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ABSTRACT Mutation-based greybox fuzzing is a highly effective and widely used technique to find bugs

in software. Provided initial seeds, fuzzers continuously generate test cases to test the software by mutating

a seed input. However, the majority of them are ‘‘invalid’’ because the mutation may destroy the format of

the seeds. In this paper, we present a knowledge-learn evolutionary fuzzer based on AFL, which is called

LearnAFL. LearnAFL does not require any prior knowledge of the application or input format. Based on

our format generation theory, LearnAFL can learn partial format knowledge of some paths by analyzing the

test cases that exercise the paths. Then LearnAFL uses these format information to mutate the seeds, which

is efficient to explore deeper paths and reduce the test cases exercising high-frequency paths than AFL.

We compared LearnAFL with AFL and some other state-of-the-art fuzzers on ten real-world programs. The

result showed that LearnAFL could reach branch coverage 120% and 110% of that of AFL and FairFuzz,

respectively. LearnAFL also found 8 unknown vulnerabilities in GNU Binutils, Libpng and Gif2png, all of

which have been reported to the vendors. Besides, we compared the format information learned from the

initial seed of an ELF file with a format standard of ELF files. The result showed that LearnAFL learns about

64% part of the file format without any prior knowledge.

INDEX TERMS Input format learning, deep path fuzzing, greybox fuzzing, vulnerability detection.

I. INTRODUCTION

Fuzzing is a modern and practical approach to software

vulnerability detection. As an automated software testing

technique, fuzzing was first developed by Barton Miller to

test the robustness of UNIX applications in 1989 [1], [2].

Since then, fuzzing has been developed rapidly and widely

used in software testing and vulnerability detection, and

exposed a large number of vulnerabilities in many pro-

grams [2]. The key idea behind fuzzing is to generate and feed

the target program with plenty of test cases that are hopeful

of triggering software errors [2].

There are three main types of fuzzing techniques in

use: blackbox fuzzing, whitebox fuzzing, and greybox

fuzzing [3], [4]. Blackbox fuzzing a technique of testing

without having any knowledge of the internal working of

the application [5]. Conversely, whitebox fuzzing is based

The associate editor coordinating the review of this article and approving
it for publication was Fan Zhang.

on an analysis of the internal structure of the target program

[3], [6]. Greybox fuzzing tests the program with limited

knowledge of the structure of an application [5]. Nowadays,

greybox fuzzing technique combined with machine learning,

symbolic execution, dynamic taint analysis, static analysis,

and other technologies is becoming a research hotspot in

the field of fuzzing [7]–[10]. Compared with the whitebox

fuzzing, greybox fuzzing has a shallower understanding of

the program. However, since most of greybox fuzzers do not

need the source code of the target program, the scope of

greybox fuzzing will be more extensive than that of white-

box fuzzing. Compared with the blackbox fuzzing, greybox

fuzzing takes some time for program analysis. Nevertheless,

the lightweight greybox test can better understand the infor-

mation of the target program andmake the test more efficient.

Today most vulnerabilities were exposed by lightweight

fuzzers [11].

As a classic and efficient mutation-based greybox fuzzer,

AFL (American fuzzy lop) [12] is preferred by many
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researchers. By using lightweight (binary) instrumentation to

determine a unique identifier for the path that is exercised

by an input, AFL classifies the exercised paths of the target

program and uses evolutionary algorithms to screen out seeds

with higher coverage, and then mutates them to generate new

tests [11]. By its lightweight program analysis approach, AFL

can generate and execute a large number of tests in a short

period. Moreover, evolutionary algorithms ensure that AFL

can select tests as seeds that are easier to explore new paths.

As an effective tool used in file application fuzzing, AFL

had found hundreds of high-impact vulnerabilities discover-

ies [13]. Thus, enhancing AFL is a significant work.

However, AFL sometimes shows insufficient performance

in some respects. First, the ability to perceive the input for-

mats of the target program of AFL is not reliable. Although

AFL can perceive some interesting characters of the seeds

by doing the deterministic mutation strategies, it cannot learn

the complicated formats of files inputted to programs, such

as pdf and png. Besides, in doing the random mutation

strategies, AFL may destroy the formats of seed and mutate

the crucial parts of the seed, which are crucial to satisfy

the conditions necessary to exercise this path. As a result,

many test cases are generated to exercise the high-frequency

paths [11]. Only a few test cases exercise some low-

frequency paths. However, test cases executing these low-

frequency paths are more interesting than others [11].

In addition, some results have shown that the efficiency of

deterministic mutation strategies in AFL is lower than that

of random mutation strategies and the deterministic mutation

strategies take more energy of AFL than random mutation

strategies, which decreases the efficiency of AFL [14], [15].

To solve the above problems, we present LearnAFL,

a knowledge-learn evolutionary fuzzer. LearnAFL is built

on a top of AFL without deterministic mutation strategies

(i.e., FidgetyAFL [14]). As the random mutation strate-

gies are more efficient than the deterministic strategies to

improve the test coverage, the ability to explore new paths

of LearnAFL is stronger than AFL. More importantly, based

on the equivalence-classes-based format generation theory,

LearnAFL can learn the format of the seed files and keep

format attribute of seeds unchanged in the random mutation

by format-based path transition model. In detail, similar

to FairFuzz [15], LearnAFL can identity certain parts of

an input, which are crucial to satisfy the path constraints.

LearnAFL avoids mutating them to reduce the frequency of

executing invalid paths, which increases the probability of

exploring deeper paths.

However, different from FairFuzz [15], LearnAFL

achieves this goal without implementing deterministic muta-

tion strategies. LearnAFL classifies test cases into different

sets based on the paths they exercise. Then LearnAFL learns

the format features of the test cases in each set and mutates

the seeds according to these format features. This mechanism

can effectively reduce the number of invalid test cases and

generate more test cases that can cover deep paths and trigger

in-depth bugs. We provide some measures to evaluate the

mutation efficiency in exploring deep paths when comparing

techniques. The experiment shows that LearnAFL could

learn about 64% part of the data struct of the target file

format without any prior knowledge. Besides, LearnAFL

can find the vulnerabilities which are hard to be found by

other state-of-the-art fuzzers and generate more test cases

to cover them than other tools. More importantly, compared

to FairFuzz, LearnAFL does not rely on the implementation

of deterministic mutation strategies, which could improve

the test efficiency. We perform our evaluation of LearnAFL

with other state-of-the-art fuzzers (e.g., FairFuzz, AFLFast,

FidgetyAFL [11], [14], [15]) on ten real-world software, nine

of them with the latest version. Our evaluation shows that

LearnAFL could reach branch coverage 120% and 110%

of that of AFL and FairFuzz, respectively. Specifically, our

paper makes the following contributions:

• Equivalence-classes-based Format Generation

Theory. Based on the mapping theory, we regard the

target program as a map and prove that test cases can

be divided into several subsets according to the paths

exercised by test cases. Test cases in each subset satisfy

the same path constraints and are consistent in the

format. Therefore, we could deduce the format of a path

if the number of test cases is sufficient. Particularly, this

approach allows LearnAFL to identity the crucial part of

seeds without relying on deterministic strategies.

• Format-based Path Transition Model. Based on

our equivalence-classes-based format generation theory,

we point out that the essence of the path transition

in gerybox fuzzing is to modify the format features

of the seeds in the mutation. By destroying some for-

mat features, we may generate test cases to exercise

high-frequency paths. In contrast, keeping the magic

bytes and other crucial parts unchanged in the mutation

is possible for us to explore deeper paths than AFL.

The experiment shows that LearnAFL finds some in-

depth vulnerabilities which are not found by some other

tools.

• Enhanced Expression of Magic Bytes Generation

Algorithm.We define the enhanced expression of magic

bytes as the target knowledge we aim to learn, which

is more helpful to assist mutation than simple magic

bytes. Based on the longest common substring searching

algorithm, we propose our algorithm to generate the

enhanced expression of magic bytes. We evaluate the

efficiency of our algorithm. The result shows that Lear-

nAFL can identify 64% of the target files’ data structure.

• Tool and Evaluation. We implement our approach on a

top of AFL, named LearnAFL. We evaluated LearnAFL

on ten real-world software against the other five AFL-

type fuzzers. The results have shown that LearnAFL

reaches the 120% and 110% coverage reached by AFL

and FairFuzz, respectively. Furthermore, LearnAFL has

found eight previously unknown vulnerabilities. Simi-

larly, we published LearnAFL as a fork of AFL. To fos-

ter further research in the area, we open sourcing
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LearnAFL on GitHub:https://github.com/MoonLight-

SteinsGate/LearnAFL.

II. BACKGROUND

In this section, we primarily introduce the operating mecha-

nism of AFL and the mapping theory for programs. Notably,

in Subsection II-A, we elaborate on the advantages of AFL

in its efficiency, and then point out the drawbacks of AFL in

terms of mutation and power schedule. In Subsection II-B,

we focus on how to get a set of equivalence classes of the

test cases according to mapping theory, which is the theory

basement of our format-based path transition model.

A. AMERICAN FUZZY LOP (AFL)

AFL(American fuzzy lop), as a state-of-the-art greybox

fuzzer, has exposed serious vulnerabilities in many important

software programs, which is also the basis of many greybox

fuzzers (e.g., AFLGo, CollAFL, PTFuzz [16]–[18]).

AFL uses lightweight instrumentation to capture basic

block transitions and gain coverage information [19].

According to coverage information, AFL is able to determine

a unique identifier for the path that is exercised by an input,

and then employs genetic algorithms to automatically dis-

cover test cases that likely trigger new internal states in the

targeted program. After that, these test cases will be added to

the queue of seeds.

Algorithm 1 provides a general overview of the process and

is illustrated in the following by means of AFL’s implemen-

tation [19]. First, we must provide AFL with initial seeds to

start it. If AFL is provided with initial seeds S, AFL will add

the initial seeds to the queue of seedsQ. The seeds are chosen

in a continuous loop until a timeout is reached or the fuzzing

is aborted. For the seed si, AFL classifies it as a favorite

if it is the fastest and smallest input for any of the control-

flow edges it exercises [11]. If si was a non-favorite seed,

AFL ignores it and chooses the next seed in queue Q to fuzz;

otherwise, AFL transfers to the fuzzing stage and si is going to

be mutated to generate new test cases to test program. During

the fuzzing stage, for each execution of test case t generated

by si, if t exercised a new path which was never exercised,

the test case t is regarded as an interesting seed and added

to seeds queue Q. Particularly, t is going to be added to the

set of crash Tc when it triggers bugs in the program. After

the fuzzing stage, AFL sequentially chooses the next seeds

in queue Q according to the order of being added to Q. The

above is an overview of the AFL mechanism, and then we

focus on its mutation strategies.

Mutation strategies. There are two categories of mutation

strategies in AFL: deterministic strategies and random strate-

gies [20]. The deterministic strategies include: bitflip, arith-

metic, interest, dictionary, which mutate the seeds without

any randomness. Especially in bitflip, the first strategy to be

implemented, AFLflips the seeds in the bit-level, from 1 bit to

32 bits. During this strategy, AFLmakes a heuristic judgment

on the file format of test cases by observing that whether the

test case exercise a new path if it is generated by flipping

Algorithm 1 AFL’s Mechanism

Require: Initial Seeds Set S

Tc = ∅

if S = ∅ then

return

end if

Q = S

i = 0

repeat

if i > |Q| then

i = 0

end if

Choose si from Q

if IsFavored(si) = 0 then

i = i+ 1

else ifWasFuzzed(si) or PassDeterministic then

n = AssignEnergy(si)

for j from 1 to n do

t = Mutate(si, RANDOM STRATEGIES)

res = Execute(t)

if res = CRASH then

add t to Tc
else if IsInteresting(res) then

add t to Q

end if

end for

i = i+ 1

else

n = AssignEnergy(si)

for j from 1 to n do

t = Mutate(si, ALLSTRATEGIES)

res = Execute(t)

if res = CRASH then

add t to Tc
else if IsInteresting(res) then

add t to Q

end if

end for

i = i+ 1

end if

until timeout reached or abort-signal

Ensure: Tc

in one byte, which is able to help AFL to distinguish the

token that is also called ‘‘magic byes’’ in the seeds. If AFL

regarded some bytes as the token, AFL adds them in the

effector map and skip to mutate the seeds on these positions

in subsequent deterministic strategies. Therefore, it is capable

of AFL to perceive partial formats of inputs. However, since

the deterministic strategies don’t have any randomness, a seed

is only mutated by AFL with deterministic strategies when it

is the first time for the seed to be fuzzed. After that, AFL

effectuates the random strategies which include havoc and

splice. In the havoc stage, AFL would mutate the seed by
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randomly choosing a sequence ofmutation operators from the

deterministic strategies and apply them to random locations

in the seed file. As a result, a new test case is generated, which

is significantly different from the seed. At last, the splice

strategy allows AFL to randomly choose another seed from

the seeds queue Q and recombine it with the current seed.

AlthoughAFL can detect somemagic bytes, there are some

shortcomings. In the random mutation strategies, the magic

bytes of the seeds may be mutated, which means it is signif-

icantly possible for AFL to destroy the format of the seeds.

Even though destroying the seeds’ format may help AFL to

find a new path, it reduces the number of test cases conform-

ing to the format, whichmakes AFL less effective in discover-

ing deeper bugs. Besides, takingmost energy on deterministic

strategies decreases the efficiency of AFL. We will discuss

these issues in detail in Section III.

B. MAPPING THEORY

In mathematics, the term mapping, sometimes shortened to

map, refers to the relationship between elements of two sets,

which is usually used to mean a function in many branches

of mathematics. In category theory, mapping is often used as

a synonym for morphism or arrow, thus for something more

general than a function [21].

Formally, a mapping F from a set X to a set Y is defined

by a set G of ordered pairs (x, y) such that x ∈ X , y ∈ Y ,

and every element of X is the first component of precisely

one ordered pair in G [22]. Specific to fuzzing, notice that

software can also be regarded as a mapping. Assuming that

there are no random functions in the software, inputted a test

case, the software is going to execute a specific path.

More formally, given a program M and a set of tests T =

{s1, s2, s3, s4, s5, . . .}, in which si denotes a test case for some

i ∈ N, we input test case si to the program M , and then si
will exercise a certain path j. After that we can get a mapping

F : T → P,P = {1, 2, 3, . . . ,N }, P = {1, 2, 3, . . . ,N } for

some N ∈ N in which j ∈ P is the identifier of a path of the

programM .

∀si ∈ T , si can be represented as a sequence of characters

from the set of 28 ASCII characters (i.e. si = (xi1 , xi2 ,

xi3 , xi4 , . . . , xil ,Null,Null,Null,Null, . . .), where l is the

byte length of si), for the test case is stored in bytes [23].

Further more, ∀n ∈ N, the number of test cases with lengths

equal to n bytes is limited, up to 256n. According to the

theorem that the union set of countably infinite countable sets

is still a countable set, we can conclude that T is a countable

set [25]. That is, denoting T by {s1, s2, s3, s4, . . .} is rational.

While ∀j ∈ P, j stands for a path in M, which is restrained

by a set of conditions Cj inM . If si exercises the path j inM ,

we can denote this as

F(si) = j (1)

We can get the relationship between the input and the

execution path of the program by (1). However, from

|T | > |M |, we could infer that F is a surjection, not a

bijection. In Section III, we state how to get a bijection F ′

based on mapping theory and deduce the formats of the test

cases that exercise the same paths.

III. FORMAT-BASED PATH TRANSITION MODEL

In Subsection II-B we introduce the mapping theory, formu-

larize the relationship between test cases and paths of the

program as (1). In this section, we discuss the path transi-

tion in fuzzing and propose the equivalence-classes-based

format generation theory. Furthermore, we elaborate on how

to explore new paths by mutation based on the format of test

cases, which is formulated as format-based path transition

model.

A. EQUIVALENCE-CLASSES-BASED FORMAT

GENERATION THEORY

In Subsection II-B, we denote that the path j is exercised

by test case si as (1), which maps the program M to the

mapping F . Notice that, F is a surjection, not a bijection.

In order to get a bijection, we divide T into several equiva-

lence classes Ti by the exercised path of tests,

Ti = {sij |F(sij ) = i} (2)

Further more, ∀sij1 , sij2 ∈ Ti, as F(sij1 ) = F(sij2 ), sij1 and sij2
are both restrained by a set of conditions Cj (i.e., they both

satisfy the same pattern in format). For instance, their first

four characters are ‘‘%PDF’’.

According to the equivalence classes of the test cases,

we can get a bijection F ′ : T ′ → P,T ′ = {T1,T2,T3,

T4, . . . ,TN },

F ′(Ti) = i (3)

In order to distinguish between F and F ′, we define F as

the simple mapping of M and F ′ as the bijection of M .

Notice that, given the restrained conditionsCi of the path pi in

programM , it is able to get the input format of Ti by solving

restrictions Ci, which is the principle of symbol execution.

On the contrary, given Ti (i.e., all the test cases exercising

path i), it is also possible to get the format by observing the

regular pattern of the elements in Ti.

We illustrate this conclusion using the simple program in

Listing 1 which takes as input a 4-character string and crashes

for the input ‘‘bad!’’.

LISTING 1. Motivating example to illustrate that it is possible to get the
format by observing the test cases in Ti .

In this program, there are five execution paths, which is

listed in Table 1. If we had already known the determine

statements in the program, it is easy for us to infer the input
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TABLE 1. Paths and input format of code in listing 1.

formats of each path. Supposing, we are fuzzing the program

by AFL; we only have some test cases that execute each path.

Can we get the input format based on these test cases? It is

not necessary if test cases are few. For instance, ‘‘beda’’ and

‘‘bed1’’ both exercise the path 2. However, we may infer that

the input format of path 2 is ‘‘bed*’’, which is an incorrect

conclusion. In order to get the correct format, we need more

test cases for reference. Fortunately, mutation-based greybox

fuzzing can bring us many test cases to observe. Overall,

themore test cases, the closer we can get to the correct format.

Based on that, we proposed the equivalence-classes-based

format generation theory.

(1) Assuming that there are no random functions in the

programM , and the state ofM is consistent before each

testing, M could be represented to the simple mapping

F : T → P, which T is the set of test cases and P is the

set of identifiers of paths.

(2) According to 1, we can deduce the bijection

F ′ : T ′ → P by dividing T into several equivalence

classes Ti by the exercised path of tests.

(3) According to 2, we get the sets Ti of test cases corre-

sponding to different paths i. Furthermore, ∀sij ∈ Ti,

as F(sij ) = i, test case sij must be restrained by a set

of conditions Ci, which determines whether a test case

exercises the path i.

(4) According to 3, if there are sufficient test cases of the

set Ti, it is possible for us to deduce the format of test

cases exercising the path i.

B. FORMAT-BASED PATH TRANSITION MODEL

AFLFast proposed the transition probability of mutation-

based fuzzing and modeled it in a Markov chain [11]. For

mutation-based greybox fuzzing, the transition probability pij
is defined as the probability to generate an input t that exer-

cises path j by randomly mutating the seeds s that exercises

path i [11]. Formally, we can denote this process as











F(s) = i

s
mutation
−−−−→ t

F(t) = j

(4)

Notice that, the path transition is a process that generates a

test case of the equivalence class Tj from the seed of the equiv-

alence class Ti. More substantially, the essence of the path

transition is to modify the format of the seed s in the mutation.

The new test case t generated by seed s satisfies the constraint

conditions Cj of path j rather than Ci of path i, which deter-

mines test case t to exercise path j. In other words, if we can

get the format of the path i by collecting and observing a large

number of test cases exercising i, we could solve the con-

straint Ci of i. Furthermore, inverting the constraint and mod-

ifying the format of test cases, we may explore a new path.

In order to illustrate this conclusion, we walk through a

more complex code presented in Listing 2.

LISTING 2. A more complex code than that in listing 1.

There are seven paths in the code snippet, among which

only the deepest path could trigger a crash. Observing the

code, it is easy to get the format of each path by solving the

constraints, which is listed in Table 2.

TABLE 2. Paths and input format of code in listing 2.

Provided that a seed s = ‘‘bast’’ exercises the path 3,

s ∈ T3, if we mutate the magic bytes ‘‘a’’ of the seed s and

generate a test case t = ‘‘best’’, according to Table 2, the test

case t will exercise the path 2, which is a good illustration of

the fact that the path transition is essentially the equivalence

classes transition.

However, this is a path transition from a deeper path to

a high-frequency path, which is easy to reach. Informally,

we call this way of path transition decrease-transition. In fact,

for mutate-based greybox fuzzing, exploring the deeper paths

is more challenging than decrease-transition, which is called

increase-transition informally. The main reason is that most

of the time, we do not know the determine statements so that

we could not deduce the format of the deeper path. Moreover,

even if we generate some test cases exercising the deeper

paths, that does not mean we can deduce the exact format.

Figure 1 shows the CFG of the code in Listing 2, which

is used for illustrating our conclusion. For path 6, we may

only be able to deduce its format as ‘‘bad!’’. If we modify the

first four characters, we will generate test cases exercising the

high-frequency path, which is not helpful for us to explore

deeper paths.

Notice that, though ‘‘bad!’’ is not the exact format of

path 6, it is the public format of path 5−7. Therefore, aiming

to explore deep paths based on some exercised paths, we need

to keep the learned format unchanged.
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FIGURE 1. CFG of the code in listing 2.

Supposing we had explored the paths 1 − 5, and now

we are fuzzing the seed ‘‘bad!t’’ which exercises path 5,

our goal is to pass the determined statement of block E.

If we implement the initial indeterministic strategies of AFL,

it couldn’t ensure that the valid format ‘‘bad!’’ of the seed

‘‘bad!t’’ is not changed in themutation, so that it may generate

a lot of test cases which isn’t able to reach block F. This

means that AFL generates a large number of test cases that

perform high-frequency paths in the mutation, which makes

AFL not efficient in exploring the deeper paths. In contrast,

if we had learned the valid format ‘‘bad!’’ of the seed ‘‘bad!t’’,

we only need to keep the valid format unchanged and mutate

the other positions in the seed. It will be easier for us to find

the deeper paths 6, 7 than implementing the initial indeter-

ministic strategies of AFL. That is, by keeping the formats of

exercised paths unchanged, we are able to decrease the num-

ber of test cases exercising high-frequency paths and focus

on the deeper paths, which means the transition probability is

increased.

Above all, we proposed the format-based path transition

model. Given some seeds and format of the paths exercised

by these seeds, we can exercise the paths which are no deeper

than the original paths by destroying the formats of seeds,

which is decrease-transition. In contrast, we can keep the

formats unchanged in mutation, which is helpful to generate

test cases with good quality and reach increase-transition.

Based on this theory and model, we implement LearnAFL.

It can learn the formats of paths we have exercised and help

us to explore deeper paths.

IV. DESIGN AND IMPLEMENTATION

In this section, we introduce the architecture of LearnAFL

and detail the algorithm of learning formats.

A. ARCHITECTURE OF LearnAFL

Similar to AFLFast, LearnAFL is also based on the AFL

2.52b, especially the mutation strategies, power schedules,

and execution engine. However, LearnAFL only implements

the haovcmutation strategy. Besides, we have added a python

script to learn the formats of paths and an assist mechanism to

use the formats to mutate seeds. The main idea of LearnAFL

is to collect the information of each fuzzing in the fuzzing

process, divide the test cases into several sets according to the

exercising paths, deal with the test case set and learn formats

of each path, and then use the formats as an auxiliary in muta-

tion. Figure 2 provides an overview of its main components.

FIGURE 2. Overview of LearnAFL.

There are two engines in LearnAFL, the fuzzing engine

(shown on the right) and the learning engine (shown on the

left). The fuzzing engine follows that of AFL. When the

fuzzing engine is working, LearnAFL selects a seed s from

seeds queue and prepares to fuzz it. Before doing fuzzing on s,

LearnAFL checks whether there has been the format of the

path exercised by the seed s. In order to facilitate the storage

and modifying of the format knowledge, we store the format

knowledge in a text file format. Informally, we call this file

format model file. Especially, if LearnAFL had done fuzzing

on s and learned the format, LearnAFL would read the format

model file and use the format knowledge to assist LearnAFL

to mutate s. Otherwise, LearnAFL would fuzz s like AFL.

LearnAFL collects the information of each fuzzing, which

includes seed, test case, the identifier of the path exercised

by test case (i.e., cksum defined by AFL).
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If LearnAFL fuzzes a seed for some time, LearnAFL will

transfer to the learning engine. In this mode, LearnAFL calls

the python script to process the information file and learns

the format of the path exercised by current seed s. If there

has been a format model file of the path, LearnAFL will read

the prior model file and regulate the format according to the

latest collected information. Then LearnAFL transfers to the

fuzzing engine and uses the latest format knowledge tomutate

the seed s. We detail the algorithms used in LearnAFL in

Subsection IV-C.

B. DEFINITION AND EXPRESSION OF FORMAT

In this subsection, we state the definition and expression of

the format knowledge.

In Section III, we had listed some examples to illustrate our

model, which also contains some simple formats of seeds.

Nevertheless, due to the complexity of the determine state-

ments, the paths constraints in the real-world program are

very complicated. Therefore, the formats of these paths are

also very complicated (e.g., the paths in software to han-

dle PDF). Compared to them, formats of paths like path 5

in Table 2 are simple examples. Generally speaking, because

of the complexity of software in the real world, it is chal-

lenging to learn the formats of the paths in them accurately.

Therefore, we propose a method to use the enhanced expres-

sion of magic bytes instead of the actual format of the path to

assist the mutation.

The enhanced expression of magic bytes is built on the top

of the regular expression of all test cases exercising the same

path. It is a 2-dimensional array including the array of regular

and the array of position, in which regular is an array of the

substrings of all test cases exercising a path and position is

an array of the positions of each substring in the test cases.

Table 3 is an example to show the enhanced expression of

magic bytes.

TABLE 3. The enhanced expression of magic bytes.

There are four test cases in Table 3. It is easy to deduce

all substrings, which are listed in the array of regular in

order. The pos of the position array shows the position of a

substring in the regular array. If pos equal to −2, it means

that the position of this substring is variable in all test cases

(e.g., position of ‘‘@’’ in all strings). If pos equal to −1, that

means the substring is at the end of all test cases (e.g., all

strings ended with ‘‘.com’’). Otherwise, it means the fixed

position of this substring in all test cases (e.g. ‘‘mail:’’ is

the first four characters in all strings). However, given some

test cases, there may be several expressions for these test

cases, especially if the number of test cases is too scanty.

For these strings in Table 3, the [‘‘mail:’’, ‘‘@’’, ‘‘.com’’]

is also an array of regular of an expression. Notice that the

[‘‘mail:’’, ‘‘@’’, ‘‘.com’’] is the subarray of [‘‘mail:’’, ‘‘o’’,

‘‘@’’, ‘‘.com’’]. Therefore, if there is an expression exp1,

which includes the expression exp2, we use exp1 instead of

exp2 as the expression of the paths.

There are several reasons for us to choose this enhanced

expression as the format we learned from the test cases.

First, among the determine statements of software, com-

paring variables to a fixed string or magic bytes (i.e.,

‘‘if(buf[0]==‘‘a’’)’’) is more complicated than these deter-

mine statements to pass, such as the determine statements

which are satisfied by a range of values (i.e., ‘‘if(a<10)’’).

Therefore, learning the magic bytes is more helpful for

the mutation to pass some determine statements than some

formats. Second, learning the regular expression of a path is

more accessible than learning other formats. For the deter-

mine statement ‘‘if(a<10)’’, if we want to learn the format,

we need to determine the boundary value, which is complex

and worthless. Though there are some determine statements

more difficult for comparing magic bytes to pass. That means

they are helpful for mutation-based fuzzing. However, learn-

ing such a format is tough. For instance, some software of

reading files or accepting network packets will check the

length of the content of files or packets and execute different

paths according to the result of comparing the character at

a specific location with the length. Unless we have some

prior knowledge of files of the target software, we often have

difficulties learning the format that satisfies this constraint

even by manual learning.

C. ALGORITHMS IN LearnAFL

There are two algorithms we implement in LearnAFL for

learning format and assisting mutation.

The first algorithm is the enhanced expression of magic

bytes generation algorithm. It is based on the longest common

substring searching algorithm.

In more detail, we choose the hardcode as the highest

priority substrings, whose position is stationary in all test

cases of a set. Then we divide the set into several subsets

according to the hardcode, similar to [27]. For the strings

in each subset, we select the most extended and leftmost

substring as the second-highest priority substring. If there

has been a format model of some test cases, we use the new

strings to generate new expression to regulate the format.

Figure 3 shows the whole process of generating the expres-

sion of strings in Table 3 and utilizing new strings to recorrect

format.

After introducing the first algorithm, we illustrate the sec-

ond algorithm, assistant mutation algorithm. This algorithm

ismainly used tomutate the seeds with the format knowledge.

In Subsection IV-A, we point out that it is an ongoing

process for us to learn the format of a seed. The more

the number of test cases exercising the same path with the
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FIGURE 3. Process of generating the enhanced expression of magic bytes.

seeds is, the more precise the format knowledge wewill learn.

Based on these and the format-based path transition model,

we implement the assistant mutation algorithm.

In detail, for fuzzing a new seed s, which means there is no

format model file of the path exercised by s, LearnAFL effec-

tuates the same mutation strategies with AFL at the initial

phase. After that LearnAFL learns the format, generates the

enhanced expression of the path and turns to the second stage.

At the second stage, LearnAFL only mutates the characters in

the enhanced expression of the seed and generate some test

cases to fuzz (e.g. ‘‘mail:’’, ‘‘@’’ or ‘‘.com’’ in the example).

It will be efficient for us to save the energy, generate exacter

enhanced expression and explore paths, according to format-

based path transition model. If a test case does not exercise

the same path with the seed, we will infer that the char-

acters which we changed in mutation affect the result of a

determined statement. It means the characters must be com-

ponents of the format. Until all substrings of the enhanced

expression are changed, we will determine which substring is

crucial to this format and obtain a precise format model. Then

LearnAFL turns to the third stage, mutates the characters

whose positions are not in the array of positions of enhanced

expression during implementing the deterministic strategies

(e.g. arithmetic) and utilizes the format to regulate the test

cases generated by the indeterministic strategies (e.g. havoc).

As a result, test cases generated in mutation with the assist of

format model all satisfy the enhanced expression of the path,

which brings more possibilities to LearnAFL to explore the

deeper paths. The algorithm is detailed in Algorithm 2.

Algorithm 2 Assistant Mutation Algorithm

Require: The Seeds Queue Q

Choose si from Q

if si has a format model then

reg, pos, use_model = ReadModelFile(si)

else

use_model = 0

end if

n = AssignEnergy(si)

for j from 1 to n do

if use_model = 0 then

t = Mutate(si)

else if use_model = 1 then

Choose mutation position in pos

t = Mutate(si)

else if use_model = 2 then

Keep position in pos unchanged

t = Mutate(si)

end if

res = Execute(t)

RecordInformation(si, t , res)

if res = CRASH then

add t to Tc
else if IsInteresting(res) then

add t to Q

end if

if j%1024 = 0 then

LearnFormat(si)

reg, pos, use_model = ReadModelFile(si)

end if

end for

V. EVALUATION

We evaluated LearnAFL on ten different real-world util-

ity programs and libs, nine of which are the latest

version [28]–[33] (since the latest version of libjpeg is

compiled of CMake, we choose the 1.5.3 version to test [31]).

We selected these from those favored for evaluation by some

AFL-type fuzzers. We ran all the evaluation without dic-

tionaries to level out the playing field. The configuration

of all experiments is listed in Table 4. For each case we

seeded the fuzzing run with the inputs provided from the

testcases directories of AFL; for PNG we used only

not_kitty.png, which is the same as that of [15].

We compare five popular versions of AFL against Lear-

nAFL, listed as

(1) AFL is a classic file-type coverage-based greybox

fuzzer.

(2) FidgetyAFL [14] is AFL running without deterministic

mutation strategies.
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TABLE 4. The configuration of experiments.

(3) AFLFast is an outstanding fuzzer implementing the

monotonous power schedule without the adaptive

mechanism.

(4) AFLFast.new [15] is AFLFast running without deter-

ministic mutation strategies.

(5) FairFuzz is a state-of-the-art greybox fuzzer imple-

menting targeted mutation strategies [15].

We ran our experiments on a 64-bit machine with 40 cores

(2.8 GHz Intel R Xeon R E5- 2680 v2), 64GB RAM, and

Ubuntu 16.04 as server OS. According to [34], we ran each

experiment 5 times for 24 hours, which was longer than that

in AFLFast. Fuzzing is a random variation. By taking the

average value ofmany experiments, we can reduce the contin-

gency during our experiments. In addition, time is measured

using Unix time stamps. The total hours of our experiments

are over 300 CPU days.

A. RESULT OF BRANCH COVERAGE

We choose the basic block transitions coverage achieved

by different techniques through time as the primary metric,

which is the same as the evaluation in FairFuzz [15]. Some

researchers may choose the path coverage of AFL as the

mainmetric. However, Lemieux and Sen [15] pointed out that

the basic block transitions coverage is close to the notion of

branch coverage used in real-world software testing. Notably,

the creator of AFL also favors branch coverage as a perfor-

mance metric [15]. Besides, AFL provides the map cover-

age CM as a metric. From the technical details [19], we can

calculate the basic block transitions coverage CB as

CB = CM ∗ (216 − 1) (5)

1) RESULTS

For each subject and technique, Figure 4 plots the average

branch coverage reached overall 5 runs at each time point.

As Figure 4 shows, on all programs except on pdfimages,

LearnAFL reaches the maximum branch coverage, which

is the blue line shown in Figure 4. The basic block transi-

tions coverages reached by AFL and AFLFast are the lowest

among these tools. Table 5 shows the specific values of the

coverage reached by each tool on each subject in detail.

According to Table 5, LearnAFL achieves average branch

coverage of 120% of that of AFL (average 20.06% increase).

However, FairFuzz only increases 10% coverage of AFL [15].

The growth of coverage achieved by LearnAFL is 200% as

that of FairFuzz.

More specifically, on pdfimages, the basic block transi-

tions reached by all techniques are almost the same. On other

programs, particularly on nm, objdump and djpeg,

LearnAFL performance significantly better than some other

techniques. In detail, LearnAFL reaches the basic block

transitions coverages of 135.79%, 142.36% and 123.79% of

these achieved by AFLFast, respectively on nm, readelf,

objdump and djpeg. Besides, the gap of coverage between

LearnAFL and other tools is not very large on readpng

and pdfimages. One of the most important reasons is that

these two programs are used to read and convert target files.

That means, they do not analysis the formats of files deeply.

Therefore, learning the format knowledge to fuzz these

programs is not as effective as that of others. For the

five programs of GNU Binutils, LearnAFL performs much

better than other techniques, including FidgetyAFL and

AFLFast.new. Particularly, LearnAFL reaches the average

coverage of 110% of that of FidgetyAFL on these five

programs. Since LearnAFL, FidgetyAFL, and AFLFast.new

all runs without deterministic strategies, these results show

that obtaining format knowledge to assist mutation could

improve the test efficiency for these programs. In addition,

on most programs (e.g., nm, objdump, readelf, size),

LearnAFL performs worse than other AFL techniques in the

beginning of fuzzing. The reason is that at the beginning,

LearnAFL spent a certain amount of time on learning knowl-

edge. With the gradual increase of coverage, the discovery of

low-frequency paths brings more benefits to coverage growth

than that of high-frequency paths. LearnAFL’s advantage in

exploring low-frequency pathsmakes it better than other tools

in the later stage.

Compared to FairFuzz, in general, LearnAFL reaches

higher branch coverage than FairFuzz on all programs except

pdfimages. The average coverage reached by LearnAFL

is about 110% of that reached by FairFuzz. On tcpdump,

the basic block transitions coverage of LearnAFL is slightly

higher than that of FairFuzz. However, LearnAFL and Fair-

Fuzz reach significantly higher coverage than the other

four tools. Particularly, compared to AFLFast, LearnAFL

and FairFuzz reach branch coverage of 155% and 153%

of that of AFLFast respectively. The main reason is that
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FIGURE 4. Branch coverage reached by different AFL techniques averaged over 5 runs, where the X axis represents the testing time.

TABLE 5. The average branch coverage of each fuzzer on each subject.

tcpdump -nr performs an in-depth analysis of network

packets. Therefore, avoiding to mutate some crucial parts of

the seeds is valid to improve the coverage. Moreover, Lear-

nAFL performs significantly better on these programs than

AFL, which is mainly because LearnAFL only implements

randommutation strategies and utilizes the format knowledge

to assist mutation.

In particular, as suggested by [34], we do the statistical

tests and use the p value to measure the performance of these

fuzzers. Specifically, p1 is the p value yielded from the differ-

ence between the performance of LearnAFL andAFL. p2, p3,

p4 and p5 are the p value yielded from the difference between

the performance of LearnAFL and AFLFast, FidgetyAFL,

AFLFast.new, FairFuzz, respectively. The results of p value

are shown in Table 6.

From Table 6, on these programs except pdfimages,

p1 is smaller than 10−3, which means that the distribution

TABLE 6. The p in each evaluation of branch coverage.

of the branch coverage reached by LearnAFL and AFL is

significantly different. The difference demonstrates statisti-

cal evidence for that LearnAFL can achieve higher branch

coverage than that of AFL.
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In general, LearnAFL achieves branch coverage of 120%

of that of AFL over 24 hours of testing (average 20.06%

increase). However, FairFuzz only increases the coverage

reached by AFL about 10% [15]. This result has proved that

LearnAFL can significantly improve the testing efficiency of

AFL among these techniques.

B. DEEP PATHS AND VULNERABILITY DISCOVERY

In this subsection, we evaluate the ability to explore deep

paths and discovery vulnerabilities of LearnAFL against

other techniques. Since most of the programs we test are the

latest version and the initial seed is simple, LearnAFL and

other five techniques all have not found any crashes on the

ten programs except on pdfimages and gif2png. The

average number of unique crashes found by each technique

on these two programs is listed in Table 7.

TABLE 7. The average number of unique crashes in fuzzing gif2png and
pdfimages.

As Table 7 shows, LearnAFL finds the most number of

unique crashes on pdfimages among these fuzzers, which

is significantly more than others. On gif2png, though

the number of unique crashes found by LearnAFL is not

the most, LearnAFL finds more crashes than AFL and

AFLFast. Besides, we further analyze the crashes and find

a heap-buffer-overflow vulnerability in the writefile function.

Only LearnAFL and FidgetyAFL trigger this vulnerability.

Moreover, FidgetyAFL only generates 1 test case to trigger

this vulnerability over 5 runs. In contrast, LearnAFL gener-

ates 12 test cases in total. The results show that LearnAFL

is useful in detecting vulnerabilities and generating more test

cases to explore deep paths and bugs. Especially, compared

to AFL, LearnAFL finds 10 times more unique crashes

than AFL.

1) EXPLORING DEEP PATHS

We use the heap-buffer-overflow vulnerability found by Lear-

nAFL in gif2png to illustrate that LearnAFL can explore

deep paths which other tools are hard to find. This heap-

buffer-overflow vulnerability is triggered in the writefile

function of gif2png.c, which is listed in Listing 3.

In detail, the heap-buffer-overflow vulnerability occurs

when gif2png executes the statement on lines 15 in

Listing 3. The variable s inwritefile function represents a data

structure of the gif file. Only the s->data is a null pointer

and the statement on lines 15 is executed a second time,

this vulnerability is triggered. However, the condition for

executing this statement is that the value of s->GIFtypemust

match the GIFcomment, which is preset to ‘‘0xfe’’. That is,

LISTING 3. Code of writefile function.

only if one test case can pass two times of type validations

for GIFcomment in succession, it is possible for this test case

to trigger this vulnerability. Therefore, triggering this heap-

buffer-overflow vulnerability needs to generate well-format

test cases exercising deep paths. In the term, LearnAFL per-

forms significantly better than the other five tools, with the

total number of unique crashes triggering this vulnerability

listed in Table 8 over 5 runs. The result in Table 8 shows

that LearnAFL is more effective in exploring deep paths and

vulnerabilities than other tools.

TABLE 8. The total number of crashes triggering the
heap-buffer-overflow vulnerability in fuzzing gif2png.

2) DISCOVERING VULNERABILITIES

Moreover, we use the AFL_ASAN mode to compile these

programs [35], which can detect more crashes than normal

mode. The initial seeds we choose are the crashes that were

exposed in previous versions of these programs. We recom-

pile all programs where we find crashes with AddressSan-

itizer and reevaluate them with the discovered crash inputs

[36], [37]. AddressSanitizer can trail the stack trace and

locate the bugs. This is a common way to find unique vul-

nerabilities in practice [35]. After inputting the crashes and

observing the results, we find 8 unknown vulnerabilities in
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TABLE 9. The discovered vulnerabilities.

these programs. The analysis of these vulnerabilities is listed

in Table 9.

In GNU Binutils, we have found 4 unknown vulner-

abilities. Three of them are heap-buffer-overflow vulner-

abilities, and the last one is a memory leak. In detail,

the memory leak is triggered when the slurp_symtab func-

tion is called. it is due to objdump hitting a fatal error

and calling bucomm.c:bfd_fatal. Besides, this problem leaks

2013265920 bytes. We have submitted all vulnerabilities to

vendors. Vendors also acknowledge the other three vulnera-

bilities. However, the vendor of GNU Binutils refused to fix

this memory leak vulnerability.

On other programs, LearnAFL also found some vulner-

ability. Since gif2png is linked to libpng, they are all

triggered when we are testing gif2png. We also reported

these problems to their vendors.

From these results, we could conclude that LearnAFL is

efficient in triggering crashes and detecting vulnerabilities.

Particularly, in some programs (e.g., gif2png), it finds

some deep bugs more effective than the other five tools.

C. ACCURACY OF FORMAT MODEL

In previous subsections, we analyzed the ability of Lear-

nAFL to detect vulnerabilities and compared it with other

techniques. In this subsection, we focus on the ability of

LearnAFL to learn formats knowledge of target programs.

We begin our evaluation with the ELF file type. Since

LearnAFL can obtain the format features of a seed after it has

done some mutation on this seed, the format knowledge of

the initial seed with well-format is the closest to the standard

of ELF among all seeds. Therefore, we choose the format

file of the path which is exercised by the initial seed and

compare it to the standard of ELF. Moreover, We analyze

the format model corresponding to the initial seed when

using LearnAFL to test objdump and show this in Figure 5.

In addition, LearnAFL generated the format file after doing

one turn of fuzz on the initial seed, less than 2 minutes.

Notably, the initial seed is an i386 type file, whose size is

324 bytes. We compiled objdump to the 32-bit LSB version

in the x86-64 Ubuntu 16.04 services.

According to the structures of the ELF headers shown

in Listing 4, the first four bytes in the seed stands for the

magic number of the ELF files, which is ‘‘\x7fELF’’ of

the file [38]. As Figure 5 shows, LearnAFL identities this

magic number of the seed and keeps it unchanged in the

FIGURE 5. Part of format LearnAFL learned from the ELF file whose size is
324 bytes provided by AFL. Red part stands for the substrings whose
position are not fixed.

LISTING 4. The data structure of the ELF headers.

mutation, which makes the test cases generated by this format

knowledge be regarded as an ELF file by objdump. Besides,

the e_machine stands for the architecture required to run the

program. More specifically, ‘‘\x03\x00’’ represents that this

file should run on the i383 architecture, which is consistent

with the type of initial seed. Similarly, we could deduce the

corresponding data structures in the learned format and show

them in Table 10.

Comparing the data structure in Listing 4 with the val-

ues in Table 10, LearnAFL has identified 9 variables of
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TABLE 10. The value of aata structures in the format model.

the ELF headers’ data structure, which is about 64% of the

total variables. By learning these format knowledge and uti-

lizing them to assist mutation, LearnAFL can generate more

test cases that pass some complicated program verifications

than AFL and other tools.

Based on this result, we can get a conclusion that Lear-

nAFL can learn a certain degree of the ELF file format

accurately, about 64%, which is helpful to generate test cases

with valid formats to exercise deep paths.

VI. RELATED WORK

In the previous sections, we have already produced some

of the significant differences between LearnAFL and AFL.

In this section, we survey recent work in the area of fuzzing

and learning knowledge, which enables us to highlight some

of the features and differences concerning existing work.

A. COVERAGE-BASED GREYBOX FUZZING

Coverage-based Greybox Fuzzing plays an important role in

detecting vulnerabilities. As a typical representative among

them, AFLFast [11] modeled Coverage-based Greybox

Fuzzing as a Markov chain and proposed the transition prob-

ability pij that fuzzing the seed exercising path i generates an

input exercising path j. Based on these, AFLFast implements

several power schedules and produces more unique crashes

than AFL. However, AFLFast didn’t modify the mutation

operators or improve the effectiveness of the mutation strat-

egy, which means the probability pij does not change from

AFL to AFLFast. In contrast, our work implements format-

assistance mutation strategies. By learning formats of paths

and utilizing the knowledge to assist mutation, the transition

probability to explore deeper paths has been increased, which

improves the effectiveness of AFL.

B. APPLICATION-AWARE EVOLUTIONARY FUZZING

Generally speaking, application-aware evolutionary fuzzing

(e.g., VUzzer) mostly used some program analysis tech-

niques to get information and learn the knowledge of the

program, such as static analysis, symbolic execution, and

dynamic taint analysis [8], [10]. According to the informa-

tion and knowledge, application-aware evolutionary fuzzing

accurately determines where and how to mutate seeds to

explore deep and interesting paths. However, the main draw-

back of these techniques is that the test speed is significantly

slower than AFL. Compared to these techniques, LearnAFL

is built on the top of AFL and follows the high-speed feature

of AFL. Besides, LearnAFL is more convenient to start and

available for most targets of real-world programs than these

techniques.

C. GRAMMAR-BASED FUZZING

Grammar-based fuzzing (e.g., Peach and SPIKE [39], [40])

is valid for fuzzing software with complex structured inputs.

Provided an input grammar, grammar-based fuzzing can gen-

erate test cases satisfying the grammar and exercising deep

paths, which is similar to the format-assistance mutation of

LearnAFL. However, it is necessary for users to define an

input gramma manually before doing fuzzing. Compared to

grammar-based fuzzing, LearnAFL does not need to be pro-

vided a model in advance, just generating the format model

during the processes of fuzzing. This mechanism improves

the practical of LearnAFL.

D. LEARNING GRAMMARS FOR GRAMMAR-BASED

FUZZING

Recently, some researchers propose new algorithms to

synthesize grammars given a set of input examples.

Godefroid et al. [41] used neural-network-based statistical

learning techniques to generate input grammars from sam-

ple inputs automatically. TreeFuzz [42] was a fuzz testing

approach for tree-structured inputs (such as programs) by

learning a generative model of tree structures from a corpus

of example data. Therefore, though the grammars (e.g., tree

structures) is more accurate and efficient than our file model,

collecting example data becomes a significant issue for these

approaches. Compared to them, LearnAFL takes full advan-

tage of the high-speed features of AFL to get lots of test cases

for generating format models.

E. TARGETED MUTATION GREYBOX FUZZING

Lemieux and Sen [15] proposed a targeted mutation strat-

egy for increasing testing coverage of AFL, which is called

FairFuzz. Similarly to LearnAFL, FairFuzz also can identify

those crucial parts of the input that are crucial to satisfy

the determined conditions and avoid mutating these parts in

the random mutation. However, FairFuzz achieves this tar-

get depending on the implementation of deterministic strate-

gies, which decreases the efficiency of testing. In contrast,

LearnAFL only does random mutation strategies. Moreover,

our evaluation has proved that LearnAFL is more efficient

than FairFuzz in exploring paths and triggering bugs.

VII. CONCLUSION

In this paper, we propose a knowledge-enhancement fuzzer

based on AFL. LearnAFL classifies test cases into different

sets during the fuzzing process and obtains partial format fea-

tures of each path that has been exercised. After that, the for-

mat models of paths are used to assist mutation. Through

this, we enhanced the effectiveness and efficiency of AFL in

producing crashes, as evidenced by our experiments.
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More importantly, we introduce the equivalence-classes-

based format generation theory to explain the relationship

between inputs and paths. Moreover, we observe that AFL

may destroy partial format attributes during mutation result-

ing in generating ineffective test cases. Based on this, we pro-

pose the format-based path transition model and enhance

AFL’s performance in the help of paths’ format attributes.

The most important thing is that the transition probability to

explore deeper paths has been grown in LearnAFL, which

means we improve the effectiveness of AFL. In other words,

LearnAFL effectively exposes the vulnerabilities which are

more in-depth than these of AFL.
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