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ABSTRACT We propose a framework for multi-age group gait video translation in which, for the first time,

individuality-preserving aging patterns in walking style are learnt.More specifically, we build our framework

on an existing multi-domain image translation model. Because the existing multi-domain image translation

model was originally designed for a still image, we extend it to gait video by introducing amotion-augmented

network architecture with three streams, where gait period, period-normalized phase-synchronized gait

video, and its frame difference sequence are each input to one stream. We then train the network to

ensure three aspects: aging effect (using an age group classification loss), individuality preservation (using

a reconstruction loss), and gait realism (using an adversarial loss). Our framework quantitatively and

qualitatively outperforms state-of-the-art age progression/regression methods on the largest gait database,

OULP-Age, with respect to both age group classification and identity recognition.

INDEX TERMS Gait aging, gait video generation.

I. INTRODUCTION

Gait refers to a person’s walking style and is considered as

one of behavioral biometrics, which contains a variety of

attributes of the person such as age, gender, health status,

and identity. Among the attributes, since age changes in

gait is inevitable during a person’s life span, it is consid-

ered as one of covariates for gait-based person identifica-

tion a.k.a. gait recognition. Viewed from another perspective,

the gait provides a cue to estimate an age or age group and

hence gait-based age estimation also enjoy a rich body of

literature [1]–[6].

Taking the above-mentioned fact into consideration, if we

realize a function of age progression/regression on gait,

i.e., translation of the gait from one age to another by pre-

serving the identity (see Fig. 1), we may be able to employ it

for many applications. For example, assuming that a criminal

investigator tries to find a perpetrator by gait recognition after

a long time (e.g., 10 years), he/she can mitigate intra-subject

variations between a matching pair of an enrollment and a

query by progressing the age of the enrolled gait by 10 years
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with the function. As another application in the healthcare

field, a person may pay more efforts to keep youthfulness in

gait by watching his/her age-progressed gait video with the

function.

Although age progression/regression has been extensively

studied in the face analysis community [7], [8], the study [9]

is the only one on gait age progression/regression, to the

best of our knowledge. In their work, the authors progress

a gait energy image (GEI) [10] (also called an averaged sil-

houette [11]), which is the most widely used gait template in

the gait recognition community, using a subject-independent

geometric warping field. Taking into account a variety of

potential applications, it is naturally preferable to translate

not a static gait template such as a GEI but a gait video

(e.g., recent gait recognition no longer relies on a static gait

template but employs a gait video as input instead). In addi-

tion, since one process of gait age progression/regressionmay

differ from the process in another individual, it is preferable to

translate a gait video in a subject-dependent way, unlike [9],

which adopts a subject-independent method of translation.

Moreover, most gait analysis studies overlook an important

component in gait, i.e., the gait period (or gait cycle), or they

regard it just as a normalization factor. In fact, static gait
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FIGURE 1. Given one’s current gait video, we attempt to translate into his/her gait video in different age groups of life.

templates such as GEI [10], frequency-domain feature [12],

chrono-gait image [13], are all period-normalized templates

(e.g., in case of GEI, gait silhouettes are aggregated over

a gait period and then divided by the gait period to obtain

an average), and hence the gait period is ‘‘washed out’’ in

those gait templates. In addition, the gait period has not yet

been explicitly exploited, even in recent deep learning-based

gait analysis [14]–[16]. This is partly because the gait period

is unstable due to intra-subject variations (e.g., changes in

walking speed) in the context of gait-based person identifi-

cation. The gait period is, however, naturally quite important

information in the context of age. For example, a child’s

gait period is usually shorter than that of an adult or elderly

person, in other words, children’s gaits have higher cadence

(or frequency). The gait period is therefore considered to be

one of key components for representing the characteristics of

each age group.

In this work, we therefore propose a method of gait video

translation among multiple age groups. For better represen-

tation of the age groups’ characteristics, we convert a gait

video into the gait period and a period-normalized (or rate-

normalized) gait video with a fixed number of frames, and

then translate both of them in an original age group to those

in a target age group. As such, we can reflect aging effect not

only in gait sequence of one gait period but also in the gait

period (see the supplementary videos to recognize the differ-

ence in gait periods among age groups). In addition, we make

the gait video translation subject-dependent by introducing

StarGAN, a kind of conditional GAN framework, which was

originally designed for generic static image translation. The

main contributions of this work include the followings.

A. GAIT VIDEO TRANSLATION AMONG MULTIPLE AGE

GROUPS

We propose a method of gait video translation from one age

group to another for the first time, unlike the existing work [9]

translates just a static gait template. This is beneficial for

potential applications such as cross-age gait recognition using

not a static gait template but a gait video as an input.

B. GAIT-ORIENTED MOTION-AUGMENTED VIDEO

TRANSLATION

In order to better translate all contents in a cyclic gait

video, we design a video translation framework with

three streams: a period-normalized gait silhouette sequence,

a period-normalized frame difference sequence, and a gait

period.While the first onemainly encodes body shape aspects

in a gait video, the latter two encode motion aspects in it. This

technically differentiates the proposed method from other

work on still image-based face age regression/progression

and general image/video translation.

C. STATE-OF-THE-ART PERFORMANCE

Ourmethod outperformsmodified versions of state-of-the-art

of facial age progression/regression qualitatively and quanti-

tatively in both person identification and age group classifica-

tion tasks with the OULP-Age, the largest publicly available

gait database with age information.

II. RELATED WORK

A. FACE AGE PROGRESSION/REGRESSION

Extensive studies on face aging can be mainly divided

into three groups: physical model-based approaches,

prototype-based approaches, and deep learning-based

approaches [17].

The physical model-based approaches correlate biological

and physical mechanism (i.e., craniofacial growth, skin, and

winkles) with human age using models such as an and-or

graph, a concatenational graph evolution aging, a craniofa-

cial growth. Although those models are carefully designed,

they rely heavily on the imperfect human knowledge [8]

and require sufficient training samples with aging sequence

over a long age span for each individual, which are almost

impossible to be collected for gait.

In the prototype-based approaches, averaged faces are

created as the prototype for each group, the difference

between each prototype is regarded as the transition pattern.

To offset the missing personal characteristic in the transi-

tion pattern due to the averaged faces, Shu et al. proposed

novel aging dictionary learning methods to better preserve

personality [18], [19]. However, it still relies on dataset (i.e.

CACD [20]) with short period paired data, which is unlikely

to be acquired for gait. Meanwhile, to obtain progressed and

regressed facial image, the prototype-based approaches need

to be trained twice [21].

Recently, the deep learning-based approaches to facial age

progression/regression have achieved the state-of-the-art per-

formance in age group classification and identity preservation

with no paired data. Particularly, Zhang et al. [21] proposed a

VOLUME 9, 2021 40551



Y. Zhang et al.: Learn to Walk Across Ages: Motion Augmented Multi-age Group Gait Video Translation

conditional adversarial autoencoder where each facial image

corresponds to a point on the manifold. Translated aging

facial images are obtained through stepping along the aging

axis on the manifold. Other GAN-based approaches [7], [8],

[22] adopt a pretrained classifier and a conditional GAN

architecture to generate faces conditioned on age during pro-

gression and regression to preserve the identity. Although

deep learning-based approaches to face aging can generate

good simulation results, a gait is not a static image but a video

(image sequence), and hence we consider to directly handle

the gait video as an input/output and to better handle motion

and appearance aspect.

B. GAIT-BASED AGE ANALYSIS

Prior studies in gait-based age group classification have

demonstrated the fact that gait contains discriminative aging

patterns in a long-elapsed time period. For example, Man-

nami have adopted a frequency domain feature [23] to clas-

sify four age groups: children (under 15 years old), adult

males, adult females, and the elderly (over 65 years old).

Chuen et al. have investigated correlation of image-based

gait features (i.e. stride length, body length, head-to-body

ratio) to distinguish between children and adults [24]. These

internally contained discriminative aging pattern in gait video

make the task of multi-age group gait translation practical.

Actually, Xu et al. have conducted the first gait age translation

among multi-age groups [9]. However, similar to most of the

current analysis in gait that utilize image-based features such

as frequency domain feature [12], chrono-gait image [13],

gait flow image [25], Gabor GEIs [26], their work rely on the

GEI, which also falls into the category of image-based gait

features.

Although the static image-based gait feature including the

GEI had been considered simple yet effective representations

for gait analysis, they have several problems such as highly

compressed motion information and entanglement of appear-

ance (body shape) and motion information. They have been

therefore gradually replaced with spatio-temporal or more

disentangled representations. For example, Chao et al. have

introduced GaitSet [14], a framework that make use of gait

sequences to achieve the state-of-the-art performance in gait

recognition, outperforming methods that utilize image-based

features by a large margin. In this paper, we also leverage gait

videos to obtain gait aging pattern from both appearance and

motion.

C. VIDEO-TO-VIDEO TRANSLATION

Video-to-video translation addressed in [27]–[30] has

aroused attention from researchers recently. Given a video to

drive a motion, these methods transfer the driving motion to

an input static image with a different content, and generate a

video with the different content and the same driving motion.

Unlike the previous work tries transferring the same motion,

our task aim to learn the aging pattern automatically across

ages without the driving motion.

As an extension of image-to-image translation, prior works

in video-to-video translation [27], [28] require paired data.

Bansal et al. proposed RecycleGAN [29] to first facili-

tate unpaired video-to-video translation. Meanwhile, these

approaches have limitations: they rely on the variants of

CycleGAN [31], and hence they are only capable of learning

the relations between two different domains at a time, which

lack scalability in handling multiple domains.

III. THE PROPOSED METHOD

A. OVERVIEW

Our goal is to translate a gait video among multiple age

groups. In order to efficiently handle multi-age group trans-

lation, we build our method upon StarGAN [32] because it

can translate images among multiple domains just by a single

unified model (i.e., with less network parameters compared

with pairwise translation models). The StarGAN is a kind

of a conditional GAN, and hence it has a generator and a

discriminator as shown in the overview in Fig. 2. In addition,

for better treatment of all the components appeared in the gait

video, we take a triplet of period-normalized gait silhouette

sequence, frame difference sequence, and a gait period as an

input for the generator/discriminator. We will describe pre-

processing, the generator/discriminator, and loss functions,

in the following subsections.

B. PREPROCESSING

We briefly describe preprocessing to prepare input data,

i.e., a triplet of period-normalized gait silhouette sequence,

frame difference sequence, and a gait period, for our genera-

tor/discriminator.

Given a gait video, gait silhouettes were first extracted

by graph-cut segmentation supported by background sub-

traction [33], since color and texture information are rel-

evant with neither gait nor body shape. We then obtained

size-normalized and registered silhouette sequences in size

88 by 128 pixels. One gait period (or cycle) was detected

by maximizing auto-correlation along the temporal axis [12].

We morphed the sequence to produce a period-normalized

phase-synchronized gait silhouette sequence per subject with

Nimg frames [9], where Nimg is experimentally to 25. Exam-

ples of the resultant sequence is shown in Fig. 3. We also

extract frame difference sequence, which is also used in a

motion-oriented gait recognition method [34].

The image size of each frame in the gait silhouette

sequence and the frame difference sequence was finally con-

verted to 128 by 128 pixels by adding zero-padded columns

at left and right sides, and then frames in each sequence

are stacked over channel dimensions, for the convenience of

treatment in a network architecture.

As for the gait period [frame], we represent it an indi-

cator vector rather than an integer scalar for more flexible

non-linear translation. We therefore first experimentally set

minimum and maximum gait periods as Pmin = 20 and

Pmax = 41, respectively, and then set Nperiod (= Pmax −
Pmin+1)-dimensional one-hot vector Experiod ∈ R

Nperiod whose

i-th component represent the gait period (Pmin + i − 1).
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FIGURE 2. Overview of the proposed framework, consisting of a three-stream generator/discriminator. We assign positive and negative values in frame
difference to red and blue just for visualization purpose. Given an original triplet of period-normalized gait silhouette sequence, frame difference
sequence, and a gait period, as well as an original and target age groups’ labels, the generator translates the triplet to the target age group. The
translated triplet of the target age group is further translated back to that of the original age group to preserve individuality by a reconstruction loss,
while the triplet is also fed into the discriminator to ensure reality and characteristics of the target age group by adversarial and age group classification
losses, respectively.

FIGURE 3. Period-normalized phase-synchronized silhouette sequences
(top: an adult, bottom: a child). Thirteen frames from a half gait period
are shown due to space limitation.

Specifically, given an input gait period P, the (P−Pmin+1)-th

component of the vector Experiod is 1 and the others are zero-

padded.

C. GENERATOR WITH MOTION AUGMENTED BLOCK

We feed the generator the triplet described in Section III-A to

augment the generator with more motion information.

At the beginning, since we build our framework upon Star-

GAN [32], i.e., image translation framework among multiple

domains, we also prepare indicators for multiple domains,

(i.e., age groups).

As for the gait period, we prepare Nage-dimensional

one-hot vector, where Nage is the number of age groups.

In this vector, the element for the target age group is set to

one and the others are set to zero. In addition, we prepare

an indicator vector for an original (or source) age group with

the same dimension. We then concatenate the two indicator

vectors to the gait period indicator vector Experiod in channel

dimension, which results in (Nperiod+2Nage) channels in total

(see Fig. 2).

As for the gait silhouette sequence, we prepare an indicator

set of Nage matrices with 128 × 128 pixels, where a matrix

for a target age is set to all ones and the other matrices are

all zero-padded. We also prepare the indicator set of matrices

for an original age group. We then concatenate both of them

for each frame of the gait silhouette sequence in channel

dimension, which results in (2Nage+1) channels in total. The

input structure of the silhouette sequence is consequently a

4th-order tensor of 128×128×(2Nage+1)×Nimg (see Fig. 2).
Similarly, we concatenate the indicator set of matrices for

each frame of the frame difference sequence with (Nimg − 1)

frames, which results in a 128×128×(2Nage+1)×(Nimg−1)

structure.

Once the generator takes an input triplet of period-

normalized gait silhouette sequence, frame difference

sequence, and a gait period at the original age group, it trans-

lates them to a triplet at the specified target age group. As for
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the gait period, we simply employ 3 full connection layers to

output the Nperiod -dimensional gait period indicator vector.

As for the period-normalized silhouette sequence and

frame difference sequence, we extend network structure used

in CycleGAN [31] by using 3D convolution to handle not a

still image but a video (i.e., sequence).

Moreover, we introduce a motion augmented block (MAB)

so that the model can share and exchange information

about the body shape-dominant silhouette sequence and

motion-dominant frame difference sequence in the interme-

diate layers. This is because the body shape and motion have

some correlation, for example, a certain body shape (e.g., a fat

body shape) may limit the gait motion (e.g., range of joint

motion).

More specifically, let the feature maps of the gait sequence

and the frame difference sequence at the i-th stage be Ci
and Mi, respectively. We first apply three-dimensional con-

volution filters f cconv (resp., f
m
conv) for Ci (resp., Mi) to obtain

intermediate feature maps C ′
i (resp., intermediate difference

map M ′
i ) as

C ′
i = f cconv(Ci) (1)

M ′
i = f mconv(Mi). (2)

We further apply three-dimensional convolution filters

f c→m
conv (resp., f m→c

conv ) to the intermediate feature maps

C ′
i (resp., intermediate difference map M ′

i ), and obtain the

feature maps at the second stage by exchanging the appear-

ance and motion information as

Ci+1 = C ′
i + f m→c

conv (M ′
i ) (3)

Mi+1 = M ′
i + f c→m

conv (fdiff (C
′
i )). (4)

Note that the three-dimensional convolution filters have the

same structure (i.e., kernel size 1, stride 1, dilation 1) yet

have different weights. After passing two MABs, we apply

some more convolution and deconvolution layers to generate

a silhouette sequence and a frame difference sequence of the

target age group.

D. DISCRIMINATOR WITH SLOWFAST PATH

We adopted a discriminator with a SlowFast path inspired

by [35] as a primitive analogy to human visual system

to better discriminate the generated progressed/regressed

sequences. While sparsely sampled translated silhouette

sequence (i.e., every five frames) are fed into the slow

path to capture more body shape-relevant features with high

channel capacity, the translated frame difference sequence

with full frames are fed into the fast path to capture more

motion-relevant features with low channel capacity.

Moreover, we fuse features from the fast path to the slow

path by using lateral connection, which has demonstrated its

effectiveness in optical flow-based two-stream network [36],

[37]. Finally, output from the both paths as well as the trans-

lated gait period indicator vector are fed into an adversarial

loss and age group classification loss through several layers,

as described in the following subsection.

E. LOSS FUNCTIONS

As for the generator, we compute reconstruction losses

with L1-norm between original and reconstructed silhou-

ette sequences/frame differences and with a cross entropy

between original and reconstructed gait period to preserve

individuality as demonstrated in [7], [8]. Specifically, similar

to [31], [32], [38], we apply the generator twice: original age

group to target one; target age group to original one, to get

reconstruction. Let Exsil , Exdiff , and Experiod are the silhouette

sequence, the frame difference sequence, and the gait period

of the original age group corg, respectively, and Gs(Exs; ctrg) is
a generator to the target age group ctrg for a component s ∈
{sil, diff , period}. The reconstruction loss is then computed

as

Lrec =
∑

s∈{sil,diff ,period}

λsEExs,corg,ctrg [ds(Exs, corg, ctrg)] (5)

ds(Exs, corg, ctrg)

=

{

||Exs − Gs(Gs(Exs; ctrg); corg)||1, if s ∈ {sil, diff }

fce(Exs,Gs(Gs(Exs; ctrg); corg), if s ∈ {period},

(6)

where fce stands for cross entropy loss, weights λsil , λdiff , and

λperiod are set to 1, 0.01, and 1, respectively.

As for the discriminator, we apply two loss functions: an

adversarial loss and a age group classification loss.

The adversarial loss is introduced to make translated gait

videos realistic. More specifically, we choose Wasserstein

GAN [39] to make generated sequences indistinguishable

from real sequences and stabilize training as

Ladv = λadvEEx[D(Ex)] − λadvEEx,c[D(G(Ex, c))]

− λgpEẼx
[(||∇

Ẽx
D(Ẽx)||2 − 1)2], (7)

where Ex denotes a concatenated vector of Exsil , Exdiff , and

Experiod , Ẽx denotes a uniformly sample straight line of the

concatenated vector between real and fake ones, and c is an

age group label.

The age group classification loss is introduced to preserve

a age group-specific property in gait. Unlike previous stud-

ies [7], [8] use a pre-trained age group classifier, we train

the age group classifier through optimization of both gen-

erator and discriminator in an end-to-end manner similarly

to [32]. Specifically, the age group classification loss poses

constraints on real videos to optimize discriminator, and pose

constraints on fake videos to optimize generator as follows

Lrealcls = EEx,corg [− logD(corg|Ex)]

L
fake
cls = EEx,ctrg [− logD(ctrg|G(Ex, ctrg))]. (8)

Finally, the full loss function composed of the losses intro-

duced above are defined for each of the discriminator and the

generator as

LD = −Ladv + λclsLreal

LG = Ladv + λclsLfake + λrecLrec. (9)
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TABLE 1. Statistics of subset of OULP-age.

IV. EXPERIMENTS

A. DATASETS

We trained and evaluated our model on OULP-Age

dataset [40], which is the largest gait database with age

information in the world. We used a subset of 26,159 subjects

with ages ranging from 2 to 90 years old. We randomly chose

2,616 subjects (roughly 10% of the entire dataset for quanti-

tative and qualitative evaluation, and used the remaining for

training.

We then set the age groups. Gait reflects human’s physical

growing process, where the difference between neighboring

age group is not necessarily the same [41], [42]. Generally,

young children and teenagers (i.e., under 20 years old) grow

more rapidly than adults, since the body of adults have grown

into a mature physical state [43]. Therefore, instead of divid-

ing ages with a uniform interval, we defined five age groups:

[0, 5], [6, 10], [11, 15], [16, 60], and over 60 similarly to [44].

Examples of the dataset are shown in Fig. 3, and its statistics

are shown in Table 1.

B. EXPERIMENTAL SETUP

We use Adam optimizer [45] with β1 = 0.5 and β2 = 0.999

for optimization. The learning rate starts from 0.0001 and

fix for 100 epochs, then decays by 0.1 every 100 epochs,

and stays at 0.000001 finally. The batch size is set to 8.

Similar to [39], we perform one generator update after

five discriminator updates. We compared the proposed

method with the state-of-the-arts on deep generative adver-

sarial facial aging including CAAE [21], IPCGAN [7], and

S2GAN [8] qualitatively and quantitatively. For qualita-

tive evaluation, we visualize the generated gait sequence in

subsection IV-C. For quantitative evaluation, we conducted

experiment on age group classification and cross-age gait

recognition (i.e., identity recognition) in subsections IV-D

and IV-E, respectively.

C. QUALITATIVE VISUALIZATION

We visualize the generated gait videos of different methods

given target age group for comparison in Fig. 4. CAAE [21]

projects the encoded vector to a latent manifold which is

constrained by a simple uniform distribution, and does not

well preserve individuality (see supplementarymaterial also).

While IPCGAN [7] adopts a pre-trained classifier to better

preserve individuality, it produces artifacts in arm in some

cases. S2GAN [8] is a state-of-the-art facial aging method

and introduced a well-designed S2 module which well cap-

tures age group-specific characteristics (e.g., senior people

tend to be fatter). However, it fails to preserve individuality

(e.g., the woman in Fig. 4 is slimmer than general one, but

the generated video by S2GAN ignores this characteristic).

FIGURE 4. Input: Original gait video (1st row, age group [16-60]). Output:
translated ones to age group [6-10] by CAAE, IPCGAN, S2GAN, and our
method (from the 2nd to 5th row).

FIGURE 5. Input: Original gait video (1st row, age group [16-60]). Output:
translated ones to age groups [0, 5], [6, 10], [11, 15], [16, 60], over 60 by
our method (from the 2nd to 6th row).

On the other hand, ourmethodwell captures both age-specific

characteristics and individuality, yielding the best qualitative

result.

We also visualize the age progressed and regressed gait

video for multiple age groups with our method in Fig. 5.

We can see that our method successfully realizes realistic

body shapes such as body-length, head-to-body ratio, leg

length for kid (0–5 years old), child (6–10 years old), and

teenager (11–15 years old), respectively. Meanwhile, our

method generates smaller stride length in the gait video of

senior age group (over 60 years old), which corresponds to the

physical phenomenon that people tend to walk slower when

aged.

D. AGE GROUP CLASSIFICATION

We conducted age group classification experiment in order

to evaluate the generation quality of aging patterns, that is,

to check whether the age progressed/regressed image truly

presented the characteristics of the intended age group.

Specifically, we first designed an age group classifier using

a modified ResNet-18 architecture [46] by following [32],

and then trained it with real gait silhouette sequence of

OULP-Age (the same training and test set split). The input

dimension of first convolution layer of ResNet-18 is modified

to Nimg = 25 in order to handle not a single still image

but a gait silhouette sequence. By classifying the generated

gait silhouette sequences from different methods using the

same pre-trained ResNet-18 classifier for an unseen test set,

we can check to which extent each method generates age

VOLUME 9, 2021 40555



Y. Zhang et al.: Learn to Walk Across Ages: Motion Augmented Multi-age Group Gait Video Translation

TABLE 2. Age group classification accuracy for benchmarks. E2E indicates
end-to-end training. Bold font indicates the best accuracy.

progressed/regressed video that can present the characteris-

tics of the intended age group.

Experimental results on age group classification accuracies

among benchmarks are shown in Table 2. We also report two

more properties: whether the multi-age group gait sequence

generation model is trainable in an end-to-end manner, and

the number of network parameters.

As a result, we can see that the proposed method outper-

forms the other benchmarks and that it yielded the best accu-

racies for all of the age groups. Besides, unlike IPCGAN [7]

and S2GAN [8] requires a pre-trained age group classifier

to train the multi-age group translation model, the proposed

method does not require it, i.e., it can train the model in an

end-to-end manner, which can save training time and efforts

for the pre-training. Moreover, we notice that the number of

network parameters for the proposed method is comparable

to the benchmarks, which shows a good scalability of the

proposed method.

E. CROSS-AGE GAIT RECOGNITION

We conducted cross-age gait recognition experiments to eval-

uate the preservation of individuality using the age pro-

gressed/regressed generated gait sequence in addition to real

ones. The dataset for the cross-age gait recognition experi-

ment composed of three subsets: a training set, a gallery set,

and a probe set. The training set contains 23, 543 subjects,

while the gallery and probe sets form a set composed of the

other 2, 616 subjects that are disjoint from the training set.

Since each subject in OULP-Age has a single gait sequence,

we generated five gait sequences per subject, which corre-

spond to the five age groups, i.e., each subject has 6 gait

sequences in total (one real and five generated).

We employed GaitSet [14], which is a state-of-the-art

network structure in gait recognition for gait silhouette

sequences (as opposed to static gait templates). In both train-

ing and testing phases, the input sequences are prepossessed

into size of 64 × 64 for GaitSet requirement. In the train-

ing phase, both the generated and the original sequences of

a given subject are regarded as having the same identity.

In the test phase, the real sequences were assigned to the

gallery, while the generated sequences were assigned to the

probe.

In an identification scenario, we matched a probe to all

the subjects in gallery and evaluated rank-1 identification

rate based on dissimilarities (i.e., L2 norm between the final

representations in the trained GaitSet network).We computed

the standard deviation (uncertainty) sFRR of false rejection

rate (FRR) pFRR in case of a single attempt per subject

TABLE 3. Rank-1 identification rates [%] and EER [%] (±standard
deviation [%]) for each age group in probe. Bold font indicates the best
performances.

according to [47], [48], which is represented as:

σFRR =

√

pFRR(1 − pFRR)

n− 1
(10)

where n is the number of subjects and it is 2, 616 in our

case. The standard deviation of true acceptance rate and

rank-1 identification rate can be computed in the same man-

ner. Take results for the age group [0, 5] as an example,

in the form of rank-1 identification (±the standard deviation),

the following results are obtained. CAAE: 84.9%(±0.70%),

IPCGAN: 99.3%(±0.16%), S2GAN: 98.5%(±0.24%), Pro-

posed: 99.7%(±0.11%). We therefore confirmed that there

is still statistical significant difference between the proposed

method and the benchmark method even though the absolute

difference of the rank-1 identification rate is less than 1%

(between the proposed method and IPCGAN).

In a verification scenario, an input pair of a probe and a

gallery is accepted as the same subject (i.e., positive sample

pair) if the dissimilarity measure between them is below an

acceptance threshold, and is rejected otherwise (i.e., nega-

tive sample pair or different subject pair). We computed the

equal error rate (EER) of the false acceptance rate and false

rejection rate as a typical performance measure. As reference,

we also confirmed the statistical significant difference in

terms of EER.

Experimental results of the cross-age gait recognition are

summarized in Table 3. As a result, we can see that the

proposed method yielded the best accuracy for all age groups,

which indicates the superiority of the proposed method in

terms of individuality preservation.

F. ABLATION STUDY

We made ablation studies on individual modules and report

the accuracies of age group classification in Table 4.

First, in order to validate the effectiveness of the gait

period, we removed the period stream in both generator

and discriminator. As a result, it turns out that the accuracy

decreases by approx. 15% without the gait period, which

indicates that the gait period is essential for age analysis in

gait.
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TABLE 4. Ablation study of different modules in our network on average
age-group classification accuracy [%]. We show the results for the final
proposed method (top row) and compare them with the results obtained
when individual modules are removed to validate their effectiveness
(second to bottom rows). #Params: number of network parameters in
millions.

FIGURE 6. False example. Input: 1st row, original gait video of age group
[0, 5] years old. Output: 2nd row, translated gait video of age group [16,
60] years old.

Second, in order to validate the effectiveness of the Slow-

Fast path, we replaced it with two extended one-stream dis-

criminators derived from StarGAN [32], i.e., we used the

one-stream discriminator for both gait silhouette sequence

stream and frame difference sequence stream. As a result,

it turns out that the accuracy decreases by approx. 2%without

the SlowFast path. Moreover, the SlowFast path is more effi-

cient than the one-stream discriminator [32] w.r.t. the number

of network parameters (i.e., the number of parameters with

the one-stream discriminator is more than twice). This is

because the SlowFast path can save the number of parameters

by limiting the temporal resolution in the slow path (i.e.,

sampling by every five frames) as well as by limiting the

channel capacity in the fast path.

Finally, we removed the MAB to validate the effectiveness

of interaction between the gait silhouette sequence and the

frame difference sequence. As a result, it turns out that the

accuracy decreases by approx. 7% without the MAB. This

indicates that interaction between motion and body shape by

the MAB is essential to age group classification.

This ablation study consequently demonstrates the benefits

of the MAB, the SlowFast path, and the gait period.

G. FAILURE MODE ANALYSIS

We list a typical false example in Fig. 6, where the first row

is the input of age group [0, 5] years old, the second row

is the output of translated ones to age group [16, 60] years

old. Young children usually have larger head-to-body ratio

compare to adults. When translating from age group [0,5]

to [16, 60], our method can successfully generate smaller

head-to-body ratio (small head for adult), but will sometimes

lead to artifacts in head (red circle). Meanwhile, since our

method is image-based one, generated arm and legs might

not be consistent across frames (green circle). We will solve

it by introducing a model-based method, which enables us

to prevent from such artifacts and inconsistent body shape,

in future work.

V. CONCLUSION

In this paper, we introduced an end-to-end motion augmented

multi-age group gait video translation framework, which

exploits both motion and body shape information from gait

sequences. Specifically, we proposed three-stream genera-

tor/discriminator with the gait period, period-normalized gait

silhouette sequence, and the frame difference sequences in

conjunction with motion augmented block and the SlowFast

path. Experiments on OULP-Age demonstrated the supe-

riority of the proposed method quantitatively and qualita-

tively among other state-of-the-art methods. Future research

avenues are extension tomulti-view analysis and fine-grained

age progression/regression (e.g., one-year interval).
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