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Abstract

The collaborative representation-based classifier (CRC)
is proposed as an alternative to the sparse representation-
based classfier (SRC) for image face recognition. CRC
solves an l2-regularized least squares formulation, with
algebraic solution, while SRC optimizes over an l1-
regularized least squares problem. As an extension of CRC,
the weighted collaborative representation-based classifier
(WCRC) is further proposed. The weights in WCRC are
picked intuitively, it remains unclear why such choice of
weights works and how we optimize those weights. In this
paper, we propose a learned collaborative representation-
based classifier (LCRC) and attempt to answer the above
questions. Our learning technique is based on the fixed
point theorem and we use a weights formulation similar to
WCRC as the starting point. Through extensive experiments
on face datasets we show that the learning procedure is sta-
ble and convergent, and that LCRC is able to improve in
performance over CRC and WCRC, while keeping the same
computational efficiency at test.

1. Introduction

In the realm of face recognition, Ordinary Least Squares
(OLS) formulation is a widely used strategy to solve the
recognition problem. By minimizing the residues between
a testing face and its linear combination of training faces
we conclude which class it belongs to. Of course, in
many situations due to its limitation researchers are mo-
tivated to propose more sophisticated methods by adding
an ln-regularization term to increase the recognition rate.
To enforce the sparsity on solutions Wright et al. [14] ap-
ply l1 norm as the regularization part of OLS formula-
tion, which unfortunately does not have an algebraic so-
lution. They obtain a sparse representation (SR) and a
sparse representation-based classfier (SRC). As an alterna-
tive to SRC, Zhang et al. [15] proposes the l2-regularization,
obtaining a collaborative representation (CR) and a col-
laborative representation-based classifier (CRC). By CRC
we can avoid the singular matrix appeared in the OLS
method, stabilize the solution and decrease the importance

of noisy samples. Besides, unlike SRC we still have an
algebraic solution. By combining l1- and l2- regularized
terms Zou et al. [18] proposes an Elastic Net (EN) prob-
lem to make use of both advantages of CR and SR. The
solution (coefficients) of above methods reveals the impor-
tance of each training sample. For better reflecting the re-
lation between a testing face and training faces, Timofte
and Van Gool [11, 12] proposes the WCRC method, in par-
ticularly investigates l2-regularized least squares with addi-
tional Tikhonov regularization (Tikhonov et al. [8]). More-
over, the effects caused by weighting samples and features
are argued in details and a collection of selected weights is
proposed.

On the other hand, recognition tasks always confront
non-linear situation. Under such circumstances we often in-
troduce a non-linear map from euclidean space to a Hilbert
space and employ the so-called kernel trick (Schölkopf et
al. [6]). Therefore, it is natural to extend mentioned
methods such as Sparse Representation (SR), Elastic Net
(EN) and Ridge Regression (RR) to kernel-based formula-
tions KSR (Zhang et al. [16]), KRR (Saunders et al. [5];
Suykens et al. [7]), and KEN (Timofte and Van Gool [12]).

In this paper, we extend WCRC to a robust, solid
mathematically founded method – learned collaborative
representation-based classifier (LCRC). Instead of intu-
itively determining the weights, we use fixed point theo-
rem [1] to optimize them by starting from the setup simi-
lar to WCRC. In addition, we attempt to fully exploit the
information of training samples, without employing query-
adapted technique. During our discussion we will explain
why our WCRC-extended method LCRC works well and
provide the evidence showing improvements over both CRC
and WCRC.

Our paper is organized as follows. Section 2 shortly
reviews CRC and WCRC formulations, then introduces
LCRC, our proposed method. Section 3 refines the imple-
mentation details for learning the weights in LCRC and pro-
vides a pseudo-code of the learning algorithm. Section 4
presents the experimental setup and discusses the param-
eters and results over different face datasets and features.
Section 5 summarizes the paper.



2. Collaborative Representation Classifiers
In this section, we briefly review collaborative

representation-based classifier (CRC) and weighted col-
laborative representation-based classifier (WCRC). Then,
we introduce our new method – learned collaborative
representation-based classifier (LCRC).

Unless stated otherwise, we use the same notations
and assumptions as Timofte and Van Gool [12]. Let
X = (x1,x2, . . . ,xM ) ∈ RN×M be the collection of M
column-wise N -dimensional training samples, xj ∈ RN .
The samples belong to K classes with labels in C =
{c1, c2, . . . , cK}. Letβ ∈ RM be the coefficients of a linear
combination of training samples regarding a query y ∈ RN .
‖.‖marks the Euclidean norm, I the identity matrix, XT the
transpose of X, and diag(x) is the diagonal matrix with the
vector x on the diagonal. We also assume that each training
sample has zero mean and unit length.

2.1. CRC

Zhang et al. [15] proposed the Collaborative
Representation-based Classifier with Regularized Least
Squares (CRC) as an alternative to SRC. CRC first solves:

β̂ = argmin
β
{‖y −Xβ‖2 + λ‖β‖2} (1)

with a regulatory parameter λ. The algebraic solution is:

β̂ = Py,P = (XTX + λI)−1XT (2)

where P is precomputed offline for a given X and λ.
The classification decision of CRC is given by:

class(y) = argmin
c∈{c1,c2,...,cK}

{‖y −Xcβ̂c‖/‖β̂c‖} (3)

where Xc is the collection of training samples belonging to
class c and β̂c are the corresponding coefficients.

2.2. WCRC

Often there is a difference in how helpful is each train-
ing sample in classification. This is due to how specific is
the sample to its own class and how discriminative is from
other class samples. Moreover, the samples are described
by features (e.g. pixel values) and these features again can
discriminate differently among each other, for instance, the
image pixels/regions on the face are more useful in classifi-
cation than those on the background. Such arguments lead
to the Weighted Collaborative Representation-based Classi-
fier (WCRC) proposed by Timofte and Van Gool [12].

WCRC solves:

β̂ = argmin
β
{(y −Xβ)TΩ−1(y −Xβ)+

λ(κ2‖Γβ‖2 + κ1‖β‖2)}
(4)

where Ω weights on each channel (dimension) of the fea-
ture vectors distinctively and Γ weights differently on each
training sample. The last two terms alleviate the illness of
Generalized Least Squares (GLS). The solution is:

β̂ = Py,P = (XTΩ−1X+ λ(κ1I+ κ2Γ
TΓ))−1XTΩ−1

(5)
In order to find out an appropriate Γ, Timofte and Van
Gool [12] consider Ω to be the identity matrix and initiate
Γ = 0. Next, for each training sample xi consider

β̂i = Pixi (6)

where Pi is the reduced matrix of P by eliminating xi. Fur-
ther β̂

+

i is taken to be the vector that keeps all the squared
coefficients concerning those training samples belonging to
the same class of xi, that is, the j-th component of vector
β̂
+

i = (β̂+
i,1, β̂

+
i,2, . . . , β̂

+
i,M ) satisfies:

β̂+
i,j =

{
β̂2
i,j if xi and xj are in the same class

0 otherwise
(7)

where β̂i,j is the j-th component of β̂i. Similarly for β̂
−
i =

(β̂−i,1, β̂
−
i,2, . . . , β̂

−
i,M ) they define

β̂−i,j =

{
β̂2
i,j if xi and xj are not in the same class

0 otherwise
(8)

Hence, the choice of Γ for WCRC is:

Γ = diag(

√√√√ ∑M
i=1 β̂

+

i∑M
i=1(β̂

+

i + β̂
−
i )

) (9)

2.3. LCRC

In principle, our idea is a further extension of WCRC,
along with a solid mathematical foundation. Motivated by
the WCRC results from [12], obtained by computing Γ in
Eq. (9), we decide to explore an optimization method with
a similar strategy (i.e. by extracting information from the
coefficients β̂

−
i ). Moreover, we use fixed point theorem [1]

to ensure the stability and convergence of our optimized Γ,
which was not argued in the WCRC method.

Ideally, we try to propose a method that can work as de-
creasing the residue ‖y − Xcβc‖ when y ∈ class c. Un-
fortunately, it seems difficult to think this way in reality.
On the other hand, if we are able to increase the residues
{‖y − Xcβc‖ | c ∈ {c1, c2, . . . , cK},y /∈ class c}, it
also can help us to improve the accuracy of recognition
rate. Therefore, we optimize those βc so that they tend to
0, which means query y becomes less dependent on train-
ing samples in different classes, while the residues become
larger and tend to 1. That is the main idea behind our
method.



Obviously, due to lacking of classification information
we can not directly use the residues {‖y − Xcβc‖ | c ∈
{c1, c2, . . . , cK}}. Hence, in our method we use a trick
to deal with the problem, e.g. treat the training samples as
‘testing samples’, because we know their class labels. That
is the place where β̂

−
i comes into play.

There is another important reason underlying our as-
sumption about training samples. Assume the training sam-
ples are large and well representative, e.g. for each query
there always exists closed related training sample(s), then it
is reasonable to replace the query with corresponding train-
ing sample in optimization. The optimization of residues
concerning training samples can be approximately consid-
ered as the optimization concerning queries. If it is the case,
after optimizing training samples, for a query y we expect
the corresponding coefficients βc for wrong class labels c to
be very close to 0, such that they are much smaller than the
coefficients concerning the training samples of same class
as y. In this way, we have a better chance to classify query
y accurately. Another point is that the regulatory parameter
λ helps to avoid, during the training, that for one training
sample xi the corresponding coefficient β̂i is trivial, i.e.

(XTΩ−1X + λ(κ1I + κ2Γ
TΓ))−1XTΩ−1xi 6= ei (10)

where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 in i-th position.
Now we express our idea mathematically. Let

γ = (γ1, γ2, . . . , γM ) (11)

be the weights assigned to each training sample, and

β̂
−
(γ) = (

M∑
i=1

β̂
−
i (γ))

2 (12)

the accumulation of representation coefficients, where the
power 2 is component-wise and used to enhance the validity
of fixed point theorem, β̂

−
i (γ) computed by Eqs.(6) & (8),

β̂
−
i,j =

{
(P(γ)xi)

2
j if xi and xj are not in the same class

0 otherwise
(13)

where P(γ) 1 is the projection matrix:

P(γ) = (XTΩ−1X + λ(κ1I + κ2diag(γ)))−1XTΩ−1

(14)

Theorem 1. Let

f(γ) = θ1(γ + θ2β̂
−
(γ)) (15)

1Here, we do not apply the reduced training dataset as suggested in [12]
for the sake of speeding up our proposed LCRC method, and such small
modification causes minor change for the performance. Besides, we use
the square root of diag(γ), hence the term ΓTΓ in Eq. (5) becomes
diag(γ) in Eq. (14).

suppose β̂
−
(γ) maps a closed ball O centered at zero into

itself 2, then for ε > 0 there exists a θ2 > 0 such that for
all positive θ1 satisfying 1 − θ1 > ε it holds f(γ) admits a
unique fixed point γ∗, that is,

γ∗ = θ1(γ
∗ + θ2β̂

−
(γ∗)) (16)

Proof. see the Appendix.

3. Learning the weights
First, we setup the coefficients for our LCRC method,

then give the learning algorithm we implemented in Matlab.

3.1. Setup of f(γ)

Coefficient θ1. Our goal is to achieve β̂
−
(γ) = 0. For

fixed point γ∗, according to Eq. (16), β̂
−
(γ∗) tends to 0 as

long as θ1 tends to 1. Hence, in our experiment we loose
the condition about θ1, simply let θ1 = 1.

Coefficient θ2. Given θ1 = 1 and based on the proof,
θ2 should be as small as possible. However, if θ2 is too
small, then the value of γ keeps insignificant in the steps of
optimization, so the regulatory term λκ1I in Eq. (14) will
still dominate the optimization procedure. To deal with this
problem, we let θ2 be a variable depending on the steps, i.e.
θ2 becomes smaller and smaller with the increasing iteration
steps. To this end, for n-th iteration step we let

β̃
−
(γ, n) =

θ̃2e
−(n/20)2 β̂

−
(γ)

e2γ
(17)

where the division is component-wise and e2γ helps to slow
down the growth rate of β̂

−
(γ) during the first few steps,

while e−(n/20)
2

take over the job in the next. Here, we use
the term 1/20 to weaken the dramatic decline of e−n

2

. For
the coefficient θ̃2, after cross validation on different datasets
and features discussed in the next section, empirically, for
Eigenfaces it is determined to be 1 or 5, for INNLP and
LDA we choose 50 and 100.

Additional term l(γ). So far, our setup of f(γ) does not
directly involve the residue part ‖y −Xcβc‖ of the classi-
fication decision, which is important for assisting the coef-
ficient term to attain high recognition rate. It inspires us to
introduce l(γ), whose i-th component is

l(γ)i = ‖xi −Xβ̂
−
i ‖2 (18)

so that hopefully we can optimize β̂
−

with the help of
residues. However, the introduction of l(γ) may undermine
the optimization procedure, after all, the main goal of our

2We want to assure that the invertible matrix always exists and the con-
dition of Bananch fixed point theorem holds.



method is to minimize the value of β̂
−

. To avoid the prob-
lem, we diminish l(γ) in the same way we handle β̂

−
(γ):

l̃(γ, n) =
e−(n/20)

2

l(γ)

e2γ
(19)

By imposing the coefficient θ̃2 on β̂
−

the optimal proce-
dure is still dominated by β̂

−
. Such idea is quite similar to

the one of classification decision Eq. (3): residues work as
the complementary term of coefficients during classification
procedure. The final version of f(γ) for n-th step is

f(γ, n) = γ + l̃(γ, n) + β̃
−
(γ, n) . (20)

3.2. Algorithm

Now we present the learning algorithm in details. Al-
gorithm (1) lists the main body of our learning weights
method. Relying on the experimental data from [12] we
find out that WCRC with only weighted channels (e.g. Ω)
marginally improves the performance when compared to
CRC, which has been confirmed by our own experiments as
well. Therefore, we simply let Ω to be I in our algorithm.
Furthermore, we slightly modify λ as λ̃ = mean(XTX)λ,
while setting κ̃ = 10 in 22-th line of Algorithm (1) in order
to counterbalance the influence from I.

4. Experiments
In this section, we show the results of our experiments,

which can be viewed as the follow-up experiment of Tim-
ofte and Van Gool [12]. More specifically, we demonstrate
how LCRC method performs concerning various datasets
and dimensions. In the mean time, we also conduct a thor-
ough investigation over the coefficient λ to find out a rela-
tively good choice. The source codes are available from:
http://www.vision.ee.ethz.ch/˜timofter/

4.1. Setup

Datasets. We select 3 datasets AR, PIE, LFW to test
the adaptability of our method. For AR dataset [4], accord-
ing to [12] we have 1400 arbitrarily chosen face images for
100 individuals (14 images per person), divided into 700
training samples and 700 testing samples. When it comes
to PIE face dataset, we use the subset of PIE provided by
D. Cai et al. [2], which contains 68 individuals with near
frontal poses under different illuminations and expressions,
and then again randomly pick 700 training samples and 700
testing samples. As to the LFW dataset with 5749 different
individuals in unconstrained condition, based on Pengfei
Zhu et al. [17], the subset of LFW is randomly separated
into 790 training- and testing samples in our experiment.

Features. Considering less efficiency and cumbersome
of the original data, we do not directly test our approach on

Algorithm 1: LearningWeights(LCRC)
input : training samples X

class labels C
loop n
coefficient θ̃2
error tolerance ε

output: weights γ

1 P = (XTX + λ̃I)−1XT ; %init. matrix P
2 γ = 0; %init. weights
3 l = 0; %init. residues

4 β̂
−
= 0; %init. coef.

5 for i← 0 to n do
6 for j ← 1 to M do
7 for k ← 1 to M do
8 if xj and xk are not in the same class then

β̂
−
j,k = (P(γ)xj)

2
k;

9 else
10 β̂

−
j,k = 0 ;

11 end
12 β̂

−
= β̂

−
+ (β̂

−
j )

2;

13 lj = ‖xj −Xβ̂
−
j ‖2; %according to (18)

14 end
15 β̂

−
= (β̂

−
)2; %according to Eq. (12)

16 f̃ = e−(i/20)
2

(l + θ̃2β̂
−
)/e2γ ;

17 %Eq. (17), (19), (20)
18 if |f̃ |∞ < ε then
19 break;
20 end
21 γ = γ + f̃ ;
22 P = (XTX + λ̃(I + κ̃ diag(γ))−1XT ;
23 end

them, instead, we apply Eigenfaces [15], regularized Linear
Discriminant Analysis (LDA) [3] and regularized Iterative
Nearest Neighbors (INN) Linear Projections (INNLP) [10,
13] to project raw data into lower dimensions. As for the
regularized Sparse Representation based Linear Projections
(SRLP) [9], the experiment in [12] shows similarities to
INNLP, hence we do not test it anymore in our paper. Again,
as in [12] we examine our approach under various dimen-
sions {5, 10, 30, 54, 99, 120, 300}.

Classifiers. An investigation over various CR- and none
CR-based classifiers is available in [12], hence in our ex-
periments we focus only on certain classifiers, that is,
CRC, WCRC, LCRC, LCRCβ and the kernelized vari-
ants: KCRC, KWCRC, and KLCRC. LCRCβ indicates the
LCRC classifier with only β term (no l term) in the eq. (20),
line 16 of Alg. (1). Here, the kernelized classifiers use the



Gaussian kernel k(x,y) = exp(−τ‖x−y‖), where τ = 0.2
is a regulatory parameter, as in [12].

Parameters. We conduct a relatively thorough investi-
gation over a subset of [0.00001, 100] to cross-validate for
λ. To this end, we randomly divide the training samples
into a training proper set and a validation set with nearly
same amount of samples. Hence, for AR and PIE we have
350 training and testing samples, and for LFW 390 train-
ing and 400 testing samples. We repeat such procedure
and apply our approach several times (4 times in our ex-
periments), in the end we pick up the λ with the best av-
erage performances for the final test. In Fig. 1 we plot the
LCRC performance versus λ parameter in two settings. We
use a logarithmic scale for the x-axis and let the collection
of λ to be {0.0001, 0.0002, . . . , 90, 100}. For both cases
the λ curves grow very slowly at the beginning then decline
around λ = 2. Such similar pattern confirms the effec-
tiveness of cross validation: for dim = 5 the best cross-
validated λ is 0.7, which corresponds to 50% recognition
rate for testing data, while the maximum rate on testing data
peaks at 51.0% for λ = 2. For dim = 54 we obtain the
recognition rate 88.6% when λ = 0.9, while the maximum
is 89.6% by λ = 5. The difference between the recognition
rate determined by cross validation and maximum possible
recognition rate is acceptable.

The behavior of l and β̂
−

. Before we start testing LCRC
approach, we need to check whether our idea works as
expected, i.e. whether the residue l increases and β̂

−
de-

creases as the number of loops grows. Fig. 2 presents
how the two terms, ‖l‖ and ‖β̂

−
‖, and the recognition rate

change when running the optimization loop. By cross vali-
dation we set λ to be 1 for dimension 5, and 0.4 for 54, re-
spectively (see Table (1)). The figure suggests that the value
of ‖β̂

−
‖ declines gradually with the increasing steps, while

the norm of residues ‖l‖ continuously increase on lower di-
mension if we ignore the unstable start during the first few
steps. The effectiveness of LCRC is also supported by the
performance of recognition rates presented by Fig. 2, the
more loops the better the recognition rates for both train-
ing data and testing data, and keeping them stable in the
end. We must admit that on higher dimension (54) the
performance of ‖l‖ rather stay unchanged without taking
the big gap at the beginning into consideration (which is
consistent with the observation that normally the improve-
ments of LCRC over WCRC is more obvious on lower di-
mensions than on higher dimensions), still, we succeed in
optimizing the corresponding recognition rates for training
and testing data. Since the recognition rate saturates after
40 iteration steps (Fig. 2), throughout the following experi-
ments we fix the loop number n to 50. For further analyzing
the adaptability of LCRC method, in the next subsection
we present recognition rates for different features on AR,

PIE, and LFW and the corresponding choices for λ based
on cross validation.

4.2. Performance of classifiers

AR dataset. Table 1 indicates that LCRC has achieved
progress over CRC and WCRC on dataset AR. First of all,
if we only optimize the β term of LCRC, i.e. by apply-
ing LCRCβ, it has demonstrated nearly as competitive per-
formance as WCRC, which can be confirmed by the per-
formances on INNLP and LDA. Together with the com-
plementary residue term we obtain rather an impressive
performance with LCRC, especially for lower dimensions
(< 99). For example, for 5-dimensional INNLP projections
the recognition rate increases more than 8% over WCRC.
More interestingly, if we focus on projections like INNLP
and LDA, the recognition rate obtained by LCRC shows
convincing evidence that it is nearly competitive to ker-
nel based methods or query-adapted methods such as adap-
tive WCRC (AWCRC) [12], which extract extra informa-
tion from testing samples. For AWCRC please check the
experimental results from [12].

Table 1. Face recognition rates [%] on AR.
Features Method 5 10 30 54 99 120 300

INNLP CRC 11.3 28.6 76.8 89.4 93.6 94.3 94.0
WCRC 26.2 56.7 86.6 90.6 92.4 94.3 94.3
LCRCβ 26.2 52.9 82.6 90.7 93.9 93.9 93.7
LCRC 34.2 60.7 87.3 91.9 92.9 94.4 94.6
KCRC 34.1 59.2 84.3 92.0 94.1 94.7 95.0
KWCRC 29.3 59.7 86.7 92.3 94.0 94.9 95.1
KLCRC 34.6 63.1 86.4 93.1 94.6 94.3 94.4
λCRC 20 1 0.2 0.1 1 0.7 0.2
λWCRC 5 0.9 0.5 0.5 0.5 0.07 0.03
λLCRCβ 0.08 0.02 0.2 0.6 2 0.04 0.04
λLCRC 1 0.6 0.6 0.4 0.7 0.09 0.02
λKCRC 0.1 0.1 0.3 1 1 1 0.5
λKWCRC 0.1 0.1 1 1 1 0.2 0.1
λKLCRC 0.1 1 0.1 0.3 1 1 0.9

LDA CRC 15.5 37.9 80.5 90.8 94.1
WCRC 27.6 54.7 86.7 92.4 94.3
LCRCβ 30.3 57.8 85.1 91.1 92.1
LCRC 34.1 58.7 88.3 91.9 94.1
KCRC 31.2 58.5 85.3 91.6 94.4
KWCRC 29.6 56.4 87.6 92.7 94.4
KLCRC 33.9 62.4 86.7 92.3 95.0
λCRC 6 0.04 0.02 0.007 0.7
λWCRC 0.3 0.01 0.02 0.06 0.1
λLCRCβ 0.3 0.001 0.001 0.002 0.001
λLCRC 0.7 0.01 0.2 0.0003 0.06
λKCRC 0.1 0.1 0.5 0.5 1
λKWCRC 0.1 0.1 0.1 0.1 0.1
λKLCRC 0.1 0.1 0.1 0.1 0.3

Eigenfaces CRC 07.0 19.5 64.4 80.5 89.1 90.4 94.0
WCRC 09.2 32.5 72.7 83.7 89.1 90.4 93.7
LCRC 10.9 36.3 74.8 84.1 90.3 90.6 93.7
KCRC 18.3 44.6 77.4 83.6 87.6 88.8 91.0
KWCRC 21.3 47.8 77.5 83.4 88.1 88.7 91.1
KLCRC 24.0 47.9 77.7 83.0 87.4 88.4 91.1
λCRC 2 0.02 0.004 0.008 0.0004 0.01 0.009
λWCRC 0.7 0.04 0.0003 0.003 0.0004 0.007 0.0008
λLCRC 0.06 0.005 0.0004 0.002 0.0008 0.004 0.001
λKCRC 0.0001 0.0001 0.003 0.006 0.01 0.02 0.006
λKWCRC 0.0001 0.0001 0.0001 0.0006 0.003 0.003 0.0006
λKLCRC 0.0003 0.0001 0.0001 0.004 0.0007 0.0005 0.0004



Figure 1. LCRC performance vs. regulatory parameter on PIE dataset with LDA projections.

Figure 2. LCRC residues, coefficients energies, and recognition rates vs. iteration step on AR dataset with INNLP projections.

PIE dataset. Table 2 demonstrates similar performance
pattern for LCRC on PIE dataset as on AR dataset. For
instance, it shows continuous improvements over both
WCRC and KCRC involving INNLP and LDA projections.
Again, for INNLP and LDA our results of LCRC, a query-
independent method, are relatively competitive to KWCRC
or query-adapted classifiers from [12], which was not ac-
complished by WCRC. On the other hand, on higher dimen-
sions (≥ 99) the classifiers, other than CRC, do not present
enough improvements. We think that, given CRC has al-
ready reached quite impressive recognition rate on higher
dimensions, there may not be much room left for extra im-
provement, hence we do not recognize obvious progress
made by WCRC/LCRC. We note that (K)LCRC barely op-
timize the results of (K)WCRC when it comes to the Eigen-
face features . It is believed that the modified training data
may lose discriminative properties during the procedure and
become uniform, which makes LCRC less effective.

LFW dataset. The recognition rates presented in Table 3
offer us a different point of view about how LCRC performs

under unconstrained conditions – the face images are not
strongly aligned as in AR or PIE datasets. The results con-
sistently substantiate the improvement made by LCRC over
WCRC or CRC. More importantly, even on higher dimen-
sions (≥ 99) LCRC continuously demonstrates relatively
obvious progress. For example, on 99-dimensional LDA
projections LCRC increases the recognition rates more than
7% over CRC, and 6% over WCRC. This indicates LCRC
method indeed alleviates the illness of CRC for less well-
performed cases, and also reveals the optimization potential
when the current CRC method is not accurate enough.

Raw samples. In the previous cases, we first reduce the
dimensionality of the data then apply the classifiers. Hence,
it is natural to ask how does LCRC perform on raw sam-
ples? Fig. 3 depicts the performances for CRC, WCRC,
and LCRC on AR dataset. Again, we use cross validation
to determine the best λ for distinct methods and dimensions.
Next we record the results from 30 to 2580 gray pixels. As
it turned out, LCRC shows mild improvements over WCRC
on raw samples, which is in keeping with our expectations.



Table 2. Face recognition rates [%] on PIE.
Features Method 5 10 30 54 99 120 300

INNLP CRC 22.1 42.1 76.6 86.0 88.1 88.4 88.6
WCRC 42.1 72.0 84.6 86.6 88.6 88.3 88.7
LCRC 50.7 73.6 86.1 88.3 88.7 88.6 88.7
KCRC 50.9 73.4 87.1 89.0 88.4 89.1 89.4
KWCRC 52.0 73.6 87.7 89.6 90.0 89.9 89.4
KLCRC 55.0 74.6 87.3 90.0 89.3 89.7 90.3
λCRC 60 10 0.3 4 6 6 1
λWCRC 0.6 3 2 2 1 1 0.1
λLCRC 1 0.7 1 0.7 0.7 0.5 0.08
λKCRC 0.1 0.1 1 1 1 1 1
λKWCRC 0.1 0.1 1 1 1 1 0.1
λKLCRC 0.1 0.1 0.3 1 1 1 0.7

LDA CRC 31.1 60.6 82.4 86.6
WCRC 44.9 74.0 85.6 86.9
LCRC 50.0 74.0 87.4 88.6
KCRC 49.7 70.0 85.3 88.1
KWCRC 51.4 73.4 86.6 88.3
KLCRC 53.3 72.6 87.1 89.0
λCRC 0.4 0.1 0.09 1
λWCRC 0.4 0.07 0.8 0.2
λLCRC 0.7 0.04 0.6 0.9
λKCRC 0.1 0.1 0.3 2
λKWCRC 0.1 0.1 0.1 0.2
λKLCRC 0.1 0.1 0.1 0.4

Eigenfaces CRC 02.7 15.6 50.4 70.0 79.7 83.1 87.1
WCRC 05.7 28.0 68.3 76.4 83.4 84.3 87.4
LCRC 05.4 30.9 67.0 75.9 82.0 83.9 87.3
KCRC 09.3 34.6 67.1 75.0 80.1 80.4 83.4
KWCRC 09.1 36.6 67.6 75.3 80.1 80.4 83.4
KLCRC 10.6 36.3 67.3 76.0 80.3 81.1 83.0
λCRC 1 0.5 0.008 0.009 0.002 0.009 0.01
λWCRC 0.07 0.003 0.007 0.006 0.004 0.001 0.002
λLCRC 0.2 0.05 0.03 0.003 0.0009 0.002 0.0009
λKCRC 0.00001 0.0003 0.003 0.007 0.008 0.01 0.006
λKWCRC 0.00002 0.00008 0.0003 0.0007 0.0005 0.0009 0.0003
λKLCRC 0.00003 0.0003 0.0002 0.0004 0.0005 0.0003 0.0007

Figure 3. CRC, WCRC, and LCRC performances on AR dataset
with raw gray scale pixels from scaled images.

4.3. Running time

Considering LCRC is an extension of WCRC by in-
troducing additional optimization steps, the LCRC train-
ing time is dependent on the optimization steps and more
specifically, it increases linearly with the growth of iteration
steps. Still learning the weights is considered to be inexpen-
sive, in the order of seconds for our experimental settings.
In Table 4 we report the running time on CRC, WCRC and
LCRC with Intel Core i7-2600K(3.40GHz). We give the
training time and testing time on AR datasets with LDA
features, which confirms the time complexity we discussed.
Since LCRC does not exploit information from testing sam-

Table 3. Face recognition rates [%] on LFW.
Features Method 5 10 30 54 99 120 300

INNLP CRC 04.3 11.0 22.4 28.9 38.5 37.1 42.0
WCRC 06.8 19.5 32.0 33.0 39.9 40.1 43.3
LCRC 08.5 19.5 33.4 38.0 44.8 44.1 44.2
KCRC 07.5 17.7 27.2 33.5 41.4 42.8 42.4
KWCRC 07.9 18.9 33.3 35.4 43.2 43.2 43.4
KLCRC 08.7 19.8 31.0 34.8 43.5 45.8 45.6
λCRC 20 20 0.01 0.001 0.3 0.02 0.5
λWCRC 3 0.003 0.7 0.9 0.2 0.1 0.08
λLCRC 0.6 1 0.4 0.4 0.4 0.2 0.06
λKCRC 0.01 0.01 0.01 0.03 1 1 0.5
λKWCRC 0.01 0.01 0.1 0.3 0.3 0.04 0.09
λKLCRC 0.01 0.01 0.01 0.01 5 2 0.4

LDA CRC 05.3 13.7 24.9 31.3 37.5 36.7
WCRC 07.2 18.9 30.0 33.4 38.5 40.3
LCRC 08.5 19.9 32.5 33.2 44.6 44.1
KCRC 06.7 18.4 25.1 30.3 38.7 41.1
KWCRC 08.2 18.1 30.4 34.2 41.1 41.4
KLCRC 08.2 19.4 30.9 35.3 40.3 41.5
λCRC 1 0.04 0.02 0.02 0.01 0.002
λWCRC 0.2 0.003 0.01 0.1 0.02 0.05
λLCRC 0.6 0.02 0.3 0.0001 0.3 0.2
λKCRC 0.01 0.01 0.01 0.02 0.08 0.2
λKWCRC 0.01 0.01 0.01 0.01 0.02 0.02
λKLCRC 0.01 0.01 0.01 0.01 0.01 0.01

Eigenfaces CRC 02.2 05.1 17.3 23.6 30.3 32.7 40.8
WCRC 02.7 06.8 22.5 30.9 36.7 38.5 42.9
LCRC 02.2 06.8 22.9 30.5 36.6 38.7 43.4
KCRC 03.5 07.9 21.8 26.1 31.3 31.5 36.8
KWCRC 03.9 08.6 20.6 26.3 32.2 33.3 37.6
KLCRC 04.2 08.4 22.3 28.5 33.2 34.1 38.1
λCRC 6 0.05 0.05 0.2 0.07 0.04 0.04
λWCRC 1 0.2 0.08 0.08 0.03 0.02 0.007
λLCRC 0.1 0.3 0.02 0.04 0.01 0.02 0.006
λKCRC 0.02 0.02 0.01 0.01 0.09 0.02 0.02
λKWCRC 0.1 0.09 0.01 0.01 0.01 0.01 0.01
λKLCRC 0.03 0.04 0.01 0.2 0.06 0.06 0.01

ples, we can precompute the projection matrix P offline at
training time then apply it. Therefore, LCRC shares the
same time complexity at test with CRC and WCRC, which
is significantly lower than the query-adapted methods (such
as SRC or AWCRC, as shown in [12]). For real world ap-
plications the running time is a crucial factor, especially at
test.

Table 4. Total running time [s] on AR with LDA features.
Phase Dimensionality CRC WCRC LCRC

Training 5 0.0056 0.0441 1.3811
(offline) 10 0.0057 0.0495 1.9548

30 0.0066 0.0610 2.1402
54 0.0071 0.0679 2.9173
99 0.0080 0.0862 3.7151

Testing 5 0.7155 0.7200 0.7184
(online) 10 0.7367 0.7299 0.7319

30 0.8268 0.8171 0.8282
54 0.9359 0.9300 0.9351
99 0.9325 0.9352 0.9356

5. Conclusions
As the subsequent part of Timofte and Van Gool [12],

we answer the question how to learn the (optimal) weights.
We give a simple and rigorous proof not only to verify our
optimization idea, but also to reason why the weights used
in WCRC shows improvements, mainly because the choice



in WCRC is the starting point towards optimal weights by
our new method. We employ different strategies to show
that LCRC has a wide applicability without over-fitting spe-
cific datasets. In the mean time, though by introducing
optimization steps LCRC costs more computational time
than WCRC, it keeps the computation offline, which is a
great advantage over query-adapted methods like AWCRC
or SRC. Last but not least, LCRC approach implies that we
can cure the ‘wrong distance’ between samples by imposing
optimized matrix, this leaves us the clue that the given sam-
ples may not lie in a flat space, rather they are in a curved
space (manifold) which has own intrinsic geometric struc-
ture. So the future challenge for us is to train an appropriate
manifold which can be used to better describe the ‘true dis-
tance’ between samples.
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Appendix

Proof.(Theorem 1) Since β̂
−
(γ) maps a closed ball O

centered at zero into itself, it implies that

Q(γ) = (XTΩ−1X + λ(κ1I + κ2diag(γ))) (21)

is invertible on O. Once Q(γ) is invertible, the partial
derivative always exists

∂Q(γ)−1

∂γi
= −Q(γ)−1

∂Q(γ)

∂γi
Q(γ)−1 (22)

for i ∈ {1, 2, . . . ,M}, and together with Q(γ) differen-
tiable on O, we conclude that β̂

−
(γ) is differentiable on O,

furthermore, β̂
−
(γ) is Lipschitz continuous, i.e.

∃k > 0 : ‖β̂
−
(γ1)− β̂

−
(γ2)‖ ≤ k‖γ1 − γ2‖. (23)

Then by triangular inequality and (23) it holds:

‖f(γ1)− f(γ2)‖ = θ1‖γ1 − γ2 + θ2(β̂
−
(γ1)− β̂

−
(γ2))‖

≤ (1− ε)(1 + θ2k)‖γ1 − γ2‖
(24)

So it is not difficult to find a sufficiently small θ2,k,ε (depen-
dent on k, ε) so that it satisfies

(1− ε)(1 + θ2,k,εk) < 1 (25)

hence f(γ) is a contraction.
For applying the Banach fixed point theorem [1], we still

need to make sure that f(γ) maps a closed ball to itself.
This can be achieved by picking up a sufficient small c′2,k,ε.
Finally, we set

θ2 = min{θ′2,k,ε, θ2,k,ε}. (26)

Then we guarantee that we can apply fixed point theorem
for each ε, and it implies in theory, we are allowed to pick ε
sufficiently close to 1 and for the corresponding fixed point
γ it holds β̂

−
(γ) ≈ 0.
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