

As with (15), terms withxi ≥ z vanish identically, and the
largest contributions toEV̂Nz

arise whenx = z/2.

G. Composing sampling operations

The sampling and renormalization operations defined above
can be composed. We envisage such composition when data is
fed forward through a number of processing stages operating
in different locations, or under different volume or processing
constraints. Consider then a composition ofm sampling pro-
cedure controlled by thresholdsz1 ≤ · · · ≤ zm. The threshold
z increases at each stage of the composition, corresponding to
progressively finer sampling. Let̂Nz1,...zj denote the number
of samples present after passing through thej samplers in
the composition, andX̂z1,...zj the corresponding unbiased
estimator ofX. The following result says that the expected
sample volume and variance ofX at stagej are equal to those
that would result from a single sampler controlled by threshold
zj . Given a setΩ of sizes, letSz(Ω) denote the set of sampled
and renormalized sizes obtained using the thresholdz, i.e.,

Sz(Ω) = {max{z, x} : x ∈ Ω, wx = 1} (18)

wherewx are independent random variables taking the value
1 with probability pz(x) and0 otherwise.

Theorem 2:Let 0 < z1 ≤ · · · ≤ zj . Then for each setΩ of
size, Szj (Szj−1 . . . (Sz1(Ω) . . .) has the same distribution as
Szj (Ω). In particularEN̂z1,...zj = EN̂zj and Var X̂z1,...zj =
Var X̂zj .
Proof: Any attribute that survives as far as stagej
of sampling is renormalized according torz1,...,zj (x) :=
rzj ◦ · · · ◦ rz1(x) = max{zj , . . . , z1, x} = max{zj , x} =
rzj (x). It survives with probabilitypz1,...,zj (x) that obeys
the recursionpz1,...,zj (x) = pz1,...,zj−1(x)pzj (rz1,...,zj−1(x)).
But pzj (rz1,...,zj−1(x)) = min{1, max{zj−1, x}/zj}. Since
min{1, x/zj−1}min{1, max{x, zj−1}/zj} = min{1, x/zj}
whenzj−1 ≤ zj , a simple induction show thatpz1,...,zj (x) =
pzj (x). Thus the renormalization and sampling probability for
the chain is determined by the last componentzj , and the
stated properties follow immediately.

7

H. Threshold sampling of packet sampled flows

We emphasize again that in our network application it is the
completed flow records that are sampled, not the packets that
contribute to them. In some routers packets may be sampled
prior to the formation of flow statistics, e.g., in Sampled
NetFlow; see [4]. In this case, our technique is applied to
the flow summaries so formed, and hence to the estimation of
the volumes of sampled packets.

To estimate the volumes of traffic prior to packet sampling,
it is necessary to apply an initial normalization to the flow
byte or packet sizes before threshold sampling. With packet
sampling at a rate1 in N , the sizes are multiplied byN
in order to obtain an unbiased estimate of traffic volumes
prior to packet sampling. The random selection of packets
also contributes to estimation variance. In [11] it is shown
that with independent packet sampling at rate1/N , the effect
is to increase estimator variance by a quantity no larger than
(N − 1)Xxmax wherexmax is the largest packet size in flow
prior to sampling.

III. C OMPARISON OFSTATIC SAMPLING STRATEGIES

In this section we perform an experimental comparison of
the proposed threshold flow sampling strategies with other
sampling strategies. We show that, out of all the compared
methods, threshold flow sampling provides the least estimator
variability for a given volume of flow measurements.

A. Comparison of uniform and threshold flow sampling

In this section we compare the experimental performance
of threshold sampling and uniform sampling on a set of flow
records. This comparison is relevant for selecting a sampling
method for the selective export of flows, or at a mediation
station or measurement collector, or within a database used to
store flows.

Our data for the experiments comprised a trace of NetFlow
statistics collected during a two hour period from a number
of routers in a commercial IP backbone. The total sample
comprised 108,064,914 individual flow records. The mean
number of bytes per flow was 10,047. We partitioned the
total sample according to 3,500 keys, determined by the
router interface that generated the record, and by a partition
of the address space of the external IP address of the flow
record (source address for incoming flows, destination address
for outgoing flows). Thus the exact partition was somewhat
arbitrary, but it satisfied the following criteria: (i) the had large
variation in total bytes (from less than 100 bytes to more than
1011 bytes), (ii) the partition was not based on the byte values,
and (iii) there were a reasonably large number of keys. Our
implementation of the threshold sampling strategy is described
in Section III-C below. Our aim here is to exhibit the relative
accuracy of the sampling methods in estimating the byte size
of the individual keys, and particularly for the “important”
keys, i.e., those with large bytes sizes.

We compared two sampling strategies:uniform33 which
is 1 in N sampling withN = 33, and sample100K which
is threshold sampling with thresholdz = 100, 000. We
chose these (relative) values in order that the total number

of records sampled in each case would be similar: 3.03%
and 3.04% of the records respectively for the two strategies.
We compared three sets of numbers:X(c), the actual number
of bytes for keyc; X̂(c), the number of bytes for keyc as
determined by threshold sampling and renormalization with
sample100K; and X̂un(c), the number of bytes for keyc
as determined withuniform33 sampling and renormalization
through multiplication byN = 33,

In Figure 2 we plot nonsampled byte countsX(c) and
sampled byte counts (̂X(c) in the left plot, X̂un(c) in the
right plot) against key indexc, with the groups sorted in
decreasing order ofX(c). On the vertical axis the byte counts
are displayed on a log-scale. When no record from a group
were sampled, we set the log byte count to1: these are the
points that lie on the horizontal axis. Note that otherwise
X̂un(c) ≥ 100, 000 sincesample100K never yields a value
less than the thresholdz. Figure 3 is similar to Figure 2
except we have zoomed into a small number of groups in
the middle. We have added error bars for the sampling error,
corresponding to 2 standard deviations computed using (15).
In Figure 4 we similarly compare the strategies through the
relative error, i.e.,(X(c)− X̂(c))/X(c) in the left plot, and
(X(c)− X̂un(c))/X(c) in the right plot. The vertical axes
display the relative error as a percentage, chopped to lie
between±100%.

It is clear from the Figures thatsample100K achieves a
considerable reduction in estimator variance overuniform33
for groups with a fair amount of traffic, say at least 1,000,000
bytes. This is exactly the desired behavior: we get good
estimates for important groups. It also shows how bad uniform
sampling is in the case with heavy-tail sizes: even for group
with significant number of bytes theuniform33 strategy can
be very poor. The root mean square error is about 500 times
greater for uniform than for threshold sampling.

B. Comparison of packet and flow sampling methods

We investigate the relative tradeoffs of sample volume
against estimation accuracy for sampling methods at routers,
and in particular the relative effectiveness of packet and flow
sampling methods. Packet sampling may be required at the
router even if flow statistics are constructed, since flow cache
lookup may be infeasible at the router interface line rate.
Uniform periodic or random sampling is typically employed
in practice. A recent proposal, sample and hold [15], is to
sample potential new flow cache entries in order to focus on
longer flows.

As in Section III-A we used a trace of NetFlow records to
perform the comparison. There were 17,898,241 flows divided
into 13,110 keys according to destination IP address. Each flow
record details the durationt of the flow, and the total packetsk
and bytesb that it comprises. We want to determine the average
amountF of measurement traffic that would arise if the packet
stream represented in the flow records with parameter(k, b, t)
were subjected to a given sampling strategy. For a pure packet
sampling method, i.e. with no flow statistics formed, then
F is the number of sampled packets. With flow statistics
(whether formed from a full or sampled packet stream)F is the

8

1

100

10000

1e+06

1e+08

1e+10

1e+12

0 500 1000 1500 2000 2500 3000 3500

nosampling
sample100K

1

100

10000

1e+06

1e+08

1e+10

1e+12

0 500 1000 1500 2000 2500 3000 3500

nosampling
uniform33

Fig. 2. COMPARING THRESHOLD AND UNIFORM SAMPLING. Left: threshold,X̂(c) and X(c) vs. key index. Right: uniform,X̂un(c) and X(c) vs. key
index. Note increased variability of̂Xun(c) ad compared withX̂(c).

10000

100000

1e+06

1e+07

1e+08

0 20 40 60 80 100 120 140

no sampling
errorbar

sample100K

10000

100000

1e+06

1e+07

1e+08

0 20 40 60 80 100 120 140

no sampling
errorbar

uniform33

Fig. 3. COMPARING THRESHOLD AND UNIFORM SAMPLING: ERROR BARS: portions of corresponding plots from Figure 2 with error bars for sampling
variability added.

-100

-50

0

50

100

0 500 1000 1500 2000 2500 3000 3500

sample100K

-100

-50

0

50

100

0 500 1000 1500 2000 2500 3000 3500

uniform33

Fig. 4. COMPARING THRESHOLD AND UNIFORM SAMPLING: RELATIVE ERROR. Left: threshold,(X(c) − X̂(c))/X(c). Right: uniform, (X(c) −
X̂un(c))/X(c).

final number of flow statistics formed.V will denote a mean
squared error of byte usage estimated from the measurement
traffic generated from the packet stream of the original flow

(k, b, t). For the unbiased estimators,V is the variance.

For a given sampling method, letF (c) andV (c) denote the
sums ofF andV respectively over all flow records of keyc.

9

method F V
threshold flow pz(b) b(z − b)+

uniform flow 1/N b2(N − 1)
uniform packet k/N b2(N − 1)/k

unif. pkt→ flow (upper) f(k, t, N, T) b2(N − 1)/k
unif. pkt→ flow (lower) 1− (1− 1/N)k b2(N − 1)/k

sample/hold 1− (1− p)b Vsh

sample/hold (modified) 1− (1− p)b Vsh:mod

TABLE I

EXPECTED NUMBER OF FLOWSF AND BYTES ESTIMATOR MEAN SQUARE

ERRORV FROM SAMPLING A SINGLE FLOW OF DURATIONt, k PACKETS

AND b BYTES, WITH FLOW TIMEOUT T . THE FUNCTION f IS DEFINED IN

(19).Vlb AND Vnu ARE DEFINED IN SECTION III-B.5

Thus F (c) is the total expected number of measurements in
that key, whileV (c) is the total squared error due to sampling
of the estimated total keyc bytes. We describeF andV for the
different sampling methods; they are summarized in Table I.

1) Threshold flow sampling:Threshold sampling of flows
records formed from the full packet stream. With sampling
thresholdz, F = pz(b) and V = b(z − b)+, the expected
variance from (15).

2) Uniform flow sampling:1 in N sampling of flow records
formed from the full packet stream. The expected number of
flows is F = 1/N ; the estimated bytes take the valuesNb
with probability1/N and0 otherwise, henceV = b2(N − 1).

3) Uniform packet sampling:The atomic measurements are
packets drawn by1 in N sampling form the full packet stream;
no flows records are formed. A flow ofk packets gives rise
to k/N atomic measurements on average. Letb1, . . . , bk be
the sizes of the packets in the flow. Then estimator variance is
(N −1)

∑k
i=1 b2

i ≥ (N −1)b2/k. We use this lower bound on
the estimator variance, equivalent to simplifying assumption
that all packets have the same sizeb/k.

4) Uniform packet sampling→ flows: Packets are sampled
uniformly, and flow records formed from the sampled packets.
The flow records are not further sampled: estimator variance
is the same as for uniform packet sampling.

Assume that packets are independently sampled; the proba-
bility that at least one packet of a flow ofk packet is sampled
1− (1− 1/N)k. This provides a lower bound on the number
of resulting flows. A larger number of flows may result if the
separation of sampled packets exceeds the flow timeoutT . The
mean number of sampled packets isk/N . If this exceeds1, the
worst case is that sampled packets are equally spaced at the
mean spacingtN/(k− 1) > T , the flow timeout. In this case,
there will be one flow per packet. ThusF = f(k, t; N,T),
where

f(k, t; N,T) =
{

1 if Nt ≤ (k − 1)T andN < k
k/N otherwise

(19)
For comparisons we assume thatT will be no less than the
typical value30s used for an unsampled packet stream; since
f(k, t; N,T) is nonincreasing inT , taking T = 30 gives an
upper bound on the sample volumes.

5) Sample and hold:Packets are sampled at the router as
follows [15]: a cache lookup is performed for each incoming
packet, and if a match is found, the flow’s statistics are updated
as usual. (See also Section VIII-.4). If a match is not found, a
new cache entry is created with probability1− (1−p)a when
the packet hasa bytes, for some fixedp. Thus the probability
that a flow comprisingb bytes is sampled isF = 1− (1−p)b,
independent of the manner in which the bytes of the flow are
divided amongst its packets. The estimate byte size of the flow
reported is then the number of bytes in the packets that were
actually sampled, which is always a lower bound on the actual
numberb of bytes in the flow.

In can be shown that the MSE in estimating a flow ofb unit
size packets is

Vsh =
1− p

p2
(2− p− (1− p)b(2− p− 2pb)) (20)

and that this is an upper bound on the MSE for general packets.
This estimator is negatively biased. In the case of unit

packets, an unbiased estimator is obtained by adding the
quantity s0 = (1 − p)/p to the reported flow sizes. The
resulting MSE for this modified estimator is

Vsh:mod = Vsh + s2
0g(b, p) (21)

where
g(x, b) = (1− p)b + 2bp(1− p)b−1 − 1 (22)

It turns out thatg(b, p) can be positive or negative; reducing
the bias may actually increase the MSE. It can be proved that,
for largeb, this happens oncep is less than about1.26/b. The
qualitative reason is that the correction to the bias introduces
a larger error into the estimates of the size of small flows.

6) Summary statistics and comparison:To form a compact
measure of estimator sampling variability we average the per-
key relative standard deviations

√
V (c)/X(c) with the key

byte totals X(c) as weights, yielding the weighted mean
relative standard deviation:

S =
∑

c

√
V (c)∑

c X(c)
(23)

This attaches greater importance to a given relative standard
error in estimating a larger byte total. LetK denote the total
number of packets represented in the flows, i.e., the sum
of k over all flow records. The effective sampling period
K/

∑
c F (c) is the ratio of the total numberK of packets

represented in the original flow records, to the number of
measurements

∑
c F (c). As an example, for uniform1 in N

packet sampling, the effective sampling period isN .
Figure 5 displaysS as a function of the effective sampling

period for the various sampling methods; the points on a given
curve are generated by varying the underlying sampling rates.
The sampling methods that depend on flow size (threshold
sampling and sample and hold) provide the best accuracy
by at least one order of magnitude over at least five orders
of magnitude of the sampling period, the accuracy being
more pronounced at lower sampling periods. Amongst these
methods there are some differences in accuracy. For effective
packet sampling rates below around 500, threshold sampling is
most accurate, while for larger rates, it has the almost the same

10

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

1 10 100 1000 10000 100000 1e+06 1e+07

w
ei

gh
te

d
m

ea
n

re
la

tiv
e

st
an

da
rd

 d
ev

ia
tio

n

effective packet sampling rate

uniform flow
uniform packet

uniform packet->flow, upper
uniform packet->flow, lower

threshold flow
sample and hold: modified

sample and hold

Fig. 5. COMPARISON OFSAMPLING METHODS: weighted mean relative standard deviation vs. effective packet sampling period

accuracy as the modified version of sample and hold, while
the modified version of sample and hold does best. Reasons
for this were discussed in Section III-B.5. The accuracy of
all methods (except uniform flow sampling) tightens for very
large sampling periods. We believe this happens because only
the same very long flows are sampled by each method.

Threshold sampling combines the compression advantages
of forming flow records, with low estimator variance due
to size dependent sampling. We conclude that even when a
certain degree of packet sampling is mandated by constraints
on resources for packet processing in the router, the formation
and size sampled flow statistics allows more accurate usage
estimation than further packet sampling.

C. Quasi-random implementation of threshold sampling

Independent pseudorandom selection of flows according to
a given sampling functionp(x) can be performed using a
well-known random number generator; see e.g. [24]. However,
the computational costs of effective generators may prohibit
their use in some applications. In this section we describe
a simple implementation of the sampling strategy described
in Section II, that was used for all experiments reported in
this paper. The implementation nearly as efficient as the1 in
N sampling strategy. The pseudo code in Figure 6 describes
our implementation of a function that determines whether to
sample the data. We assume that the input record has an

integer field x that contains the size to be sampled over,
e.g., bytes in a flow record. Furthermore the record has a
real field samplingFactor that indicates the multiplicative
renormalizing factor1/pz(x) that will be applied to the data
if sampled. The function returns 1 if the data is to be sampled,
0 if not, i.e., the function returns the indicator variablewi for
a given flowi.

We chose to return the normalizing factor rather than
perform the normalization directly, since it may be desired to
apply the factor to other sizes. For example, in the context
of flow sampling, we could apply the factor obtained for
sampling byte count to packet counts as well. This results in an
unbiased estimator of the total packet count, although it does
not in general have minimal variance. A more sophisticated
approach to sampling joint variable can be based on our work
on multidimensional sampling described in Section II-E.

The function keeps track on the sum of sizes of small data
record (i.e.,data.x < z) modulo z using a static integer
count. If count is uniformly distributed on the integers
between 0 andz − 1, then if the size of the record is greater
than z then it will always be sampled, while if the size is
less thanz then the record is sampled with probabilityx/z.
Thus under the uniform distribution assumption, the heuristic
implements the optimal strategy.

Theorem 3:The algorithm described in Figure 6 imple-
ments the threshold sampling strategy, under the assumption

11

int sampleData (DataType data, int z) {
static int count = 0;
if (data.x > z)

data.samplingFactor = 1.0;
else {

count += data.x;
if (count < z)

return 0; // do not sample this data
else {

data.samplingFactor = ((double)z)/size;
count = count - z;

}
}
return 1; // sample this data

}

Fig. 6. Quasi-random implementation of the data sampling algorithm.

that the variablecount is a uniformly distributed integer
between 0 andz − 1.

A simple condition for the assumption oncount to hold is
that (a) the subsequence of flow sizes{xi : xi < z} are i.i.d.
random variables, and (b) the support of the distribution of the
xi generates{0, 1, . . . , z−1} under addition moduloz. It then
follows from the theory of random walks that the distribution
of count converges to the uniform distribution. In fact, the
same result holds under weaker dependence conditions of the
xi, e.g., that they form an ergodic Markov chain. See [21] for
related analysis.

Although the marginal sampling probabilities conform to
pz(x), sampling of different flows will not in general be
independent using the algorithm of Figure 6. This is for two
reasons. First, sampling, rather than being independent, more
closely resembles periodic sampling at the appropriate size
dependent rate. To see this, note that a stream of flows of uni-
form sizex will be sampled roughly periodically, with average
period z/x. Second, the driving sequence of underlying flow
sizes may not be independent. However, we do not believe
that this will be a significant issue for estimation. We found
that correlation between the sampling indicators for successive
flows fell rapidly (in lag) to near zero. Furthermore, flow
records of a given key are interspersed with flows of other
keys, further reducing correlations of the sampling indicators
of flows of a given key.

Finally, we note that dependence between flow sizes is
irrelevant when sampling with a good pseudorandom number
generator; sampling decisions are independent, or at least
as independent as the sequence of numbers produced by
pseudorandom generator.

IV. DYNAMIC CONTROL OFMEAN SAMPLE VOLUME

In Section II we showed that the cost functionCz(p) =
Var X̂ + z2EN̂ was minimized by takingp(x) = pz(x) =
min{1, x/z} as the sampling function. In the measurement
applications that motivate us, we want to be able to directly
control the number of samples taken, in order that their
volume does not exceed the capacity available for processing,
transmission and storage. Clearly the sample volume depends
on z, and so the question is: how shouldz be chosen?

In a dynamic context, the volume of objects presented for
sampling will generally vary with time. Thus, in order to be
useful, a mechanism to control the number of samples must
be able to adapt to temporal variations in the rate at which
objects are offered up for sampling. This is already an issue for
uniform sampling: it may be necessary to adjust the sampling
period N , both between devices and at different times in
a single device, in order to control the sampled volumes.
In threshold sampling, the thresholdz controls the sampling
volume. At first sight the task appears more complex than
for uniform sampling, since the threshold sampling volume
depends on both the volume of offered flows, and their sizes.
However, we have devised an algorithm to adaptz to meet
a given volume constraint which requires knowledge only of
the target and current sample volumes.

Consider the case the target mean sample volumeM is less
than n, the total number of objects from which to sample.
N̂z =

∑
i wi is the total number of samples obtained using the

sampling functionpz. Now the expected number of samples
Nz = EN̂z =

∑
i pz(xi) is clearly a non-increasing function

of z, and indeed we show below that there exists a unique
z∗ for which Nz∗ = M . A direct approach to findingz∗ is
to construct an algorithm to find the root. In Section VII we
shall provide a algorithm that does just this by recursion on
the set of sizes{xi}. However, this approach is not suited to
all sampling applications. For example, storage or processing
cycles may not be available to perform the recursion.

Instead, we first present a simple iterative scheme to deter-
mine z∗ that works by repeated application to the set of sizes
{xi}. The advantage of this approach over a recursive one
will become most evident when we come on to consider the
application to dynamically changing sets{xi} in Section IV.
Whereas recursion must complete on a given set{xi}, the
iterative method allows us to replace the set of sizes{xi} with
new data after each stage of the iteration, without requiring to
store the sizes.

Theorem 4:Assume thatxi > 0 for all i = 1, . . . n, that
n > M , and thatz1 > 0. Define g(z) = zNz/M and set
zk+1 = g(zk), k ∈ N.

(i) g(z) is concave and the equationg(z) = z has a unique
positive solutionz∗.

(ii) k 7→ zk is monotonic, andlimk→∞ zk = z∗.
(iii) k 7→ Nzk

is monotonic, andlimk→∞Nzk
= M .

Proof: g(z) has the form
∑

i min{xi, z}/M , from which the
following observations can be made. First,g(z) = zn/M > 1
for z ≤ xmin = minn

i=1 xi. Second, as a sum of concave
functions, g is concave. Third,g(z) =

∑
i xi/M for z ≥

xmax = maxn
i=1 xi.

From these properties,g(z) = z has a unique solutionz∗ >
0. Furthermoreg(z) > z (resp.g(z) < z) for z < z∗ (resp.
z > z∗), and hence{zk} is a strictly monotonic sequence
bounded above bymax{z∗, z1}. Thereforelimk→∞ zk = z∗

sinceg is bounded and continuous on(0,max{z∗, z1}).
Nz is clearly continuous and non-increasing inz and hence

Nzk
is monotonic ink and converges toNz∗ as k → ∞,

converging from above ifz1 < z∗ (i.e. if Nz1 > M), and
converging from below ifz1 > z∗ (i.e. if Nz1 < M).

12

We illustrate the form ofg and convergence of the sequence
{zn} in Figure 7. In some cases, the fixed pointz∗ can be
achieved in finitely many iterations. Suppose

∑
i xi/M >

xmax = maxi xi. Then z∗ =
∑

i xi/M and g(z) = z∗ for
z ≥ xmax. Thus oncezn falls in the interval[xmax,∞), the
next iteration yieldsg(zn) = z∗; see Figure 8. We note that
by Theorem 4{zk} and{Nzk

} are monotonic and sozk will
never overshoot the fixed pointz∗.

A. Rates of convergence

Having established convergence ofzk to the unique fixed
point z∗, we now investigate how quickly convergence occurs.
Our first result show that the number of iterations required to
bring Nz to within a given factor of the targetM is controlled
uniformly in terms of the initial and target thresholdsz1 and
z∗.

Theorem 5:Starting withz = z1, it requires no more than
1+| log1+ε(z∗/z1)| iterations to getNz within a factor(1+ε)
of M , i.e, . M/(1 + ε) < Nz < M(1 + ε).
Proof: We prove forNz1 > M ; the caseNz1 < M is similar.
Let n = max{k | Nzk

> M(1 + ε)}. Then

z∗

z1
>

zn+1

z1
=

n∏

j=1

zj+1

zj
=

n∏

j=1

Nzj

M
> (1 + ε)n (24)

Thusn < log1+ε(z∗/z1) and the required number of iterations
is no more thann + 1.

Note that if ε is small, | log1+ε(z∗/z1)| ≈ | log(z∗/z1)|/ε.
In a neighborhood ofz∗, the rate of convergence ofzk is
governed by the derivative ofg. Let

Xz =
∑

i:xi≤z

xi and Rz = #{i : xi > z}. (25)

Observe thatNz = Xz/z+Rz and hence thatg(z) = Xz/M+
zRz/M . g is piecewise linear with right derivativeRz/M and
left derivativeR−z /M whereR−z = Rz + #{i : xi = z}. We
now express convergence of the absolute difference ofNz and
M in terms of these derivatives.

Theorem 6: (i) Adopt the assumptions of Theorem 4.
|zk − z∗| < ρk|z1 − z∗| where ρ depends onz1 as
follows. If z1 > z∗, takeρ = Rz∗/M < 1. Otherwise, for
sufficiently smallε > 0, and sufficiently largez1 < z∗,
we can takeρ = R−z∗ + ε < 1. Thus, subject to
these conditions, the number of iterations required to
bring zk within a distanceδ of z∗ is no greater than
| log(δ/|z1 − z∗|)/ log ρ |.

(ii) |Nz − Nz′ | ≤ (z − z′) · n/M for all z, z′ ≥ 0. Hence
|Nzk

−M | < ρk(n/M)|z1 − z∗|.
Proof: (i) Supposez1 > z∗. From from the concavity ofg,
zk+1 = g(zk) ≤ g(z∗) + (zk − z∗)Rz∗/M . Now Rz∗/M =
1−Xz∗/(z∗M) < 1 and so the bound on the required number
of iterations is trivial. Otherwise, forz1 < z∗, using concavity
of g and sincezn is increasing,z∗−z1 ≤ z∗+(z∗−z1)R−z1

/M .
For sufficiently smallε > 0, R−z1

≤ R−z∗ + ε < M .
(ii) Denote z− = min{z, z′} and z+ = max{z, z′}. Nz′

andNz have identical contributions from thosexi not in the

interval [z−, z+]. Hence

|Nz−Nz′ | =
∑

i:z−<xi<z+

(xi−z−)/M ≤ |z−z′| ·n/M.

(26)
Note the rateρ is uniform for Nz1 < M . We believe this

is the more interesting case: when the population sizen is
unknown, one may conservatively choose a large initialz1 in
order thatNz1 < M .

Worst-case convergence of the absolute differenceNz −M
occurs whenRz∗/M is as close as possible to1. SinceRz ≤
Nz < M , the worst case possible case would entailRz∗ =
M−1. (One can construct such an example by letting eachxi

take one of two sufficiently separated values, withM − 1 of
the xi taking the larger value). According to Theorem 6, the
number of iterationsk required for a given absolute difference
|Nzk

−M | is thenO(M). In the next section we show that a
modification of the iteration allows exact convergence ofNzk

in finitely many steps, whose number grows no worse than
O(M).

B. Location ofz∗ in finitely many steps

We now show how a simple modification of the iterator
g enables exact determination ofz∗ within finitely many
iterations for any collection of sizes{xi}. Let

g̃(z) =
{

g(z) if Rz ≥ M
z(Nz −Rz)/(M −Rz) if Rz < M

(27)

The modificationg̃ of g makes use of the subsidiary quantity
Rz, the number of sizes that exceed a given thresholdz.
Since such sizes are sampled with probability1 andrz(x) =
max{x, z}, Rz can be determined from the stream of sampled
renormalized sizes alone: it is the number of such objects that
exceedz.

Since g̃(z) = z iff Nz = M , g̃ shares withg the unique
fixed point z∗. We say that iteration with̃g terminates when
successive values are identical. Sincez∗ is the unique fixed
point of g̃, termination can happen only atz∗. Since g̃(z) <
g(z) for z > z∗, we expect convergence to be faster withg̃
thang for initial z > z∗. We also find that̃g(z) ≥ z∗ for all
z such thatRz < M , so that after at most one iteration we
enter the regime of convergence toz∗ from above.

Theorem 7:Starting with z such thatRz < M , iteration
with g̃ terminates onz∗ after at mostO(min{M, log MX})
iterations.
Proof: First consider the case thatRz ≤ Nz < M , and
hencez > z∗. We show this implies that̃gn(z) is a decreasing
sequence bounded below byz∗. Now Nz < M = Nz∗ implies
z′ := g̃(z) < z. SinceNz = Xz/z + Rz, z′ satisfies

M = Xz/z′ + Rz. (28)

Hence

Nz′ = Xz′/z′ + Rz′

= Xz/z′ + Rz +
∑

i:z′<xi≤z

(1− xi/z′)

≤ Xz/z′ + Rz = M, (29)

13

����

������� ��

Fig. 7. ITERATION WITH g: with sequence{zn} converging
to z∗ from below.

����

�������

	
�
��

Fig. 8. ONE-STEP CONVERGENCE: g(z) = z∗ for z ≥
xmax if

∑
i xi/M ≥ xmax.

and soz′ ≥ z∗. If there are no attributesxi in (z′, z], then
Xz = Xz′ , Rz = Rz′ and soM = Nz′ by (28) and the
iteration terminates withz′ = z∗. An immediate consequence
is that each non-terminating iteration increasesRz by at least
1. Since Rz ≤ Nz < M , there can be at mostM such
iterations.

Defineαz > 0 such thatM = (1+αz)Nz. We are going to
show that in each iteration, eitherXz or αz is at least halved.
Assume thatβ := min{xi,minxi 6=xj{|xi − xj |}} > 0. β ≥ 1
if xi takes positive integer values. SinceX ≥ Xz ≥ β, there
can be at mostO(log Xz) iterations in whichXz is halved.

SupposeXz is not halved, i.e., thatXz′ > Xz/2. Now,
αzNz = M − Nz = M − Xz/z − Rz = Xz(1/z′ −
1/z). However, using (29) withz and z′ interchanged, we
find αzNz − αz′Nz′ = Nz′ − Nz ≥ Xz′(1/z′ − 1/z) ≥
(Xz/2)(1/z′ − 1/z) = αzNz/2. Henceαz′Nz ≤ αz′Nz′ ≤
αzNz/2, as desired.

Recall that an iteration that does not yieldz∗ must increase
Rz. Hence after one such iteration we haveNz ≥ Rz > 1,
and soαz = M/Nz−1 ≤ M−1. To finish the bound we need
to show thatαz cannot get too small without the algorithm
terminating. Here we exploit that ifαz < β/(2Mz), then
z − z′ = zαzβNz/(M − Rz) < β/(2(M − Rz)) < β/2 due
to the integer inequalitiesRz ≥ Rz∗ > M . Hence, in one
of the next two iterations,z does not cross anxi, in which
caseRz does not change on that iteration, which implies that
the algorithm terminates. Thusαz > β/(2Mz) > β/(2Mz∗),
and there can be at mostO(log M) iterations in whichα is
halved.

Next consider the case that initiallyNz > M > Rz.
Similarly to (29) one has forz′ = g̃(z) that

Nz′ = Xz′/z′ + Rz′

= Xz/z′ + Rz +
∑

i:z<xi≤z′
(xi/z′ − 1)

≤ Xz/z′ + Rz = M (30)

and hencez′ > z∗. Thus after one iteration the problem
reduces to the caseRz ≤ Nz < M .

V. PATHWISE DYNAMIC CONTROL OFSAMPLE VOLUMES

The strength of an iterative method is that it controls the
sample volumêN in both the static case that the distribution of
sizes of the original population{xi} is unknown, and—as we
shall in this section—the dynamic case that the the population
is changing. The latter ability is important for network mea-
surement applications, where both the volume of offered flows
and their sizes can change rapidly. As an example, volumes
of short flows have been observed to increase rapidly during
denial of service attacks.

The setup for our analysis is as follows. Consider a sequence
of time windows labeled byk ∈ N. In each window a set
of sizes{x(k)} = {x(k)

i : i = 1, 2, . . . nk} is available for
sampling. Given a thresholdz, then the total sample volume in
window k is N̂

(k)
z =

∑nk

i=1 w
(k)
i wherew

(k)
i are independent

random variables taking the value1 with probability pz(x
(k)
i)

and0 otherwise. The set of sampled renormalized sizes from
window k is S

(k)
z = {max{x(k)

i , z} : w
(k)
i = 1}, and the

estimate of the total size of{x(k)} is X̂(k) =
∑

y∈S(k) y.
Generally we want to use control schemes that require

relatively sparse knowledge about the past. For example, we do
not want to require knowledge of the full sets of original sizes
{x(k)} from past windows, due to the storage requirements this
would entail. The control schemes that we will use here are
based on the iterative algorithms of Section IV. The value of
zk+1 to use for sampling during windowk + 1 is a function
of only the target sample volumeM , the following quantities
from the the immediately previous window: the thresholdzk,
the sample volumêN (k)

zk and, optionally, the set of sampled
renormalized sizesS(k). Let R

(k)
z = #{y ∈ S

(k)
z : y > z}.

We first specify three candidate control algorithms based on
the results of Section IV. TheConservative Algorithmis based
on the basic iteration defined in Theorem 4. TheAggressive
Algorithm uses the modification described in Section IV-B
with aim of speeding up convergence when̂N < M . The
Root Finding Algorithmuses a limited recursion to speed
up convergence when̂N > M . This assumes the requisite
storage and processing cycles are available. These algorithms
can be supplemented by two additional control mechanisms.

14

Emergency Volume Controlrapidly adjusts the thresholdz if
systematic variations in the offered load causeN̂ to signif-
icantly exceed the targetM before the end of the window.
Variance Compensationestimates the inherent variance of the
sample volume, and adjusts the target volumeM downwards
accordingly.

A. Conservative algorithm

zk+1 = zk
max{N̂ (k)

zk , 1}
M

(31)

The maximum with1 comes into effect whenz is so large
that no sizes end up being sampled, i.e., whenN̂zk

= 0. The
effect is to drivez down and so make some sampling more
likely at the next iteration.

B. Aggressive algorithm

zk+1 =





zk
N̂(k)

zk

M if N̂
(k)
zk ≥ M

zk
max{N̂(k)

zk
−R̂(k)

zk
,1}

M−R̂
(k)
zk

if M > N̂
(k)
zk ≥ 0

(32)

Here we apply the form of the iteration (27) only whenM >

N̂
(k)
zk , rather than under the weaker conditionM > R

(k)
zk . The

reason for this that the jump fromz < z∗ to g̃(z) > z∗ can
lead to oscillatory behavior in the presence of size variability.

C. Root finding algorithm

The third candidate arises from the fact, established in
Section II-G, that sampling and renormalizing a set of sizes
Ω = {xi : i = 1, . . . , n} using thresholdz, and then resam-
pling the resulting set with thresholdz′ > z is statistically
equivalent to performing a single sampling operation with
thresholdz′.

Suppose for a given valuez we obtain the sample volume
N̂z > M . Conditioning on the fixed set of sampled sampled
valuesSz(Ω), we can write the conditional expectation of the
sample volumeN̂ ′

z′,z =
∑

x∈Sz(Ω) pz′(x) under resampling
from Sz(Ω) but using the thresholdz′ > z. We rewrite
N̂ ′

z′,z =
∑

x∈Ω wxpz′(rz(x)) where wx are independent
random variables taking the value1 with probability pz(x)
and 0 otherwise. From Theorem 2 it follows thatEN̂ ′

z′,z =
Nz′ when z′ ≥ z, i.e., N̂ ′

z′,z is an unbiased estimator of
Nz′ . Furthermore, for a given realization of the{wi}, z′ 7→
N̂ ′

z′,z is non-increasing. Consequently it is relatively simple
to determine the root̂z∗ > z of the equationN̂ ′

ẑ∗,z = M .
We denote this root byZ(Sz,M). An algorithm to determine
the root is presented in Section VII below. The root finding
algorithm is then:

zk+1 =

{
Z(S(k)

zk ,M) if N̂
(k)
zk > M

zk
max{N̂(k)

zk
,1}

M if M ≥ N̂
(k)
zk ≥ 0

(33)

We will also speak of combining the aggressive with the root
finding approach, by which we mean using (32) whenM >

N̂
(k)
zk ≥ 0 and (33) whenN̂ (k)

zk > M .

D. Emergency volume control

If the arrival rate of objects to be sampled grows noticeably
over a time scale shorter than the window width,N̂ may
significantly exceed the targetM . We propose additional
control mechanisms that can be used to control the sample
volume in emergency. The idea is that if a target sample
volume is already exceeded before the end of a window, we
should immediately change the thresholdz. In this context, we
can regard the windowing mechanism as a timeout that takes
effect if N̂ has not exceededM by the end of the window.
We present three variants on this theme, tighter control being
possible when more information on the original data stream
is available.

1) Emergency control using timing information: If̂N al-
ready exceedsM at timet from a start of a window of length
τ , we immediately replacez by zτ/t. This approach derives
from (31) since the target̂N over the interval[0, t) is Mt/τ .
If we have control over the window boundaries, then we may
just start a new window at that time. Otherwise, from timet
we reaccumulate the sample countN̂ from zero, and the test
and remedy are repeated as needed for the remainder of the
window.

2) Emergency control using population size: If timing
information is not directly available, but the numbern in the
original population in the window is available, we can repeat
the above procedure usingi/n as a proxy fort/τ , where i
is the sequence number of sizexi in the window. (Note this
control violates our aim to sample without knowledge of the
original population size, and so may not be applicable in all
circumstances).

3) Emergency control with tolerance parameter: If neither
timing nor size information are available, we select an addi-
tional tolerance parameterγ > 1. If N̂ exceedsγM during
a window, we immediately replacez by γz, again following
(31).

E. Compensating for sampling variability

Each of the algorithms above may be modified to be
more conservative by adjusting the targetM downwards to
take account of the sampling variability. From Section II-F
we know thatV̂Nz =

∑n
i=1 wi(1 − xi/z)+ is an unbiased

estimator ofVar N̂z. Therefore, for a given multiplierσ > 0,
we can elect to replaceM by M ′ = M − σ

√
VNzk

in (31),
(32) and (33) above. The effect is to guard against statistical
fluctuations ofN̂–due to sampling alone–of up toσ standard
deviations above the mean.

A simple upper bound on the sampling variance is obtained
through

Var N̂z =
n∑

i=1

pz(xi)(1− pz(xi)) ≤
n∑

i=1

pz(xi) = EN̂z (34)

Thus in aiming for a targetM we expect a relative error on̂N
of about1/

√
M . This leads to a simpler estimate for variance

compensation: in order to guard against statistical fluctuations
of up tos standard deviations from a targetM , one should use
the compensated targetMs = M−s

√
M . Although we do not

15

0

5000

10000

15000

20000

25000

30000

0 50 100 150 200 250 300 350 400

vo
lu

m
e

time

original flow volume

Fig. 9. ORIGINAL FLOW VOLUMES: in trace used for studies, over 5 second
windows. Observe volume increase during period to time 115s.

0

50

100

150

200

0 50 100 150 200 250 300 350 400

vo
lu

m
e

time

static control
dynamic control

Fig. 10. STATIC AND DYNAMICALLY CONTROLLED SAMPLED FLOW

VOLUMES: to obtain same average sampled flow volumes over 400 second
period.

detail it here, we remark that a similar approach can be used
to mitigate the effects of high uncertainty surrounding small
sample volumeŝN near zero. This leads to a modification of
the “take the maximum with 1” approach used in (31), (32) and
(33), instead replacinĝNz with (s/2 + ((s/2)2 + N̂z)1/2)2 in
order to guard against small unreliable values ofN̂z.

F. On sampling variability and timescales of variation

Suppose we wish to limit report volumes to a rateρ per unit
time. Over a window of widthτ , our target volume isM = ρτ .
A target typical relative error ofε in the report rate requires
ε =

√
M . EliminatingM between these two relations, we find

that for a report rateρ with target relative errorε a window
of width τ = 1/(ρε2) is required. Emergency volume control
guards against systematic variations in the original flow stream
on time scales shorter thanτ . If only the weakest form of
emergency control is available, i.e. using a tolerance parameter
γ, we selectγ = 1 + ε.

G. Computational issues

We have seen in Section III-C that quasi-random sampling
of each size may be performed with hardly more complexity
than the simple deterministic1 in N sampling strategy.

We now address the complexity of the subsequent calcu-
lations with sample values for the three algorithms described
above. Both the conservative and aggressive algorithms keep
only accumulated quantitieŝN (and R̂ for the aggressive
algorithm), and require onlyO(1) operations to iteratez from
these quantities.

Although we may expect faster convergence with root
finding when N̂ > M , the trade-off is in the increased
storage and computation requirements withZ. Root finding
from m quantities requiresO(m) storage andO(m) operations
to iteratez. In the application described in Section V-C we
thus havem ≈ M when control to (near) volumeM is
effective. On the other hand, root finding from the original flow
stream may be prohibitive in both storage and computational
requirements, sincem is then the numbern of original flows
present in a given time window.

VI. EXPERIMENTAL STUDIES OFDYNAMIC CONTROL OF

SAMPLE VOLUMES

The previous section define a set of adaptive mechanisms to
control the rate at which samples are produced. This section
gives a trace-based investigation into their performance. In
these experiments we focused on sampling streams of flow
reports from single router interfaces. This gives insight into
the behavior of the threshold sampling algorithm were it to be
applied to reduce the volume of transmission of flows from the
interface to the collection point. Most of these studies reported
here focus on 400 seconds worth of data from a single network
trace whose original flow volumes over 5 second windows is
shown in Figure 9. We selected this trace because it displays
a systematic increase in the original volume over the period
between 80s and 100s. This provides a good opportunity to
evaluate the performance of the algorithms under dynamic
conditions. The empirical distributions of the byte and packet
sizes of all flows in the trace are shown in Figure 11. Note
the approximate linearity of the tail probabilities on a log-
log scale; the slope is a little larger than1, indicative of a
heavy tailed distribution. We evaluate the dynamic algorithms
along the following dimensions: (i) the benefit of dynamic
choice ofz versus the best average choice; (ii) the speed of
convergence after a perturbation in the offered load; (iii) the
ability of variance compensation and emergency control to
limit the effects on the sample volume of rapid growth in the
offered load; (iv) accuracy in estimating the total byte volume
represented in the original set of flow records.

A. Dynamic vs. static control

To show the benefit of dynamic over static sampling we
compare the sample volumes using the conservative algorithm
at target volumeM = 100 per 5 second window, with static
control at a fixed thresholdz chosen so as to yield the same
average sample rate over 400 seconds. The two trajectories of
the sample volume are shown in Figure 10. Unsurprisingly, the
volume under static control follows closely the original volume
displayed in Figure 9, leveling off at around 150 samples per
window after the original volume increase at about 115s. On
the other hand, the volume of samples obtained with dynamic

16

• • • • • • • • • • • • • • • • • ••• • •••• • • • •••

flow bytes

lo
g

ta
il

pr
ob

ab
ab

ili
ty

10^2 10^3 10^4 10^5 10^6 10^7 10^8

-6
-5

-4
-3

-2
-1

0 • • • • • • • • • • • • • • • • • •••• ••••• • ••••

flow packets

lo
g

ta
il

pr
ob

ab
ab

ili
ty

1 10 100 1000 10000 100000

-6
-5

-4
-3

-2
-1

0

Fig. 11. EMPIRICAL DISTRIBUTION OF FLOW BYTE AND PACKET SIZES: approximate linearity of tail probabilities on log-log scale with slope around1
indicative of heavy tailed distribution.

control increases only slowly during the period up to time
115s, falling back slightly to around 100 after the plateau in the
original volume is reached. Clearly, the ability of the dynamic
algorithm to adapt is better when the ratio of the time scale
of increase to the sampling window duration is smaller. In
the example, original volume increases by about a factor 5
over the 10 windows between 65s and 115s. This leads to
some noticeable increase of report volume over theM = 100
towards the end of this period. The initial transient in the
sample volume is due to a small initial value of the threshold
z.

B. Relative performance of the dynamic algorithms

The two variants on the conservative algorithm defined in
Section V, namely the aggressive and the root finding ap-
proach, were motivated by the desire to speed up convergence
of N̂ to the targetM . In order to assess the extent to which
these variants met these aims, we modified the experiments
to reproduce the effects of transients in the arrivals of flow
records. We did this by artificially perturbing the calculated
value of the thresholdz, every tenth window, alternately
upwards or downwards by an independent random factor that
uniformly distributed between1 and200. The effect of these
perturbations is to perturb the sampling rate downwards or
upwards, resulting in a dip or spike in̂N . The perturbed
value of z is a legacy for subsequent estimation: we wish
to determine how quickly its effects are forgotten in the
subsequent evolution. For these experiments the window width
was 5 seconds, with a sample volume target ofM = 100 out
of an average unsampled stream of 19,980 flows per window.

We compare the responses of the various algorithms to the
perturbations in Figure 12. The left plot shows the typical
responses of the aggressive and conservative algorithms. Re-
call the aggressive algorithm aims to speed convergence when
N̂ < M . Observe that after the downward spike, aggressive
algorithm indeed recovers more quickly.

The right-hand plot compares the root finding and conserva-
tive algorithm. Root finding aims to improve the convergence

rate whenN̂ > M . Observe that after the upward spike, root
finding returnsN̂ to near the target valueM in only one
step; by comparison the conservative algorithm decays more
gradually, needing typically 3 steps to return close to the target.
Summarizing, the quickest recovery is obtained by combining
the aggressive algorithm (to speed up recovery ofN̂ from
below) with root finding (to speed up recovery of̂N from
above).

C. The benefits of variance compensation and emergency
control

Variance compensation was proposed in Section V-E as
a means to mitigate the effects of the inherent variability
due to random sampling. In Figure 13 we give an example
on the effects of compensation and emergency control. The
target volume isM = 100 flows per 5 second window. The
upper trace (no compensation or control) exhibits a rise to
N̂ = 147 at time 115s in response to the rapid increase in the
original volume evident in Figure 9. Thereafter, the original
volume reaches a plateau, and the sampled volume exhibits
fluctuations of order

√
M = 10 around the targetM .

The effect of compensation ats = 1 is to lower the sample
volume by roughly

√
M = 10. By adding emergency volume

control (based on flow arrival times) to a level ofM = 100,
the peak sample volume at time 115s was reduced by a
further amount27 to 110. The lower trace in Figure 13 shows
the sample volume obtained by augmenting the conservative
algorithm with both variance compensation (ats = 1) and
emergency control. In further experiments, we found the
proportion of windows in the plateau region for which the
targetM = 100 is exceeded is44% when s = 0, 10% when
s = 1 and2.6% whens = 2.

D. Summary and comparison

Emergency control and variance compensation are simple
and effective means of guarding against systematic variation
in the offered load and variability inherent due to sampling.

17

1

10

100

1000

0 5 10 15 20 25 30

vo
lu

m
e

time

aggressive
conservative

10

100

1000

10000

0 5 10 15 20 25 30

vo
lu

m
e

time

conservative
root finding

Fig. 12. RELATIVE RECOVERY RATES OF DYNAMIC SAMPLING ALGORITHMS UNDER ARTIFICIAL PERTURBATION: Left: conservative vs. aggressive.
Right: conservative vs. root finding.

60

70

80

90

100

110

120

130

140

150

50 100 150 200 250 300 350

vo
lu

m
e

time

conservative
emergency control, compensation

Fig. 13. VARIANCE COMPENSATION AND EMERGENCY CONTROL: De-
crease in sample volume obtained by applying compensation for 1 standard
deviation and emergency control. Relative to conservative algorithm, emer-
gency control reduces impact of rapid increase in offered load up to time
115s that is evident from Figure 9.

The root finding algorithm gives some speed up in downward
convergence afterN̂ has exceeded its targetM , but this
requires additional storage and computational resources that
may not be available in all cases. On the other hand, the
aggressive algorithm speeds up convergence ofN̂ from below
M , with hardly any additional resource usage. For general
application, we therefore favor the conservative or aggressive
algorithms, combined with variance compensation and some
form of emergency volume control.

VII. ROOT FINDING : ALGORITHM AND SAMPLING

STATISTICS

In this section we detail an efficient root finding algorithm,
and investigate the effect on root finding accuracy of omitting
some sizesxi, e.g., in order to reduce resource usage.

A. Implementation of root finding algorithm

In this section we consider a class of root finding problems
arising from the requirements for a root finding algorithm in
Section V-C. First, we consider how to solve forz the equation

Nz = M . For ◦ =<,>,≤,≥, =, define

X◦z = {x ∈ X|x ◦ z}
Suppose we are given a fixed set of sizesX = {x1, ...xn} and
a targetM . Let

Nz(X) = (
∑

X≤z)/z + |X>z|
That is,Nz is our expected number of samples fromX with
thresholdz. Our goal is to findz∗ = Z(X, M) such that
Nz∗(X) = M . We note thatNz(X) = |X| for z ≤ min X,
and thatNz(X) is strictly decreasing forz ≥ min X. Thus,
z∗ is uniquely defined assumingM < |X|.

Our basic idea is to pick some valuez and compareNz

with M . If Nz = M we are done. IfNz < M , we know
z > z∗ and if Nz > M , we knowz < z∗. If z > z∗, we wish
to recurse onX<x and if z < z∗, we wish to recurse onX>x.
To define the recursion, however, we define

Nz(X,B) = B/z + Nz(X)

Also, definez∗ = Z(X, B,M) such thatNz∗(X, B) = M .
ThenNz(X, 0) = Nz(X) andZ(X, 0,M) = Z(X, M). Note
that if B > 0, Nz(X,B) is strictly decreasing for allz > 0,
and hencez∗ is always unique. This leads to the following
uniqueness assumptionfor Z(X,B,M): eitherB > 0 or M <
|X|.

Lemma 1: If Nz(X, B) < M ,

Z(X,B,M) = Z(X<z, B, M − |X≥z|)
Proof: If Nz(X, B) < M , z∗ = Z(X, B, M) < z. For any
z′, Nz′(X, B) = Nz′(X<z, B) + Nz′(X≥z), and forz′ < z,
Nz′(X≥z) = |X≥z|. Hence

Nz∗(X<z, B) = Nz∗(X, B)− |X≥z| = M − |X≥z|. (35)

If All we need to argue now is thatz∗ is the unique solution
to (35). If B > 0 we are done. Otherwise, we haveM < |X|,
implying M − |X≥z| < |X<z|.

Lemma 2: If Nz(X, B) > M ,

Z(X, B, M) = Z(X>z, B +
∑

Xx≤z,M)

18

Proof: If Nz(X, B) > M , z∗ = Z(X, B, M) > z. For any
z′, Nz′(X, B) = Nz′(X≤z, B) + Nz′(X>z), and forz′ > z,
Nz′(X≤z, B) = (B +

∑
X≤z)/z′. Hence

Nz∗(X>z, B +
∑

X≤z) = Nz∗(X,B) = M (36)

All we need to argue now is thatz∗ is the unique solution
to (36). If X≤z = ∅, there is nothing to prove. Otherwise,∑

X≤z > 0, in which case (36) always has a unique solution.

The above lemmas immediately imply that the following
recursive algorithm correctly determinesZ(X, B,M) when
B > 0 or M < |X|.

Algorithm Z(X, B, M): Assume thatB > 0 or M <
|X|.

1) If X = ∅, returnB/M .
2) Pick a randomz ∈ X,

a) If Nz(X, B) = M , returnz.
b) If Nz(X, B) < M , returnZ(X<z, B, M−|X≥z|).
c) If Nz(X,B) > M , return Z(X>z, B +∑

X≤z,M).
Each recursive step involvesO(|X|) operations. The point in
picking z randomly fromX is that, in each recursive step,
we expect to get rid of a constant fraction of the elements in
X, and so the total expected running time isO(|X|). For a
more precise analysis, we note that the algorithm behaves as
standard randomized selection after reaching a neighbor ofz∗

in X. A formal analysis of the expected linear time for such
algorithms is found in [8, pp. 187–189]. Concerning step 2, if
the items inX are not ordered in relation to their sizes, we can
just pick z as the first element inX. With this simplification,
an iterative C-code version of the algorithm is presented in
Figure 14.

B. Estimatingz∗ from subsets of sizes

One way to reduce the computational resources required
for root finding is to reduce the number of sizes used as
input. In this section, we consider the problem of estimatingz∗

from a random subset of the original sizes{x1, . . . , xn}. Here
sizes are sampled uniformly with some probabilityq ∈ (0, 1),
i.e.,independently of the size values. The random setQ of
selected sizes is used to estimatez∗. Pq will denote the
corresponding distribution.

Let NQ
z =

∑
x∈Q pz(x) and for eachQ estimatez∗ through

zQ, the solutionz to the equationNQ
z = qM . Here we have

scaled down the target volume in the same proportion as the
mean number of sizes used to estimatez∗. Our aim here is to
analyze the sampling error arising from this procedure.

The following Theorem uses a form of Chernoff bounds
(see [27, Chapter 4])) that says ifX is a sum of independent
random variables each with range in the interval[0, 1] and
EX = µ, then

P[X < (1− δ)µ] ≤
[

e−δ

(1− δ)1−δ

]µ

(37)

and

P[X > (1 + δ)µ] ≤
[

eδ

(1 + δ)1+δ

]µ

(38)

double Z(double * X, int n, double B, double M) {
int i,j,n1,n2;
double B,B1,z;

while (n>0) {
z=X[0];
n1=0;
B1=0.0;
for (i=0; i<n; i++) {

if (X[i]>z) n1++;
else B1+=X[i];

}
j=0;
n2=n;
if (((B+B1)/z) < (M-n1)) {

for (i=0; i<n2; i++) {
if (X[i]>=z) {

M--;
n--;

} else {
X[j]=X[i];
j++;

}
}

} else {
for (i=0; i<n2; i++) {

if (X[i]<=z) {
B+=X[i];
n--;

} else {
X[j]=X[i];
j++;

}
}

}
}
return B/M;

}

Fig. 14. C-code implementation of the recursive pseudo-code forZ from
Section VII

for δ ∈ (0, 1) andδ > 0 respectively.
Theorem 8:NzQ converges exponentially quickly toM . In

particular

Pq[NzQ > (1 + η)M] ≤ [
(1 + η)e−η

]Mq
(39)

and
Pq[NzQ < (1− η)M] ≤ [

(1− η)e−η
]Mq

(40)

for η > 0 andη ∈ (0, 1) respectively.
Proof: Given η > 0, definez− to be the solution toNz− =
(1 + η)M . Observe thatNzQ > (1 + η)M iff zQ < z− iff
NQ

z− < qM iff NQ
z− < Eq[NQ

z−]/(1 + η). The last equivalence
is becauseEq[NQ

z−] = qNz− = qM(1 + η). Now NQ
z is a

sum of independent random variables each taking values in
[0, 1]: eachx ∈ {1, . . . , n} contributes to the sumNQ

z with
probabilityq, and if present contributespz(x). The first bound
then follows from the first inequality in (37) on identifying
1 + η with (1− δ)−1. The second bound is obtained similarly
by considering the solutionz+ to Nz+ = M(1 − η) and
identifying 1− η with (1 + δ)−1.

19

VIII. A LTERNATIVE MEASUREMENTMETHODOLOGIES

AND RELATED WORK

Our work is immediately applicable to current network
measurement infrastructure, specifically in mediation stations
and flow collectors fed by the large installed base on NetFlow
enabled routers. In this section we discuss the feasibility, or
otherwise, of alternative measurement methods for meeting
our goals, and discuss some related work.

1) Counters:Sometimes it is suggested that routers main-
tain byte and packet counters and export flow records pe-
riodically to the collection system. There are a number of
reasons why this can be a bad idea. If the export period is too
short, a larger number of flow records will be produced since
longer flows will be divided up into many records, increasing
measurement infrastructure costs. If the export period is too
long, a large number of counters will have maintained at the
router, many of them for inactive flows. For example, a heavily
loaded backbone router with many interfaces might see 10’s or
even 100’s of millions of distinct flow keys per hour. Moreover,
the export latency between periodic exports limits the response
time of analysis, and leaves the flow data vulnerable to loss
in the event of router reset or failure.

The methods of generating flow statistics currently deployed
in network routers—upon which our work is based—are
able to circumvent these problems; These can be viewed
as an economical and adaptive way of keeping counters,
since counters are kept only for active flows, with counter
memory released on termination. The need to control memory
consumption is one reason that the interpacket timeout is kept
small in practice, typically about a minute or less. A recent
phenomenon reemphasizes this need. Some denial of service
attack tools generate packet streams in which the source IP
address is randomly forged [26]. Assuming for simplicity
that no source addresses are repeated, each packet gives rise
to a separate flow cache entry in the router. Thus memory
consumption at the router arising from such flows grows
linearly with the flow timeout.

2) Packet header collection:Collection, sampling and ex-
port of packet headers suffers from several drawback relative
to flow collection. The main drawback is volume, as noted in
the introduction. Secondly, there is currently a large installed
base of routers that have no ability to export packet-level
measurements. Although this may change in future, volume
constraints would limit the taking of full (i.e. unsampled)
header traces to filtered subsets of packets.

Since flow statistics do not include the locations of packets
within the flow, they are of limited use in studies of packet
level traffic processes, such as self-similar [25] or multifractal
properties [18], [34], or TCP dynamics [29]. However, whereas
packet level detail is crucial to understand these matters, many
important network management applications and supporting
research work — including all those mentioned in Section I-
A.1 — do not require it. For these, it suffices to know
network usage differentiated by primary keys (i.e. as fine as
those commonly used in flow definitions: IP address, ports,
AS’s, etc.), at timescales no smaller than the duration of
the flows themselves. We have argued that differentiation is

also necessary to satisfy the needs of a variety of network
management applications.

3) Sampling Methods Currently Implemented:Packet sam-
pling may in any case be required for the construction of flow
records. This is because flow cache lookup at full line rate, if
possible, requires fast expensive memory. Sampling spaces out
the packets to allow for execution in slower cheaper memory.
In Section III we showed that the formation of packet sampled
flow statistics provides greater estimation accuracy that packet
sampling alone for the same amount of measurement traffic.
For this reason, we recommend using only as much packet
sampling as is necessary to control load in the router: any
further data reduction that is required should be performed
using threshold flow sampling.

4) Proposed Sampling Methods:Sample and Hold [15],
uses modified packet sampling in the router in order to focus
on longer flows. A flow cache lookup is performed for each
incoming packet, and if a match is found, the flow’s statistics
are updated as usual. If a match is not found, a new cache
entry is created with probability depending on the number of
bytes in the packet. Section III showed the performance of
sample and hold and threshold sampling in the measurement
infrastructure to be very close. However, Sample and Hold is
not available in current routers; whereas threshold sampling
is currently operational, and immediately applicable to the the
date produced by the large installed base of NetFlow enabled
routers.

5) Filtering and Aggregation:Filtering and aggregation by
key are means of reducing data volume. Filtering restricts
attention to a particular subset of data, e.g., all traffic to or
from a range of IP addresses. However, not all questions
can be answered from measurements that has passed through
preconfigured filters. For example, we do not know in advance
which addresses to look for to determine the most popular
destination web site for traffic on a given link.

Similarly, aggregation over keys (e.g. over ranges of IP
addresses, rather than individual addresses) would require that
the finest required level of aggregation be known in advance.
This would generally limit the ability to perform exploratory
traffic studies. When queries are known in advance, then
more specialized sketching algorithms can be applied to the
stream of flow records; see [2], [28] for a survey. In fact,
our sampling may be used as a common front-end to several
more sophisticated streaming algorithms. The point here is
that threshold sampling is simple enough to keep up with
a very fast data stream, producing a reduced data set that
can be fed into a more sophisticated but slower streaming
algorithms. However, threshold sampled flow data can be
arbitrarily aggregated to perform analyses not anticipated at
the time the data was collected.

6) Related work: Stratified sampling is a well known
technique by which to reduce the variance associated with
statistical estimation from a population, by varying the se-
lection probability of a datum according to its value; see
e.g. [7]. Optimization results for the choice of strata exist
when the population distribution lies in certain parameterized
families. Independent and deterministic1 in N sampling, as
well as stratified sampling out of finitely many bins, have been

20

compared for packet sampling in [6]. The aim of this work
was to efficiently estimate packet size distributions.

The focus of our work is different. We estimate total usage
in a given key by ensuring that we sample all important contri-
butions to the total. Moreover, we make no assumption on the
underlying distribution of flow sizes. In a further development,
we coupled the threshold sampling scheme described here to
the problem of usage-sensitive pricing; see [12]. The main new
idea is that since larger usage can be more reliably estimated,
charging should be sensitive only to usage that exceeds a
certain level; for lesser usage a flat rate applies.

Other methodological work on sampling for network mea-
surement includes Trajectory Sampling [10], a method to
sample a packet at either all links or no links of network.
Another paper deals with reconstruction of the statistics of
original flow records from those of packet sampled flows;
see [13]. Standards for network event sampling based on
randomizing the inter-sample time have been set out in [30].
Sample and Hold [15] has already been discussed. We saw
in section III-B that, although it is not in general possible to
construct an unbiased usage estimator from the measurements
produced by this method, its accuracy is similar to that of the
present method. However, unlike the present work, this method
would require modification of routers. A review of these and
other sampling methods used or proposed for passive Internet
measurement can be found in [9].

IX. CONCLUSIONS ANDFURTHER DEVELOPMENTS

This paper was motivated by the requirement to estimate
of fined-grained volume of network traffic with different
attributes (e.g. IP address and port numbers) when it is
infeasible either to accumulate counters on attribute of interest,
or to simply collect a portion of each object for further
analysis. We have studied how best to sample a stream of
measurements in order to minimize a weighed sum of the
total number of samples and the variance of the estimated
sum of the measurements. The main complication is that if the
measurements have heavy tailed distributions, such as occur
for the byte and packet sizes of IP flows, then the elementary
method of sampling at a fixed rate performs very poorly.

We presented a simple sampling model, and we determined
a parameterized family of optimal solutions to this model. We
showed that the optimal solution performs very well when we
simulated it on a trace of real flow measurements gathered at
routers. We also developed simple heuristics that (i) implement
this optimal solution and (ii) given a collection of data and
a desired amount of sampled data determined the sampling
parameter to use. For applications that need true dynamic
control, we specified several dynamic control algorithms, with
additional features to enhance convergence and ameliorate the
effects of systematic variations in the offered load of objects
to be sampled. We showed that they performed very well on
both real data, and real data with artificially created variations.

These heuristics and dynamic control algorithms could be
incorporated into router vendor software and thus give network
managers control on the amount network measurements traffic
that needs to be processed. With capabilities available today

one can sample at the mediation stations and the collector.
The sampling strategy described in this paper is currently
used to collect NetFlow records collected extensively from
a large IP backbone. The collection infrastructure deals with
millions of NetFlow records per second. Measurements from
some tens of routers are transmitted to a smaller number
of distributed mediation servers. The servers aggregate the
records in multiple dynamic ways, serving the needs of a
variety of network management applications. The aggregates
are sent to a central collection point, for report generation,
archival, etc. Without the sampling strategy, there would need
to be an order of magnitude greater capital investments to
provide the facilities to process the measurement stream.

The ideas in this paper have been further developed since
it was first submitted for publication, resulting in a number
of other publications. These we now briefly list. Usage-based
charging can be coupled to the present threshold sampling
method in such a way that the estimated usage is relatively in-
sensitive to sampling errors from threshold sampling; see [12]
for further details. The interaction between packet sampling
(such as occurs in sampled NetFlow) and threshold sampling,
and the dimensioning of measurement infrastructures that
use both these two methods is examined in [11]. Threshold
sampling with hard constraints on the volume of samples taken
is examined in [14].

Acknowledgment.

We thank Jennifer Rexford and Cristi Estan for comments
on previous versions of this paper.

REFERENCES

[1] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder, “OC3MON: Flex-
ible, Affordable, High Performance Statistics Collection,” For further
information see http://www.nlanr.net/NA/Oc3mon

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom”, “Models
and Issues in Data Stream Systems”, In: Proceedings of the Twenty-
First ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 1–16, 2002.

[3] R. Cáceres, N.G. Duffield, A. Feldmann, J. Friedmann, A. Greenberg,
R. Greer, T. Johnson, C. Kalmanek, B.Krishnamurthy, D. Lavelle,
P.P. Mishra, K.K. Ramakrishnan, J. Rexford, F. True, and J.E. van
der Merwe, “Measurement and Analysis of IP Network Usage and
Behavior”, IEEE Communications Magazine, vol. 38, no. 5, pp. 144–
151, May 2000.

[4] Cisco NetFlow; for further information see
http://www.cisco.com/warp/public/732/netflow/index.html and
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120limit/120s/120s11/12ssanf.htm

[5] K.C. Claffy, H.-W. Braun, and G.C. Polyzos. Parameterizable method-
ology for internet traffic flow profiling.IEEE Journal on Selected Areas
in Communications, 13(8):1481–1494, October 1995.

[6] Kimberly C. Claffy, George C. Polyzos, and Hans-Werner Braun.
Application of Sampling Methodologies to Network Traffic Charac-
terization. Computer Communication Review, 23(4):194–203, October
1993, appeared in Proceedings ACM SIGCOMM’93, San Francisco,
CA, September 13–17, 1993.

[7] W. Cochran, “Sampling Techniques”, Wiley, 1987.
[8] T. H. Cormen and C. E. Leiserson and R. L. Rivest, ”Introduction to

Algorithms”, MIT Press/McGraw-Hill, Cambridge, Massachusetts 1990.
[9] N.G. Duffield, “Sampling for Passive Internet Measurement: A Review”,

Statistical Science, 2004, to appear.
[10] N. G. Duffield and M. Grossglauser, “Trajectory Sampling for Direct

Traffic Observation”,IEEE/ACM Transactions on Networking, April
2001, to appear. Abridged version appeared in Proc. ACM Sigcomm
2000, Computer Communications Review, Vol 30, No 4, October 2000,
pp. 271–282.

21

[11] N.G. Duffield and C. Lund, “Predicting Resource Usage and Estimation
Accuracy in an IP Flow Measurement Collection Infrastructure”, ACM
SIGCOMM Internet Measurement Conference 2003, Miami Beach, Fl,
October 27-29, 2003

[12] N.G. Duffield, C. Lund, M. Thorup, “Charging from sampled network
usage,” ACM SIGCOMM Internet Measurement Workshop 2001, San
Francisco, CA, November 1-2, 2001.

[13] N.G. Duffield, C. Lund, M. Thorup, “Estimating flow distributions from
sampled flow statistics”, ACM Sigcomm 2003, Karlsruhe, Germany,
August 25-29, 2003.

[14] N.G. Duffield, C. Lund, M. Thorup, “Flow Sampling Under Hard
Resource Constraints”, In Proc ACM SIGMETRICS 2004, New York,
NY, June 12-16, 2004

[15] C. Estan and G. Varghese, “New Directions in Traffic Measurement
and Accounting”, Proc SIGCOMM 2002, Pittsburgh, PA, August 19–
23, 2002.

[16] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, F. True,
”Deriving traffic demands for operational IP networks: methodology and
experience”, In Proc. ACM Sigcomm 2000, Computer Communications
Review, Vol 30, No 4, October 2000, pp. 257–270.

[17] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
“NetScope: traffic engineering for IP networks”, IEEE Network, vol.
14, no. 2, pp. 11–19, March-April 2000.

[18] A. Feldmann, A.C. Gilbert and W. Willinger, “Data Networks as Cas-
cades: Investigating the Multifractal Nature of Internet WAN Traffic”,
Proceedings ACM SIGCOMM ’98, Vancouver, BC, 1998.

[19] A. Feldmann, J. Rexford, and R. Cáceres, “Efficient Policies for Carrying
Web Traffic over Flow-Switched Networks,”IEEE/ACM Transactions on
Networking, vol. 6, no.6, pp. 673–685, December 1998.

[20] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights”, In: Proceeding IEEE INFOCOM 2000, Tel Aviv, Israel,
2000, pp. 519–528.

[21] B. Hajek, “Extremal splittings of point processes”, Math. Oper. Res. vol.
10, pp. 543–556, 1985.

[22] Inmon Corporation, “sFlow accuracy and billing”, see:
http://www.inmon.com/PDF/sFlowBilling.pdf

[23] ”Internet Protocol Flow Information eXport” (IPFIX). IETF Working
Group. See: http://net.doit.wisc.edu/ipfix/

[24] P. L’Ecuyer, ”Efficient and portable combined random number genera-
tors”, Communications of the ACM 31:742–749 and 774, 1988.

[25] W.E. Leland, M.S. Taqq, W. Willinger, D.V. Wilson, “On the self-
similar nature of Ethernet traffic”, Proceddings ACM SIGCOMM ’93,
San Francisco, CA, 1993

[26] D. Moore, G. Voelker, S. Savage, “Inferring Internet Denial of Service
Activity”, Proceedings of the 2001 USENIX Security Symposium,
Washington D.C., August 2001.

[27] R. Motwani and P. Raghavan, “Randomized algorithms”. Cambridge
University Press, Cambridge, 1995.

[28] S. Muthukrishnan, “Data Streams: Algorithms and Applications”,
Manuscript based on invited talk from14th SODA, 2003.

[29] V. Paxson, “Automated Packet Trace Analysis of TCP Implementations”,
Proceedings ACM SIGCOMM ’97, Cannes, France, 1997.

[30] V. Paxson, G. Almes, J. Mahdavi, M. Mathis, “Framework for IP
Performance Metrics”, RFC 2330, available from: ftp://ftp.isi.edu/in-
notes/rfc2330.txt, May 1998.

[31] J. Postel, “Transmission Control Protocol,” RFC 793, September 1981.
[32] Qosient, LLC, “Argus”, see: http://www.qosient.com/argus/index.htm
[33] Real Time Flow Measurement, see:

http://www.auckland.ac.nz/net/Internet/rtfm/.
[34] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R. G. Baraniuk, “A

Multifractal Wavelet Model with Application to Network Traffic”, IEEE
Transactions on Information Theory, vol. 45, pp. 992-1018, 1999.

[35] Riverstone Networks, Inc., see: http://www.riverstonenet.com/technology/
[36] XACCT Technologies, Inc., see: http://www.xacct.com

