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Abstract— This paper deals with sampling objects from a large A. Motivation
stream. Each object possesses a size, and the aim is to be able

to estimate the total size of an arbitrary subset of objects whose 1) The need for detailed network usage dafizhe collec-
composition is not known at the time of sampling. This problem is tion of network usage data is essential for the engineering

motivated from network measurements in which the objects are d t of icati t ks. Until il
flow records exported by routers and the sizes are the number of and management of communications networks. Until recently,

packet or bytes reported in the record. Subsets of interest could the usage data provided by network elements (e.g. routers)
be flows from a certain customer or flows from a worm attack. has been coarse-grained, typically comprising aggregate byte
This paper introduces threshold samplingas a sampling scheme and packet counts in each direction at a given interface,
that optimally controls the expected volume of samples and the 54qregated over time windows of a few minutes. However,
variance of estimators over any classn‘lcatlo_n of flows. these data are no longer sufficient to engineer and manage
This paper provides algorithms for dynamic control of sample ) . . ;
volumes and evaluate them on flow data gathered from a networks that are moving beyond the undifferentiated service
commercial IP network. The algorithms are simple to implement model of the best-effort Internet. Network operators need more
and robust to variation in network conditions. The work reported  finely differentiated information on the use of their network.
here has_blecleg apg’/\'/'e?( |r]|_the Tﬁasuremert m(fjrastruclt_ure of tTg Examples of such information include (i) the relative volumes
ﬁg\r?em:r:;;:iiled arr:eordogr of (r)nggnitli;llg grrggtgy iapsiglng;ggnvc\i,ﬁﬂre of trqﬁic that use different protocols_ or a_pplica_tions; (if) traffic
to accommodate the measurement traffic and its processing. ~ Mmatrices, i.e., the volumes of traffic originating from and/or
Index Terms— Estimation, Flows, Internet Measurement, Sam- destined to given ranges of Int.(.a.rnet Protocol (IP) addresses or
pling, Variance Reduction Autonomous Systems (AS's); (iii) the packet and byte volumes
and durations of user sessions, and of the individual flows of
which they comprise. Such information can be used to sup-
. INTRODUCTION port network management, in particular: traffic engineering,
We wish to sample objects from a large stream. Each objegitwork planning, peering policy, customer acquisition, usage-
possess a size, and our aim is to be able to estimate the tptaded pricing, and network security; some applications are
size of an arbitrary subset of objects whose composition is n@esented in details in [3], [16], [17]. An important application
known at the time of sampling. More formally, consider thef traffic matrix estimation is to efficiently redirect traffic from
following estimation problem. A set of objecis=1,2,...,n, overloaded links. Using this to tune OSPF/IS-IS routing one
each endowed with a size; € N and a keye; taking values can typically accommodate 50% more demand; see [20].
in some setk’. We wish to estimate subset sums of the form grom our point of view the central observation is that many
X(C) =X jic,cc Ti» I-e., the total size of all objects with keynetwork management applications, the traffic is to be regarded
in someC' C K which is not known at the time of sampling 55 divided into a large number of classes, where the divisions
How should the sampling distribution be chosen in order a5y not be known at the time of measurement, and the input
jointly control both the variance of the estimataks(C') of  gata required by an application is the aggregate traffic volume
X(C) and the number of samples taken? This is an abstrggteach class, over some set of time periods. Satisfying the
version of a practical problem that arises in estimating usaggia needs of the applications requires gathering usage data
of network resources due to different users and applicatiopgerentiated by IP header fields (e.g. source and destination
The usage is determined from network measurements, gpdaddress and Type of Service), transport protocol header
sampling is employed to control the resources consumggds (e.q. source and destination TCP/UDP ports), router in-
by the measurements themselves. We start this paper fgymation specific to a packet (e.g. input/output interfaces used
explaining the motivation behind the stated sampling probler@y a packet), information derived from these and routing state
and showing how the constraints imposed by the intended ygg. source and destination AS numbers), or combinations of
of the measurements lead us to employ flow sampling.  these. Collecting the packet headers themselves as raw data
is infeasible due to volume: we expect that a single direction
of an OC48 link could produce as much as 100GB of packet
headers per hour, this estimate based on statistics collected for



the experiments reported later in this paper.

2) Flow level statistics: In this paper we focus on a ‘
measurement paradigm that is widely deployed in the current 7 " @
Internet and that offers some reduction in the volume of } @ @ I
gathered data. This is the collection—by routers or dedicated | Mediation Collector
traffic monitors—of IP flow statistics, which are then exported ' Router

to a remote collection and analysis system. (Some alternative
paradigms are reviewed in Section VIII).
Most generally, an IP flow is a set of packets, that are = Network Traffic
observed in the network within some time period, and that @ Sampling Location Measurement Traffic
share some common property which we call a “key”. Par-
ticularly interesting for us are “raw” flows: a set of packet§ig. 1. FLOW OF MEASUREMENT TRAFFIG AND POTENTIAL SAMPLING
observed at a given network element, whose common prOpeEl)’@/NTS: (left to rlght) pag:ke.t capture at router; flow formation and export;
. . . . stdging at mediation station; measurement collector.
is the set of values of those IP header fields that are invariant
along a packet’s path. (For example, IP addresses are included,
Time To Live is not). The common property may include
joins with state information at the observation point, e.g., neb@2], Riverstone’s LFAP [35] and XACCT's Crane [36].
hop IP address as determined by destination IP address, andlow statistics offer considerable compression of informa-
routing policy. Thus the keys characterizing flows are compléion over packet headers, since the flow key is specified once
multidimensional objects, and the number of potential keyer a given flow. For example the previous OC48 example,
is so enormous2(®® or more, depending on what fields aréhe volume of flow statistics is roughly 3GB per hour, i.e., up
included) as to preclude maintaining counters for each possikfea roughly 30-fold volume decrease compared with packet
key; see also the discussion in Section VIII. headers, depending on the balance of long and short flows in
The granularity at which a router differentiates keys i#he traffic.
configurable. Applications will typically want to aggregate 3) Measurement collection architecturigure 1 illustrates
flows (i.e. form the total size) over subsets of keys specifan architecture for measurement collection that has been
for their purpose. We can refer to these key subsets alsoreslized in a commercial network. Flow level summaries are
“keys”; those which cannot be subdivided (i.e. the keys of ragonstructed at a router from the packets that traverse it.
flows) will be termed primary. Since the required aggregatiof@ecords containing the summaries are transmitted to the mea-
vary across applications, and may not be known at the timesfrement collector, possibly through one or more mediation
sampling, differentiation of keys in the measurements shoudthtions. These may be employed for reasons of reliability:
be as fine as possible, distinguishing usage according ni@asurement export commonly uses the User Datagram Proto-
primary key by collecting statistics on raw flows. col (UDP), which has no facility to detect and resend measure-
A router keeps statistics—including total bytes anthents lost in transit. However, export to a nearby mediation
packets—for active flows passing through it. When a packsfiation over a Local Area Network (LAN) may in practice
arrives at the router, the router determines if a flow is activee very reliable, as compared with export over the Internet
for the packet's key. If so, it updates statistics for that keyp a distant collection point. The mediation station may then
incrementing packet and byte counters. If not, is instantiategiably transmit measurements to the ultimate collection point,
a new set of counters for the packet's key. A router wilhe requisite memory and processing resources being cheaper
designate a flow as terminated if any of a number of criteria workstations than in the routers. The mediation station
are met. When the flow is terminated, its statistics are flushean also perform aggregation to support distributed network
for export, and the associated memory released for use by n@anagement applications.
flows. Termination criteria can include (i) timeout: the inter- 4) Data volumes and the need for samplinthe volumes
packet time within the flow will not exceed some threshold; (iipf flow records generated by a large network with many
protocol: e.g., observation a FIN packet of the Transmissiamerfaces is potentially massive, placing large demands on
Control Protocol (TCP) [31] that is used to terminate a TCRemory resources at routers, storage and computation re-
connection; (iii) memory management: the flow is terminatezburces at the collector, and transmission bandwidth between
in order to release memory for new flows; (iv) aging: to prevetthem. This motivatesamplingthe flow record to reduce data
data staleness, flows are terminated after a given elapsed tiralime, while at the same time maintaining a representative
since the arrival of the first packet of the flow. view of raw flow data. Flow records can be sampled by
Flow definition schemes have been developed in reseaary system on the path from generation to collection. This
environments, see e.g. [1], [5], and are the subject of stanay be necessary for scaling reasons. The architecture forms
dardization efforts [23], [33]. Reported flow statistics typically tree, with multiple routers sending measurements to each
include the properties that make up flows defining key, itéf several mediation stations. Progressive resampling can be
start and end times, and the number of packets and bytesapplied at each stage to avoid “implosion” as data progresses
the flow. Examples of flow definitions employed as part aip the tree. At the collector or mediation station, a typical
network management and accounting systems can be foamalysis application executes a query that performs a custom
in Cisco’s NetFlow [4], Inmon’s sFlow [22], Qosient’s Argusaggregation (i.e. one not previously performed) over all flows




collected in a given time period. Here, the role of samplin@i) to minimize the variance of usage estimates arising from
is to reduce the execution time of the query. For final storagfee sampling itself; (iii) to bind the sampling parameters to
at the collector, sampling can be used to permanently redube data in order that usage can be estimated transparently;
the volume of historical flow data (non-sampled flows wouldnd (iv) with progressive resampling, the composite sampling
be discarded) while maintaining the ability to execute custoprocedure should enjoy properties (i)—(iii).
queries at the finest differentiation of keys. To formalize the problem, recall the set of flows labeled
5) Effectiveness of sampling methods elementary sam- ¢+ = 1,2,...,n equipped with a sizer; and keyc;. We
pling method is to uniformly seledtin IV of the flows, either wish to sample them in such a way that we can estimate
independently (i.e. each object is selected independently witie total size of flows with keys in a sét, i.e., the sums
probability 1/N) or deterministically (objectsV,2N,... are X(C) = > i:e.cc Ti, knowing only the sampled sizes and
selected and all others are discarded). The statistical properttesir sampling probabilities, without the need to retain other
of any proposed sampling scheme must be evaluated. Déormation on the original set of flow sizes.
inferences drawn from the samples reflect the properties ofwe propose to continuously stratify the sampling scheme
the raw data stream? What is the impact of sampling on tbe the probability that an flow record is selected depends on
variance of usage estimates? its size xz. This attaches more weight to larger flows whose
A striking feature of flow statistics is that the distributions obmission could skew the total size estimate, and so reduce
the number of packet and bytes in flows are heavy-tailed [1%he impact of heavy tails on variance. We must renormalize
This property contributes to the roughly 30-fold average corthe sampled sizes; in order that their total over any key
pression of data volumes when passing from packet headerséoC becomes an unbiased estimator6{C); this will be
flows that was remarked upon above. Uniform sampling froechieved by coordinating the renormalization with the sam-
heavy tailed distributions is particularly problematic, since theling probabilities. We will show that our sampling scheme
inclusion or exclusion of a small number of data points catan be optimized in the sense of minimizing a cost function
lead to large changes in usage estimates; these are subjethdd expresses the undesirability of having either a large
high variance due to the sampling procedure itself. Note thahamber of samples, or a large variance in estimates formed
sampling strategy that samples all big flows and a fair fractidrom them. Sampling with this optimal choice of sampling
of the smaller flows could reduce the estimator variance. Ttpsobabilities will be characterized by a certain threshold, and
raises the question: which is the best such sampling strategy’name ithreshold samplingnd we shall use this term in the
This is the problem we study in this paper. paper* Finally, we require a mechanism to tune the sampling
6) Knowledge of sampling parameterSampling param- probabilities in order that the volume of sampled records
eters used for flow selection must be known when the datan be controlled to a desired level, even in the presence of
is analyzed, in order that it can be interpreted correctly. Fe@emporal or spatial inhomogeneity in the offered load of flows.
example, to estimate the byte rate in a raw packet streanp) Outline: Section Il develops the basic theory of the
from samples gathered throughin N sampling, we need sampling method. Section II-A establishes a general relation-
to multiply the byte rate represented in the sampled stream &lyip between the sampling probabilities (as a function of
N. Since raw traffic volumes vary by location and time, webjects size) and the renormalization (applied to the sizes)
expect that sampling rates will have to vary in order to limiq order that the estimates of (C) be unbiased. We then
resource usage due to measurement to acceptable levels.tf@r to examine the relationship between sample volume
example, an unexpected surge in traffic may require dynamaiad estimator variance due to sampling. In Section 1I-B we
lowering of sampling rates. point out that uniform sampling offers no further ability to
Generally, then, sampling rates will not be global variablesontrol the variance once the average sampling volume is
independent of the data. We believe sampling parameters mfisgd. Instead, in Section II-C, we show how the sampling
be bound to the data (e.g. to individual measurements, grobabilities should be chosen in order to minimize a cost
inserted into the stream of measurements). Each entity thatction that takes the form of a linear combination of sample
samples or resamples the flows must bind its sampling parayatume and estimator variance. In Section 1l-D we show that
eters to the data appropriately. We eschew keeping sampliigimizing the cost function for the total traffic stream, also
parameters in a separate database to be joined with the dgtimizes for each key individually.
for analysis. This is not robust against bad synchronizationwe follow up with a number of subsidiary results. In
between the two data sets, or undocumented manual changgstion II-E we extend the formalism to multidimensional size
of sampling parameters. attributes, e.g. to use both packet and byte sizes of flows. In
Section II-F we describe unbiased estimators of the variance
of the sample volume and attribute total. In Section 1I-G we
show that the set of sampling operations considered is closed
1) Sampling requirements and the basic probleffhe nder certain compositions; consequently, the total effect of
contribution of this paper is to study what makes a googl set of sampling operations applied successively (e.g. at a

flow sampling strategy. Here the flows are represented Ryjter, then at mediation station) is statistically equivalent to
the flow records exported by the routers. We do not interfere

with the meChanism fo_f creating these_relcords'_ The goals arérye termsmart samplinghas also been used to encompass this and other
fourfold: (i) to constrain samples to within a given volumetelated sampling methods.

B. Contribution



a single sampling operation with appropriate parameters. objects, or as the set sizes of objects of a particular key. The
In Section Il we demonstrate how the method achievestal size of then objects is

our aims by applying it to datasets of NetFlow statistics n

gathered on the backbone of a major service provider. In X = le (1)

Section IlI-A we show that the variance of usage estimation i=1

from flow records is greatly reduced by using size dependef\ippose first that we wish to obtain an estimateXofrom a

sampling as opposed to uniform sampling. In Section llkubset of sampled values, and, generally, without needing to

B we find that even when packet sampling is mandated iow the original number. of sizes. Consider an estimate

a router (e.g. by software speed constraints), any furthef X comprising a sum of sampled sizes that are then
desired reduction in measurement volume is best achieved (f&hormalized:

with noticeably smaller usage estimator variance) by forming % iw_r(m) @
flows and applying size dependent sampling, as opposed to T« AT
dispensing with flow formation altogether and just performing 1:1_ o
further packet sampling. In Section IIl-C we describe aWhere the{wi}i-, _, are independent random indicator
efficient algorithm for size dependent sampling used in th@rables,w; taking the valuel with probability p(z;) and
experiments that avoids the need for explicit pseudoranddhVith probability 1 — p(z;). . o
number generators. Denote byEX thg expected value of over the distribution
In Section IV we extend the method to the dynamic contr@f the random variablegw; }. In what follows we shall treat
of sample volumes. The cost function described above contaif§ Sizes{=:} as a given deterministic set: randomness resides
a positive parameter that encodes the relative importance w&nly in the{w;}. X is said to be an unbiased estimator.of
attach to constraining sample volumes as opposed to redudin§X = X. SinceEw; = p;, X is unbiased if
sample variance. We present an iterative scheme by which n n .
z can be adjusted in order that the expected sample volume X =) w=>» pla)rr)=EX 3)
meets a given constraint. This is useful because even a static =1 =1
flow length distribution may not be well characterized in adFhis happens for all collectiongz;} if and only if
vance. In this case it would be difficult to determine in advance r(z) = o/p(z), for all z. )
the value of: needed in order to meet a given sampling volume
constraint. We analyze the rate of convergence of the iteratidf.the rest of this paper we will assume that (4) holds.
Substituting mean sample volume with the actual number
of samples taken in the iterative scheme yields an algorithBa Bounding sample volumes
to dynamically control sample volumes. This enables control The sample volume, i.e, the number of samplesﬁis;
of sample volumes under variation in the offered load of"" | w;. Suppose now that we wish to impose a limit on
flows, e.g., during a sharp rise in the number of short traffige expected sample volunieV. Consider first the case of
flows commonly that can occur during denial of SeI’ViCQrawing samples from a set known size The expected
attacks [26]. Several variants of the control are discussadmber of samples is thus less than some taidei EN =
in Section V. In Section VI we illustrate the effectivenes§™"  p(z;) < M. For this to be true for all collection&r; }
of such controls with the NetFlow traces that exhibit largeequires thap(z;) = M/n for all n: the sampling probability
transient phenomena. An efficient randomized algorithm fgyz) is independent of.
a root finding problem that arises in our work in described The choice of a constant sampling function has an interest-
in Section VII, along with a Large Deviation-based analysigig and potentially troubling consequence. This is that is there
of its performance under data resampling. The feasibility ofig no further latitude in the choice of the sampling function
number of alternative measurement schemes and related w@it could be used to attain some other desirable statistical
are discussed in Section VIII. We conclude in Section IX bgroperty of X, such as keeping its variance small. Indeed,
outlining a current application in a commercial network of theur motivating example comes from cases where the{ihg
work described here, and listing some further developmentiaave a heavy tailed distribution, and hence the inclusion or
exclusion of a small number of sample points can have a great
influence onX.
A. Sampling and renormalization One approach to this problem would be to explicitly take
The key elements of our algorithm are size-dependento account the distribution af when choosing the sampling
sampling, and renormalization of the samples. These dumction. This would entail choosing a non-constansuch
described by the following two functions. gampling function that the report volume constraint would be satisfied for a class
is a functionp : Ry — [0,1]. The interpretation of the of size distributions, although not for all. This approach has
sampling function is that attribute is to be sampled with the potential disadvantage that if the size distribution does
probability p(z). P will denote the set of sampling functions.not fall into the given class, the constraint will no longer
A renormalization functionr is a functionR, — R,. A be satisfied. Furthermore, it is not clear in examples that the
sampled size: is then renormalized by replacing it witifa).  byte or packet distributions can be characterized in a universal
Consider a set of: sizes{x;},—1,.. prior to sampling. fashion, independently in changes in network technologies and
Initially we can think of this set either as the sizes of alhpplications.

Il. SAMPLING THEORY



C. Static control of sample volume and variance estimate the total sizes of the packets with keyf interest. If

Instead, we take an approach which allows us to jointly iS the key of packet, X(c) =3_. _ i is the total size of
control the volume of samples’ and the variance of the packets with key:;, and our unbiased estimator is théfic) =
estimator X without assumptions on the distribution of the>_.,_. wir(z;), that is, X (c) is obtained simply by summing
sizes{z;}. We form a cost functior®” that embodies our aim the sampled normalized sizes of keyl et N(c) = Y e e Wi
of controlling the variance of{’ and the expected number ofbe the number of sampled packets with keBy Iinedrity of
samplesEN. For z € R we define for eachy € P expectationEN = 3 EN(c). Also, since eacty; is picked

. S, ek independently, th& (c) are independent for eachand hence
Calp) = Var X 4 2°EN. ®) Varx =3 Var X(c). Thus,
z is a parameter that expresses the relative importance attached ~ PN ~ PN
to minimizing EN versus minimizingvar X. The variance of Cz(p) = Var X + 2°EN = Z{VarX(c) +2°EN(c)} (8)

X is
n n That is, our objective functiod’,(p) minimizes itself locally
VarX = Var Z wr(x;) = Z 72 (2;) Var w; over each key class. One could easily imagine scenarios where
i=1 i=1 one wanted different objectives for different keys. However, in
S our application, the sampling device is not assumed to distin-
= ZT () (1 — p(z:i))p(zi) guish keys, and in addition, we imagine that our samples may
ijl latter be analyzed with respect to many different aggregate key
_ Z 22(1 = pl(z:))/p(@:). ©6) gterz?eiztion's. Theqrgm 1 shoyv that thg strength of our sampling
pt gy is that it is the unique optimal strategy with respect
to (8), no matter how the keys are defined.
Thus Indeed, finer control of sampling by key, within a given vol-
= 9 ume constraint, can only increase estimator variance. Suppose
Celp) = Z (27 (1 = ple)/p(zi) + 2*p(@i))  (7) that we wish to control individually the sample volunié,
] =t arising from each key while achieving the same total sample
Definep. € P by p.(z) = min{l, z/z}. _ volume M = 3"_M, over all keys. This would be achieved
Theorem 1:C.(p.) < C=(p) for all p € P and {z}, with  py applying a differing threshold.. to the sampling packets
equality only ifp = p.. from each keye. The price of imposing finer grained volume

Proof: ¢ — 2*(1 - q)/q+ 2°q is strictly convex on(0,20)  control is to increase the aggregate variance ofXie). The
and minimized ay = x/z. Thus it is minimized on(0,1] by = fg|lowing is a direct corollary of (8) Theorem 1 on noting that
p-(q), and the result followsg the p.. # p. is suboptimal forC. (p).

We can interpret the form of, as follows. High values Corollary 1 Let {S. : ¢ = 1,....j} be a partition
of the sizez, those greater than the threshaldare sampled ©f {1,--.,7}, and for each member of the partition
with probability 1, whereas lower values are sampled witfft Mc < #S. be a target sample volume. Supposg
progressively smaller probability. Thus the contributions GIVes # = 2ies, min{z;, z}/M. and z* solves z =
higher values of: to the estimatotX have greater reliability 2-i=1 Min{zi, 2}/ 3. M. (Such 2" and 27 exist by Theo-
than smaller values. This is desirable since uncertainty ab6gf 4 following). LetX.(c) = 3 ;s wir.(z:) with the w;
the higher values can adversely impact the varianceXpf distributed according tp.. Then
especially for heavy tailed distributions of We note that for ZVar)A(z*(c) < ZVar)A(z* (o). 9)
the sampling functiorp., the renormalization function takes - = ¢
the simple formr,(z) = max{z, z}. We write X, to denote Proof: Let N/ = > ies, wirz(z;) with the w; distributed
the specific random variable arising from the choice; of according top,. By Theorem 1,

It is worth noting that unbiased estimators formed using ; D ; 2
renormalization function of the form (4) will have non-zero Z(VarXi* +(z")°ENL) < Z(VarX% +(z )2EN:§;)'
variance in general. In the present case, the renormalization J (10)
z — max{z, 2} can give rise to a large estimated usagef a g ¢ S ENJ.. = EN,. = M =Y. M; = Y .EN’. and
flow of small sizez. This might be though of as a disadvantag gz - i 77
S . ‘rience the result followss
for some applications, e.g., usage-based charging, where it'Is
important not to overestimate usage. However, it is possible
to couple charging scheme to the present threshold samplggmultidimensional sizes
method in such a way that the estimated usage is relatively,

insensitive to the inherent estimation variance from thresh In practical cases, the sizes can be multidimensional,
. . qj—%r example, a flow record can contain both byte and packet
sampling; see [12] for further details.

counts for the flow. Estimation of multiple components of the

. - size may be required. One approach would be to apply the

D. Sampling and key partitions foregoing analysis to each component independently. However,
Recall from the introduction, that in our typical applicationthis would require a separate sampling decision for each size,

we think of the packets as being keyed, and that our aim isleading to the creation of multiple sampled streams. This is



undesirable, both for the extra computation required, and thbe specific forms of/xz and EXA/XZ arising from the choice
increased volume of samples resulting. Another approach ispte= p, reduce to
base sampling on one component(e.g. flow byte size) and & n = +

: = iz(z — E = i(z —x; 1
then use the factot/p. (x;) to renormalize other components Vx. Zwlz(z zi)", BV, le(z )", (15)
y;. Although this results in an unbiased estimator Jor y;,

: > ) . + = is i i '
it does not minimize the corresponding cost function for théN€rey”™ = max{0,y}. It is interesting to note that there is
componentsy; no contribution toVx for x; > z. This is because such are

;. €

Instead, we outline a simple extension of the previo lected with probabilityt, and hence their contribution t&

section that creates only single samples per size. Consid no variance. Indeed, the gummand in the expression for
multidimensional sizes — (z(1),...,z(m)) € R™ presented EVX IS Zero forz > z, and maximized whem = z/2.

by each potential sample. Analogous to the one-dimension?lBy S|m|.Iar reasoning we can find and unbiased eSt'mgmr
case we have now the sampling functipnR™ — [0, 1] and CL.tN€ variance ofV. Writing Vi = >_; wiu(z;) and requiring
renormalization function- : R™ — R™. Given a set of sizes EVN = 2_; P(zi)u(zi) = 37, p(xi)(1 — p(z:)) = Var(N) for
{;}, the binary random variable;; takes the valug with &Il {zi}, we obtainu(z) = (1 — p(z)) and hence

probability p(z;). N Vv, = Y will—z/2)t =21, (16)
Similar to before, one can show thaf = >, w;r(z;) is i

an unbiased estimator X = ). z; for all size sets{x;} if and N

and only if r(z) = =/p(x) for all z. Let 27 € R™ denote EVy., = > (wi/2)(1—i/2)" =27"EVx.. (17)

the vector with componenig(1)/, ..., z(m)’). Suppose now i

we wish to minimize a cost function of the form. As with (15), terms withz; > z vanish identically, and the

n largest contributions ttEVNZ arise whenx = z/2.
CL(p)=Var(X -z71) + x; 11
z(p) ( ) ;p( ) (1) G. Composing sampling operations
The sampling and renormalization operations defined above
I ling f . tor the ] 4 can be composed. We envisage such composition when data is
all sampling functionp for the functionp (z) = min{l,& - toq fonward through a number of processing stages operating

71 . . . . .
2 in different locations, or under different volume or processing

Variants of this approach are possible. Consider replacipgnstraints. Consider then a compositionnefsampling pro-
the variance of the single variablar X -z~! with the sums of cedure controlled by thresholds < - - < z,,. The threshold

variances of the fom) ; Var(X (j)/z(j)). The corresponding , jncreases at each stage of the composition, corresponding to
cost function is progressively finer sampling. LeY., .. denote the number

Similarly to Theorem 1, one finds th&t; (pz) < Cz(p) for

™ Var X (i n of samples present after passing through fheamplers in
Cip)=)_ 22(5‘7) +) p(). (12) the composition, andX., ., the corresponding unbiased
j=1 J i=1 estimator of X. The following result says that the expected
. : L . sample volume and variance &f at stagej are equal to those
The sampling functionp that minimizesC%(p) is p2 = )
min{1, W}. that would result from a single sampler controlled by threshold

z;. Given a sef of sizes, letS,({2) denote the set of sampled
and renormalized sizes obtained using the threshpice.,

F. Estimating variance from samples S.(Q) = {max{z,z} : x € Qw, =1} (18)

Although Theorem 1 allows us to minimize a linear comwherew, are independent random variables taking the value
bination of sample volume and variance, it does not provideiawith probability p.(z) and0 otherwise.
means of estimating the variance dfdirect from the sample  Theorem 2:Let0 < z; < --- < z;. Then for each se® of
since the variance is expressed as a sum over all size®t  size, S, (S., , ...(S.,(©)...) has the same distribution as
just those that have been sampled. However, we can apply gf;e(g)_ In particular ENZ = Eﬁzj and Var )?zl,“.zj =
same ideas as were used above to find an unbiased estimatey

150025

of X, but now finding an unbiased estimatg of Var X. Proof: Any attribute that survives as far as stage
The restriction that’x be computed only from the samplessf sampling is renormalized according 0, ., () =
requires it to be of the fornVx = 3717, w;v(z;) for some 7., 0 ory,(v) = max{z,..., 21,2} = max{z;,z} =
functionw. For unbiasedness we require tk&fy = Var X for r.,(z). It survives with probabilityp., ... (z) that obeys
all {;}. This requirement is equivalent o;;_, p(z;)v(z;) = the recursionp., . (@) = Doy (@), (s ()
>y 3 (1 = p(a))/p(x;) for all {z;}. Hence But ps, (72, . (¥)) = min{l, max{z;_1,z}/2;}. Since
) min{l,z/z;_1} min{1, max{x,z;_1}/2;} = min{l,2/z;}
v(z) = <x) (1 - plx)), (13) whenz;_; < z;, a simple _mdt_Jctlon show th_atzh,,_,zj (x)_ =
p() Pz, (x). Thus the renormalization and sampling probability for
and the chain is determined by the last component and the

2
N ; : . .
Vy = Zwl <p(x‘)> (1 - ply)). (14) stated properties follow immediately.



H. Threshold sampling of packet sampled flows of records sampled in each case would be similar: 3.03%

We emphasize again that in our network application it is trnd 3.04% of the records respectively for the two strategies.
completed flow records that are sampled, not the packets tM compared three sets of numbeksic), the actual number
contribute to them. In some routers packets may be sampRidbytes for keyc; X(c), the number of bytes for key as
prior to the formation of flow statistics, e.g., in Samp|egleterm|ned by threshold sampling and renormalization with
NetFlow; see [4]. In this case, our technique is applied &MPIE100K; and X, (c), the number of bytes for key
the flow summaries so formed, and hence to the estimation@sf determined withuiniform33 sampling and renormalization
the volumes of sampled packets. through multiplication byN = 33,

To estimate the volumes of traffic prior to packet sampling, In Figure 2 we plot nonsampled byte counts(c) and
it is necessary to apply an initial normalization to the flogampled byte countsX((c) in the left plot, X..(c) in the
byte or packet sizes before threshold sampling. With packiéght plot) against key index, with the groups sorted in
sampling at a ratel in N, the sizes are multiplied byv  decreasing order ok (c). On the vertical axis the byte counts
in order to obtain an unbiased estimate of traffic volumeé¥e displayed on a log-scale. When no record from a group
prior to packet sampling. The random selection of packetere sampled, we set the log byte countlitothese are the
also contributes to estimation variance. In [11] it is showRQints that lie on the horizontal axis. Note that otherwise
that with independent packet sampling at rateV, the effect Xun(c) = 100,000 sincesample100K never yields a value
is to increase estimator variance by a quantity no larger thi@$s than the threshold. Figure 3 is similar to Figure 2
(N — 1) X Zmax Wherezn., is the largest packet size in flowexcept we have zoomed into a small number of groups in

prior to sampling. the middle. We have added error bars for the sampling error,
corresponding to 2 standard deviations computed using (15).
II. COMPARISON OESTATIC SAMPLING STRATEGIES In Figure 4 we similarly compare the strategies through the

relative error, i.e.(X(c) — )A((c))/X(c) in the left plot, and

the proposed threshold flow sampling strategies with oth (¢) — Xun(c))/X(c) in the right plot. The vertical axes

sampling strategies. We show that, out of all the compar bsplay the relative error as a percentage, chopped to lie

methods, threshold flow sampling provides the least estimato etweeniloo%
variability for a given volume of flow measurements. It is clear from the Figures thasamplel00K achieves a
considerable reduction in estimator variance oweiform33

) ) . for groups with a fair amount of traffic, say at least 1,000,000
A. Comparison of uniform and threshold flow sampling a5 This is exactly the desired behavior: we get good

In this section we compare the experimental performanestimates for important groups. It also shows how bad uniform
of threshold sampling and uniform sampling on a set of flogampling is in the case with heavy-tail sizes: even for group
records. This comparison is relevant for selecting a sampliagth significant number of bytes theniform33 strategy can
method for the selective export of flows, or at a mediatiofe very poor. The root mean square error is about 500 times
station or measurement collector, or within a database usedyteater for uniform than for threshold sampling.
store flows.

Our data for the experiments comprised a trace of NetFlow ) _
statistics collected during a two hour period from a numb& Comparison of packet and flow sampling methods
of routers in a commercial IP backbone. The total sampleWe investigate the relative tradeoffs of sample volume
comprised 108,064,914 individual flow records. The meagainst estimation accuracy for sampling methods at routers,
number of bytes per flow was 10,047. We partitioned thand in particular the relative effectiveness of packet and flow
total sample according to 3,500 keys, determined by tlsampling methods. Packet sampling may be required at the
router interface that generated the record, and by a partitimuter even if flow statistics are constructed, since flow cache
of the address space of the external IP address of the flmokup may be infeasible at the router interface line rate.
record (source address for incoming flows, destination addrégsiform periodic or random sampling is typically employed
for outgoing flows). Thus the exact partition was somewhat practice. A recent proposal, sample and hold [15], is to
arbitrary, but it satisfied the following criteria: (i) the had largsample potential new flow cache entries in order to focus on
variation in total bytes (from less than 100 bytes to more thdmnger flows.

10'! bytes), (i) the partition was not based on the byte values,As in Section IlI-A we used a trace of NetFlow records to
and (iii) there were a reasonably large number of keys. Operform the comparison. There were 17,898,241 flows divided
implementation of the threshold sampling strategy is describiedo 13,110 keys according to destination IP address. Each flow
in Section IlI-C below. Our aim here is to exhibit the relativeecord details the duratianof the flow, and the total packets
accuracy of the sampling methods in estimating the byte siaed byte$ that it comprises. We want to determine the average
of the individual keys, and particularly for the “important’amountF' of measurement traffic that would arise if the packet
keys, i.e., those with large bytes sizes. stream represented in the flow records with parameter, ¢)

We compared two sampling strategiesiform33 which were subjected to a given sampling strategy. For a pure packet
is 1 in N sampling with N = 33, and sample100K which sampling method, i.e. with no flow statistics formed, then
is threshold sampling with threshold = 100,000. We F' is the number of sampled packets. With flow statistics
chose these (relative) values in order that the total numi@rether formed from a full or sampled packet stredm$ the

In this section we perform an experimental comparison
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final number of flow statistics formed. will denote a mean (k,b,t). For the unbiased estimators, is the variance.

squared error of byte usage estimated from the measurement

traffic generated from the packet stream of the original flow For a given sampling method, Iét(c) andV'(c) denote the
sums of " and V' respectively over all flow records of key



method F v 5) Sample and holdPackets are sampled at the router as
threshold flow p=(b) b(z—b)T ) . ; :
uniform flow 1/N bA(N — 1) follows [15]: a cache lookup is performed for each incoming
uniform packet k/N B(N - 1)/k packet, and if a match is found, the flow’s statistics are updated
unif. pkt— flow (upper) |  f(k,t, N, T) V(N —1)/k as usual. (See also Section VIII-.4). If a match is not found, a
unif. pkt— flow (lower) | 1 — (1 — 1/N)* | b*(N —1)/k new cache entry is created with probability- (1 —p)* when
sample/hold 1—(1-p) Vin the packet has bytes, for some fixeg. Thus the probability
sample/hold (modified)| 1 — (1 —p)® Vahimod that a flow comprising bytes is sampled i§' = 1 — (1 —p)°®,

independent of the manner in which the bytes of the flow are
divided amongst its packets. The estimate byte size of the flow
reported is then the number of bytes in the packets that were
actually sampled, which is always a lower bound on the actual
numberb of bytes in the flow.
In can be shown that the MSE in estimating a flowbafit
size packets is
Vo = L e-p-(-p-p-2b)  (20)
Thus F(c) is the total expected number of measurements in p
that key, whileV (c) is the total squared error due to samplingnd that this is an upper bound on the MSE for general packets.
of the estimated total keybytes. We describ& andV for the This estimator is negatively biased. In the case of unit
different sampling methods; they are summarized in Table packets, an unbiased estimator is obtained by adding the
1) Threshold flow samplingThreshold sampling of flows quantity sy = (1 — p)/p to the reported flow sizes. The
records formed from the full packet stream. With samplinggsulting MSE for this modified estimator is
thrgsholdz, F = p,(b) andV = b(z — b)™, the expected Vinmod = Vin + s29(b,p) 1)
variance from (15). where
2) Uniform flow sampling:1 in N sampling of flow records b b1
formed from the full packet stream. The expected number of g(w,b) = (1=p)"+2p(1—p)" -1 (22)
flows is I’ = 1/N; the estimated bytes take the valu&$ It turns out thatg(b,p) can be positive or negative; reducing
with probability 1/N and0 otherwise, henc& = b*(N —1). the bias may actually increase the MSE. It can be proved that,
3) Uniform packet samplingThe atomic measurements ardor largeb, this happens onceis less than about.26 /b. The
packets drawn by in IV sampling form the full packet stream;qualitative reason is that the correction to the bias introduces
no flows records are formed. A flow @f packets gives rise a larger error into the estimates of the size of small flows.
to k/N atomic measurements on average. bgt. .., b, be 6) Summary statistics and comparisofio form a compact
the sizes of the packets in the flow. Then estimator variancengasure of estimator sampling variability we average the per-
(N—1)3F_ b2 > (N —1)b%/k. We use this lower bound onkey relative standard deviationg'V'(c)/X (c) with the key
the estimator variance, equivalent to simplifying assumptidiyte totals X (c) as weights, yielding the weighted mean

TABLE |
EXPECTED NUMBER OF FLOWSF' AND BYTES ESTIMATOR MEAN SQUARE
ERRORV FROM SAMPLING A SINGLE FLOW OF DURATIONE, k PACKETS
AND b BYTES, WITH FLOW TIMEOUT T'. THE FUNCTION f IS DEFINED IN
(19). Vi, AND Vi ARE DEFINED IN SECTION I11-B.5

that all packets have the same sizé:. relative standard deviation:
4) Uniform packet sampling- flows: Packets are sampled SV (e)
uniformly, and flow records formed from the sampled packets. S=5ra (23)

; : S X X(e)
The flow records are not further sampled: estimator variance ) ¢ ) )
is the same as for uniform packet sampling. This attaches greater importance to a given relative standard

Assume that packets are independently sampled; the prosfa{p rbin esftimatikngt a larger bytte dtqtal.thLE[ﬂd e”‘“‘? the tLotaI
bility that at least one packet of a flow éfpacket is sampled numpoer of packels represented in the Tiows, 1.€., he sum
1— (1—1/N)*. This provides a lower bound on the numbe f k& over aI'I flow rec;ords. The effective sampling period
of resulting flows. A larger number of flows may result if th /2 F(c) IS the ratl_o_of the total numbek of packets
separation of sampled packets exceeds the flow timEouhe represented in the original flow records, 1o _the nL_jmber of
mean number of sampled packet#jsV. If this exceedd, the meall(SL:remenltlgc 1;](0)' f'fAS ?n examp;!e, for gng\?rm in N
worst case is that sampled packets are equally spaced atptﬁé. €t sampling, the eflective sampling periodis :
mean spacingN/(k — 1) > T, the flow timeout. In this case igure 5 displaysS as a function of the effective sampling
there will be one flow per ;;acket Thus — f(k,t; N, T) " period for the various sampling methods; the points on a given

where curve are generated by varying the underlying sampling rates.
The sampling methods that depend on flow size ( threshold

1 if Nt <(k—1)T andN < k sampling and sample and hold) provide the best accuracy

[k, N, T) = { k/N otherwise by at least one order of magnitude over at least five orders

(19) of magnitude of the sampling period, the accuracy being
For comparisons we assume thatwill be no less than the more pronounced at lower sampling periods. Amongst these
typical value30s used for an unsampled packet stream; sineeethods there are some differences in accuracy. For effective
f(k,t; N, T) is nonincreasing irl", taking 7' = 30 gives an packet sampling rates below around 500, threshold sampling is
upper bound on the sample volumes. most accurate, while for larger rates, it has the almost the same
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accuracy as the modified version of sample and hold, whileteger field z that contains the size to be sampled over,
the modified version of sample and hold does best. Reasang., bytes in a flow record. Furthermore the record has a
for this were discussed in Section IlI-B.5. The accuracy oéal field samplingFactor that indicates the multiplicative
all methods (except uniform flow sampling) tightens for veryenormalizing factorl /p. (z) that will be applied to the data
large sampling periods. We believe this happens because dhlsampled. The function returns 1 if the data is to be sampled,
the same very long flows are sampled by each method. O if not, i.e., the function returns the indicator variakle for
Threshold sampling combines the compression advantagegiven flows.
of forming flow records, with low estimator variance due \we chose to return the normalizing factor rather than
to size dependent sampling. We conclude that even whemdform the normalization directly, since it may be desired to
certain degree of packet sampling is mandated by constraigsy|y the factor to other sizes. For example, in the context
on resources for packet processing in the router, the formatignfiow sampling, we could apply the factor obtained for
and size sampled flow statistics allows more accurate usaggnpling byte count to packet counts as well. This results in an
estimation than further packet sampling. unbiased estimator of the total packet count, although it does
not in general have minimal variance. A more sophisticated

C. Quasi-random implementation of threshold sampling ~ @pproach to sampling joint variable can be based on our work

Independent pseudorandom selection of flows according% multidimensional sampling described in Section II-E.

a given sampling functiorp(z) can be performed using a The fqnction keeps track on the sum of sizes (_Jf §mal| data
well-known random number generator; see e.g. [24]. Howevépcord (i-e.,data.x < 2) modulo z using a static integer
the computational costs of effective generators may prohilsgunt. If count is uniformly distributed on the integers
their use in some applications. In this section we descrifgtween 0 and — 1, then if the size of the record is greater

a simple implementation of the sampling strategy describ&n z then it will always be sampled, while if the size is

in Section II, that was used for all experiments reported 1§SS thanz then the record is sampled with probability -.

this paper. The implementation nearly as efficient aslthe Thus under the uniform distribution assumption, the heuristic
N sampling strategy. The pseudo code in Figure 6 descridB¥lements the optimal strategy.

our implementation of a function that determines whether to Theorem 3:The algorithm described in Figure 6 imple-
sample the data. We assume that the input record hasnaents the threshold sampling strategy, under the assumption
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int sampleData (DataType data, int z) {

static int count = O: In a dynamic context, the volume of objects presented for

if (datax > z) sampling will generally vary with time. Thus, in order to be
data.samplingFactor = 1.0; useful, a mechanism to control the number of samples must
else { be able to adapt to temporal variations in the rate at which
ﬁOl(chtu:t: <dazt)a . objects are offered up for sampling. This is already an issue for
return 0; // do not sample this data uniform sampling: it may be necessary to adjust the sampling

else { period N, both between devices and at different times in
data.samplingFactor = ((double)z)/size; a single device, in order to control the sampled volumes.

count = count - z; In threshold sampling, the threshotdcontrols the sampling

} volume. At first sight the task appears more complex than
return 1; // sample this data for uniform sampling, since the threshold sampling yolgme
} depends on both the volume of offered flows, and their sizes.

However, we have devised an algorithm to adapgb meet
Fig. 6. Quasi-random implementation of the data sampling algorithm. @ given volume constraint which requires knowledge only of
the target and current sample volumes.
Consider the case the target mean sample vollifnis less
that the variablecount is a uniformly distributed integer than », the total number of objects from which to sample.
between 0 and — 1. N, =", w; is the total number of samples obtained using the
A simple condition for the assumption epunt to hold is sampling functionp.. Now the expected number of samples
that (a) the subsequence of flow siZes : z; < z} are i.i.d. N, = EN, =}, p.(x;) is clearly a non-increasing function
random variables, and (b) the support of the distribution of tlid 2, and indeed we show below that there exists a unique
x; generateg0, 1, ..., z—1} under addition module. It then z* for which N.. = M. A direct approach to finding* is
follows from the theory of random walks that the distributioio construct an algorithm to find the root. In Section VII we
of count converges to the uniform distribution. In fact, theshall provide a algorithm that does just this by recursion on
same result holds under weaker dependence conditions of tifve set of sizeqx;}. However, this approach is not suited to
x;, €.9., that they form an ergodic Markov chain. See [21] fall sampling applications. For example, storage or processing
related analysis. cycles may not be available to perform the recursion.
Although the marginal sampling probabilities conform to Instead, we first present a simple iterative scheme to deter-
p.(z), sampling of different flows will not in general bemine z* that works by repeated application to the set of sizes
independent using the algorithm of Figure 6. This is for twéz,}. The advantage of this approach over a recursive one
reasons. First, sampling, rather than being independent, mafi# become most evident when we come on to consider the
closely resembles periodic sampling at the appropriate sigplication to dynamically changing sets;} in Section IV.
dependent rate. To see this, note that a stream of flows of Wthereas recursion must complete on a given {set, the
form sizex will be sampled roughly periodically, with averageiterative method allows us to replace the set of sizeg with
period z/z. Second, the driving sequence of underlying flomew data after each stage of the iteration, without requiring to
sizes may not be independent. However, we do not belies#®re the sizes.
that this will be a significant issue for estimation. We found Theorem 4:Assume thatz; > 0 for all i = 1,...n, that
that correlation between the sampling indicators for successjyes~ A7, and thatz; > 0. Define g(z) = zN./M and set
flows fell rapidly (in lag) to near zero. Furthermore, flow;, , — g(z), k € N.
records of a given key are interspersed with flows of other,. . . .
keys, further reducing correlations of the sampling indicatori') g<z). IS concave a*nd the equatigiz) = = has a unique
of flows of a given key. . posmve'solutlonz . . .
Finally, we note that dependence between flow sizes gu) k= 2 |s_monoton|c_, andm.lk'*oo B TE
irrelevant when sampling with a good pseudorandom num & k= N, Is monotonic, ar.]dlm"'*oo Nz =M. _
generator; sampling decisions are independent, or at Ie?\ Qof: g(z) has the form)_; min{z;, 2} /M, from which the

as independent as the sequence of numbers produced, k?W'Qg observatpni can bg madg. Firgtz) = Z”/]{V[ > 1
pseudorandom generator. oz < Zmm = min™, z;. Second, as a sum of concave

functions, g is concave. Thirdg(z) = > . x;/M for z >
Tmax = Max; | Tj.

From these propertieg(z) = 2 has a unique solution* >
In_Section Il we showed that the cost functich,(p) = 0. Furthermoreg(z) > z (resp.g(z) < z) for z < z* (resp.
Var X + 2?EN was minimized by takingp(z) = p.(z) = 2 > z*), and hence{z;} is a strictly monotonic sequence
min{1,z/2} as the sampling function. In the measurememounded above bynax{z*, z1}. Thereforelim .. z, = 2*

applications that motivate us, we want to be able to direct§nceg is bounded and continuous @, max{z*, z1 }).
control the number of samples taken, in order that their IV, is clearly continuous and non-increasingzimnd hence
volume does not exceed the capacity available for processing, is monotonic ink and converges taV,- as k — oo,
transmission and storage. Clearly the sample volume dependsverging from above it; < z* (i.e. if N,, > M), and
on z, and so the question is: how shoulcbe chosen? converging from below ity > z* (i.e. if N, < M). g

IV. DYNAMIC CONTROL OFMEAN SAMPLE VOLUME
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We illustrate the form of; and convergence of the sequenceterval [z_, z; ]. Hence
{z,} in Figure 7. In some cases, the fixed potit can be
achieved in finitely many iterations. Suppodg, z;/M > N:=Nwl= > (zi—z)/M <[z=2[-n/M. =
Tmax = max; ;. Thenz* = Y . x;/M and g(z) = z* for iz <@i<z4 26)
Z > Zmax. ThUs oncez, falls in the interval[z,x, 00), the N h . i for N M. We bell thi
next iteration yieldsy(z,) = 2*; see Figure 8. We note that. ote the ratep Is uniform for N, < M. We believe this

by Theorem 4{z,} and { V., } are monotonic and se, will is the more interesting case: when the populatlon size
never overshoot the fixed point. unknown, one may conservatively choose a large initjain

order thatNV,, < M.

Worst-case convergence of the absolute differeNce- M
A. Rates of convergence occurs whenR_. /M is as close as possible to SinceR, <
N, < M, the worst case possible case would enfail =

Having established convergence gf to the unique fixed L (© iruct h le by lett h
point z*, we now investigate how quickly convergence occuryf - (One can construct such an example by letiing eac

Ouir first result show that the number of iterations required %ﬁke o?ekpf t\;\;]o sluff|C|entI)|/ sepzrate(?jlvalutesﬁ\:\ﬂm — 1 gf th

bring V. to within & given factor of the targel is controlled nuerrzctiefl olfr}?eragor?;gferq\;?rzs)f.or (;Cgirvelrrlgabosolu'?eo(rd?frfgre,ncee
uniformly in terms of the initial and target thresholes and . :

o+ y g 5 |N., — M] is thenO(M). In the next section we show that a

Theorem 5:Starting with = = =y, it requires no more than modlflcat|on of the iteration allows exact convergence\pf

11| log, ,.(=*/=)| iterations to getV, within a factor(1+¢) in finitely many steps, whose number grows no worse than

of M, i, . M/(1+e) < N, < M(1+2). O(M).

Proof: We prove forN,, > M; the caseV,, < M is similar.

Let n = max{k | N,, > M(1+¢)}. Then B. Location ofz* in finitely many steps
. it et noNL We now show how a simple modification of the iterator
=S>RS ZE =[5 >@+9)"  (24) g enables exact determination ef within finitely many
a o oa a5 g M iterations for any collection of sizegr;}. Let

Thusn < log, . (2*/z1) and the required number of iterations
is no more tham + 1. m 9(2)

= (27)

9(2) if R, >M
{4&—&WM—&)N&<M

Note that ife is small, |log, . (2*/z1)| ~ |log(z*/z1)|/e. The modificationj of g makes use of the subsidiary quantity
In a neighborhood of:*, the rate of convergence of, is R., the number of sizes that exceed a given threshold
governed by the derivative af. Let Since such sizes are sampled with probabilitandr, (z) =

max{z, z}, R, can be determined from the stream of sampled
X, = Z z; and R, =#{i:xz;>z}. (25 renormalized sizes alone: it is the number of such objects that
bz <z exceedz.

Observe thalV, = X, /z+R. and hence thaj(z) = X,/ M+ Sinceg(z) = z iff N. = M, g shares withg the unique
2R, /M. g is piecewise linear with right derivativ&, /M and fixed pointz*. We say that iteration witlj terminates when
left derivative R, /M where R = R. + #{i : x; = 2}. We successive values are identical. Sinceis the unique fixed
now express convergence of the absolute differenc¥,oind POINt of g, termination can happen only at. Sinceg(z) <

M in terms of these derivatives. g(z) for z > z*, we expect convergence to be faster wjth

Theorem 6: (i) Adopt the assumptions of Theorem 4thang forinitial z > 2*. We also find thag(z) > =" for all
2 — 2*| < pF|z1 — 2| where p depends onz, as > such thatR, < M, so that after at most one iteration we

follows. If z, > 2*, takep = R.- /M < 1. Otherwise, for enter the regime of con\{ergenceztb from above. . .
sufficiently smalle > 0, and sufficiently large:; < =*, Theorem 7:Starting with z such thatR, < M, iteration
we can takep = R.. + ¢ < 1. Thus, subject to with § terminates ore* after at mostO(min{M, log M X })

these conditions, the number of iterations required HF'ations. _
bring z;, within a distanced of z* is no greater than ProOf: First consider the case thdt. < N. < M, and

1log(6/|21 — 2*])/ log p |. hencez > z*. We show this implies thaj"(z) is a decreasing
(i) |N.—N.| < (z—2) n/M for all z,2" > 0. Hence sequence bounded below by. Now N, < M = N_. implies
|Nz _ J\2| < (/M2 — | = 2 = j(z) < z. SinceN, = X, /z + R., 2’ satisfies
Zl .
Proof: (i) Supposez; > z*. From from the concavity of, M =X,/ +R.. (28)

zZkr1 = g(zx) < g(2*) + (2, — 2*)Ry /M. Now R« /M =
1—X,~/(2*M) < 1 and so the bound on the required numbddence
of iterations is trivial. Otherwise, for; < z*, using concavity ,
of g and sincez, is increasingz* —z; < 2*+(2*—z1)R,, /M. N = Xo/Z' + R
For sufficiently smalk > 0, R;, < R.. +¢ < M. X. /7 + R+ Y. (1-i/7)

(i) Denote z_ = min{z, 2’} and z; = max{z,2'}. N, B2/ <w;<z
and N, have identical contributions from thosg not in the X./Z+R, =M, (29)

IN
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D A ‘

*
2 zn oz 2t z Tmax 2 z

Fig. 7. ITERATION WITH g: with sequencd z,, } converging Fig. 8. ONE-STEP CONVERGENCE g(z) = z* for z >
to z* from below. Tmax f D, i/M > Tmax.

and soz’ > z*. If there are no attributes; in (2/,z], then V. PATHWISE DYNAMIC CONTROL OF SAMPLE VOLUMES

X, =X, R, = R, and soM = N, by (28) and the

iteration terminates with’ = z*. An immediate consequence The strength of an iterative method is that it controls the
is that each non-terminating iteration increaggsby at least sample volumeV in both the static case that the distribution of
1. Since R, < N, < M, there can be at most/ such Sizes of the original populatiofw;} is unknown, and—as we
iterations. shall in this section—the dynamic case that the the population

Definea., > 0 such thatV = (1+a.)N,. We are going to is changing. The latter ability is important for network mea-
show that in each iteration, eithéf. or a. is at least halved. Surement applications, where bo.th the volume of offered flows
Assume that := min{x;, min,, 4, {|z; — 2;}} > 0. §> 1 and their sizes can change rapidly. As an example, vqurhes
if 2, takes positive integer values. Sind> X, > 3, there of short flows.have been observed to increase rapidly during
can be at mosO(log X.) iterations in whichX. is halved. ~denial of service attacks. .

SupposeX. is not halved, i.e., that{., > X./2. Now, The setgpfor our analysis is as follows. Consyderasequence
a.N, = M -~ N, = M — X,/z — R, = X.(1/ — Of ime windows labeled by: € N. In each window a set

; (k) . . .
1/z). However, using (29) with: and 2’ interchanged, we Of sizes{z"} = {« © i =1,2,...n} is available for
find a.N, — aN., = N., — N, > X.(1/2' —1/z) > sampling. leenathresholﬂ then the total sample volume in

(X./2)(1/# —1/2) = a.N,/2. Hencea. N, < a. N, < window k is N Z:”“l w(k) wherew( ) are independent

a,N,/2, as desired. random variables taking the valdewith probability p. (z Ek))
Recall that an iteration that does not yieft must increase ando otherwise. The set of s(ar)npled rehk())rmalized sizes from
R.. Hence after one such iteration we have > R, > 1, window & is S = {max{z!" 2} : = 1}, and the

and soa, = M/N.—1 < M —1. To finish the bound we needestimate of the total size qf:c(k }is X (k) — = s Y-

to show thata. cannot get too small without the algorithm Generally we want to use control schemes that require
terminating. Here we exploit that i, < (3/(2Mz), then relatively sparse knowledge about the past. For example, we do
z—2' =z0,8N,/(M — R,) < 3/(2(M — R,)) < 8/2 due notwant to require knowledge of the full sets of original sizes
to the integer inequalitie?, > R., > M. Hence, in one {z(*)} from past windows, due to the storage requirements this
of the next two iterationsz does not cross am;, in which would entail. The control schemes that we will use here are
caseR, does not change on that iteration, which implies thdiased on the iterative algorithms of Section IV. The value of
the algorithm terminates. Thus, > §/(2Mz) > §/(2Mz.), 2,1 to use for sampling during window -+ 1 is a function

and there can be at moét(log M) iterations in whicha is  of only the target sample volum&, the following quantities

halved. from the the immediately previous window: the threshejd

Next consider the case that initiallly, > M > R,. the sample vqumeNZ(k and, opt|onally the set of sampled
Similarly to (29) one has for’ = g(z) that renormalized size$*). Let R(k #{y € % ty > zh
We first specify three candidate control algorithms based on

N = X./Z +R. the results of Section IV. Th€onservative Algorithns based

= X./Z+R.+ Z (z;/2 —1) on the basic iteration defined in Theorem 4. Thggressive
ia<m <zt Algorithm uses the modification described in Section 1V-B

< X./Y+R.=M - (30) with aim of speeding up convergence whéh < M. The

Root Finding Algorithmuses a limited recursion to speed
and hencez’ > z*. Thus after one iteration the problemUP CONVErgence whed > M. This assumes the requisite
reduces to the casB, < N, < M. m storage and processing cycles are available. These algorithms

N can be supplemented by two additional control mechanisms.
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Emergency Volume Controapidly adjusts the threshold if D. Emergency volume control

systematic variations in the offered load caugeto signif- |t e arrival rate of objects to be sampled grows noticeably
icantly exceed the target/ before the end of the window. o or 4 time scale shorter than the window widfH, may
Variance Compensatioestimates the inherent variance of th%ignificantly exceed the target/. We propose additional
sample volume, and adjusts the target volubfedownwards .qnirol mechanisms that can be used to control the sample

accordingly. volume in emergency. The idea is that if a target sample
volume is already exceeded before the end of a window, we

A. Conservative algorithm should immediately change the thresheldn this context, we
can regard the windowing mechanism as a timeout that takes

max{N" 1} effect if N has not exceeded! by the end of the window.
PRl = AT G we present three variants on this theme, tighter control being

The maximum with1 comes into effect when is so large possible when more information on the original data stream

that no sizes end up being sampled, i.e., whén = 0. The S available.

effect is to drivez down and so make some sampling more 1) Emergency control using timing information: I al-
likely at the next iteration. ready exceed8/ at timet from a start of a window of length

7, we immediately replace by z7/t. This approach derives
from (31) since the targeff over the interval0,t) is Mt/T.

If we have control over the window boundaries, then we may
just start a new window at that time. Otherwise, from time

B. Aggressive algorithm

N P N0 S we reaccumulate the sample couvitfrom zero, and the test
) M o= and remedy are repeated as needed for the remainder of the
ZE4+1 = max{ﬁ(m—é(l"),l} . (k) (32) ind
s e f M > NP >0 window. _ L .
M—Rz), 2) Emergency control using population size: If timing

Here we apply the form of the iteration (27) only whéfi > information is not directly available, but the numbein the
J\Afz(,]f), rather than under the weaker conditidf > Rg'g_ The original population in the window is available, we can repeat
reason for this that the jump from < 2* to §(z) > 2* can the above procedure usingn as a proxy fort/r, wherei

lead to oscillatory behavior in the presence of size variabilitig the sequence number of sizg in the window. (Note this
control violates our aim to sample without knowledge of the

original population size, and so may not be applicable in all
i ; . i circumstances).

The third candidate arises from the fact, established ing) gmergency control with tolerance parameter: If neither
Section 1I-G, that sampling and renormalizing a set of sizgging nor size information are available, we select an addi-
Q= {w; :i=1,...,n} using threshold:, and then resam- (i,n|' tolerance parameter > 1. If N exceedsyM during

pling the resulting set with threshold > = is statistically a window, we immediately replace by 2, again following
equivalent to performing a single sampling operation Wittbl)‘

thresholdz’.

Suppose for a given value we obtain the sample volume
N. > M. Conditioning on the fixed set of sampled sampleli- Compensating for sampling variability
valuesS, (£2), we can write the conditional expectation of the Each of the algorithms above may be modified to be
sample volumeN, . = 3 s () p-(z) under resampling more conservative by adjusting the target downwards to
from 5.(2) but using the threshold’ > 2. We rewrite take account of the sampling variability. From Section II-F
N, . = Yacqwzp(r-(z)) where w, are independent we know thatVy_ = Y7  w;(1 — x;/z)" is an unbiased
random variables taking the valuewith probability p.(z) estimator ofVar N,. Therefore, for a given multiplies > 0,
and 0 otherwise. From Theorem 2 it follows thEtN;,’z = we can elect to replacé/ by M’ = M — g\/WZk in (31),
N, whenz > z, ie, JV;,‘Z is an unbiased estimator of(32) and (33) above. The effect is to guard against statistical
N... Furthermore, for a given realization of tHev;}, 2’ — fluctuations of N—due to sampling alone—of up to standard
]\Af;,AZ is non-increasing. Consequently it is relatively simpldeviations above the mean.
to determine the roof* > » of the equation]\Afé* .= M. A simple upper bound on the sampling variance is obtained
We denote this root b (5., M). An algorithm to determine through
the root is presented in Section VII below. The root finding

algorithm is then: Var N, = sz(xi)(l —pa(2;)) < sz(g;i) = EN, (34)
Z(SW M) if NS > M i=1 i=1
Zk4+1 =

C. Root finding algorithm

max{N{*),1} it > N S (33) Thusin aiming for a target/ we expect a relative error aN
“k M ! = = of about1/+/M. This leads to a simpler estimate for variance
We will also speak of combining the aggressive with the rogompensation: in order to guard against statistical fluctuations
finding approach, by which we mean using (32) wheh> of up tos standard deviations from a targkf, one should use
N% > 0 and (33) whenV > M. the compensated targdf, = M —sv/M. Although we do not
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We now address the complexity of the subsequent calcu-
lations with sample values for the three algorithms described
above. Both the conservative and aggressive algorithms keep
only accumulated quantitieV (and R for the aggressive
algorithm), and require onlg)(1) operations to iterate from
these quantities.

Although we may expect faster convergence with root
finding when N > M, the trade-off is in the increased
storage and computation requirements wih Root finding

1 from m quantities require®(m) storage and)(m) operations
00 5‘0 1(‘)0 150 2(‘)0 250 3(‘)0 350 400 to iteratez. In the application described in Section V—Q we

time thus havem =~ M when control to (near) volumé/ is
effective. On the other hand, root finding from the original flow
Fig. 9. ORIGINAL FLOW VOLUMES: in trace used for studies, over 5 secondStr€éam may be prohibitive in both storage and computational
windows. Observe volume increase during period to time 115s. requirements, sincex is then the numben of original flows
present in a given time window.

30000

original flow volume —+—

25000 r

20000 r

15000 ¢

volume

10000

5000 ¢,

200 T — T T
static control —— VI. EXPERIMENTAL STUDIES OF DYNAMIC CONTROL OF

dynamic control - SAMPLE VOLUMES

The previous section define a set of adaptive mechanisms to
control the rate at which samples are produced. This section
gives a trace-based investigation into their performance. In
these experiments we focused on sampling streams of flow
reports from single router interfaces. This gives insight into
the behavior of the threshold sampling algorithm were it to be
applied to reduce the volume of transmission of flows from the
interface to the collection point. Most of these studies reported
here focus on 400 seconds worth of data from a single network
trace whose original flow volumes over 5 second windows is
Fig. 10.  STATIC AND DYNAMICALLY CONTROLLED SampLED FLow ~SNOWN in Figure 9. We selected this trace because it displays
VOLUMES: to obtain same average sampled flow volumes over 400 secoadsystematic increase in the original volume over the period
period. between 80s and 100s. This provides a good opportunity to

evaluate the performance of the algorithms under dynamic

conditions. The empirical distributions of the byte and packet
detail it here, we remark that a similar approach can be ussides of all flows in the trace are shown in Figure 11. Note
to mitigate the effects of high uncertainty surrounding smate approximate linearity of the tail probabilities on a log-
sample volumesV near zero. This leads to a modification ofog scale; the slope is a little larger thdn indicative of a
the “take the maximum with 1" approach used in (31), (32) artgkavy tailed distribution. We evaluate the dynamic algorithms
(33), instead replacing/. with (s/2 + ((s/2)? + N.)'/?)?in  along the following dimensions: (i) the benefit of dynamic

150

100 |/ V¥

volume

50 |

0 % 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
time

order to guard against small unreliable values\of choice ofz versus the best average choice; (ii) the speed of
convergence after a perturbation in the offered load; (iii) the
F. On sampling variability and timescales of variation ability of variance compensation and emergency control to

Suppose we wish to limit report volumes to a ratger unit limit the effects on the sample volume of rapid growth in the
time. Over a window of widthr, our target volume id/ = pr. Offered load; (iv) accuracy in estimating the total byte volume
A target typical relative error of in the report rate requires fepresented in the original set of flow records.

e = v M. Eliminating M between these two relations, we find
that for a report rate with target relative erroe a window A. Dynamic vs. static control

of width 7 = 1/(p<?) is required. Emergency volume control 1 show the benefit of dynamic over static sampling we
guards against systematic variations in the original flow Strea(fampare the sample volumes using the conservative algorithm
on time scales shorter than If only the weakest form of _; target volumel/ = 100 per 5 second window, with static
emergency control is available, i.e. using a tolerance parametghirol at a fixed threshold chosen so as to yield the same

7, we selecty =1+ e. average sample rate over 400 seconds. The two trajectories of
) ) the sample volume are shown in Figure 10. Unsurprisingly, the
G. Computational issues volume under static control follows closely the original volume

We have seen in Section IlI-C that quasi-random samplimtisplayed in Figure 9, leveling off at around 150 samples per
of each size may be performed with hardly more complexityindow after the original volume increase at about 115s. On
than the simple deterministitin N sampling strategy. the other hand, the volume of samples obtained with dynamic
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Fig. 11. EMPIRICAL DISTRIBUTION OF FLOW BYTE AND PACKET SIZES approximate linearity of tail probabilities on log-log scale with slope around
indicative of heavy tailed distribution.

control increases only slowly during the period up to timeate whenN > M. Observe that after the upward spike, root
115s, falling back slightly to around 100 after the plateau in tHimding returns N to near the target valué/ in only one
original volume is reached. Clearly, the ability of the dynamistep; by comparison the conservative algorithm decays more
algorithm to adapt is better when the ratio of the time scatgadually, needing typically 3 steps to return close to the target.
of increase to the sampling window duration is smaller. IBummarizing, the quickest recovery is obtained by combining
the example, original volume increases by about a factortlte aggressive algorithm (to speed up recoveryNoffrom
over the 10 windows between 65s and 115s. This leadsktelow) with root finding (to speed up recovery of from
some noticeable increase of report volume overithe= 100 above).

towards the end of this period. The initial transient in the

sample volume is due to a small initial value of the threshold The penefits of variance compensation and emergency
Z.
control

B. Relative performance of the dynamic algorithms Variance ComPensa“O” was proposed'ln Section _V—E”as
. ) . i a means to mitigate the effects of the inherent variability

The two variants on the conservative algorithm defined |f) o o random sampling. In Figure 13 we give an example
Section V, namely the aggressive and the root finding agy (he effects of compensation and emergency control. The

proach, were motivated by the desire to speed up converge%%et volume isM = 100 flows per 5 second window. The

of NV to the target)/. In order to assess the extent to whichy,her trace (no compensation or control) exhibits a rise to

these variants met these aims, we modified the experimeRts_ 4= 4t time 115s in response to the rapid increase in the

to reproduce the effects of transients in the arrivals of fIO\é'riginal volume evident in Figure 9. Thereafter, the original

records. We did this by artificially perturbing the calculateg);ime reaches a plateau, and the sampled volume exhibits
value of the thresholdz, every tenth window, altematelyﬂuctuations of order/M = 10 around the targed/
upwards or downwards by an independent random factor thatl-he effect of compensation at= 1 is to lower the sample

uniformly distributed betweei and200. The effect of these |, ;|\ me by roughlyy/AM — 10. By adding emergency volume

perturbations is to perturb the sampling rate downwards O ntrol (based on flow arrival times) to a level df — 100,

upwards, resulting in a dip or spike itV. The perturbed o heak sample volume at time 115s was reduced by a

value of z1Sa Iegacy for s_ubsequent estimation: we WISRrther amoun®7 to 110. The lower trace in Figure 13 shows

to determine how quickly its effects are forgotten in thg,e sample volume obtained by augmenting the conservative

subsequent evolut!on. For these experiments the window Wl%mithm with both variance compensation ¢at= 1) and

was 5 seconds, with a sample volume targeflbt= 100 0Ut  gmargency control. In further experiments, we found the

of an average unsampled stream of 19’980 flows per wind oportion of windows in the plateau region for which the
We compare the responses of the various algorithms to (%V?getM — 100 is exceeded i94% whens — 0. 10% when

perturbations in Figure 12. The left plot shows the typic% — 1 and2.6% whens — 2.

responses of the aggressive and conservative algorithms. Re-

call the aggressive algorithm aims to speed convergence when )

N < M. Observe that after the downward spike, aggressitd Summary and comparison

algorithm indeed recovers more quickly. Emergency control and variance compensation are simple
The right-hand plot compares the root finding and consernvanad effective means of guarding against systematic variation

tive algorithm. Root finding aims to improve the convergende the offered load and variability inherent due to sampling.
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Fig. 12. RELATIVE RECOVERY RATES OF DYNAMIC SAMPLING ALGORITHMS UNDER ARTIFICIAL PERTURBATION: Left: conservative vs. aggressive.
Right: conservative vs. root finding.
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cy control, compensation - ]

Xo, ={r € X|zoz}

130 t
120 | Suppose we are given a fixed set of si2és= {x1,...x,,} and
£ 110 + a target)M. Let
>
'S 100
* N(X) = (3 X<o) /2 + X
80 " | § That is, IV, is our expected number of samples frotnhwith
70 t " thresholdz. Our goal is to findz* = Z(X, M) such that

60 : : : : : N.«(X) = M. We note thatV,(X) = |X]| for z < min X,

0 100 150 200 230 300 350 and thatN,(X) is strictly decreasing for > min X. Thus,
z* is uniquely defined assuminty/ < |X]|.

Our basic idea is to pick some valueand compareVN,

Fig. 13. VARIANCE COMPENSATION AND EMERGENCY CONTROL: De- ; _
crease in sample volume obtained by applying compensation for 1 stand\é\{’lc;h M. 1t N, = M we are done. IfN. < M, we know

deviation and emergency control. Relative to conservative algorithm, emér=> 2™ and if N, > M, we knowz < z*. If z > z*, we wish
gency control reduces impact of rapid increase in offered load up to tine recurse onX ., and if z < z*, we wish to recurse o0X .
115s that is evident from Figure 9. To define the recursion, however, we define

N.(X,B) = B/z + N.(X)
The root finding algorithm gives some speed up in downward _

convergence aftetN has exceeded its target/, but this Also, definez* = Z(X, B, M) such thatN.- (X, B) = M.
requires additional storage and computational resources thBeNN-(X,0) = N.(X) andZ(X,0, M) = Z(X, M). Note
may not be available in all cases. On the other hand, tHt if B > 0, N.(X, B) is strictly decreasing for alt > 0,
aggressive a|g0rithm Speeds up Convergencé\' d&fom below and hence:* is always Unique. This leads to the fO”OWing
M, with hardly any additional resource usage. For genefdiqueness assumptidor Z(.X, B, M): eitherB > 0 or M <
application, we therefore favor the conservative or aggressivel-

algorithms, combined with variance compensation and somelemma 1:If N. (X, B) < M,

form of emergency volume control. Z(X,B,M) = Z(X<., B, M — | X5.|)
Proof: If N,(X,B) < M, z* = Z(X,B,M) < z. For any
VIl. ROOT FINDING: ALGORITHM AND SAMPLING 2/, N./(X,B) = N.,(X<.,B) + N..(X>.), and forz’ < z,
STATISTICS N, (X>,) = |X>.|. Hence
In _thls section we detail an eff|C|_ent_ root finding algorlt_hr_n, Noo(Xes, B) = Noo (X, B) — | Xss| = M — |X5.|. (35)
and investigate the effect on root finding accuracy of omitting
some sizes;, e.g., in order to reduce resource usage. If All we need to argue now is that* is the unique solution
to (35). If B > 0 we are done. Otherwise, we halé < | X|,
A. Implementation of root finding algorithm implying M — [X>. < [X<.|- B

In this section we consider a class of root finding problems Lemma 2:1f N.(X, B) > M,

arising from the requirements for a root finding algorithm in B
Section V-C. First, we consider how to solve fothe equation 2(X,B,M) = Z(X>., B+ Z Xogz, M)
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double Z(double * X, int n, double B, double M) {

Proof: If N.(X,B) > M, z* = Z2(X,B,M) > z. For any int ij,n1,n2:
2, Nz’(Xa B) = Nz/(XSZaB) =+ Nz’(X>z)r and forz’ > z, double B,B1,z;
N, (X<,,B)=(B+)> X<.)/7. Hence
while (n>0) {
N.o(Xs2,B+ Y X<.)=N.-(X,B)=M (36) z=X[0];
n1=0;
All we need to argue now is that* is the unique solution B1=0.0;

to (36). If X<, = 0, there is nothing to prove. Otherwise,

> X<. >0, in which case (36) always has a unique solution.

The above lemmas immediately imply that the following
recursive algorithm correctly determines(X, B, M) when
B>0o0orM < |X]|.

for (i=0; i<n; i++) {
if (X[[]>z) nl++;
else B1+=X]i];

}

i=0;

n2=n;

if (B+Bl)/z) < (M-nl1)) {
for (i=0; i<n2; i++) {

Algorithm Z(X, B, M): Assume thatB > 0 or M < if (X[i>=2) {
| X].
1) If X =0, retunB/M. ) el;‘;;{
2) Pick a randonr € X, X[=Xil;
a) If N,(X,B)= M, returnz. j++
b) If N.(X,B) < M, retunZ(X<,, B, M —|X>.|). }
¢ If N (X,B) > M, retun 2(X-,,B +
} else {
> X<, M). for (i=0; i<n2; i++) {
Each recursive step involve3(|X|) operations. The point in if (X[i]<=z) {
picking z randomly from X is that, in each recursive step, B+=X{i[;
we expect to get rid of a constant fraction of the elements in } el;‘é‘;{
X, and so the total expected running timeQ$|X|). For a X=Xl
more precise analysis, we note that the algorithm behaves as jH+
standard randomized selection after reaching a neighbet of }
in X. A formal analysis of the expected linear time for such }
algorithms is found in [8, pp. 187—189]. Concerning step 2, if
the items inX are not ordered in relation to their sizes, we can oty BIM:

just pick z as the first element iX. With this simplification, }
an iterative C-code version of the algorithm is presented in

Figure 14.

B. Estimatingz* from subsets of sizes

One way to reduce the computational resources required

for root finding is to reduce the number of sizes used
input. In this section, we consider the problem of estimatihg
from a random subset of the original sizes,, ..., z,}. Here
sizes are sampled uniformly with some probabiljtg (0, 1),
i.e.,independently of the size values. The random (geof
selected sizes is used to estimate P, will denote the
corresponding distribution.

Let N9 =Y ., p-(«) and for eactQ estimate:* through
2@, the solutionz to the equationV® = ¢M. Here we have

scaled down the target volume in the same proportion as tlgreoof'

mean number of sizes used to estimateOur aim here is to
analyze the sampling error arising from this procedure.

The following Theorem uses a form of Chernoff bound

(see [27, Chapter 4])) that saysXf is a sum of independent
random variables each with range in the interi{@all] and

EX =, then
e 9 "
PX<(1-d)u < {(1_5)1_5] (37)
and s u
PIX > (1+8)u] < {(Heé)w} (38)

Fig. 14. C-code implementation of the recursive pseudo-codeZférom
Section VII

Qr d € (0,1) andé > 0 respectively.

Theorem 8: N, converges exponentially quickly t&f. In
particular

Mgq

Pg[Noo > (1+mM] < [(1+m)e”"] (39)

and

PN.o < (1=mM] < [A-me]"  (40)
for n > 0 andn € (0,1) respectively.
Givenn > 0, definez_ to be the solution taV, =
(1 + n)M. Observe thatV.e > (1 + )M iff 29 < z_ iff
JSVZQ_ < gM iff N? < E,[NZ]/(1+mn). The last equivalence
is becauseE,[N? ] = gN,_ = ¢qM(1 + n). Now N@ is a
sum of independent random variables each taking values in
[0,1]: eachz € {1,...,n} contributes to the sunV& with
probability ¢, and if present contributes. (x). The first bound
then follows from the first inequality in (37) on identifying
1+ n with (1—§)~!. The second bound is obtained similarly
by considering the solutior, to N., = M(1 —n) and
identifying 1 — n with (1 +6)~!. g
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VIII. A LTERNATIVE MEASUREMENTMETHODOLOGIES  also necessary to satisfy the needs of a variety of network
AND RELATED WORK management applications.
L ) . 3) Sampling Methods Currently Implementdeacket sam-

Our work is immediately applicable to current networkjing may in any case be required for the construction of flow
measurement infrastructure, specm_cally in mediation statiofS.ords. This is because flow cache lookup at full line rate, if
and flow collectors fed by the large installed base on NetFlgyysgipe, requires fast expensive memory. Sampling spaces out
enableq routers. In '[h.IS section we discuss the feasibility, e packets to allow for execution in slower cheaper memory.
otherwise, of alternative measurement methods for meetipggection 111 we showed that the formation of packet sampled
our goals, and discuss some related work. flow statistics provides greater estimation accuracy that packet

1) Counters: Sometimes it is suggested that routers maiRgzmpling alone for the same amount of measurement traffic.
tain byte and packet counters and export flow records pegr this reason, we recommend using only as much packet
riodically to the collection system. There are a number %fampling as is necessary to control load in the router: any
reasons why this can be a bad idea. If the export period is t@@ther data reduction that is required should be performed
short, a larger number of flow records will be produced sinqging threshold flow sampling.
longer flows will be divided up into many records, increasing 4) Proposed Sampling MethodsSample and Hold [15],
measurement infrastructure costs. If the export period is t9Qes modified packet sampling in the router in order to focus
long, a large number of counters will have maintained at thg, longer flows. A flow cache lookup is performed for each
router, many of them for inactive flows. For example, a heavilicoming packet, and if a match is found, the flow’s statistics
loaded backbone router with many interfaces might see 10's g6 updated as usual. If a match is not found, a new cache
even 100’s of millions of distinct flow keys per hour. Moreoveremry is created with probability depending on the number of
the export latency between periodic exports limits the responsges in the packet. Section Il showed the performance of
time of analysis, and leaves the flow data vulnerable to |0§§mple and hold and threshold sampling in the measurement
in the event of router reset or failure. infrastructure to be very close. However, Sample and Hold is

The methods of generating flow statistics currently deployeft available in current routers; whereas threshold sampling
in network routers—upon which our work is based—arg currently operational, and immediately applicable to the the
able to circumvent these problems; These can be viewggke produced by the large installed base of NetFlow enabled
as an economical and adaptive way of keeping countefgyters.
since counters are kept onIy for active flows, with counter 5) Fi|tering and Aggregation:F”tering and aggregation by
memory released on termination. The need to control memaiy are means of reducing data volume. Filtering restricts
consumption is one reason that the interpacket timeout is keffention to a particular subset of data, e.g., all traffic to or
small in practice, typically about a minute or less. A receifom a range of IP addresses. However, not all questions
phenomenon reemphasizes this need. Some denial of serigg be answered from measurements that has passed through
attack tools generate packet streams in which the sourcepiconfigured filters. For example, we do not know in advance
address is randomly forged [26]. Assuming for simplicityvhich addresses to look for to determine the most popular
that no source addresses are repeated, each packet givesjédg@nation web site for traffic on a given link.
to a separate flow cache entry in the router. Thus memorySim”any, aggregation over keys (e.g. over ranges of IP
consumption at the router arising from such flows growgddresses, rather than individual addresses) would require that
linearly with the flow timeout. the finest required level of aggregation be known in advance.

2) Packet header collectionCollection, sampling and ex- This would generally limit the ability to perform exploratory
port of packet headers suffers from several drawback relativeffic studies. When queries are known in advance, then
to flow collection. The main drawback is volume, as noted imore specialized sketching algorithms can be applied to the
the introduction. Secondly, there is currently a large installedream of flow records; see [2], [28] for a survey. In fact,
base of routers that have no ability to export packet-levelir sampling may be used as a common front-end to several
measurements. Although this may change in future, volumgore sophisticated streaming algorithms. The point here is
constraints would limit the taking of full (i.e. unsampled}that threshold sampling is simple enough to keep up with
header traces to filtered subsets of packets. a very fast data stream, producing a reduced data set that

Since flow statistics do not include the locations of packetsain be fed into a more sophisticated but slower streaming
within the flow, they are of limited use in studies of packedlgorithms. However, threshold sampled flow data can be
level traffic processes, such as self-similar [25] or multifractalrbitrarily aggregated to perform analyses not anticipated at
properties [18], [34], or TCP dynamics [29]. However, wheredhe time the data was collected.
packet level detail is crucial to understand these matters, many) Related work: Stratified sampling is a well known
important network management applications and supportitechnique by which to reduce the variance associated with
research work — including all those mentioned in Section $tatistical estimation from a population, by varying the se-
A.1 — do not require it. For these, it suffices to knowection probability of a datum according to its value; see
network usage differentiated by primary keys (i.e. as fine agy. [7]. Optimization results for the choice of strata exist
those commonly used in flow definitions: IP address, portwhen the population distribution lies in certain parameterized
AS’s, etc.), at timescales no smaller than the duration tmilies. Independent and deterministian N sampling, as
the flows themselves. We have argued that differentiationviell as stratified sampling out of finitely many bins, have been
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compared for packet sampling in [6]. The aim of this worlbne can sample at the mediation stations and the collector.
was to efficiently estimate packet size distributions. The sampling strategy described in this paper is currently

The focus of our work is different. We estimate total usagesed to collect NetFlow records collected extensively from
in a given key by ensuring that we sample all important contré large IP backbone. The collection infrastructure deals with
butions to the total. Moreover, we make no assumption on th@llions of NetFlow records per second. Measurements from
underlying distribution of flow sizes. In a further developmengome tens of routers are transmitted to a smaller number
we coupled the threshold sampling scheme described hereotadistributed mediation servers. The servers aggregate the
the problem of usage-sensitive pricing; see [12]. The main neacords in multiple dynamic ways, serving the needs of a
idea is that since larger usage can be more reliably estimategfjety of network management applications. The aggregates
charging should be sensitive only to usage that exceedsira sent to a central collection point, for report generation,
certain level; for lesser usage a flat rate applies. archival, etc. Without the sampling strategy, there would need

Other methodological work on sampling for network meao be an order of magnitude greater capital investments to
surement includes Trajectory Sampling [10], a method wovide the facilities to process the measurement stream.
sample a packet at either all links or no links of network. The ideas in this paper have been further developed since
Another paper deals with reconstruction of the statistics #fwas first submitted for publication, resulting in a number
original flow records from those of packet sampled flows)f other publications. These we now briefly list. Usage-based
see [13]. Standards for network event sampling based omarging can be coupled to the present threshold sampling
randomizing the inter-sample time have been set out in [30fethod in such a way that the estimated usage is relatively in-
Sample and Hold [15] has already been discussed. We sz&wnsitive to sampling errors from threshold sampling; see [12]
in section I11-B that, although it is not in general possible téor further details. The interaction between packet sampling
construct an unbiased usage estimator from the measuremésiish as occurs in sampled NetFlow) and threshold sampling,
produced by this method, its accuracy is similar to that of ti&nd the dimensioning of measurement infrastructures that
present method. However, unlike the present work, this methage both these two methods is examined in [11]. Threshold
would require modification of routers. A review of these angampling with hard constraints on the volume of samples taken
other sampling methods used or proposed for passive Interisegxamined in [14].
measurement can be found in [9].
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