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ABSTRACT Unmanned surface vehicle (USV) has witnessed a rapid growth in the recent decade and

has been applied in various practical applications in both military and civilian domains. USVs can either

be deployed as a single unit or multiple vehicles in a fleet to conduct ocean missions. Central to the

control of USV and USV formations, path planning is the key technology that ensures the navigation safety

by generating collision free trajectories. Compared with conventional path planning algorithms, the deep

reinforcement learning (RL) based planning algorithms provides a new resolution by integrating a high-level

artificial intelligence. This work investigates the application of deep reinforcement learning algorithms for

USV and USV formation path planning with specific focus on a reliable obstacle avoidance in constrained

maritime environments. For single USV planning, with the primary aim being to calculate a shortest collision

avoiding path, the designed RL path planning algorithm is able to solve other complex issues such as

the compliance with vehicle motion constraints. The USV formation maintenance algorithm is capable of

calculating suitable paths for the formation and retain the formation shape robustly or vary shapes where

necessary, which is promising to assist with the navigation in environments with cluttered obstacles. The

developed three sets of algorithms are validated and tested in computer-based simulations and practical

maritime environments extracted from real harbour areas in the UK.

INDEX TERMS Deep reinforcement learning, motion planning, multi-agent systems, unmanned surface

vehicles (USVs), USV formations.

I. INTRODUCTION

By witnessing the advance of technologies in robotics and

autonomous systems (RAS) in recent decades, an growing

interest has been cast on the development of unmanned sur-

face vehicles (USVs) to support complex maritime missions.

The deployment of USVs in both the civilian (such as envi-

ronment monitoring, seabed mapping and research & res-

cue missions) and military (sea patrol and coastal guarding)

domains has well demonstrated the benefits of using USVs

including mitigated risks to personnel and increased mission

efficiencies. However, due to the limited payload capacity

and short endurance times, the capability of single USV is

largely constrained making it necessary to seek alternative
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approach when conducting large-scale and complex ocean

missions. As mentioned in [1] and [2], a promising approach

to address these issues is to deploy multiple USVs as a for-

mation fleet. By operating in a cooperative and collaborative

manner, USV formations can provide appealing advantages

such as wide mission area, improved system robustness and

increased fault-tolerant resilience.

To support the operation of USV formations, a hierarchical

structure has been proposed in [1] (shown in Fig. 1), where

three different layers (Task management layer, Path planning

layer and Task execution layer) are working interactively and

seamlessly. Among these layers, the Path planning layer plays

a critical role by proving key guidance information for forma-

tions. Optimised trajectories are generated by path planning

algorithms within the Path planning layer to ensure USVs

can effectively execute missions with guaranteed safety.
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FIGURE 1. The hierarchical structure for USV formation [1].

Conventional path planning algorithms such as A* [3], arti-

ficial potential field [4] and fast marching method [5] have

been successfully employed to calculate trajectories. How-

ever, it should be noted that all these methodologies adopt

a repetitive strategy, where the environmental map needs to

be continuously constructed and fed into the path planning

algorithms to search for trajectories, hindering their adoption

for real-time application. Also, when using conventional path

planning algorithms for USV formations, such as in [1],

the formation behaviour is achieved in a complex manner by

using a leader-follower strategy, i.e, even though the final tar-

get remains unchanged for the leader USV, sub-targets have

to be constantly calculated for follower USVs by adhering

to complex mathematical relationships without taking the

dynamic characteristics of USVs into account. Such a strat-

egy makes the generated trajectories unsuitable for USVs to

track in practical application, albeit some interesting features

such as flexible formation shapes can be achieved.

In recent decades, the rapid advancement of artificial intel-

ligence, especially reinforcement learning (RL), has opened

new possibilities to solving path planning problems. As one

of the three machine learning paradigms, the essence of

RL is to train an agent to take an optimised action within

an environment by maximising some notion of cumulative

reward. Popular RL training methods include conventional

training methods such as Q-learning, SARSA and artificial

neural networks (ANNs) integrated training methods includ-

ing Deep Q-Network (DQN), Deep Deterministic Policy

Gradient (DDPG). Note that Q-learning trains an agent by

maintaining a Q-table storing the training data and such a

strategy falters with the increasing numbers of actions/states;

whereas, ANN-based training methods such as DQN can

be used in the scenario with high-dimensional state/action

spaces. By adopting a trial-and-error training approach, dif-

fering to other two machine learning methods (supervised

learning and unsupervised learning), RL does not require any

human knowledge or pre-set rules, which enables it to achieve

a high-level of human intelligence and become an appealing

approach for USV path planning [6].

Such a human-level intelligence has been further amplified

by several leading research undertaken by DeepMind over

the last 5 years. For example, the concept of deep reinforce-

ment learning (DRL) was first proposed in ‘Playing Atari

with Deep Reinforcement Learning’ [7], where the combi-

nation of deep neural networks and reinforcement learning

has been used to learn control strategies directly from high-

dimensional input, i.e. an image data with raw pixels. Simi-

larly, DRLwas used to design and train a group of deep neural

networks to plan the game of GO to compete with human

players and achieve astonishing performances [8].

In terms of the application of reinforcement learning for

USVs, themajority of research has been conducted on design-

ing controllers for path tracking. Reference [9] designed a

DRL based controller using deep deterministic policy gradi-

ent (DDPG) to achieve a self-learning capability to robustly

follow a guidance trajectory. Reference [10] proposed an end-

to-end DRL control strategy based upon Actor-Critic scheme

to perform trajectory tracking in complex maritime envi-

ronments. Ship’s hydrodynamics as well as environmental

influences such as wind and currents have been taken into

consideration. A DRL based model identification method

was proposed in [11]. By successfully capturing higher-order

dynamic behaviours, the proposed deep learning algorithm

is able to significantly reduce the motion prediction errors

and greatly promote the robustness of the control of USVs.

However, the application of DRL in the path planning for

USVs has not been addressed.

In the field of reinforcement learning based path planning

for USVs, limited work has been carried out. Reference [12]

first proposed to use reinforcement learning (Q-learning)

to generate an optimised trajectory for USVs in maritime

environments subject to varying ocean currents and winds.

The nonholonomic motion constraints of USVs have been

considered and an additional path smoother was incorpo-

rated to improve the smoothness of trajectory. Reference [6]

developed a knowledge-free path planning algorithm based

upon Q-learning method for autonomous ships. By integrat-

ing the Nomoto ship model into Q-learning training process,

a dynamics complaint trajectory can be generated in confined

waterways. It should be noted that Q-learning based path

planning algorithms can only be adopted in the case with

finite (small) number of states, and its performance will be

largely compromised in a continues state space, which is

always the case for USV navigation. Reference [13] address
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such an issue by employing DQN strategy for USV path

planning with a special emphasis on obstacle avoidance.

By summarising these work it can be concluded that

despite the high-level intelligence provided by reinforcement

learning (RL), using RL to assist with path planning for

USVs is still in its infancy and requires further investigation.

Significant research gaps exist in the following aspects:
• RL based USV path planning needs to be carried out by

addressingmore practical constraints. At present, major-

ity of work are based upon over-simplified assumptions

in risk assessment and ship dynamic constraints, which

largely hinders the deployment of algorithms on practi-

cal platforms.

• Initial studies have been undertaken to investigate

USV formation path planning. However, these meth-

ods require a holistic navigation environment modelling

and complex mathematical calculations for target point

assignment. RL provides a new solution to formation

path planning by working in a model-free manner that

does not require sophisticated modelling. Presently,

no RL based algorithms have been developed for USV

formation path planning, which evidently needs more

investigation.

• Most of the present studies only validate the algorithms

in a simple 2D grid map with obstacles been modelled

with regular shapes and the performance of RL based

path planning in practical maritime environments needs

to be investigated.
Central to the RL problem are agents, environments and

their interactions, which can be mathematically modelled by

Markov decision process (MDP) (details of MDP will be

described in the next section) and it can be argued that the

success of RL training is largely underpinned by a proper

construction of MDP. Therefore, in this paper, to resolve

the above-mentioned issues, new deep reinforcement learn-

ing based path planning algorithms have been proposed and

designed for single USV and USV formations applications.

New MDPs are constructed for single USV and USV forma-

tion scenarios and the DQN algorithm is used for RL training.

Specifically, for USV formation path planning, crucial forma-

tion features such as formation maintenance and formation

shape variation have been considered and achieved by design-

ing new reward functions within the USV formation MDP.

The designed algorithms have not only been tested in self-

constructed simulation environments but practical maritime

environments extracted from real harbour areas in the UK.

The rest of the paper is organised as follows. Section 2

specifically introduces fundamentals in reinforcement learn-

ing including MDP and key training algorithms such as

Q-learning. In Section 3, the detailed algorithms for single

USV path planning and USV formation path planning is

introduced, which includes the newly constructed MDPs and

the DQN algorithm. The proposed algorithms and methods

are verified by simulations in Section 4. Section 5 concludes

the paper and discusses the future work.

II. FUNDAMENTALS IN REINFORCEMENT LEARNING

In this section, the rationale of reinforcement learning (RL)

will be discussed. The Markov Decision Process (MDP)

which is normally used for reinforcement environment mod-

elling will be first introduced and then followed by the discus-

sion on one of the fundamental RL algorithms - Q-learning

algorithm.

A. MARKOV DECISION PROCESS

AMarkovDecision Process (MDP) describes an environment

for learning, in which a goal can be learned via continuous

interactions between an agent and the environment. More

specifically, an MDP can be represented using a 4-element

tuple:

M = [s, a, p, r] (1)

where s = s1, s2, ..., st , st+1 represents the dynamic envi-

ronment with a finite set of states with st denoting the state

at time t . a = a1, a2, ..., at , at+1 represents the actions

executed by an agent and at denotes the taken action at

time t . r is the reward function with γ ∈ [0, 1] being

the discount factor which determines the present value of

future rewards with discounting. p is the transition probability

function expressed as:

pass′ = P
[

st+1 = s′|st = s, at = a
]

(2)

The interaction between an agent and an environment is

shown in Fig. 2. The agent, i.e., a learner and decision maker,

selects an action at with observed environment state st ; the

environment, in response to the actions taken by the agent,

updates its state to st+1 and returns an immediate rt+1 to the

agent [14].

FIGURE 2. The agent-environment MDP interaction framework.

B. Q-LEARNING

Q-learning (pesudocode shown in Algorithm 1), proposed

by [15], is one of the early breakthroughs in reinforcement

learning [14]. The aim of Q-learning is to find an optimal

control policy π∗ for a given MDP. π∗ maximises the action-

value function:

Q∗(s, a) = max
π

E

[

∞
∑

k=0

γ krt+k |st = s, at = a, π

]

(3)

Q-learning is an off-policy approach solving MDPs, and

directly approximates the action-value function via:

Q(s, a)← Q(s, a)+ α[r + γ max
a
Q(s′, a)− Q(s, a)] (4)
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Algorithm 1 Q-Learning Pseudo Code

Initialise Q(s, a) arbitrarily except that

Q(terminal, ·) = 0

foreach episode do
Initialise initial state s

foreach step of episode do
Choose a with s using policy (e.g. ε-greedy)

derived from Q

Take action a, observe r , s′

Q(s, a)←

Q(s, a)+ α[r + γ maxa Q(s
′, a)− Q(s, a)]

s← s′

Break if s is terminal
end foreach

end foreach

where α ∈ [0, 1] is the learning rate. Note that Q-learning

algorithm needs to initialise a Q table to record the expec-

tation of action-value function making it only suitable for

dealing with simple situations with small action and state

space such as maze problems. However, majority of real-

world problems need a huge number of states and action

spaces, making it impossible to build a Q table to contain all

the states and actions.

III. DEEP REINFORCEMENT LEARNING BASED

COOPERATIVE MOTION PLANNING FOR

USVS AND USV FORMATIONS

In this section the designed MDPs for single USV forma-

tion USV formation path planning will be described after

the introduction of the kinematic motion of USVs which

predominately regulates the state transition within the MDP.

Also, the deep Q network will be explained and shows how

the defined MDPs are trained in a deep learning manner.

A. THE KINEMATIC MOTION OF USVS

The basic kinematic motion equations of USVs will be first

explained. Consider 〈e〉 is the inertial coordinate frame and

〈b〉 is the body fixed coordinate frame. Let the state of the

USV relative to 〈e〉 be denoted as η =
[

x y φ
]T
, where x

and y represent the position coordinates of the USV in the

planning space and φ is the heading direction. The surge

and yaw motion of the USV is expressed with respect to

〈b〉 and has the form of v =
[

u v w
]T
, where u and v are

surge and sway motion and w is the yaw rate. The kinematic

motions of the USV can therefore be written as:

η̇ = Jv (5)

where

J = J(φ) =





cosφ − sinφ 0

sinφ cosφ 0

0 0 1



 (6)

The kinematic motion model of USV will be filly incorpo-

rated into the designed Markov decision processes (MDPs)

for USV path planning.

B. MDP FOR SINGLE USV PATH PLANNING

1) STATE SPACE

For the MDP for single USV path planning, the state space is

defined to include USV’s position coordinate (x, y) and head-

ing direction θ . As shown in Fig. 3, where the reinforcement

learning (RL) training is carried out in an environment having

the dimension of 500×500 pixels, any state with the position

coordinate exceeding the range of [0, 500] will be regarded as

invalid and any movement into such a state will be penalised.

FIGURE 3. Illustration of the state space of a single USV in Cartesian
coordinate frame.

2) ACTION SPACE

By considering the motion characteristics of USVs, in this

paper, it is assumedUSVswill maintain its surge speed during

the navigation and actions taken by USVs are the angular

velocities which will lead to changes in vehicle’s heading

directions. Different from most of existing work in using RL

for USV path planning, where the action space is defined to

be consisting of 4 discrete actions, i.e., up, down, left, right

([16], [17]), a new action space with refined discrete actions

is defined in this work as:

A =
[

a1 a2 ... a7 ... a12 a13
]

(7)

where the action space A is a vector containing 13 elements

with the value ranging from −60◦(a1) to 60◦(a13) and with

increments of 10◦. Such a design is largely complaint with the

dynamics characteristics of USVs, i.e. a USV can only make

a turning within certain range during one control episode [5].

It should be noted that the range of [−60◦, 60◦] is set up based

upon our previous experiments conducted on a practical USV

platform, SpringerUSV ( [18]) and this value can be changed

when the algorithms are used on other platforms. According

to the defined state and action spaces, the state transition with

a given action ai by adhering to the kinematics of a USV can
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FIGURE 4. The schematic diagram for collision avoiding reward function. (a) A situation when no collision happens. (b) A collision happens in the next
state. (c) A collision happens along the route.

be calculated as:

x ′ = x + x cosφ′

y′ = y+ y sinφ′

φ′ = φ + ai (8)

where
[

x ′ y′ φ′
]

is the state in next step,
[

x y φ
]

is the state

in current step and ai is the chosen action in current step.

3) REWARD FUNCTIONS

A reward function in reinforcement learning (RL) should be

designed to enforce an agent to learn a desired behaviour

and complete defined tasks as expected. For single USV

navigation, in order to generate the shortest path reaching

goal areas as well as prevent any collisions en route, a set

of sub-reward functions have been defined in this work and

the total reward returned by the environment is the sum of all

sub-rewards.

a: TERMINAL REWARD FUNCTION (rterminal )

The terminal reward is designed to encourage USVs to reach

the goal area and will only be activated when a USVmanages

to reach this area. A large positive value should be applied to

rterminal as the task of reaching the goal area is one of the most

critical criteria of completing a mission.

b: COLLISION AVOIDING REWARD FUNCTION (robstacle)

The collision avoiding reward function is designed to prevent

any collisions. During the RL training process, once a col-

lision occurs between a USV and an obstacle, the collision

avoiding function will return a large negative reward to ‘pun-

ish’ such an unfavoured action in current state and ‘suggest’

the vessel not to take this action if similar scenario occurs in

future training stages. The collision avoiding reward function

has a strong correlation with the state of vessel and robstacle

can be considered as assigning negative rewards for some

specific actions in following categories:

• Normal Condition: If no collision happens for the next

state (Fig. 4 (a)), no negative reward will be triggered.

• Collision in Next State: If it is detected that by taking

the selected action a collision would happen in the next

state (Fig. 4 (b)), a large negative reward robstacle will be

assigned in this condition to discourage taking current

action at such a state.

• Collision Along the Route: In some cases, a collision

will not happen in the next state of vessel (the vessel’s

coordinate will not fall into the obstacle area) but along

the trajectory during the transition from current state

to the next state (Fig. 4 (c)). Such a situation should

be well cleared. The path by taking each action will

be checked to avoid such a condition happening. If an

obstacle appears in the path, a large negative reward

robstacle will be returned as well.

c: DIRECTION CHANGING REWARD FUNCTION (rφ)

it aims to ensure the adjustment of vessels’ headings in a

desired manner with two underlying sub-tasks defined as:

1) a reward (r1φ) is designed to constrain the heading change

incurred by taking each action within a small range such that

a smooth heading transition can be achieved and 2) a reward

(rφ0
) is designed to encourages USVs arriving at the destina-

tion area with an ideal reference direction (φ0). The specific

reward functions are as follows:

rφ = r1φ + rφ0

r1φ = −λ1φ |φ
′ − φ|

rφ0
= −λφ0

|φ′ − φ0| (9)

where φ′ and φ are heading directions in next and current

states, respectively. φ0 is the desired heading for USVs to

165266 VOLUME 7, 2019



X. Zhou et al.: Learn to Navigate: Cooperative Path Planning for USVs Using DRL

FIGURE 5. The schematic diagram of distance reward function.

reach the destination. λφ0
> 0 and λ1φ > 0 are the direction

reward coefficients for rφ0
and r1φ respectively.

d: DISTANCE REWARD FUNCTION (rdistance)

it trains USVs to find the shortest path to destination. Since

such a task is one of the most important components for path

planning, in order to enhance the influence of destination,

the distance reward function has been designed in a way that

the closer the distance between a USV and the destination,

the less punishment would be imposed. The distance reward

function can be expressed as:

rdistance = −λdistance

√

(

x − xgoal
)2
+

(

y− ygoal
)2

(10)

where xgoal and ygoal represent the coordinate of the target

point; λdistance is a constant which defines the importance of

this reward. Note that differing to most of existing work of

RL based USV path planning ( [6] and [16]), to increase the

training efficiency, arriving at a surrounding area of the goal

point (the yellow square area in Fig. 5) instead of the exact

location is regarded as accomplishing the mission.

e: SURROUNDING OBSTACLE REWARD FUNCTION (rsur )

This reward has been designed to provide an enhanced safety

for USV navigation. In a typical littoral environment, not only

obstacles but the shallow water areas surrounding obstacles

are not permissible for travelling and USVs should keep a

well distance away to these areas. Therefore, to resolve such

an issue, a safety area has been constructed for a USV and any

movement that will lead to the violation to safety areas will

be penalised. The safety area in this work is designed to be a

square area with the USV been centred and the length of area

being 21 pixels. If an obstacle occurs in the safety area, a pun-

ishment will be assigned to the agent. As shown in Fig. 6 (a),

when there is no obstacle appearing in the area (represented as

the region of interest (ROI)), the surrounding obstacle reward

(rsur ) would be assigned as 0; whereas, in Fig. 6 (b) although

collisions would not happen in the next state, the obstacle

occurs in the safety area which would cause a potential threat,

hence a negative reward rsur will be returned as a punishment.

The value of rsur will be configured according to specific

application scenarios.

C. MDP FOR COOPERATIVE USV FORMATION

PATH PLANNING

1) STATE SPACE

In this work, a typical formation configuration consisting

of three USVs is considered as the research object and two

critical formation problems, i.e. the formation maintenance

and formation variations, have been properly investigated.

To facilitate the control of USV formations, the leader-

follower formation control strategy has been adopted with

one USV been assigned as the leader USV and the other two

as the followers. A centralised coordination scheme is used

for training the USV formations and a state space for 3-USV

formation system consists of 9 features including the position

(x, y) and heading direction φ for each vessel (Fig. 7) can be

defined as:

S =





x1 y1 φ1

x2 y2 φ2

x3 y3 φ3



 (11)

where s1 =
[

x1 y1 φ1

]

is the leader USV’s state, and

s2 =
[

x2 y2 φ2

]

and s3 =
[

x3 y3 φ3

]

are the states of two

follower USVs.

2) ACTION SPACE

It is assumed that each USV can take three possible actions

from an action space ai ∈ [−10◦, 0◦, 10◦]. Different from

single USV path planning, USV formation algorithm controls

three vessels simultaneously and the resulting next state of the

formation system can be calculated as:

s′ =





x1 cos (φ1 + a1) y1 sin (φ1 + a1) φ1 + a1
x2 cos (φ2 + a2) y2 sin (φ2 + a2) φ2 + a2
x3 cos (φ3 + a3) y3 sin (φ3 + a3) φ3 + a3



 (12)

3) REWARD FUNCTIONS

As an extension of the single USV path planning prob-

lem, the majority of reward functions for formation systems

are similar to single planning case excepting the rewards

designed for formation behaviours, i.e. formation mainte-

nance and variations. Specific rewards are illustrated as:

Terminal reward function (rterminal): when the leader

USV reaches the destination area, current training episode

terminates and the environment will returns a positive reward

rterminal to the agent.

Collision avoiding reward function (robstacle): similar

to single USV path planning scenario, this function aims

to impose a large negative reward to any action leading to

potential collisions. Differences are for formation algorithm

the collision avoiding reward is be superimposed, i.e. if one

vessel hits the obstacle, a large negative punishment robstacle
would be assigned; whereas, if collisions are detected for two

vessels in the same time step, a punishment of 2robstacle would

be assigned.
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FIGURE 6. The schematic diagram of surrounding reward function. (a) A condition when no obstacle appears in the safety area. (b) A condition
when obstacle appears in the safety area.

FIGURE 7. Illustration of the state space of a USV formation in Cartesian
coordinate frame.

Distance reward function (r3distance): for USV forma-

tions, as USVs are travelling as a group with relative close

distances to each other, it is regarded as successfully reaching

at the target point as long as the leader USV arrives. There-

fore, the distance reward function is designed to encourage

the leader USV to find the shortest path to destination and

the reward function can be expressed as:

r3distance = −λ3distance
(

|x1 − xgoal | + |y1 − ygoal |
)

(13)

where λ3distance is a constant which aims to define the impor-

tance of this reward and (x1, y1) is the position of leader USV

and (xgoal, ygoal) is the coordinate of goal point.

FIGURE 8. Schematic of formation distance reward function.

Formation distance reward function (rfd ): The forma-

tion shape maintenance is one of essential tasks and in this

work a triangular shape is selected as the desired formation

to be retained. Note that other shapes can also be achieved

by adhering to the proposed algorithm in this paper. Based

upon the leader-follower structure, i.e. followers need to

keep a desired distance to the leader so as to maintain the

formation shape, a schematic of formation distance reward

function to control the distances between pair of USVs as

illustrated in Fig. 8. The range for distance 1 and distance 2

denote the distances between the leader USV and follower 1

and follower 1, respectively; whereas, distance 3 denotes
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the distance between two followers. The specific formation

distance reward is calculated as:

During each training step, distances between each pair of

USVs are calculated and compared against if all the distances

are within the range, no punishment would be given to the

agent. However, if a distance between two vessels is out of

range, a negative reward rfc would be assigned to the agent as

a punishment. The formation distance reward is stackable:

rfd = rdis1 + rdis2 + rdis3

rdis1 =

{

0

√

(x − x1)
2 + (y− y1)

2 ∈ D1

rfd else

rdis2 =

{

0

√

(x − x2)
2 + (y− y2)

2 ∈ D2

rfd else

rdis3 =

{

0

√

(x2 − x1)
2 + (y2 − y1)

2 ∈ D3

rfd else
(14)

where rdis1, rdis2 and rdis3 represents values of reward func-

tion for distance 1, distance 2 and distance 3, respectively;

(x, y); (x1, y1); and (x2, y2) are position states of leading ship,

follower 1 and follower 2 respectively; d1, d2 and d3 are the

desired ranges for Distance 1, Distance 2 and Distance 3,

respectively. Note that to facilitate the adoption of a flexible

formation shape, d1, d2 and d3 has been configured with the

relationship of d1 = d2 < d3 so that two followers are

allowed to travel with a slightly larger distance. rfd is the

negative reward assigned to an USV if the calculated relative

distance is out of range.

Formation position reward function (rfp): it aims to

adjust the relative positions of three USVs while maintaining

the triangular formation. In most instances, the sole control of

distances between each USV is effective enough to maintain

the shape. For example, two followers may swap their posi-

tions during voyage without any further constraints which

could an internal collision. Similarly, two follower USVs can

possibly overtake the leader USV which does not satisfy the

underlying requirement of leader-follower structure. To solve

these issues, it is important to consider the relative positions

between each USV and the formation position reward func-

tion has therefore been contrived by taking three criterion

into consideration. Considering the general structure of the

formation shown in Fig. 8, it is first assumed that follower

2 should stay above the leader as well as follower 1 in the

coordinate frame. In addition, the leader USV should be on

the right side of follower 1. The reward rfp is defined in a

stackable way and can be expressed as:

rfp = rpos1 + rpos2 + rpos3

rpos1 =

{

0 y1 < y

rfp else

rpos2 =

{

0 y1 < y2

rfp else

rpos2 =

{

0 x1 < x

rfp else
(15)

where rpos1, rpos2 and rpos3 denote individual reward func-

tion for three qualifications, respectively; rfp is the negative

reward assigned to the agent.

Action reward function (raction): this reward has been

proposed to encourage USVs within the formation to choose

unified and coordinated actions to reinforce the formation

shape maintenance. If the taken action would lead to a dif-

ferent heading direction, a negative reward (raction) will be

applied to the agent as a punishment. Note that such a reward

function will not be employed when a flexible formation

shape is considered.

To summarise the proposed reward functions for USV

formation path planning, two difference cases have been

specifically considered:

• Formation maintenance: six rewards (rterminal , robstacle,

r3distance, rfd , raction and rfp) have been designed. With

rterminal being the only reward having a positive value,

the rest rewards have different negative values according

to the their importance for a path planning task and the

absolute values of these rewards have the relationship of:

|robstacle| > |raction| > |rfd | > |rfp| > |r3distance| (16)

• Formation variations: five rewards (rterminal , robstacle,

r3distance, rfd and rfp) will be used and the absolute values

of these rewards is ranked as:

|robstacle| > |rfd | > |rfp| > |r3distance| (17)

D. DEEP Q NETWORK

The designed USV single and formation path planningMDPs

are trained using deep Q Network (DQN) [19]. Similar to

Q-learning, DQN (Algorithm 2) is also an off-policy algo-

rithm. As shown in Fig. 9, the main components of DQN

algorithm are the environment, Q-network with parameters θ ,

target network with parameters θ−, loss function and replay

memory. Note that the two neural networks share the same

structure [19]. There are three improvements in DQN algo-

rithm compared to tabular Q-learning. First, DQN uses deep

neural networks to approximate the action-value function.

Therefore, DQN algorithm can be applied to the large or con-

tinuous state space problemswithout the need of Q table. Sec-

ond, DQN utilises experience replay to enhance the learning

process. The main role of experience replay is to overcome

the problem of correlated data and non-stationary distribution

of empirical data by training randomly from previous state

transitions (experiences). Experience replay has the advan-

tages of high data utilization because individual samples can

be usedmultiple times. In addition, the experience replaywith

mini-batches breaks the correlation of consecutive samples

which can lead to large variance in network parameters.

Third, DQN employs two networks with a target network

providing fixed targets. The parameters θ in Q-network keep

updating in each time step during the training process, while
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FIGURE 9. Schematic of Deep Q network.

θ− update periodically. Such an update strategy improves the

training stability.

At each training step, the target Q network outputs an

approximate target action value using parameters θ− from

some previous iterations, with given states:

zi = ri + γ max
a′

Q(s′, a′, θ−) (18)

The loss function can be considered as the difference between

the true action value and target action value which is

expressed as:

Li(θi) = Es,a,r

[

(zi − Q(s, a; θ ))
2
]

(19)

The aim of training is to minimize the loss function according

to the following gradient with respect to the parameters θi of

the Q-network at iteration i:

∇θiLi(θi) = Es,a,r

[

(zi − Q(s, a; θi))∇θiQ(s, a; θi)
]

(20)

The loss function can be optimised via stochastic gradient

descents by sampling mini-batches with capacity of N from

the replay memory D. Note that this approach is off-policy,

i.e. the agent acts greedily following ε-greedy policies when

choosing next actions:

at =







argmax
a

Qπ (st , a), with probability ε

random action at , otherwise
(21)

With action at taken by the agent, the environment returns

reward rt and next system state st+1 as described in Fig. 9.

Such a transition (st , at , rt , st+1) will then be stored into the

replay memory D. Note that new transitions override old

experiences when the memory is full.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section provides detailed analyse and discussions on the

simulation results of the proposed algorithms. Simulations

are conducted to validate the capability of algorithms in

Algorithm 2 Deep Q-Network Pseudo Code

Initialise the memory replay D to with capacity N

Initialise the Q network with random parameters θ

Initialise the Q̂ target network with parameters

θ− = θ

Set maximum step number stepmax
foreach episode do

Initialise initial state s

foreach step of episode do
With probability ε choose random action at
Otherwise select at = argmaxa Q(s, a; θ )

Execute at , observe the reward rt and the next

state st+1
Store (st , at , rt , st+1) into replay memory D

Sample random mini-batch of transition

(sj, aj, rj, sj+1) from D

Set

zj =

{

rj, if episode terminates at step j+ 1

rj + γ max
a′

Q̂
(

sj+1, a
′; θ−

)

, otherwise

Update θ via a gradient descent step on loss

function
(

zj − Q
(

sj, aj; θ
))2

Every C steps Q̂← Q
end foreach

end foreach

three aspects: 1) single USV path planning in dealing with

collision avoidance, 2) USV formation path planning with

the emphasis on maintaining a formation shape, 3) USV

formation path planning with the emphasis on formation

variations. All simulations are carried in a 2D binary map

with the dimension of 500 pixels × 500 pixels. Furthermore,

two practical maritime environments near Portsmouth har-

bour and Plymouth harbour, UK, are adopted to verify the

algorithms’ performance in dealing with practical navigation

issues.

The algorithms are coded in Python with the deep neural

networks built and trained using TensorFlow v1.14. For all

the experiments carried out in this study, the Q networks are

designed with two fully connected hidden layers. The input

layer and each hidden layer are applied with Rectified Linear

Unit (ReLU) activation functions. The Q networks are trained

with the RMSProp optimiser [20]. Simulations are run on a

workstation with Intel Xeon E5-2683 V3 2.4 GHz processor.

To provide a comprehensive evaluation and discussion on

the simulation results, specific training settings together with

training processes will be first introduced, followed by the

discussions on the generated trajectories using proposed deep

reinforcement learning algorithms.

The DQN agent training process requires careful balanc-

ing between exploration and exploitation. With a suitable

level of exploration, the agent can gain adequate experience

which would provide information to make the best decisions

with given states by exploitation. In the USV path planning

problem, the exploration is driven by the ε-greedy policy.
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FIGURE 10. The simulation results for USV motion path planning algorithm. (a) A simple navigation map with the velocity of 30 pixels per step.
(b) A map with intermediate difficulty with the velocity of 30 pixels per step. (c) A map with complex environment with the velocity of 30 pixels per step.
(d) A map with complex environment with the velocity of 50 pixels per step.

At each training step, with probability ε, the agent takes a

random maneuvering action from the action space; otherwise

an action with maximum action-value function will be taken.

The ε of the ε-greedy policy is fixed at 0.1 in all experiments.

The learning rates are fine tuned for different simulations

scenarios.

A. SINGLE USV PATH PLANNING

1) TRAINING SETTINGS

In this section, two speed magnitudes, i.e., 30 and 50 pixels

per time step, have been simulated to test the algorithm’s

capability in collision avoidance at different speeds. Table 1

depicts the hyper parameter and neural network (NN) settings

for the single USV path planning algorithm. For the speed

of 30 pixels per step, it would require more time steps to reach

the target area; the agent would inevitably encounter more

intermediate states. Therefore, the Q-network’s first hidden

layer neurons have been increased from 8 to 12 to handle

the increased input complexity. However, after trial and error,

a larger learning rate of 0.03 is chosen for the lower speed

scenario, while it is 0.007 for the speed of 50 pixels per step.

A lower speed means the USV can be controlled relatively
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TABLE 1. Agent training settings for single USV path planning.

easier to avoid collisions; therefore, a larger learning rate can

be applied to gain useful experience. Other training parameter

settings are listed in Table 1 as well. All simulations were

terminated after 4× 105 episodes of training.

2) RESULTS AND ANALYSIS

The trained deep Q network outputs heading direction control

actions by observing the USV state inputs. Fig. 10 presents

the trajectories of a USV controlled by the DQN polices.

Note that the speed magnitude is 30 pixels for Fig. 10 (a)-(c)

and 50 pixels for Fig. 10 (d), respectively. In Fig. 10, obstacles

are represented by irregular areas in black and the black lines

display the optimal trajectory calculated by the algorithm.

Red dots represent the locations of USV after each action has

been executed with the goal point in a red square. A large

yellow squared area in the bottom right part of the simulation

environment demonstrates the dimension of a destination

area, and any movement steps into this area will be regarded

as successfully reaching the goal point.

In Fig. 10 (a)-(b), relatively simple simulation environ-

ments have been adopted with one and three obstacles ran-

domly incorporated. It can be observed that trajectories with

short distance and well clearance to obstacles can be gen-

erated in both cases. More importantly, although according

to the defined action space the heading of USV can change

from −60◦ to 60◦, the direction changing reward function

(rφ) is able to constrain the heading changes within a small

margin which effectively increases the smoothness of trajec-

tories. When the trained deep Q network is applied in a more

complex environment (shown in Fig. 10 (c)), a collision free

trajectory can also be successfully generated and well reaches

the goal point. Within the same environment, when the speed

of USV is increased to 50 pixels, a shorter trajectory (shown

in Fig. 10 (d)) will be produced by the deep Q network. Such

a decrease in total distance is achieved upon the sacrifice of

safety where the trajectory in Fig. 10 (d) stays closer to certain

obstacles. Another advantage of using larger speed is that the

training time can be effectively reduced because less timewill

be spent on completing one training episode. Therefore, it can

be recommended that large speed is suitable for generating

a global trajectory, whereas small speed is better for local

planning.

In terms of the specific training process, Fig. 11 shows the

moving average episode reward with a moving windows size

of 1000 episodes for the scenario presented in Fig. 10(c). Note

that similar reward trends have been observed for the other

FIGURE 11. Single USV path planning training process of Fig. 10 (c):
moving average episode reward with a moving window size
of 1000 episodes.

three maps for single USV path planning. The DQN agent

initially learned a policy leading to a mean episode reward

of −132 (around 0.4× 104 episode), suggesting the agent

has gained negative experiences to a maximum degree. From

this point onward, the agent managed to improve the USV

control policy gradually, and the mean episode reward con-

verged to approximately −10 after about 3× 104 episodes

of training. The training was terminated at 4× 104 episodes.

Similar training processes have been observed in the other

three experiments carried out in this section.

B. USV FORMATION PATH PLANNING WITH

FORMATION SHAPE MAINTENANCE

Simulations in this section aims to validate the algorithm’s

capability of planning trajectories for USV formations whilst

maintaining a predefined formation shape. In general, a for-

mation shape can be well retained if the same actions can be

taken by each USV at every time step. Therefore, to fully

test the algorithm’s performances, various simulation envi-

ronments with varying number of obstacles have been used.

Note that to simplify the training process, the same start and

goal points are used in all cases.

TABLE 2. Agent training parameters for USV fixed shape formation.

1) TRAINING SETTINGS

Table 2 details the agent training settings for the USV forma-

tion path planning with fixed shapes. The USV speed is set at
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FIGURE 12. The simulation results for USV formation path planning algorithm with formation shape maintenance capability.
(a) Simulation results in simple environment with one obstacle. (b) Simulation results in three obstacles environment. (c) Simulation
results in relative complex environment with five obstacles. (d) Failed simulation results in difficult environment with dense distribution
of obstacles.

50 pixels per time step to investigate the algorithm’s capabil-

ity of maintaining a fixed shape at high speed. As the input

features to the Q-network is increased from 3 to 9 (3 USVs,

each has 3 state features), the numbers of neurons in each

layer are increased to 20 (hidden layer 1) and 27 (hidden layer

2) respectively. It is worth noting that the training episode

number has increased from 4× 104 to 1× 105 due to the

increased state dimension and number of actions. Such an

increased training episode number ensures that the agents

can find reasonable policies. The replay memory has been

increased to 200 000. The Q-target network was trained with

RMSProp optimiser, and the learning rate was fixed at 0.007

for all the fixed shape formation training. Other important

parameter settings are also listed in Table 2.

2) RESULTS AND ANALYSIS

Simulation results with the generated trajectories are pre-

sented in Fig. 12. Similar to results in single USV path

planning, obstacles are presented as irregular areas in black.

The leader USV is displayed as a red dot whereas the two

followers are coloured in blue and yellow, respectively. The

destination area is also shown as the yellow area in the bottom

right part in the environment. A successful mission will be
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achieved when the leader USV arrives at the destination area.

Fig. 12 (a)-(c) clearly show that collision free trajectories can

be generated for the USV formation and the triangular shape

can be well maintained throughout the trajectory. It should

be noted that the generated trajectories may not be optimised

with regard to the total distance, especially in Fig. 12 (a),

where a curved path is generated before the formation reaches

the destination area. This is mainly due to the strict require-

ment on retaining the formation shape as any short-cut may

break the triangular shape.

TABLE 3. Actions taken by the USV formation for the simulation
in Fig. 12(c).

The formation maintainability can be further quantitatively

proved by recording the actions taken by the USV formation

at each time step. As shown in Table 3, the same actions can

be also selected by eachUSVwithin the formationwhich lead

to an unified and coordinated maneuver. However, it should

also be noted that such a coordinated behaviour may be

invalid. Take Fig. 12 (d) for example, in an environment

with densely located obstacles, the algorithm fails to find

safe trajectories, causing the leader USV to collide with an

obstacle en route. To address this issue, it therefore becomes

important to adopt a new algorithm which enables a flexible

formation shape to accommodate complex environments.

Fig. 13 shows the moving average episode reward with a

moving window size of 1000 episodes for the map shown

in Fig. 12 (c). Due to the increased space and action dimen-

sions, it requires much more training episodes for the agent

to converge to a policy with reasonable performance. The

training was terminated at episode 1× 105. Nevertheless, for

all the four maps investigated, similar reward trends have

been observed.

C. USV FORMATION PATH PLANNING WITH

FLEXIBLE SHAPE

This section presents the results of USV formation path plan-

ning with a flexible formation shape. Key criterion includ-

ing the capability of finding the optimal trajectory reaching

the destination, navigation safety along the route, forma-

tion shape variation (in constrained areas) and formation

shape maintenance (in open-space areas) have been assessed.

By undertaking simulations in the same environments as pre-

vious section, results are compared to show an improved nav-

igation performance provided by using a flexible formation

shape strategy. In addition, to further validate the algorithm’s

FIGURE 13. USV constant shape formation training process of Fig. 12 (c):
moving average episode reward with a moving window size
of 1000 episodes.

TABLE 4. Agent training parameters for USV flexible shape formation.

capability, a simulation in a practical maritime environment,

Portsmouth harbour, UK, has been conducted.

1) TRAINING SETTINGS

Table 4 presents the agent training parameter settings for

the USV flexible shape formation path planning algo-

rithm. Considering the state space dimension is still 9,

i.e., the Q-network input feature number is the same as in

Section IV-B, the Q-networks are designed the same as in

Section IV-B. The USV speed is also 50 pixels per step to fur-

ther the algorithm’s capability of maintaining the formation

shape but with flexibility of adjustments whenever necessary.

Since more complex reward functions have been designed to

realised flexible formation in this section, the agent would

typically need 6× 105 to 1× 106 to find optimal trajectories.

Also, the replay memory size is further increased to 300 000.

2) RESULTS AND ANALYSIS

Simulation results of USV formation path with a flexible

formation shape is shown in Fig. 14. The used simulation

environments are the same to those in Section IV-B to mainly

reflect the improved performance obtained by using the flex-

ible shape strategy. In Fig. 14 (a), it shows that a shorter

trajectory can be generated compared to that in Fig. 12 (a).

This is mainly because the USV formation is able to learn
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FIGURE 14. Simulation results for USV formation path planning algorithm with a flexible formation shape. Same simulation environments
have been used but with different results: (a) a shorter trajectory can be generated compared to the result in Fig. 12 (a), (b) an improved
safety margin can be obtained compared to the result in Fig. 12 (b) and (c) the collision can be well cleared compared to the result
in Fig. 12(c).

a better navigation strategy, where the shape of the for-

mation is varied in initial stages and a straight trajectory

with the shortest distance to the destination area can be

obtained.

Such a profound learning capability is further validated in

more complex environments as shown in Fig. 14 (b) and (c).

For example, in Fig. 14 (b), in order to ensure safety in a

relatively constrained environment with multiple obstacles,

the USV formation is able to learn that by varing the forma-

tion, a safer distance can be kept between the USVs and the

obstacles (as shown as the circled area), which is in contrast

to the result in Fig. 12 (b).

More importantly, the adoption of a flexible formation

shape can resolve the dilemma that is encountered by using

fixed formation shape strategy. As shown in Fig. 14 (c), where

the fixed shape path planning strategy fails to find a route,

by varying the formation shape (splitting the formation before

approaching the obstacle), the potential collision occurred to

the leader USV can be cleared. In addition, after collision has

been cleared, the formation is able to merge together to retain

the previous shape, which proves a high-level intelligence

provided by the proposed algorithm.

Fig. 15 shows the reward trend over the training pro-

cess of the map in Fig. 14 (c). In the first 1× 105 training
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FIGURE 15. 3-USV flexible shape formation training process Fig. 14 (c):
moving average episode reward with a moving window size
of 1000 episodes.

episodes, the mean of episode reward increased rapidly to a

value around −100. This due to the magnitude of collision

avoidance reward is far greater than other rewards; the agent

managed to avoid collisions in this period. From episode

1× 105 to 4× 105, the mean episode reward kept increasing

in general by exploiting gained experience but also fluctuated

due to explorations. From episode 4× 105 onwards, themean

reward value converged to a value around 0, suggesting

the training has converged. Note that similar convergence

trends have been observed for the other three maps presented

in Fig. 14.

The final set of test in this section has been carried out in a

simulation environment extracted from an area in Portsmouth

harbour, UK (shown in Fig. 16 (a)). The selected area contains

both open sea area as well as narrow waterways, which

is ideal to validate the proposed algorithm’s capability of

adaptively varying formation shape. The results are shown

in Fig. 16 (b). It clearly shows that USVs starts the mission

with a triangular shape and such a formation has been adap-

tively varied and shrinks into a smaller dimension to accom-

modate the constraints imposed by a narrow channel. Once

the USV formation travels through the channel, the formation

shape expands to its previous configuration.

D. ALGORITHM COMPARISON IN A PRACTICAL

MARITIME ENVIRONMENT

Finally, to compare two formation path planning algorithms,

i.e., with formation maintenance capability versus with for-

mation variation capability, a test is carried out in a selected

area close to Plymouth harbour, UK. The results are presented

in Fig. 17. The formation algorithm with shape maintenance

capability aims to generate the collision free trajectory and

maintain the formation shape; whereas the algorithm with

flexible shapes aims to generate the shortest collision free

trajectory to the destination area. Apart from a demanding

FIGURE 16. USV formation path planning in Portsmouth harbour area.
(a) Simulation area in Portsmouth harbour. (b) Learned trajectory for USV
formation using flexible shape strategy.

requirement for obstacle environment of constant formation

shape algorithm, the trajectory length generated by the latter

algorithm may be longer than the former one under the same

simulation environment. By comparing the results in Fig. 17,

the trajectory of the leader USV generated by flexible for-

mation shape algorithm (Fig. 17 (a)) is relatively straight

towards the destination area without being restricted by for-

mation condition. However, for the formation maintenance

algorithm, the heading direction of the leader USV may

keep changing so that the two followers can follow easily,
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FIGURE 17. USV formation path planning in Plymouth harbour area.
(a) Results of formation path planning with formation maintenance
capability. (b) Results of formation path planning with formation
variation capability.

indicating that the motion of leader USV will be restricted by

formation shape as well as the navigating condition of the two

follower vessels.

V. CONCLUSION AND FUTURE WORK

In this paper, a deep reinforcement learning (DeepQ network)

based path planning algorithm has been developed for USVs

and USV formations. Two new Markov decision processes

(MDPs) are proposed to mathematically describe USV and

USV formation path planning problems. Specifically, USV’s

kinematic motion is integrated into the USV path planning

MDP together with an improved collision risk assessment

strategy to provide better navigation results. Meanwhile, for

USV formation path planning, two critical features (main-

taining fixed formation shape and flexibly varying forma-

tion shape) have been addressed by designing two reward

functions to encourage the learning of these two behaviours

via proper training processes. The proposed algorithms

have been validated in both self-constructed simulation

environments and areas extracted from practical maritime

environments.

In terms of future work, improved versions of MDPs for

both single USV and USV formation path planning can be

developed. At present, the simulation environments have

been assumed to be a calm sea state without environment

influences. Such an assumption may lead to compromised

learning performances in a severe ocean environments, where

the ever-changing current, winds and tides constantly impact

the vessels. Real-time environment information can be incor-

porated into MDPs in future work and the robustness of the

deep learning algorithm will be further investigated.

Another interesting direction for future work is to inves-

tigate the action space. Although DQN is capable of deal-

ing with continuous state space and will become invalid for

solving the problem with continuous action space. Currently,

although the action space defined for USV path planning has

already taken the vehicle’s motion constraint into considera-

tion with a refined set of actions, a more realistic approach

would be to apply a continuous action space, which will

facilitate the direct control of autopilot of vehicle. To achieve

such a function, new deep reinforcement training processes

such as Deep Deterministic Policy Gradient (DDPG), Asyn-

chronous Advantage Actor-Critic Algorithm (A3C) or Soft

Actor-Critic (SAC) can be employed in the future work.
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