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Abstract

Current treatment planning of patients diagnosed with a brain tumor, such as

glioma, could significantly benefit by accessing the spatial distribution of tu-

mor cell concentration. Existing diagnostic modalities, e.g. magnetic resonance

imaging (MRI), contrast sufficiently well areas of high cell density. In gliomas,

however, they do not portray areas of low cell concentration, which can often

serve as a source for the secondary appearance of the tumor after treatment.

To estimate tumor cell densities beyond the visible boundaries of the lesion,

numerical simulations of tumor growth could complement imaging information

by providing estimates of full spatial distributions of tumor cells. Over recent

years a corpus of literature on medical image-based tumor modeling was pub-

lished. It includes different mathematical formalisms describing the forward

tumor growth model. Alongside, various parametric inference schemes were de-
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veloped to perform an efficient tumor model personalization, i.e. solving the

inverse problem. However, the unifying drawback of all existing approaches is

the time complexity of the model personalization which prohibits a potential

integration of the modeling into clinical settings. In this work, we introduce a

deep learning based methodology for inferring the patient-specific spatial dis-

tribution of brain tumors from T1Gd and FLAIR MRI medical scans. Coined

as Learn-Morph-Infer the method achieves real-time performance in the order

of minutes on widely available hardware and the compute time is stable across

tumor models of different complexity, such as reaction-diffusion and reaction-

advection-diffusion models. We believe the proposed inverse solution approach

not only bridges the way for clinical translation of brain tumor personalization

but can also be adopted to other scientific and engineering domains.

Keywords: Inverse modeling, physics-based deep learning, glioma, model

calibration, tumor modeling, MRI

1. Introduction

Glioblastoma (GBM) is the most aggressive brain tumor, characterized by

varying and unknown infiltration into the surrounding tissue. After resection of

the tumor mass visible in MRI scans, current treatment includes radiotherapy

targeting tissue around the visible lesion to account for residual tumor cells.

Tumor recurrence is however present in most cases, possibly due to patient-

specific and non-uniform distribution of residual tumor cells. Personalization of

the clinical (irradiation) target volume, could spare more healthy tissue and in-

crease progression-free survival by potentially avoiding recurrence (Stupp et al.,

2014, Harpold et al., 2007, Jackson et al., 2015, Lipkova et al., 2019).

Current computational approaches for personalizing radiotherapy planning

often rely on solving an inverse problem for GBM growth models (Hogea et al.,

2008, Konukoglu et al., 2010b, Geremia et al., 2012, Menze et al., 2011, Le

et al., 2017, Lipkova et al., 2019, Scheufele et al., 2020, Subramanian et al.,

2020a, Hormuth et al., 2021, Lorenzo and et al, 2021). In this context, the
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growth (forward) models are based on partial differential equations (PDEs)

that describe the evolution of tumor cell density in the brain anatomy. The

inverse model aims to identify free parameters of the forward model that best

match the observation, e.g. tumor outlines from medical imaging modalities.

To identify such parameters, the inverse problem can be cast as constrained

optimization (Hogea et al., 2008, Mang et al., 2012, Scheufele et al., 2019) or

Bayesian inference formulations (Menze et al., 2011, Lipkova et al., 2019, Ezhov

et al., 2020, 2019).

Predominantly, existing forward GBM models view tumor progression at

the macroscopic level by describing gross biomechanical phenomena. These in-

clude diffusive motion and proliferation of tumor cells (under simplistic reaction-

diffusion PDEs) (Menze et al., 2011), interaction between the tumor and sur-

rounding tissue (i.e. mass-effect) (Subramanian et al., 2020a), necrotic core

formation (Patel and Hathout, 2017), etc. Despite methodological advances in

computing the inverse model, the total time for model personalization is still

large amounting to multiple hours using such simplistic forward models (Subra-

manian et al., 2020a, Hormuth et al., 2018, Scheufele et al., 2019). For example,

in (Scheufele et al., 2019) the authors exploit a highly efficient quasi-Newton

optimization scheme to infer parameters of the reaction-diffusion model. The

inference converges after ∼5 hours of compute on 11 dual-x86 CPU nodes for

2563 resolution. In (Subramanian et al., 2020a), the mass-effect model is solved

using an analogous optimization scheme but implemented on GPU leading to

the same order of compute time for the 2563 grid (and up to 1 hour for 1283

resolution). Bayesian methods providing uncertainty estimate of the parametric

inference (Lipkova et al., 2019) can take an even longer time (up to days) of

computing on specialized CPU clusters.

Recently, machine learning solutions entered the field of PDEs. Learnable

solutions for both forward (Raissi et al., 2019, Sitzmann et al., 2020, Stevens and

Colonius, 2020, Thuerey et al., 2020, Kasim et al., 2020, Kim et al., 2018) and

inverse (Papamakarios and Murray, 2016, Lueckmann et al., 2017, Dax et al.,

2021) models were developed. In (Papamakarios and Murray, 2016, Lueckmann
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et al., 2017), the authors proposed a Bayesian framework that allows bypassing

a compute of intractable likelihoods necessary for the Bayesian inference. This

notably speeds up the inference, however, it still requires thousands of simula-

tions to be generated by the forward model, which in turn can still result in

many hours of compute for the inverse problem. In concurrent to our work

(Dax et al., 2021), a solution to the inverse problem providing point estimates

was proposed. This is achieved via learning a mapping from the physical model

simulations directly to the model parameters by leveraging access to large sim-

ulated data. Unfortunately, this method is not capable to deal with the varying

geometry of the simulation domain. Moreover, as our paper shows, direct map-

ping to physical model parameters can result in a deterioration of prediction

accuracy since the inverse mapping between simulations and parameters is not

bijective.

Few machine learning approaches (Ezhov et al., 2020, Pati et al., 2020)

also appeared in the brain tumor modeling context. However, (Ezhov et al.,

2020) requires a vast amount of forward model evaluations for convergence of

parametric estimation under Bayesian settings for each new patient. In turn,

(Pati et al., 2020) requires access to a dataset of inferred model parameters that

can become prohibitively expensive to collect with the growing complexity of

the tumor model.

Potential integration of brain tumor modeling into clinical practice would

require access to a large cohort of longitudinal clinical data, allowing to esti-

mate the clinical value of a patient outcome’s forecast by the tumor models

(Yankeelov et al., 2013). Integration of current macroscopic models would also

require a thorough analysis of forecast consistency between the macroscopic de-

scription and higher complexity microscopic models encompassing subcellular

biophysics. For this, it is paramount to bring the computational cost of the in-

verse modeling to a reasonable time. Here, we propose a neural network based

methodology for predicting a patient-specific spatial distribution of GBM (from

single time-point medical scans, namely T1Gd and FLAIR MRI) that requires

neither sampling nor optimization. As such, it is potentially well suited for rapid
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model personalization in a clinical workflow, but also for scaling up preceding

feasibility studies to large patient cohorts.

Our contribution is a) a pipeline allowing to perform tumor model person-

alization in a fixed for all patients space, and b) a special learning setup for the

network (the main part of the pipeline) performing inverse model inference. The

method achieves lightning-fast performance in the order of minutes on widely

available hardware and the compute time is stable across tumor models of dif-

ferent complexity. This in turn opens the possibility of rapid testing various

biophysical models on a large dataset of patients and hence bridging the way

for clinical translation.

yT1GdyFLAIR
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Figure 1: A sketch of the inference procedure of the Learn-Morph-Infer pipeline. First,

the patient’s brain tumor segmentations {yT1Gd, yFLAIR} are morphed to the brain

atlas space (a). A network trained on synthetic data inputs the morphed segmentations

and outputs corresponding tumor model parameters {µ1, µ2, icx, icy, icz} (b). The

inferred parameters are used to simulate a tumor in the atlas space (c). Finally, the

simulated tumor is morphed back to the patient space (d).
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2. Method

2.0.1. Learn-Morph-Infer Pipeline

In contrast to a few works like (Hormuth et al., 2019, Ezhov et al., 2019,

Tunç et al., 2021), we solve the inverse problem by relying only on single time-

point MRI observations of the brain tumor Y = {yT1Gd,yFLAIR}. This is the

most realistic clinical scenario as normally treatment follows immediately after

the first MRI scanning. Given a tumor observation Y , our goal is to calibrate

a set of personalized parameters θc of the forward tumor growth model that

infers the underlying patient-specific tumor cell density cpatient in the patient

anatomy3. For a given patient, this is achieved via the proposed Learn-Morph-

Infer pipeline:

• We register a patient MRI image to the brain atlas (Rohlfing et al., 2010)

and obtain a transformation matrix.

• The transformation matrix is used to morph scans based on the patient

anatomy Ypatient to scans in the atlas anatomy Yatlas as illustrated in Fig.

1a-b.

• A neural network, that has learned to solve the inverse problem Yatlas → θc

through prior training on simulated data Ysim (Fig. 1), predicts θc during

inference, Fig. 1b.

3Let us explain how we see the potential clinical utility of glioma modeling. In clinical

practice, for glioma patients normally only a single MRI scan is taken before treatment. It is

not feasible to capture the dynamics of the pathology by calibrating a tumor model from a

single scan - multiple sets of model parameters can result in the same simulated tumor profile.

Thus, one cannot reliably predict tumor evolution over time as different sets of parameters will

result in tumor trajectories diverging over time. Instead, we are only interested in identifying

a simulated tumor whose morphology (and, hence, tumor cell distribution) best matches the

morphology of the tumor we see on a single MRI scan. The best matching simulated profile will

then serve to predict tumor infiltration beyond contrast-enhancing tumor areas and thereby

define the target volume for radiotherapy (as opposed to the currently used simple EORTC

criteria - 2cm border surrounding the cavity (Young et al., 1999)).
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• These parameters θc are used as input in the tumor growth model (forward

solver) to infer a tumor cell density catlas in the atlas space, Fig. 1c.

• The tumor volume catlas is transformed back to the patient space with the

inverse transformation matrix, yielding cpatient as displayed in Fig. 1d.

2.0.2. Forward tumor model

We independently probe two types of non-linear PDEs describing tumor

growth:

Reaction-diffusion equation. First, we consider the Fisher-Kolmogorov PDE de-

scribing the evolution of the tumor cell concentration c by considering cell dif-

fusion and proliferation,

∂c

∂t
= ∇ · (D∇c) + ρc(1− c) (1)

∇c · n = 0 boundary condition (2)

Here, ρ denotes the tumor proliferation rate while the infiltrative behaviour of

the tumor is modelled by the diffusion tensor D = D · I. The equation is solved

in a three dimensional atlas brain anatomy segmented into white matter (WM),

grey matter (GM) and cerebrospinal fluid (CSF). The diffusion coefficient D

is computed for each voxel i with location (ix, iy, iz) as Di = pwiDw + pgiDg,

where pw, pg describe percentages and Dw, Dg diffusion coefficients of WM and

GM respectively, and a relation Dw = 10 ·Dg is assumed (Lipkova et al., 2019).

No cell diffusion into CSF is feasible according to the model. The solver based

on this growth model takes θc = {Dw, ρ, T, icx, icy, icz} as input and returns

a tumor cell density c. The parameters x = (icx, icy, icz) define the initial

condition where the tumor is initialized at time t=0 as a point seed. The tumor

is simulated until the time of detection T .
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Reaction-diffusion-advection equation. The second type is a non-linear reaction-

diffusion-advection PDE analogous to (Subramanian et al., 2020a). In the fol-

lowing, the brain tissue will be represented by m = (mWM (i, t), mGM (i, t), mCSF (i, t))

for each voxel i and time t. The normalized tumor cell density c = c(i, t) can

be modelled by the following equations:

∂c

∂t
= ∇ · (D∇c)−∇(cv) + ρc(1− c) (3)

∂m

∂t
+∇ · (m⊗ v) = 0 (4)

∇ · (λ∇u + µ(∇u +∇u>)) = γ∇c (5)

∂u

∂t
= v (6)

∇c · n = 0 boundary condition (7)

m = 0 boundary condition (8)

u = 0 boundary condition (9)

v = 0 boundary condition (10)

Coupling the Eqn. 3 to a linear elasticity model, Eqn. 5, allows considering

deformation in the anatomy due to a mass effect induced by tumor growth

(Subramanian et al., 2019). The linear elasticity model is defined by the Lamè

coefficients λ and µ as specified in Eqn. 5. The displacement u is represented

in the advection term of Eqn. 3. The degree of the mass effect depends on the

selection of the mass effect parameter γ.
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Parameter symbol Parameter meaning

c Tumor cell density

D Diffusion tensor

D Diffusion coefficient

I Identity tensor

ρ Proliferation rate

n Unit vector normal to boundary

u Advection displacement

v Advection velocity

m Brain tissue maps

λ, µ Lamè coefficients

γ Mass effect parameter

Table 1: Description of parameters driving the reaction-diffusion and reaction-advection-

diffusion PDEs.

2.0.3. Linking cell density with MRI signal

MRI modalities capture structural information about the brain tumor. T1Gd

contrasts the tumor core, whereas FLAIR informs about the area of the edema

in addition to the tumor core. It is established practice (Lê et al., 2016, Lipkova

et al., 2019, Subramanian et al., 2020a, Tunc et al., 2021, Konukoglu et al.,

2010a, Menze et al., 2011) to consider binary segmentations corresponding to

the MRI scans to inform biophysical models. The binary masks contain zeros

in the area of healthy tissues and are non-zero in the tumor-related area. In

order to relate the segmentations Y = {yT1Gd,yFLAIR} to a simulated tumor

cell density c, we threshold the density at randomly sampled levels cT1Gd
t and

cFLAIRt (cT1Gd
t > cFLAIRt ) to obtain Ysim = {yT1Gd

sim ,yFLAIRsim } reproducing the

real segmentations 4.

4We want to clarify here the thresholding step in more details. The output of our tumor

solver is a continuous tumor cell density distribution. The experimental observation to which

we want to fit our tumor model simulations comes in a form of binary tumor segmentation. In

order to identify a simulation best fitting the binary segmentation, we threshold our simulated

continuous tumor cell distribution to obtain a binary volume, which in turn can already be

nicely compared with the real patient segmentation. Oftentimes, in literature people resort

to fixed values of cell density for the threshold levels. However, there is no understanding
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2.0.4. Learning the inverse model in atlas space

As discussed in the previous section, the key step of the Learn-Morph-Infer

pipeline is to learn the inverse tumor model using a neural network that can

infer a set of personalized parameters θc from corresponding tumor observa-

tions Yatlas. In order to create a dataset for the network training, we gener-

ate 100,000 tumors in the atlas space by randomly sampling tumor model pa-

rameters {Dw, ρ, T, icx, icy, icz, c
t1Gd
t , cFLAIRt } within physiologically plausible

ranges (Swanson et al., 2000). To form the neural network input, the simulated

MRI segmentations are combined into one volume yMRI
sim = 0.5 · yT1Gd

sim + 0.5 ·

yFLAIRsim .

Reformulation of the inverse problem. Now, the question is what should be

used as a network prediction? It is tempting to try to predict the tumor model

parameters directly. However, it is well known that the inverse problem is highly

ill-posed, i.e. numerous sets of dynamic parameters {Dw, ρ, T} correspond to

the same simulated cell density profile. Thus, we have two sources of prediction

error: a) coming from the fact that we learn a mapping from one to many.

Imagine we have two sets of dynamic parameters {Dw, ρ, T} and {D∗w, ρ∗, T ∗}

that result in the same tumor profile yMRI
sim . If we train a network in a supervised

fashion, every time the network predicts {D∗w, ρ∗, T ∗} for a {Dw, ρ, T}-yMRI
sim

pair (and vice-versa), it will be falsely penalized; b) the actual error that comes

from limited network capacity to accurately learn the mapping.

(neither agreement) in the community of what levels would best correspond to a real scenario.

Different works used different numbers in their studies (Le et al., 2017). To consider the most

general case, we randomly sampled the values within the ranges reported in the literature.
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Figure 2: A design of the inverse model network - one of the key elements of the Learn-

Morph-Infer pipeline. The network design represents a ResNet type architecture. It

takes as an input the binary brain tumor segmentations {yT1Gd, yFLAIR} and outputs

{µ1, µ2, icx, icy, icz}. Crucially, the network predicts {µ1, µ2} which are not the exact

forward model parameters but time-independent combinations thereof.

Clearly, the error of type (a) should negatively affect the learning perfor-

mance, as the network may be penalized for making a sensible prediction. To

circumvent this, we do not predict the parameters directly. As evident from Eqn.

1, normalization of the time parameter T in Eqn. 1 is equivalent to re-scaling

of the proliferation ρ and diffusion D coefficients (Subramanian et al., 2020b).

This means that for sets {Dw, ρ, T} and {D∗w, ρ∗, T ∗} corresponding to the same

simulated tumor, combinations of time-independent parameters µ1 =
√
DwT ,

µ2 =
√
Tρ stay constant (

√
DwT=

√
D∗wT

∗,
√
Tρ=

√
T ∗ρ∗) (Konukoglu et al.,

2010b). Hence, predicting these combinations of time-independent parameters

µ1 and µ2 relaxes the error type (a). In order to calculate back the {Dw, ρ, T},

we introduce a third combination as v = 2
√
Dwρ. As it is not possible to

infer the velocity v from a single time-point observation, we set the velocity

equal to mean velocity of the used sampling range, 200 mm/year (note also

that for our purpose the choice of v is irrelevant as any tumor simulation can

be obtained with arbitrary v (Menze et al., 2011)). Given {µ1, µ2, v}, we can

calculate {Dw = µ1v
2µ2

, ρ = µ2v
2µ1

, T = 2µ2µ1

v }.

Following this reasoning, we make the network to predict five parameters:

{µ1, µ2} and {icx, icy, icz}. Note that we do not predict {ct1Gdt , cFLAIRt }, as
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we do not need the threshold parameters at further steps of the Learn-Morph-

Infer pipeline.

The inverse network design. The network we chose to learn the inverse model

represents a convolutional architecture, depicted in Fig. 2. Every convolution

in the network is followed by a rectified linear unit (ReLU) nonlinearity. The

input is passed through an initial convolution of kernel size 7, stride 2 and 64

filters (k7s2f64), downsampling the volume to 643 and increasing the number of

channels to 64. This volume of size 643 x 64 is input through four convolutional

blocks, where every convolutional block contains four convolutions of kernel size

3, stride 1, and 64 filters (i.e. number of filters is kept constant throughout

the network). A convolutional block uses a skip connection to learn a residual

mapping (He et al., 2016), with the input being added element-wise to the

output of the four convolutions. The first three convolutional blocks are followed

by a MaxPool3D layer (with parameters k2s2) to downsample the 3D volumes

by two. The last convolutional block is followed by a global average pooling

layer, shrinking the 64 3D volumes to 64 neurons that can be linked through a

fully connected (FC) layer to the output. These outputs are linearly interpolated

into the [-1, 1] range for training.

3. Results

3.1. Data and implementation details

Synthetic data. The simulated tumors used for training the network have res-

olution of 1283. The simulations were generated by randomly sampling patient-

specific parameters from the following ranges: Dw ∈ [0.0002 cm2

d , 0.015 cm2

d ],

ρ ∈ [0.002 1
d , 0.2

1
d ], T ∈ [50d, 150d], x ∈ [0.15, 0.7], y ∈ [0.2, 0.8], z ∈ [0.15, 0.7],

cT1Gd ∈ [0.5, 0.85], cFLAIR ∈ [0.05, 0.5]. The elasticity model parameters λ, µ, γ

were taken from (Subramanian et al., 2019). Tumors that are unrealistically

small or large have been discarded (based on minimum and maximum tumor

sizes of real tumors from BraTS dataset (Menze et al., 2014)). The simulations
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dataset is then divided into a training set (80000 tumors), validation set (8000

tumors) and test set (12000 tumors).

Figure 3: Qualitative comparison between the tumors inferred using the Learn-Morph-

Infer pipeline with two different network training strategies: with time-dependent

(Dw, ρ, T,x) parameters as network output, and time-independent (µ1, µ2,x) parame-

ters as output. The examples correspond to the Fisher-Kolmogorov tumor model with

MAE equal to 0.495 (within WM) and 0.496 (within GM) for time-dependent infer-

ence, and 0.048 (within WM) and 0.048 (within GM) for time-independent inference.

The first columns ”MRI segmentations” correspond to the FLAIR+T1Gd segmenta-

tion, the second one ”Inferred tumor” corresponds to the simulation inferred by the

proposed Learn-Morph-Infer pipeline, the third column ”Ground truth simulated tu-

mor” corresponds to the simulated tumor which we used for the sensitivity analysis

(see the ”Synthetic data” section for details how these test data were formed), and

the fourth ”Residual map” column is the difference between the 2nd and 3rd columns’

images.

Analogously to how we created the training data, we form synthetic test data

by thresholding a simulated tumor cgt at two levels. Then we pass the obtained
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thresholded volumes through the pipeline to infer the tumor cell distribution

cpred. Finally, we quantitatively compare the difference between cgt and cpred.

Real data. The data set of real MRI images consists of an in-house cohort of

80 patients with a newly diagnosed glioblastoma, IDH wild type as per the 2016

WHO classification of brain tumors. All patients gave written informed consent

to be part of an observational cohort. Preoperative MR images were converted

to NIfTI format. For image preprocessing (co-registration, skull stripping) and

automated tumor segmentation, we used BraTS Toolkit (Kofler et al., 2020), a

tool we developed locally and which is freely available. The average age of the

patient cohort is 60 years with a minimum of 26 and a maximum of 79 years.

The cohort is equally represented by gender.

Implementation details. For the registration between the patient and atlas

brain MRI scans, we use the Advanced Normalization Tools (ANTs) (Avants

et al., 2009). We choose a deformable SyN registration that ensures providing

both forward and inverse transformation with step-size 0.25, weight 1, and re-

gion radius for cross-correlation computation r=4. Cross-correlation is used as

a similarity metric. The optimization is performed over two resolutions with

a maximum of 50 iterations at the coarsest level, and 20 at the final level.

The tumor area on the patient scan was masked for the registration. We use

a Gaussian regularizer with a sigma of 3 operating on the similarity gradient.

These settings provided high morphing quality at relatively fast compute (∼2

minutes).

The network is initialized with He initialization as in the original ResNet

architecture (He et al., 2016), and is trained with the AdamW (Loshchilov and

Hutter, 2019) optimizer, which is a variant of the Adam optimizer (Kingma and

Ba, 2015) using decoupled weight decay. We use an initial learning rate of 6 x

10−5 which is decayed exponentially after every batch by a factor of 0.999997.

Weight decay with a factor of 0.05 is used as a regularization technique. Fur-

thermore, we train the network with a batch size of 32 and the Mean Squared

Error (MSE) loss function. All training and testing runs were executed on an

NVIDIA Quadro RTX 6000 with the PyTorch framework.
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3.2. Experiments

We perform two sets of experiments: a) on synthetic data to estimate the

accuracy of the learnable inverse model, and b) on patient MRI scans to quali-

tatively probe the transferability of the method to real data.

Experiment MAE DICE

ID
Tumor
Model

Predicted
Parameters GM WM CSF ct=0.01 ct=0.1 ct=0.8

1

FK

{Dw, ρ, T}, {x} 0.461 0.463 0.0 0.607 0.558 0.423

2 {µ1, µ2}, {x} 0.059 0.059 0.0 0.940 0.928 0.855

3 {µ1, µ2,x} 0.057 0.057 0.0 0.943 0.932 0.861

4

ME

{Dw, ρ, T}, {x} 0.089 0.087 0.059 0.846 0.807 0.737

5 {µ1, µ2}, {x} 0.059 0.057 0.054 0.877 0.841 0.772

6 {µ1, µ2,x} 0.055 0.054 0.054 0.886 0.850 0.783

Table 2: Ablation analysis on the test set (12k samples). In total, we perform 6 experiments.

First three experiments are performed for the Fisher-Kolmogorov (FK) tumor model: 1) Two

separate neural networks predicting {Dw, ρ, T} and {x = (icx, icy , icz)} , 2) Two separate

neural networks for prediction of the growth {µ1, µ2} and location {x} parameters, 3) Single

neural network predicting {µ1, µ2,x}. The last experiments 4-6 are analogous but performed

for the mass-effect (ME) model. Mean absolute error (MAE) ||csim − cgt|| in white and gray

matter and DICE score for the simulated tumor cell densities thresholded at different ct is

used for all experiments. The non-zero error in the CSF area for ME model comes from the

fact that the simulated tumor is allowed to displace the healthy tissue including the CSF. For

both FK and ME models the usage of single network predicting time-independent parameters

results in a notable increase in accuracy compared to the time-dependent counterpart.

3.3. Synthetic test

In Tab.1, for two different tumor models, we show results of the ablation

analysis, wherein we perform multiple experiments varying the neural network

input and output configurations. First, we provide empirical proof that a net-

work predicting Dw, ρ, T instead of time-independent parameter combinations

15



µ1, µ2 cannot be trained reliably. Mean absolute error, as well as DICE score,

improve significantly when the network predicts µ1, µ2 (for the ME model the

improvement is less pronounced that we attribute to a higher numerical error in

our forward solver implementation for this model). Second, we tested whether

the performance can be improved by learning two separate networks predicting

growth {µ1, µ2} and initial location parameters {x = (icx, icy, icz)}, respec-

tively. This test did not reveal an improvement compared to a single network

predicting all parameters.

Figure 4: Examples of patient-specific simulations produced using the Learn-Morph-

Infer method. The inverse model network was trained on samples from the Fisher-

Kolmogorov (3rd column) and mass effect (4th column) forward models.
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Fig. 3 qualitatively showcases the accuracy of inference using the Learn-

Morph-Infer pipeline. As discussed before, depending on the network train-

ing strategy (either predicting time-dependent Dw, ρ, T,x parameters, or time-

independent µ1, µ2,x parameters as network output), the accuracy of the final

simulated tumor notably differs. If the proposed learning with time-independent

combinations of parameters provides close to the ground truth tumor profile,

then the learning with time-dependent combinations makes the inference hardly

useful.

Finally, we also analyzed the robustness of the proposed inverse network

against the wide range of model parameters. Fig. 5 demonstrates the distri-

bution of the mean absolute error over the range of values for the parameters

µ1, µ2 pertaining to the test set. From this scatter plots, we conclude that the

network performance is stable across the ranges used for the test set.

Figure 5: Distribution of the mean absolute error over the range of values for the

parameters µ1, µ2, in 2D (left) and 3D (rights) views.

3.4. Real MRI patient data

We performed qualitative validation of the method on a large cohort of brain

tumor patients who underwent MRI testing. Binary segmentation corresponding

to the T1Gd and FLAIR modalities were used as input to the Learn-Morph-

Infer method. Fig. 4 showcases examples of inferred tumor simulations for
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various tumor grades and locations in patients’ brains. Out of 80 cases, there

were less than 10% cases in which the pipeline outputted wrong results: tumor

occupying the whole brain or absence of tumor.

To quantitatively estimate the accuracy of the proposed method, we com-

pared it with the publicly available glioma solver from (Lipkova et al., 2019).

Due to the computationally costly inference of the latter, we evaluated the per-

formance on 10 randomly chosen glioma patients. The results of the comparison

are provided in Fig. 6. For most of the cases, the overlap in terms of DICE

Figure 6: Examples of patient-specific simulations produced using the Learn-Morph-

Infer method (above) and MCMC-based glioma solver from (Lipkova et al., 2019)

(below) for the FK model. Despite of the different nature of the methods and inevitable

errors coming from the network misprediction, the DICE score for most of the cases is

around 0.8 (the DICE was computed after thresholding the tumor cell concentration

at ct = 0.01).
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is around 0.8. Note that this error includes not only the contribution from

network misprediction and registration back and forth to the brain atlas space

but likely also from just different nature of the methods (our proposed method

provides point estimates, while the glioma inverse solver by (Lipkova et al.,

2019) is a probabilistic method). A natural extension of our work to reduce the

error would be to run the sampling-based (or optimization) method in patient

space after performing inference with the proposed Learn-Morph-Infer method

but within narrow parametric ranges centered around estimates predicted by

our learnable method. Or even a simpler extension - instead of the steps ”C”

and ”D” in Fig.1, one can run the tumor solver directly in patient space with

model parameters inferred at step ”B” (such procedure would mitigate the error

coming from the mismatch between brain atlas and patient anatomy).

3.5. Computing time

The total time including registration, morphing to atlas space, inference,

tumor simulation, and morphing back to patient space is 4-7 minutes. The time

for the inverse model network’s inference is around 2 seconds for 1283 resolution.

Crucially, the inference time for the more complicated model with mass effect

stays the same as for the Fisher-Kolmogorov tumor model. This emphasizes

the key practical contribution of the proposed method in that it allows constant

time model personalization for an arbitrary tumor model complexity.

4. Conclusion

We present a learnable brain tumor model personalization methodology. We

demonstrate that it is feasible to learn an inverse model in a supervised fashion

from a data set of numerical simulations. We show that the choice of output

can crucially affect network’s performance - predicting time-independent combi-

nations of parameters notably outperforms time-dependent counterparts. Such

time-independent parametrization is not limited to the PDEs considered here,

and thus the proposed Learn-Morph-Infer pipeline can be adapted to other in-

verse problems in natural science and engineering disciplines. For the brain
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tumor growth model, the Learn-Morph-Infer pipeline provides real-time perfor-

mance of the parametric inference. Most importantly, the personalization time

is stable across tumor models of different numerical complexity. These perfor-

mance benefits pave the way for clinical testing of various mathematical tumor

descriptions on a large cohort of patients.
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