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Abstract—The depth images acquired by consumer depth sensors (e.g., Kinect and ToF) usually are of low resolution and insufficient

quality. One natural solution is to incorporate a high resolution RGB camera and exploit the statistical correlation of its data and depth.

In recent years, both optimization-based and learning-based approaches have been proposed to deal with the guided depth

reconstruction problems. In this paper, we introduce a weighted analysis sparse representation (WASR) model for guided depth image

enhancement, which can be considered a generalized formulation of a wide range of previous optimization-based models. We unfold

the optimization by the WASR model and conduct guided depth reconstruction with dynamically changed stage-wise operations. Such

a guidance strategy enables us to dynamically adjust the stage-wise operations that update the depth image, thus improving the

reconstruction quality and speed. To learn the stage-wise operations in a task-driven manner, we propose two parameterizations and

their corresponding methods: dynamic guidance with Gaussian RBF nonlinearity parameterization (DG-RBF) and dynamic guidance

with CNN nonlinearity parameterization (DG-CNN). The network structures of the proposed DG-RBF and DG-CNN methods are

designed with the the objective function of our WASR model in mind and the optimal network parameters are learned from paired

training data. Such optimization-inspired network architectures enable our models to leverage the previous expertise as well as take

benefit from training data. The effectiveness is validated for guided depth image super-resolution and for realistic depth image

reconstruction tasks using standard benchmarks. Our DG-RBF and DG-CNN methods achieve the best quantitative results (RMSE)

and better visual quality than the state-of-the-art approaches at the time of writing. The code is available at

https://github.com/ShuhangGu/GuidedDepthSR

✦

1 INTRODUCTION

High quality, dense depth images play an important role in many

real world applications such as human pose estimation [1], hand

pose estimation [2], [3] and scene understanding [4]. Traditional

depth sensing is mainly based on stereo or lidar, coming with a

high computational burden and/or price. The recent proliferation

of consumer depth sensing products, e.g., RGB-D cameras and

Time of Flight (ToF) range sensors, offers a cheaper alternative

to dense depth measurements. However, the depth images gen-

erated by such consumer depth sensors are of lower quality and

resolution. It therefore is of great interest whether depth image

enhancement can make up for those flaws [5], [6], [7], [8], [9],

[10], [11]. To improve the quality of depth images, one category

of methods [5], [6] utilize multiple images from the same scene

to provide complementary information. These methods, however,

heavily rely on accurate calibration and are not applicable in

dynamic environments. Another category of approaches [7], [8],

[9], [11], [12] introduce structure information from a guidance

image (for example, an RGB image) to improve the quality of the

depth image. As in most cases the high quality RGB image can be

acquired simultaneously with the depth image, such guided depth

reconstruction has a wide range of applications [13].

A key issue of guided depth enhancement is to appropriately

exploit the structural scene information in the guidance image.

By incorporating the guidance image in the weight calculating

step, joint filtering methods [14], [15], [16], [17] directly transfer

structural information from the intensity image to the depth

image [18], [19]. Yet, due to the complex relationship between

the local structures of intensity and depth, such simple joint

filtering methods are highly sensitive to the parameters, and often

copy unrelated textures from the guidance image into the depth

estimation. To better model the relationship between the intensity

image and the depth image, optimization-based methods [7], [8],

[9] adopt objective functions to characterize their dependency.

Although the limited number of parameters in these heuristic

models has restricted their capacity, these elaborately designed

models still capture certain aspects of the joint prior, and have

delivered highly competitive enhancement results. Recently, dis-

criminative learning solutions [10], [20], [21], [22] have also been

proposed to capture the complex relationships between intensity

and depth. Due to the unparalleled non-linear modeling capacity

of deep neural networks as well as the paired training data,

deep learning based methods [21], [22] have achieved better

enhancement performance than conventional optimization-based

approaches.

To deal with the guided depth reconstruction task, recent solu-

tions [20], [21], [22] utilize deep neural networks (DNN) to build

the mapping function from the low quality inputs and the guidance

images to the high quality reconstruction results. As for other

dense estimation tasks [23], [24], [25], an appropriate network

structure plays a crucial role in the success of the DNN-based

guided depth reconstruction system. Recently, a large number of

works [25], [26], [27], [28] have shown that some successful

optimization-based models could provide useful guidelines for

designing network architectures. By unrolling the optimization

process of variational or graphical models, network structures have

been designed to solve image denoising [26], [27], compressive

sensing [29] and semantic segmentation [25]. These networks

employ domain knowledge as well as paired training data and
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Fig. 1. Illustration of the unfolded optimization process of a WASR model. The WASR model takes low quality depth estimation Y and guidance
intensity image G as input, aims to achieve a high quality depth image X . Each step of the optimization process can be termed as a stage-wise
operation. By dynamically changing the stage-wise operation, we construct the DG-RBF and DG-CNN model for fast and accurate guided depth
reconstruction.

have achieved state-of-the-art performance for different tasks. In

this paper, we analyze and generalize previous optimization-based

approaches, and propose better network structures to deal with the

guided depth reconstruction task.

Work related to this paper is that of Riegler et al. [30],

which unrolls the optimization steps of a non-local variational

model [31] and proposes a primal-dual network (PDN) to deal

with the guided depth super-resolution task. Yet, PDN follows

the unrolled formula of the non-local regularization model [31]

strictly, and only adopts the pre-defined operator (Huber norm) to

penalize point-wise differences between depth pixels. As a result,

the PDN method [30] has limited flexibility to take full advantage

of paired training data. In this paper, we propose a more flexible

solution to exploit paired training data as well as prior knowledge

from previous optimization-based models. We analyze previous

dependency modeling methods and generalize them as a weighted

analysis sparse representation regularization (WASR) term. By

unfolding the optimization process of the WASR model, we get the

formula of a stage-wise operation for guided depth enhancement,

and use it as departure point for our network structure design.

In Fig. 1, we provide a flowchart of the general formula of the

unfolded optimization process of the WASR model. Each iteration

of the optimization algorithm can be regarded as a stage-wise

operation to enhance the depth map.

WASR is a generalized model which shares many of

the characteristics common to previous optimization-based ap-

proaches [7], [32]. Unfolding its optimization process provides us

with a framework to leverage the previous expertise while leaving

our model enough freedom to take full advantage of training data.

With the general formula of the stage-wise operation established,

we adopt two approaches to parameterize the operations. The first

approach parameterizes the unfolded WASR model in a direct

way. Based on the unfolded optimization process, the stage-wise

operations consist of simple convolutions and nonlinear functions.

We learn the filters and nonlinear functions (parameterized as

the summation of Gaussian RBF kernels [26], [27]) for each

stage-wise operation, in a task-driven manner. Although such

model shares its formula for the optimization with a simple

WASR model, its operations are changed dynamically to account

for the depth enhancement. As a result, it can generate better

enhancements in just a few stages. In the remainder of this paper,

we denote this model as dynamic guidance with RBF nonlinearity

parameterization (DG-RBF). An illustration of one stage of the

DG-RBF operation can be found in Fig. 2.

Besides the DG-RBF model, we also propose to parameterize

the stage-wise operation in a loose way. In particular, we analyze

the stage-wise operation’s formula and divide the operation into

three sub-components: the depth encoder, the intensity encoder

and the depth decoder. Instead of using one large filter and one

nonlinear function to form the encoder and the decoder in the

stage-wise operation, we use several layers of convolutional neural

networks (CNN) to improve the capacity of each sub-component.

The overall model of this dynamic guidance with CNN non-

linearity parameterization (DG-CNN) is designed based on the

unfolded optimization process of the WASR model, while its sub-

components are parameterized with powerful CNNs. As DG-CNN

builds upon the conventional optimization-based approach and the

recent advances in deep learning, it generates better enhancement

results than the existing methods. An illustration of a two stage

DG-CNN model can be found in Fig. 3, details of the networks

will be introduced in section 5.

The formula of the WASR model and some experimental

results of the DG-RBF method have been introduced in our earlier

conference paper [33]. In this paper, we provide more information

about the WASR model and DG-RBF method, and provide the

DG-CNN approach, a new parameterization of the WASR model.

Due to its unparalleled nonlinearity modeling capacity, CNN

based parameterization often generates better enhancement results

than the Gaussian RBF based method, especially in challenging

cases with large zooming factors. Furthermore, the well optimized

deep learning tool box makes the CNN based method (DG-CNN)

more efficient than DG-RBF in both training and testing.

The contributions of this paper are summarized as follows:

• By analyzing previous guided depth enhancement meth-

ods, we formulate the dependency modeling of depth and

RGB images as a weighted analysis sparse representation

(WASR) model. We unfold the optimization process of

the WASR objective function, and propose a task-driven

training strategy to learn stage-wise dynamic guidance

for different tasks. A Gaussian RBF kernel nonlinearity

modeling method (DG-RBF) and a special CNN (DG-

CNN) are trained to conduct depth enhancement at each

stage.

• We conduct detailed ablation experiments to analyze the

model hyper-parameters and network architecture. The

experimental results clearly demonstrate the effectiveness

of the optimization-inspired network architecture design.

• Experimental results on depth image super-resolution and

noisy depth image reconstruction validate the effective-

ness of the proposed dynamic guidance approach. The

proposed algorithm achieves the best quantitative and

qualitative depth enhancement results among the state-of-

the-art methods that we compared to.
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The rest of this paper is organized as follows. Section 2

briefly introduces some related work. Section 3 analyzes previous

objective functions of guided depth enhancement approaches, and

introduces the task-driven formulation of the guided depth en-

hancement task. By unrolling the optimization process of the task-

driven formulation, Sections 4 and 5 introduce two parameteriza-

tion approaches, i.e. parameterize the nonlinear operation in each

step with Gaussian RBF kernels or parameterize each gradient-

descent stage with convolutional neural networks. Section 6 con-

ducts ablation experiments to analyze the model hyper-parameters

and to show the advantage of the optimization-inspired network

architecture design. Sections 7 and 8 provide experimental results

of the different methods for guided depth super-resolution and

enhancement. Section 9 discusses the DG-RBF and DG-CNN

models. Section 10 concludes the paper.

2 RELATED WORK

In this section, we introduce related work. We start by briefly

surveying the analysis representation model literature to then

review prior guided depth enhancement methods. Finally, we dis-

cuss previous work on optimization-inspired network architecture

design.

2.1 Analysis sparse representation

Sparse analysis representations have been widely applied in image

processing and computer vision tasks [26], [27], [34], [35], [36],

[37]. An analysis operator [38] operates on image patches or

analysis filters [36], [39] operate on whole images to model the

local structure of natural images. Compared with sparse synthesis

representations, the analysis model adopts an alternative view-

point for union-of-subspaces reconstruction by characterizing the

complement subspace of signals [40], and usually results in more

efficient solutions.

Here we only consider the convolutional analysis representa-

tion, with one of its representative forms given by:

X̂ = argmin
X

L(X,Y) +
∑

l

∑

i
ρl((kl ⊗ X)i), (1)

where X is the latent high quality image and Y is its degraded

observation. ⊗ denotes the convolution operator, and (·)i denotes

the value at position i. The penalty function ρl(·) is introduced

to characterize the analysis coefficients of latent estimation,

which are generated by the analysis dictionaries {kl}l=1,...,L

in a convolutional manner. L(X,Y) is the data fidelity term

determined by the relationship between X and its degraded ob-

servation Y. For example, for the task of Gaussian denoising,

L(X,Y) = 1
2σ2 ‖X − Y‖2F shows that the difference between X

and Y is zero mean white Gaussian noise with standard deviation

value σ. In the remainder of this paper, we denote ρl((kl⊗X)i) by

ρl,i(kl⊗X) for the purpose of simplicity. For Gaussian denoising,

one can simply let L(X,Y) = 1
2σ2 ‖X − Y‖2F .

Sparse analysis representation has been studied for several

decades. Rudin et al. proposed a total variation (TV) model [34],

where the analysis filters are gradient operators and the penalty

function is the ℓ1-norm. Subsequently, many attempts were made

to provide better analysis filters and penalty functions, and an

emerging topic is to learn sparse models from training data. Zhu et

al. [41] proposed a FRAME model which aims to learn penalty

functions for predefined filters. Roth et al. [36] proposed a field-of-

expert (FoE) model in which analysis filters are learned for prede-

fined penalty functions. Although FRAME and FoE are originally

introduced from a MRF perspective, they can also be interpreted as

analysis representation models [38]. Recently, Schmidt et al. [26]

and Chen et al. [27] suggested to model the related functions with

linear combinations of Gaussian RBF kernels, and can learn both

analysis filters and penalty functions from training data. Moreover,

by incorporating the specific optimization methods, stage-wise

parameters can be learned in a task driven manner.

Despite their achievements in image restoration, most existing

methods are used for learning analysis representation of images

from a single modality and cannot be applied to guided depth

image reconstruction. Kiechle et al. went a step forward by

introducing a bimodal analysis model to learn a pair of analysis

operators [20]. But the issue of explicit and dynamic guidance

from intensity images remains unaddressed in analysis represen-

tation learning. In this work, we extend the analysis model by

introducing a guided weight function for modeling the guidance

from intensity image and by adopting a task-driven learning

method to learn stage-wise parameters for dynamic guidance.

2.2 Guided depth enhancement

The wide availability of consumer depth sensing equipment has

made depth enhancement an important application. To estimate

high quality depth images, guided depth enhancement can incor-

porate an intensity image of the same scene, as supplementary

information. Based on the co-discontinuous assumption between

the guidance and target images, general joint filtering methods,

such as bilateral filters [16] and guided filters [17], can be directly

applied to transfer structural information from intensity to depth

images. Yet, due to the complex dependency between depth

and intensity, such simple joint filtering methods may transfer

irrelevant texture into the depth estimation.

To better model the dependency, the optimization based meth-

ods combine the input image Y, the output image X and the

guidance image G into an optimization model [7], [8], [9], [32],

[42]. In [7], Diebel and Thrun proposed an MRF-based method

to characterize the pixel-wise co-difference between the depth and

intensity images. Their prior potential function is defined as:
∑

i

∑

j∈N (i)
φµ(Gi − Gj)(Xi − Xj)

2, (2)

where i and j are the pixel indexes of image, N (i) is the set of

neighboring index of i, and φµ(z) = exp(−µz2). Similar weight

functions have also been adopted in other models, e.g., non-local

mean (NLM) [8], for guided depth enhancement. Besides pixel-

wise differences, other cues such as color, segmentation and edges,

are also considered to design proper weight functions. Instead of

modifying the weight function, Ham et al. [32] adopt Welsch’s

function to regularize the depth differences:
∑

i

∑

j∈N (i)
φµ(Gi − Gj)(1− φν(Xi − Xj))/ν. (3)

Moreover, several hand-crafted high order models have also been

proposed, to model the weight function and the depth regular-

izer [9].

Recently, learning-based methods started to exploit training

data to enhance the results. To model the statistical dependency

between the local structures of corresponding intensity and depth

images, analysis [20] and synthesis [10] dictionary learning meth-

ods have been suggested in a data-driven manner. Taking the low

quality depth image and the guidance intensity image as inputs,

[21], [22], [30] directly train a CNN to generate the high quality

enhanced output result.
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2.3 Optimization-inspired network architecture design

The idea of unfolding the optimization or inference steps of

variational model as neural networks has been investigated from

different perspectives. Some early work [28], [43] proposed to

only conduct a limited number of steps in the optimization algo-

rithm for the purpose of efficiency. Gregor et al. [43] shown that

learning the filters and the mutual inhibition matrices of truncated

versions of FISTA [44] and CoD [45] leads to a dramatic reduction

in the number of iterations to reach a given code prediction error.

Domke [28] proposed a truncated fitting approach which only runs

a fixed number of iterations of an inference algorithm to combat

computational complexity.

In addition to the efficiency issue, recent works found that

unfolding the inference steps of optimization algorithm also helps

to increase model flexibility and improve the estimation results for

different applications. Schmidt et al. [26] unfolded the inference

process of conditional random field and proposed a shrinkage field

approach to solve the image denoising problem. Chen et al. [27]

proposed to learn time varying linear filters and penalties from a

reaction-diffusion model point of view. Recently, Kobler et al. [46]

explored links between variational energy minimization methods

and deep learning approaches, and proposed a variational network

for different image reconstruction tasks. Compared with exact

minimization, unfolded networks are able to perform different

operations in each step [47]. Consequently, these methods [26],

[27], [46], [47] achieved great improvements in both run-time and

reconstruction performance over conventional models. Besides

single image reconstruction, the idea of optimization-inspired

network architecture design has also been exploited in other

tasks. To incorporate the CRF model in a CNN-based semantic

segmentation method, Zheng et al. [25] unrolled the mean-field

approximate inference algorithm as a recurrent neural network.

Their proposed CRF-RNN integrates a CRF model with CNNs,

and achieved state-of-the-art performance on the semantic seg-

mentation task. Compressive Sensing (CS) is an effective approach

for fast Magnetic Resonance Imaging (MRI). To improve the MRI

reconstruction accuracy and speed, Yang et al. [29] proposed an

ADMM-Net, which is derived from the ADMM algorithm for

optimizing a CS-based MRI model.

In the field of guided depth super-resolution (SR), Riegler et

al. [30] introduced a two-stage primal-dual network (PDN) ap-

proach. PDN [30] utilizes a fully convolutional network to esti-

mate a coarse high resolution depth image, and adopts an unrolled

variational model to refine the coarse estimation. The PDN method

combines the advantages of a CNN and variational methods to

achieve top depth SR performance. Nonetheless, PDN still strictly

follows the optimization steps of a concrete variational model,

and has limited capacity in adapting to the training data. The

latest DNN-based methods [21], [22] improved over the depth SR

results of PDN. In this paper, we generalize conventional guided

depth reconstruction models, and provide a more flexible solution

to benefit from domain knowledge and training data.

3 TASK-DRIVEN WASR MODEL FOR DEPENDENCY

MODELING

In this section, we first suggest a weighted analysis sparse repre-

sentation (WASR) model to introduce guidance information from

the intensity image. Then, a task-driven parameter training formu-

lation of the proposed model is derived for training parameters in

the objective function.

3.1 Weighted analysis regularization for dependency

modeling

For the conventional analysis sparse representation from Eq. (1),

the regularization term is only a function of the output image X.

Actually, the models in Eqs. (2) and (3) can be treated as special

handcrafted analysis models, in which a group of inter-pixel

difference operators are used as the analysis filters and the weight

function on G is introduced for explicit guidance. Motivated by

this observation, we propose a generalized weighted analysis

model for guided depth reconstruction. Instead of regularizing the

first order inter-pixel differences, the proposed weighted analysis

model adopts high order filters to capture better the structural

dependency between intensity and depth image:
∑

i

∑

l
wl,i(G)ρl,i(kl ⊗ X), (4)

where the weight for the l-th analysis operator at position i is

denoted as wl,i(G). The weight function extracts information

from the guidance image G to adaptively regularize the analysis

coefficients.

Eq. (4) is a generalized version of Eq. (2) and Eq. (3). Like the

previous methods, WASR aims to capture the co-discontinuous

property between depth and intensity images for better depth

reconstruction. Specifically, by extracting the local information

of the guidance image, the weight function in Eq. (4) adaptively

regularizes the penalty on the analysis coefficient of the depth

image, and consequently determines the locations of sharp edges

in the depth image. Analyzing previously proposed guided depth

enhancement methods [7], [8], [9] under our WASR framework,

we note that different weighting and penalty functions have been

suggested in a handcrafted manner. In the next subsection, we

introduce the task-driven formulation of the proposed WASR

model, which provides a method to learn better model parameters

to fit the guided depth reconstruction task.

3.2 Task-driven learning of WASR parameters

Having the weighted analysis regularization term, the depth en-

hancement can be achieved by solving

min
X

L(X,Y) +
∑

i

∑

l
wl,i(G)ρl,i(kl ⊗ X), (5)

where the data fidelity term L(X,Y) in Eq. (5) is specified by

the depth reconstruction task to indicate the relationship between

latent high quality estimation X and the observation Y. The WASR

regularization term provides prior information to reconstruct the

depth image and plays a crucial role to the reconstruction quality.

Since the model parameters may vary for different tasks, we

provide a task-driven formulation to learn task-specific parameters

for Eq. (5) [48], [49].

We denote by D = {Ys,Xs
gt,Gs}Ss=1 a training set of S

samples, and by Ys, Xs
gt, and Gs the s-th input depth image,

ground truth depth image, and ground truth intensity image,

respectively. Following [48], [49], the task-driven formulation can

be written as a bi-level optimization problem,

{ρ∗l , w
∗
l , k∗l }

L
l=1 = arg min

{ρl,wl,kl}L
l=1

∑S

s=1
‖Xs

gt − Xs‖22

s.t. Xs=argmin
X

L(X,Ys)+
∑

l

∑

i
wl,i(G

s)ρl,i(kl ⊗ X).

(6)

Eq. (6) optimizes the parameters in the objective function (5),

makes the solution Xs of (5) as close (in terms of ℓ2 distance as

chosen in (6)) as its corresponding ground truth image Xs
gt.
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3.3 Dynamic guidance with unfolded WASR model

The lower-level problem in Eq. (6) defines an implicit function

on {ρl, wl, kl}l=1···L, making the training problem very difficult

to optimize. The high non-convexity of the lower-level problem

further adds difficulty to obtaining the exact solution. Moreover,

along with the enhancement procedure, more details of Xs will be

recovered. Thus, instead of employing the same model parameters

in all the iterations, by dynamically adjusting the model to better

fit the reconstruction task both the efficiency and the enhance-

ment result may benefit. To address this issue, we unfold the

optimization process of the lower-level problem and train stage-

wise operations for guided depth enhancement. Such stage-wise

formulation not only reduces the difficulty of training, but also

enables us to introduce the guidance information dynamically to

cooperate with the newly updated estimation Xt+1.

To unfold the optimization process of (5), we assume that both

the fidelity term L(X,Y) and the penalty function ρl,i(kl⊗X) are

differentiable with respect to X. Then, solving (5) with gradient

descent, the updated result Xt+1 can be obtained by,

Xt+1 =

Xt − τ t
(

L′(Xt,Y) +
∑

l
k
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

)

,

(7)

where L′(·) is the derivative of the fidelity term, and τ t is the

step-length in step t. Pt′
l (k

t
l ⊗ Xt) has the same size as ktl ⊗ Xt,

and its value in position i is the derivative of the penalty function

ρt′l,i(k
t
l ⊗ Xt). Wt

l(G) is the corresponding weight function, and

its value in position i is wt
l,i(G). k

t

l is obtained by rotating ktl 180

degrees.

Eq. (7) enables us to write Xt+1 as a function of the input

variables {Xt,G,Y}. With {τ t, {ρtl , w
t
l , ktl}

L
l=1}, the function

determines one stage of operation which generates Xt+1 from

the current estimation Xt. Instead of solving Eq. (6) which

requires the operations in each step to be the same, we propose

to adopt different operations in each step. Concretely, by allowing

{τ t, {ρtl , w
t
l , ktl}

L
l=1} to be different in each stage t, we adopt

a series of stage-wise operations to conduct the guided depth

reconstruction. Compared with keeping the model parameters

unchanged and solving the optimization problem in Eq. (5),

such dynamic guidance approach allows the proposed model to

generate high quality depth estimations in several stages.

In order to get the optimal stage-wise operations, we propose

to adopt a similar task-driven strategy as we introduced in Eq. (6).

In the next two sections, we introduce two parameterization

strategies for the stage-wise operation, which enable us to learn

optimal operations in a task-driven manner.

4 LEARNED DYNAMIC GUIDANCE WITH RBF KER-

NEL PARAMETERIZATION

In the previous section, we analyzed the WASR model and

analyzed the formula of the stage-wise operation for the guided

depth reconstruction. Based on Eq. (7), the (t + 1)-th estimation

Xt+1 is determined by the current estimation Xt, guidance image

G, observation Y and the stage-wise operations. In order to learn

stage-wise operations, we adopt a greedy training strategy to train

the stage-wise operations sequentially. Concretely, we minimize

the difference between Xgt and the new estimation Xt+1 with

respect to the operation parameters. In this section, we introduce

one parameterization strategy of the stage-wise operation. We
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Fig. 2. Illustration of one stage-wise operation in the DG-RBF model.
DG-RBF follows the unfolded optimization process of WASR strictly,
the current enhancement result xt and the guidance image g are first
convolved with the corresponding L analysis filters, respectively. After a
nonlinear transform, the filtering responses of xt and g are combined
via an element-wise product, and further convolved with the L adjoint
filters to form the result with a regularization term. Finally, the results
of regularization and the fidelity terms are summarized to obtain the
updated result xt+1.

follow the formula of Eq. (7) and parameterize the stage-wise

operation of the WASR model in a direct way. The derivation

of the penalty function is parameterized with a group of RBF

kernels, and we call the proposed model dynamic guidance with

RBF nonlinearity parameterization (DG-RBF).

4.1 Learning step length τ

In Eq. (7), τ t is the step length for the t-th stage-wise oper-

ation. τ t is a scalar and we can directly learn it without any

parameterization. However, as τ affects both the two components

L′(Xt,Y) and
∑

lk
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

, calculating its

gradient with respect to the training loss is time consuming. Since

we will parameterize the prior term in our DG-RBF model, the

stage-variant step length for the prior term can be absorbed into

the parameterization of
∑

lk
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

. Thus,

in the proposed DG-RBF model, we assume τ t only affects the

gradient of fidelity term, i.e. Xt+1 = Xt− τ tL′(Xt,Y)−
∑

lk
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

.

4.2 Parameterizing the filter k

k in Eq. (7) are the analysis filters used to extract structural

information from the depth image. Previous works have found

that meaningful analysis filters often are zero-mean, thus, we also

parameterize the filters {kl}
L
l=1 to ensure them to be zero-mean

filters. Specifically, we require that each kl is the summation of a

zero-mean Discrete Cosine Transform (DCT) basis:

kl =
I
∑

i=1

αl,ibi, (8)

where {bi}
I
i=1 are the zero-mean DCT basis. The above parame-

terization helps us to constrain the filters {ktl}
L
l=1 to be zero-mean.

4.3 Parameterizing the penalty functions ρ

A good penalty function plays a crucial role in the success of

analysis sparse representation models. Different functions have

been suggested for generating sparse analysis coefficients in

conventional optimization models. In this paper, we parameterize

{ρl(·)}
L
l=1 to allow them to have more flexible shapes. Actually,

from Eq. (7) one can see that what we should parameterize is not
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the penalty function ρtl(z) but the influence function ρt′l (z). Here

we write the influence function ρt′l (z) as

ρt′l (z) =
∑M

j
βt
l,j exp

(

−(z − µj)
2

2σ2
j

)

, (9)

which is the summation of M Gaussian RBF kernels with centers

µj and scalar factors σj . This formulation can provide a group of

highly flexible functions for image restoration [26], [27].

The number M as well as the means {µj}
M
j=1 and scaling fac-

tor σ are the hyper-parameters of our model. The means {µj}
M
j=1

determine the location of the kernels and the scaling factors

their band width. The two parameters cooperate to determine the

flexibility and cover range of the parameterization.

4.4 Parameterizing the weight functions w

As we have analyzed in section 3.1, the weight function extracts

local structures from the intensity image to adaptively regularize

the penalty of the depth analysis coefficients. In previous hand-

crafted models, some simple weight functions have been suggested

to capture the co-difference of the depth and intensity images. In

this paper, we adopt a similar form which utilizes filters to extract

local structures of the intensity image to adaptively regularize the

depth discontinuities.

However, although the intensity and the depth images arise

from the same scene and are strongly dependent, the values in the

two images have different physical meaning. For example, a black

box in front of a white wall or a gray box in front of a black wall

may correspond to the same depth map but totally different edge

gradients for the intensity images. Therefore, the weight function

should be able to avoid the interference of such structure-unrelated

intensity information, while extracting useful salient structures to

help the depth map locate its discontinuities. To this end, the

intensity map is locally normalized, to avoid the effect of different

intensity magnitude. Specifically, given the vectorization of the

guided intensity image g, we introduce the operator Ri to extract

the local patch at position i by Rig. The local normalization of

Rig can then be attained by ei =
Rig

||Rig||2
.

With ei, we define the weight function for the l-th analysis

operator βl at position i as,

wl,i(G) = exp
(

−(γT
l ei)

2
)

. (10)

The analysis operator γl can serve as a special local structure

detector. If the local normalized patch ei contains local structures

such as edges, wl,i(G) will be very small to encourage that the

depth patch exhibits the corresponding local structure.

4.5 Training of DG-RBF parameters

After parameterization, the stage-wise operations can be deter-

mined by the parameters Θt = {τ t, {αt
l ,β

t
l ,γ

t
l }

L
l=1}. Plugging

Xs,t+1(Xt,G,Y;Θt) into the task-driven formula of Eq. (6), we

are able to learn optimal stage-wise operations by minimizing:

Θ
t = argmin

Θ

1

2

∑S

s=1
||Xs

gt − Xs,t+1(Xt,Gs,Ys;Θt)||2F .

(11)

The gradient of the loss function with respect to the parameters

Θ
t = {τ t, {αt

l ,β
t
l ,γ

t
l }

L
l=1} can be achieved by the chain rule:

∂loss(Xgt,Xt+1)

∂Θt
=

∂loss(Xgt,Xt+1)

∂Xt+1 ·
∂Xt+1

∂Θt
. (12)

Fig. 3. Illustration of DG-CNN structure (with two stage-wise operations)
for guided depth reconstruction. The light orange, purple and gray
components in the figure correspond to the depth encoder, the intensity
encoder and the joint decoder, respectively.

The detailed derivations of ∂X
t+1

∂Θt are introduced in the appendix.

Having the gradients, we learn the parameters for each stage

with the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithm [50], [51]. We learn the stage-wise parameters

in a greedy manner. Given initialization X0, we learn one stage

operator to generate estimation X1 by minimizing the difference

between X1 and target ground truth X; then, taking X1 as input,

we learn another operation for estimating X2 in the same manner.

For both the noise-free and noisy depth SR experiments, we use

the results of bicubic interpolation as the initialization of X0. The

initialization of X0 for other tasks will be introduced in each

experiment. We experimentally found that we can get very good

results after only a few stages of processing, i.e., T . After greedy

learning, joint training is utilized to learn the parameters of the T
stages simultaneously. All the experiments for the DG-RBF model

were implemented with Matlab. We used the L-BFGS toolbox

provided by [51] to train our model. For all the models, we first

conduct 200 iterations of the L-BFGS algorithm for each stage in

a greedy manner, and then perform another 50 iterations on all the

stages simultaneously. More implementation details are given in

the experiments sections.

5 LEARNED DYNAMIC GUIDANCE WITH CNN

In the previous section, we proposed a DG-RBF model which

parameterizes the filters as well as the nonlinear functions in

the stage-wise operations introduced in Eq. (7). By exploring

the dynamic guidance strategy and learning optimal parameters

in a task-driven manner, the proposed DG-RBF method greatly

improves the flexibility of the original WASR model. But since

DG-RBF follows the formula of stage-wise operation strictly -

which only conducts one group of convolutions and nonlinear

functions on the depth image - we adopted a group of RBF kernels

to parameterize the penalty function in order to have a strong

capacity towards nonlinearities. Furthermore, we utilize the L-

BFGS algorithm [50] to train DG-RBF and it needs to calculate

the gradient on the whole training set. The above reasons render

the training of the complex DG-RBF model on a large training

dataset time and memory consuming. In this section, we provide

another parameterization of stage-wise operations for the guided

depth enhancement. Specifically, we analyze the formula of Eq. (7)

and use convolutional neural networks (CNNs) to approximate the

stage-wise operations in a more flexible way.

5.1 Stage-wise operation with intensity/depth encoder

and joint decoder

In Eq. (7), the difference between the current estimation Xt and

the new estimation Xt+1 consists of two components. The first
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component L′(Xt,Y) comes from the data fidelity term of the

objective function. It put the residual between current estimation

and input observation back into the next estimation. The second

component
∑

lk
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

comes from the

regularization term. It extracts high-dimensional features (analysis

coefficients in the case of the WASR model) from the local

structure in the image, and adjusts the features in the feature space

to let the new estimation better fit the prior model.

When the optimization algorithm is adopted to minimize the

objective function, the backward part L′(Xt,Y) prevents the

estimation X to move too far away from the observation Y,

and the algorithm converges when the two components get in

balance. Since, in this paper, only a fixed number of stage-wise

operations are performed to generate the high quality estimation,

the backward part can be ignored for the purpose of simplicity. By

ignoring the fidelity part, we get the following residual formulation

of the stage-wise operation:

Xt+1 = Xt +
∑

l
k
t

l ⊗
(

Wt
l(G)⊙ Pt′

l (k
t
l ⊗ Xt)

)

. (13)

In the residual component, an intensity encoder Wt
l(G), a depth

encoder ρt′l (Xt) and a joint decoder
∑

l k
t

l ⊗ (·) cooperate to

adjust the local structure in the current estimation. In particular, the

intensity encoder and depth encoder extract local features from the

intensity and depth images, resp.; then, after generating the joint

coefficients with the point-wise product operator, the joint decoder

reconstructs the final residual estimation. Denoting the intensity

encoder, depth encoder and joint decoder by FI(·), FD(·) and

FR(·), we can rewrite Eq. (13) in the form:

Xt+1 = Xt + FR

(

FD

(

Xt
)

⊙ FI (G)
)

. (14)

In our DG-CNN model, we formulate the encoders and decoders

in Eq. (14) with several layers of CNN. Compared with the DG-

RBF model, the CNN parameterization is able to provide more

powerful encoders and decoders with stronger nonlinear modeling

capacity. Furthermore, well optimized CNN toolboxes enable us

to train the DG-CNN model easily on large training datasets.

5.2 DG-CNN network structure

Based on our analysis from the previous section 5.1, the stage-

wise operation for the WASR can be formulated with an intensity

encoder, a depth encoder and a joint decoder. To parameterize the

encoder and decoder with a CNN, one simple solution is to directly

use several convolution and activation layers to form the encoder

and the decoder, and to gradually improve the quality of the depth

estimations {Xt}t=1,...,T . Yet, such a strategy reconstructs the

joint features back into the image domain where several stages of

operation are concatenated together and the reconstructed image

acts as a bottleneck in the deep neural network. The bottlenecks

may affect the training speed of the neural networks. Furthermore,

reconstructing the feature maps back into the image domain

impedes the increasing of the network perceptual field. In order

to avoid the appearance of bottlenecks in the networks, for the

multi-stage DG-CNN model, the t-th depth encoder takes the

feature maps of the (t−1)-th joint decoder as input. Furthermore,

in order to increase the perceptual field of the intensity encoder,

the intensity encoder in each stage takes the output feature maps

from previous intensity encoder as well as the guidance intensity

image as inputs. An illustration of a two-stage DG-CNN model

can be found in Fig. 3. The orange, the purple and the gray blocks

represent the depth encoder, the intensity encoder and the joint

decoder, respectively. Each encoder consists of 5 convolution,

batch normalization [52] and leakyReLU [53] layers, and each

decoder consists of 3 convolution, batch normalization [52] and

leakyReLU [53] layers. Each convolution layer generate 32 feature

maps. Except for the first depth encoder block which takes the

observed depth image as input, all the remaining depth encoders

take the feature maps of the joint decoder as input. Another

convolution layer (red rectangle in Fig. 3) is utilized to reconstruct

the feature maps of the decoder back into the image domain.

All the DG-CNN experiments conducted in this paper were

implemented with the Pytorch toolbox [54]. We train our model

with the Adam [55] solver (β1 = 0.9), and set the weight decay

parameter to 10−4. We start from a learning rate of 0.001 and

divide it by 10 every 105 iterations. The total number of training

iterations is 3 × 105. An Nvidia Titan XP GPU was utilized to

train our model. More details on each dataset can be found in the

experiments sections.

6 MODEL ANALYSIS AND DISCUSSION

Before comparing the proposed method with state-of-the-art ap-

proaches, we conduct ablation experiments to analyze the effect

of hyper-parameters and network architecture design choices. We

first introduce the general setting of our ablation experiments, and

then present experimental results to analyze the proposed DG-RBF

and DG-CNN models, respectively.

6.1 Experimental setting

We utilize the commonly used Middlebury dataset [56] to conduct

our ablation experiments. Following the experimental settings

from previous works [9], [32], we use the Art, Books and Moebius

images as testing images. To prepare training data, we use 46 depth

and intensity image pairs from the Middlebury dataset [56] and

augment them with flipping, rotation and scaling operations [57].

Both the training and testing samples are generated by a bicubic

resizing of the high quality depth maps. The training and testing

datasets are strictly separated, and there is no overlap between the

scenes of the training and testing images. To train our DG-RBF

model, we crop 3000 small images of resolution 72×72 from the

46 images as training set. We did not use all the patches from

the 46 training images because the L-BFGS method [50] used

to train DG-RBF needs to calculate the gradient on the whole

training set, and training the model on large datasets is time and

memory expensive. In comparison, for our DG-CNN model, all

the 46 large images and their augmentations have been adopted as

the training dataset. In each training iteration, we randomly crop

32 136 × 136 patches from the 46 images to train our model.

Although the augmentation improves the structural variety of the

training samples, the training data is still not diverse enough as the

color palette is rather poor. In our experiments, we use only the

gray intensity image to guide the reconstruction.

6.2 Analyzing DG-RBF

6.2.1 Initialization and model regularization

Before investigating the hyper-parameters of our model, we study

two key aspects of the proposed method: the initialization and the

model regularization. Specifically, DG-RBF has two main groups

of parameters for the filters and the non-linear functions, and

we investigated the effect of initialization approaches for both

parameter groups. Furthermore, we follow [27] and require the

filters in DG-RBF to be zero-mean. We also provide experimental

results to show the effect of the zero-mean constraint.
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To analyze the effect of zero-mean constraint, we compare

two parameterization schemes for the filters. The first scheme

adopts the zero-mean constraint and requires the filters to be the

summation of zero-mean DCT filters. While, the second scheme

does not regularize the filters, and directly learns the values in

the filters. For both the filters and the penalty functions, we test

two kinds of initialization approaches: random initialization and

model-inspired initialization. In particular, we initialize the filters

with random values or point-wise difference filters, as widely

done in previous optimization-based depth enhancement work;

and initialize the penalty functions with random values or the

commonly used influence function as adopted in [27]. We adopt

different initialization settings to train our DG-RBF models to

super-resolve the testing images with a factor 8. We train a 5-

stage DG-RBF model with 48 7 × 7 filters on 3000 training

samples. We first initialize the penalty function with the commonly

used influence function and evaluate the effect of initialization

and parameterization methods on the filters. The experimental

results are reported in Table 1. The initialization approach as well

as the parameterization method for the filters greatly affect the

performance of the unrolled network. Domain knowledge such as

zero-mean filters and point-wise difference filters are beneficial in

designing as well as initializing network structures.

TABLE 1
Experimental results (Avg. RMSE) on the 3 test images [56] with

different initialization methods and constraints for the filters.

Random Init. Model Init.

W/ Zero-mean Cons. 3.00 2.25
W/o Zero-mean Cons. 3.22 3.23

The effect of the initialization method for the penalty functions

is not as significant as that for the filters, changing from the model-

inspired initialization to random initialization will only slightly

increase the RMSE value on the Middlebury dataset [56] from

2.25 to 2.37.

6.2.2 Filter size and number

After investigating the effect of initialization and model regular-

ization, we study the most important hyper-parameters for DG-

RBF: the filter size and the number of filters. We train DG-RBF

models with different numbers of filters as well as filter sizes

with 3000 training samples. We utilize the same initialization

and parameterization scheme for all the models. The SR results

as well as the average inference time on the 3 testing images

[56] of different models are shown in Table 2. The experiments

were conduct in the Matlab environment and we test different

models on a PC with Intel i7-4790 CPU. All the models utilize

5 stage-wise operations to super-resolve the testing images with

a factor 8. Generally, increasing the filter number and size both

help to improve the SR performance. The filter size plays a more

import role than the number of filters in the DG-RBF model. In

the remainder of this paper, we set the filter size to 9×9 and filter

number to 24, seeking a balance between performance and speed.

6.2.3 Number of RBF kernels

In the DG-RBF model, the parameterization of non-linear penalty

functions is the same as in [27]. In [27], 65 kernels with scaling

parameter 10 have been utilized to cover the activation range

between -310 to 310. This said, we experimentally found that

the penalty functions work well even when we only parameterize

TABLE 2
Experimental results (Avg. RMSE / Runtime [s]) on the 3 testing images

[56] by DG-RBF variations with different filter sizes and numbers.

F. num. 12 24 48 72

5× 5 2.47 / 3.29s 2.45 / 5.70s 2.42 / 10.56s 2.39 / 15.88s
7× 7 2.34 / 4.69s 2.32 / 8.02s 2.25 / 14.77s 2.28 / 21.57s
9× 9 2.28 / 6.52s 2.18 / 11.26s 2.14 / 20.40s 2.15 / 29.31s
11× 11 2.29 / 9.03s 2.16 / 15.27s 2.13 / 28.32s 2.13 / 41.98s

a smaller activation range. The SR results with different kernel

numbers and scaling factors are reported in Table 3. All the

models utilize 5 stage-wise operations to super-resolve the testing

images with a factor 8. The proposed DG-RBF model achieves

good results for a wide range of kernel numbers. It is robust to

this hyper-parameter. For similar parameterization ranges, scaling

factors 2.5, 5 and 10 can achieve similar SR results and a scaling

factor 20 will lead to a performance drop due to insufficient

parameterization accuracy. In addition, although DG-RBF cannot

achieve good SR performance with very small parameterization

range, we do not need to parameterize the penalty function for the

complete possible activation range. Outside [-170, 170], a further

enlargement of the parameterization range will not improve the

SR results. Due to the above reasons, we utilize 33 kernels with

scaling factor 10 to parameterize the penalty functions used in

DG-RBF method.

TABLE 3
Experimental results (Avg. RMSE) on the 3 test images [56] by

DG-RBF variations with different penalty parameterization approaches.

Kernel Num.
Scaling Factor

2.5 5 10 20

17 - 2.33 2.22 2.30
33 2.32 2.20 2.18 2.23
65 2.24 2.17 2.19 -

6.2.4 Stage Number

Another important hyper-parameter in the proposed DG-RBF

model is the number of stages. As we utilize the L-BFGS [50]

algorithm to train the stage-wise operations in a greedy manner,

more stages can always lead to smaller training error. Yet, despite

reducing the training error, adopting more stage-wise operations

will also introduce more computational burden and increase the

risk of over-fitting. In Table 4, we present the average RMSE

and run-time on the three testing images in the Middlebury

dataset [56]. For simple cases such as zooming factors 2 and 4,

DG-RBF is able to achieve good results with a small number of

stage-wise operations; whereas for challenging cases the proposed

model needs more operations to deliver a good estimation. As the

DG-RBF model provides a very easy way to vary computational

complexity, we propose to adopt different operation points to pro-

cess different zooming factors. For SR experiments with zooming

factor 2, 4, 8 and 16, we utilize 3, 4, 5 and 6 stage-wise operations,

respectively, in the DG-RBF model. Note that we adopt different

numbers of stage-wise operations for the purpose of balancing the

computational burden and the reconstruction performance. As can

be found in Table 4, with a large stage number, DR-RBF is able

to achieve high quality depth reconstruction results for different

zooming factors.

6.3 Analyzing DG-CNN

Our DG-CNN also has a large number of hyper-parameters,

including the feature map number and filter size, as well as
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(a) Single Stage + Global Res. (b) Multi-Stage + Global Res. (c) Multi-Stage + Stage-wise Res.

Fig. 4. Ablation networks used to validate the effectiveness of the stage-wise residual learning structure. More details can be found in section 6.3.2.

TABLE 4
Experimental results (Avg. RMSE and Run-time) on the 3 testing
images [56] by DG-RBF variations with different stage numbers.

Stage S=1 S=2 S=3 S=4 S=5 S=6 S=7 S=8

×2 0.84 0.73 0.73 0.74 0.74 0.74 0.74 0.75

×4 1.74 1.39 1.29 1.27 1.27 1.27 1.27 1.27

×8 2.88 2.40 2.26 2.22 2.18 2.18 2.19 2.19

×16 5.73 4.08 3.82 3.76 3.74 3.73 3.72 3.72

Time [s] 3.65 5.50 7.36 9.10 10.93 12.80 14.55 16.32

training parameters such as the learning rate. For most of these

parameters, we follow some commonly used settings in other CNN

based approaches, and did not conduct experiments to analyze the

effect of these parameters. In this subsection, we first present the

depth reconstruction performance of DG-CNN with different stage

numbers. Then, we analyze two properties of the proposed DG-

CNN, which come from the unrolled optimization steps of the

WASR model. Our ablation experiments show the advantages of

the optimization-inspired network architecture design.

6.3.1 Stage Number

We evaluate the proposed DG-CNN method with different stage

numbers (from one to four) on the Middlebury data set. Table 5

summarizes the SR results for all the different factors with

different numbers of stage-wise operations. Similarly to our DG-

RBF model, with complex networks (more stage-wise operations),

the DG-CNN is able to achieve good results on all the zooming

factors. For simple cases with small zooming factors a large

number of stage-wise operations is not necessary and the DG-

CNN is able to deliver high quality results with a small number

of stage-wise operations. The same as for the DG-RBF model, we

adopt different numbers of stage-wise operations in the DG-CNN

for SR tasks with different zooming factors. For zooming factors

2, 4, 8 and 16, we utilize 1, 2, 3 and 4 stage-wise operations,

respectively, in the proposed DG-CNN method.

TABLE 5
Experimental results (Avg. RMSE) on the 3 testing images [56] by

DG-CNN variations with different numbers of stage-wise sub-networks.

Stage S=1 S=2 S=3 S=4 S=5

×2 0.45 0.43 0.43 0.43 0.42
×4 0.88 0.84 0.82 0.82 0.81
×8 1.57 1.42 1.35 1.37 1.35
×16 2.80 2.50 2.40 2.36 2.36

6.3.2 Stage-wise Residual Learning

In each stage of the DG-CNN, we utilize encoder networks

{FI , FD} and a decoder network {FR} to approximate the

difference between the current estimation and the next estimation

Xt+1 − Xt. Each stage-wise operator can be seen as a special

residual block, which has been proved to be a highly effective

structure in deep neural networks [58]. In this part, we conduct

ablation experiments to show the advantage of stage-wise residual

learning. In particular, we compare the proposed network archi-

tecture with two ablation architectures, which are shown in Fig. 4.

The first ablation network (Fig. 4 (a)) adopts a one-stage encoder-

decoder network to estimate the residual between the input and the

target high quality depth image. The second ablation network (Fig.

4 (b)) adopts stage-wise operations but only contains a global skip

connection between the input and output image. For multi-stage

networks with/without stage-wise residual learning we utilize the

same encoder-decoder sub-networks, whereas for the single stage

network we incorporate two times more convolutional layers in

the encoder and decoder sub-networks. All three networks have

the same computational complexity. The competing results of

different networks can be found in Table 6, showing that the

optimization-inspired stage-wise residual learning is beneficial for

the guided depth reconstruction task.

TABLE 6
Experimental results (Avg. RMSE) on the 3 testing images [56] by

DG-CNN and ablation network architectures shown in Fig. 4.

Single Stage
+ Global Res.

Multi-Stage
+ Global Res.

Multi-Stage
+ Stage-wise Res.

1.42 1.53 1.35

6.3.3 Dependency Modeling

WASR summarizes previous optimization-based methods and uses

point-wise multiplication to combine the intensity and depth

features. We adopt the multiplication strategy also in our DG-

CNN network structure. Most of previous CNN-based guided

depth reconstruction approaches [21], [22] use the concatenation

operation to combine the intensity and depth features. Compared

with concatenation, the point-wise multiplication helps to reduce

the number of parameters as well as the computational burden

of the network. By exchanging multiplication with concatenation,

each stage-wise operation gets about 5% more parameters and

running time. Furthermore, as reported in Table 7, combining

feature maps with multiplication instead of concatenation achieves

comparable or slightly better SR results on the Middlebury dataset.

TABLE 7
Experimental results (Avg. RMSE) on the 3 testining images [56] by

DG-CNN variations with different feature maps combinations.

Feature maps combination ×2 ×4 ×8 ×16

concatenation 0.44 0.86 1.36 2.41
multiplication 0.45 0.84 1.35 2.36
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TABLE 8
Experimental results (RMSE) on the 3 noise-free test images.

Art Books Moebius Average

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16
Bicubic 2.57 3.85 5.52 8.37 1.01 1.56 2.25 3.35 0.91 1.38 2.04 2.95 1.50 2.26 3.27 4.89
Bilinear 2.83 4.15 6.00 8.93 1.12 1.67 2.39 3.53 1.02 1.50 2.20 3.18 1.66 2.44 3.53 5.21
GF [18] 2.93 3.79 4.97 7.88 1.16 1.58 2.10 3.19 1.10 1.43 1.88 2.85 1.73 2.27 2.98 4.64
MRF [7] 3.12 3.79 5.50 8.66 1.21 1.55 2.21 3.40 1.19 1.44 2.05 3.08 1.84 2.26 3.25 5.05

Yang 2007 [59] 4.07 4.06 4.71 8.27 1.61 1.70 1.95 3.32 1.07 1.39 1.82 2.49 2.25 2.38 2.83 4.69
Park [8] 2.83 3.50 4.17 6.26 1.20 1.50 1.98 2.95 1.06 1.35 1.80 2.38 1.70 2.12 2.65 3.86
TGV [9] 3.03 3.79 4.79 7.10 1.29 1.60 1.99 2.94 1.13 1.46 1.91 2.63 1.82 2.28 2.90 4.22

Yang 2014 [60]1 3.13 4.76 7.79 13.44 1.30 2.16 5.44 13.00 1.16 1.99 3.30 7.02 1.86 2.97 5.51 11.15
SDF [61] 3.31 3.73 4.60 7.33 1.51 1.67 1.98 2.92 1.56 1.54 1.85 2.57 2.13 2.31 2.81 4.27
DJF [21] 2.77 3.69 4.92 7.72 1.11 1.71 2.16 2.91 1.04 1.50 1.99 2.95 1.64 2.30 3.02 4.53

MSG-Net [22]2 0.66 1.47 2.46 4.57 0.37 0.68 1.03 1.60 0.36 0.66 1.02 1.63 0.46 0.94 1.50 2.60
DG-RBF (ours) 1.06 1.98 3.40 6.07 0.57 0.92 1.62 5.57 0.55 0.92 1.56 2.55 0.73 1.27 2.19 4.73
DG-CNN (ours) 0.63 1.31 2.17 3.94 0.36 0.61 0.95 1.60 0.33 0.58 0.92 1.47 0.44 0.83 1.35 2.34

7 GUIDED DEPTH SUPER-RESOLUTION EXPERI-

MENTS

In this section, we compare the proposed methods with other

depth super-resolution methods. Two commonly used datasets

(Middlebury [56] and NYU [4]) are utilized to evaluate the depth

upsampling performance of the proposed methods. Besides the

baseline bicubic and bilinear upsampling methods, we compare

the proposed methods with a variety of guided depth super-

resolution methods. The comparison methods include three fil-

tering based methods [18], [59], [62], an MRF based optimiza-

tion method [7], a non-local mean regularized depth upsampling

method [8], a total generalized variation (TGV) method [9], the

joint static and dynamic filtering (SDF) method [61], and the

recently proposed CNN-based deep joint filtering method [21]

and primal-dual network (PDN) [30]. In [22], Hui et al. also

evaluated their proposed MSG-Net on the 3 testining images in

the Middlebury [56] dataset. However, Hui et al. [22] utilized

the Gaussian blur + downsampling operation to generate the low

resolution input images, which is considered to be easier than the

bicubic downsampling setting in the SR literature [63]. Here we

also reported the performance by the MSG-Net [22] for reference.

Details about the experimental setup will be introduced in the

following subsections.

7.1 Super-resolution results on the Middlebury dataset

Following the experimental setting of [9], we conduct super-

resolution experiments with both the noise-free and noisy low

resolution depth map for four zooming factors, i.e. 2, 4, 8 and 16.

The settings of the noise-free experiment have been introduced in

Section 6. To compare different methods with noisy low-resolution

inputs, we utilize the testing images provided in [8]. To synthesize

real noisy depth images, Park et al. [8] added conditional Gaussian

noise to the low resolution depth maps. The Gaussian noise

variance depends on the distance between the camera and the

scene, and Park et al. did not provide the details for the noise

hyper-parameters. To generate training data, we add i.i.d Gaussian

1. The memory consumption of this algorithm [60] is large. In order to adopt
this algorithm on large images, we divide the image into patches and process
each patch individually.

2. The experimental setting in [22] is different than our experimental
settings. [22] utilizes more training data. In addition, the low resolution depth
images in [22] were generated via Gaussian blur + downsampling, while in this
paper we utilize Matlab bicubic operation to generate low resolution images.
We provide [22]’s results here for reference.

white noise with σ = 6 to the 46 clean images used in our noise-

free experiments.

The super-resolution results on the 3 noise-free testing images

of the different methods are shown in table 8. The proposed DG-

RBF and DG-CNN methods consistently show their advantage

over the competing methods. The proposed DG-RBF method

outperforms all the optimization-based approaches as well as a re-

cently proposed CNN-based method DJF [21]. DG-CNN achieves

the best results on all the 3 images with different zooming factors.

In Fig. 5, we give visual examples of the super-resolution results

for the Moebius image with zooming factor 16. In the figure we

can see that the guided filter method [18] and the MRF method [7]

cannot generate very sharp edges. The results of [59], [8] and [9]

have some artifacts around the edges. Our methods are able to

generate high quality depth maps with sharper edges and fewer

artifacts.

We further evaluate the proposed methods for noisy depth

super-resolution. For both the DG-RBF and DG-CNN models,

we utilize the same hyper-parameters as we adopted in the noise-

free experiment. The results by different methods are shown in

Table 9. We do not provide the results of DJF [21] because the

authors have not provided their network and have not reported

results for such setting. The results by [12] are also included, a

method designed to handle noise in depth super-resolution tasks.

The proposed methods again achieve the best results.

7.2 Super-resolution results on the NYU dataset

In [21], Li et al. utilize the first 1000 images of the NYU

dataset [4] as training data, and evaluate their DJF method on

the last 449 images of the NYU dataset. In this section, we follow

their experimental setting and compare different methods on the

449 images. The results of the other methods are provided by the

authors of [21]. For the DG-RBF model, we crop 3000 72×72

subimages as the training set. For the DG-CNN model, we use all

the 1000 images as training dataset. The hyper-parameters for both

the DG-RBF and DG-CNN models are the same as our settings on

the Middleburry [56] dataset. The experimental results are shown

in Table 10. Compared with other methods, the proposed DG-RBF

and DG-CNN achieve the best results in terms of RMSE. Some

visual examples of the SR results of different algorithms have been

provided in Fig. 6.
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TABLE 9
Experimental results (RMSE) on the 3 noisy test images.

Art Books Moebius Average

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16
Bicubic 5.32 6.07 7.27 9.59 5.00 5.15 5.45 5.97 5.34 5.51 5.68 6.11 5.22 5.58 6.13 7.22
Bilinear 4.58 5.62 7.14 9.72 3.95 4.31 4.71 5.38 4.20 4.57 4.87 5.43 4.24 4.83 5.57 6.84
GF [18] 3.55 4.41 5.72 8.49 2.37 2.74 3.42 4.53 2.48 2.83 3.57 4.58 2.80 3.33 4.24 5.87
MRF [7] 3.49 4.51 6.39 9.39 2.06 3.00 4.05 5.13 2.13 3.11 4.18 5.17 2.56 3.54 4.87 6.56

Yang 2007 [59] 3.01 4.02 4.99 7.86 1.87 2.38 2.88 4.27 1.92 2.42 2.98 4.40 2.27 2.94 3.62 5.51
Park [8] 3.76 4.56 5.93 9.32 1.95 2.61 3.31 4.85 1.96 2.51 3.22 4.48 2.56 3.23 4.15 6.22
TGV [9] 3.19 4.06 5.08 7.61 1.52 2.21 2.47 3.54 1.47 2.03 2.58 3.56 2.06 2.77 3.38 4.90

Chan [12] 3.44 4.46 6.12 8.68 2.09 2.77 3.78 5.45 2.08 2.76 3.87 5.57 2.54 3.33 4.59 6.57
Yang 2014 [60] 5.37 6.06 9.33 15.02 4.98 5.06 7.62 16.13 4.73 5.32 5.73 9.19 5.03 5.48 7.56 13.45

SDF [61] 3.36 3.86 4.93 7.85 1.59 1.92 2.60 4.16 1.64 1.85 2.67 4.21 2.20 2.54 3.40 5.41
PDN [30] 1.87 3.11 4.48 7.35 1.01 1.56 2.24 3.46 1.16 1.68 2.48 3.62 1.35 2.12 3.07 4.81
FBS [62] 2.93 3.79 4.95 7.13 1.39 1.84 2.38 3.29 1.38 1.80 2.38 3.23 1.90 2.48 3.24 4.55

DG-RBF (ours) 1.91 3.06 4.75 8.10 1.21 1.77 2.55 4.12 1.32 1.84 2.86 4.13 1.48 2.22 3.39 5.45
DG-CNN (ours) 1.74 2.53 3.51 5.14 1.09 1.40 1.93 2.80 1.20 1.47 2.01 2.91 1.34 1.80 2.48 3.62

(a) Color Image (b) Ground Truth (c) GF [18] (d) MRF [7] (e) Yang et al. [59]

(f) TGV [9] (g) SDF [61] (h) DJF [21] (i) DG-RBF (j) DG-CNN

Fig. 5. Depth restoration results of different methods based on noise-free data (Moebius).

(a) Color Image (b) Ground Truth (c) GF [17] (d) MRF [7] (e) Park et al. [8]

(f) TGV [9] (g) SDF [61] (h) DJF [21] (i) DG-RBF (j) DG-CNN

Fig. 6. Depth SR results by different methods for a testing image in the NYU dataset [4].
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(a) Color Image (b) Input (c) Ground Truth (d) Lu et al. [11] (e) Shen et al. [19] (f) DG-RBF (ours) (f) DG-CNN (ours)

Fig. 7. Depth restoration results of different methods.

8 REALISTIC GUIDED DEPTH RECONSTRUCTION

In this section, we provide some experimental results for other

depth map restoration problems. We evaluate the proposed meth-

ods on two datasets. The first dataset is a synthetic dataset

proposed by Lu et al. [11]. In order to mimic real low-quality

depth images, Lu et al. [11] add zero mean additive Gaussian noise

to the depth images, and then manually set 13% of pixels in the

depth map as missing values to simulate the depth map acquired

from consumer level depth sensors. Moreover, the second dataset

is a real sensor dataset provided by [9]. A Time of Flight (Tof) and

a CMOS camera are used to obtain low resolution depth maps and

intensity images, and the ground truth depth images are generated

by a structured light scanner. The detailed experimental setting

will be introduced in the following subsections.

8.1 Experimental results on synthetic dataset [11]

In [11], Lu et al. propose a synthetic dataset to evaluate guided

depth reconstruction methods. 30 depth and RGB image pairs in

the Middlebury database [56] are included in the dataset. The

size of all the images have been normalized to the same height

of 370 pixels. To compare with previous algorithms, we utilized

the cross-validation method to obtain the reconstruction results

on all the 30 images. Concretely, we divide the 30 images into

10 groups, and utilize 9 groups to train models to estimate the

depth maps in the remainder group. We compare our method with

other methods designed for this task, which include a low rank

based method [11] and the recently proposed mutual-structure

joint filtering method [19].

Since our proposed method does not consider the noise in

the RGB image, for fair comparison, we pre-process the RGB

image by a state-of-the-art denoising method [64], [65] and use

the denoised image to guide the restoration of the depth map.

Such a method has been utilized in the original paper [11] to

compare with other depth restoration methods. In addition, since

the missing values in the depth map are represented as zeros which

may be considered as very sharp edges in the depth map, we use

TABLE 10
Experimental results (RMSE) on the 449 NYU test images.

NYU
×4 ×8 ×16

MRF [7] 4.29 7.54 12.32
GF [18] 4.04 7.34 12.23
JBU [16] 2.31 4.12 6.98
TGV [9] 3.83 6.46 13.49
Park [8] 3.00 5.05 9.73
Ham [32] 3.04 5.67 9.97
DJF [21] 1.97 3.39 5.63
DG-RBF (ours) 1.35 2.69 5.11
DG-CNN (ours) 0.87 1.78 3.53

TABLE 11
Experimental results (RMSE) on the 30 test images in [11].

Lu et al. Shen et al. DG-RBF DG-CNN
[11] [19] (ours) (ours)

2.59 2.64 2.30 2.27

a simple masked joint bilateral filtering [66] method to generate

initialization values for the unknown points in the depth map.

The restoration results by different methods are shown in

Table 11. For both the DG-RBF and DG-CNN model, the

hyper-parameters are the same as used for the super-resolution

experiment with zooming factor 4. The results of [11] and [19]

are downloaded from the websites of the respective authors.

Both proposed DG-RBF and DG-CNN methods outperform the

competing methods. Interestingly, different from our experimental

results for the guided super-resolution task, the results by the DG-

CNN approach are just comparable to the results by DG-RBF. The

main reason is the very limited training data, the 27 low-resolution

images are insufficient to train the complex DG-CNN model for

best performance. In contrast, the DG-RBF model can still achieve

good performance with a small training dataset because its number

of parameters is much lower than that of DG-CNN.

8.2 Experimental results on real Sensor Data

In addition to synthetic data, we also evaluate the proposed method

on a real sensor dataset [9]. We utilize the same 46 images

from the Middlebury dataset [56] as training images. As for our

experiment on the synthetic dataset, we also utilized the joint

bilateral filtering [66] method to generate initialization values for

the unknown points in the depth map. For both the DG-RBF and

DG-CNN model, the hyper-parameters are the same as for the

noise-free Middleburry super-resolution experiment with zooming

factor 4. We compare our methods with other classic or state-of-art

methods. The guided reconstruction results are shown in Table 12.

Our methods get the best results in terms of the mean absolute

error (MAE). From Fig. 8 it is easy to see that our methods are

capable of generating clean estimations, whereas the results by

other methods copy irrelevant textures from the intensity image.

9 DISCUSSION

By analyzing previous optimization-based methods, we proposed

a WASR model for the task of guided depth reconstruction. Instead

of solving the optimization problem of the WASR model, we

proposed to utilize different parameters in the optimization process

and conduct the depth reconstruction with a dynamic guidance

strategy. In particular, we unfolded the optimization process of

WASR and got the formula of stage-wise operation for guided
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(a) Intensity Image (b) Ground Truth (c) TGV [9] (d) SDF [61] (e) DG-RBF (ours) (f) DG-CNN (ours)

Fig. 8. Depth reconstruction results of different methods based on real data (Books).

TABLE 12
Real data results (MAE) on the 3 test images in [9]

Books Shark Devil Average

Nearest Neighbor 18.21 21.83 19.36 19.80
Bilinear 17.10 20.17 18.66 18.64
Kopf [16] 16.03 18.79 27.57 20.80
He [17] 15.74 18.21 27.04 20.33
FBS [62] 13.42 17.07 16.10 15.53
SDF [61] 13.47 16.75 16.36 15.53
TGV [9] 12.36 15.29 14.68 14.11
Yang [60] 12.25 14.71 13.83 13.60
DG-RBF (ours) 12.18 14.48 13.79 13.48
DG-CNN (ours) 12.14 14.46 13.11 13.24

depth reconstruction. Based on the stage-wise formula Eq. (7),

we introduced two networks which parameterize the stage-wise

operation with RBF kernels (DG-RBF) or convolutional neural

networks (DG-CNN). Experimentally, we have shown that both

the DG-RBF and DG-CNN models are able to generate good depth

reconstruction results. In this section, we discuss the respective

merits and drawbacks of the two models.

DG-RBF follows the unfolded optimization process of WASR

strictly and parameterizes the nonlinear penalty functions with

Gauss RBF kernels. In comparison, the DG-CNN model approx-

imates the stage-wise operation in a lose way; we decompose the

stage-wise operation as an intensity encoder, a depth encoder and

a joint decoder, and use several layers of CNN to parameterize

these sub-components. Although both methods benefit from the

domain knowledge of previous researches as well as training

data, they adopt different trade-offs between the two merits.

The DG-RBF method strictly follows the unfolded optimization

process of WASR. It is more related to previous optimization-

based approaches. This prior knowledge about the guided depth

reconstruction problem enables the proposed DG-RBF method to

capture the relationship between the guidance and the depth image

in a more economic way. As a result, the DG-RBF method can be

trained on small datasets and its generalization capacity is better

than that of DG-CNN in general. On the synthetic dataset provided

by Lu et al. [11], which only has 27 small training images, DG-

RBF model achieved comparable results to the DG-CNN model

with much less parameters. Yet, following the unfolded WASR

model strictly limits the flexibility of DG-RBF on datasets with

large amounts of training data. The results generated by the DG-

RBF are not as good as those of some learning-based approaches.

In comparison to DG-RBF, DG-CNN benefits from the overall

structure of the unfolded WASR model. The stage-wise formula

provides useful hints on the design of the DG-CNN, while the

advances in deep learning enable DG-CNN to take full advantage

of training data. Consequently, the DG-CNN achieved stage-of-

the-art performance on different datasets.

Another difference between DG-RBF and DG-CNN resides in

the training. Different from CNNs, where one can use the back-

propagation algorithm for gradient calculation, the computation of

the parameter gradients for the DG-RBF model is time consuming.

In addition, the L-BFGS method [50] used to train DG-RBF re-

quires to calculate parameter gradients for all the training samples.

We have also tried to train DG-RBF with stochastic algorithms,

such as stochastic gradient descent (SGD) [67] and its ADAM

variation [55]. L-BFGS always generates better models which can

generate high quality depth reconstruction results. The limited

performance achieved by the SGD trained DG-RBF model may

be due to our parameterization scheme. Studies [68] in the deep

learning literature have found that components in the network can

greatly affect the training of the network. Inappropriate activation

functions in the network may lead to the vanishing gradient

problem and can render the network hard to train. The complex

parameterization scheme adopted in our DG-RBF model did

not take the training performance into consideration. Stochastic

algorithms with heuristic learning rates may not be able to deliver

a good model. L-BFGS computes accurate gradients on the whole

training set and utilizes a line search method to determine the

step length in each step. It has been utilized to train optimization-

inspired networks in many previous works [27], [29].

10 CONCLUSIONS

To model the dependency between the guiding intensity image

and the depth image we proposed a weighted analysis sparse

representation (WASR) model for guided depth reconstruction. An

intensity weighting term and an analysis representation regulariza-

tion term are combined to model the complex relationship between

the depth image and RGB image. We unfold the optimization

process of the WASR model as a series of stage-wise operations.

Two models, DG-RBF and DG-CNN, have been introduced to

parameterize the stage-wise operation with Gaussian RBF kernels

and CNNs, respectively, and we learn their model parameters in

a task-driven manner. Both models generate high quality depth

estimation in just a couple of stages. We experimentally validated

their effectiveness for guided depth super-resolution and realistic

depth reconstruction tasks using standard benchmarks. To the best

of our knowledge, our proposed DG-RBF and DG-CNN methods

achieve the best quantitative results (RMSE) to date and better

visual quality than the compared state-of-the-art approaches.
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APPENDIX

As introduced in our paper, we learn stage-wise parameters Θt+1

by solving the following problem,

Θ
t+1 =argmin

Θ

1

2

∑S

s=1
||xsg − xst+1(Θ)||22,

xst+1(Θ) = xst−

(τt+1∇xL(x
s
t , ys )+

∑

l
k
t+1
l ⊗ (Wt+1

l ρt+1
l

′
(kt+1

l ⊗ xst )),

where Θ
t+1 = {τ t+1, {αt+1

l ,βt+1
l , kt+1

l }Ll=1} are the param-

eters. Since the gradient of loss function on the whole training

datasets can be decomposed to the sum over training samples, in

the following derivation, we omit the sample index s for simplicity

of notation.

First of all, based on the chain rule, we have:

∂loss(xt+1, xg)

∂Θt+1
=

∂xt+1

∂Θt+1
·
∂loss(xt+1, xg)

∂xt+1
.

For our ℓ2-norm loss,
∂loss(xt+1,xg)

∂xt+1
is simply given by

∂loss(xt+1, xg)

∂xt+1
= xt+1 − xg.

Therefore, the main issue is to calculate the gradient of xt+1

with respect to Θ
t+1 = {τ t+1, {αt+1

l ,βt+1
l , kt+1

l }Ll=1}. We

introduce the derivation of each variable as follows.

Weight parameter τ : We have

∂xt+1

∂τt+1
= (xt − y)TM

1
2 ,

then ∂loss
∂τt+1

is given by

∂loss

∂τt+1
= (xt − y)TM

1
2 (xt+1 − xg).

Filters {kl}
L
l=1: We follow the method in [27], and intro-

duce two auxiliary variables ft+1 = −k̄
t+1
l and vt+1 =

(Wt+1
l ρt+1

l

′
(kt+1

l ⊗ xst )). Based on the property of convolution,

we have

ft+1 ⊗ vt+1 ⇐⇒ Ft+1vec(vt+1) ⇐⇒ Vt+1vec(ft+1),

kt+1
l ⊗ xt ⇐⇒ Xtvec(k

t+1
l ).

Then, the gradient with respect to kl is given by

∂xt+1

∂kt+1
l

=
∂ft+1

∂kt+1
l

·
∂xt+1

∂ft+1
+

∂vt+1

∂kt+1
l

·
∂xt+1

∂vt+1

= −PT
invVT

t+1 − XT
t ΛK̄

t+1T

l ,

where Λ is a diagonal matrix, Λi,i = Wt+1
l,i ρt+1

l

′′
((kt+1

l ⊗ xt)i).

PT
inv inverts the kernel vector (or patches with the same size):

PT
invk = fliplr(flipud(k)). We construct the filters {kl}

L
l=1

from DCT basis D with coefficients cl: vec(kl) = Dcl, thus, the

derivation of loss function with respect to cl is given by:

∂loss

∂ct+1
l

=
∂kt+1

l

∂ct+1
l

·
∂xt+1

∂kt+1
l

·
∂loss

∂xt+1

= −DT (PT
invVT

t+1 + XT
t ΛK̄

t+1T

l )(xt+1 − xg).

(15)

Attributed to (xt+1 − xg) introduced by
∂loss(xt+1,xg)

∂xt+1
, we do

not need to construct Vt+1, XT
t and K̄

t+1T

l in practice. Eq.

(15) can be efficiently calculated by convolutions and point-wise

multiplications.

Filters {βl}
L
l=1: By utilizing the chain rule, the gradient with

respect to βl can be calculated as

∂loss

∂βt+1
l

=
∂Wt+1

l

∂βt+1
l

·
∂(Wt+1

l ρt+1′
l (kt+1

l ⊗ xst ))

∂Wt+1
l

·
∂xt+1

∂(Wt+1
l ρt+1′

l (kt+1
l ⊗ xst ))

·
∂loss

∂xt+1

We rewrite Wt+1
l as exp(−(βT

l E)2), where E = {e1, . . . , eN}
and ei = Rig

‖Rig‖2 is i-th normalized patch extracted from the

guidance image g. Then, we have

∂loss

∂βt+1
l

=− 2(βt+1
l E)Ediag

(

Wt+1
l

)

diag
(

ρt+1′
l (kt+1

l ⊗ xt)
)

K̄
t+1
l (xt+1 − xg).

Influence function {αl}
L
l=1: In our work, the influence function

is parameterized as

ρt+1′
l (z) =

M
∑

j=1

αt+1
lj ϕ(

|z − µj |

2γ2
j

).

To calculate its gradient with respect to αl,j , we rewrite

ρt+1
l

′
(kt+1

l ⊗ xt) as ρt+1
l

′
(z) = W(z)αt+1

l :












ρt+1′
l (z1)

ρt+1
l

′
(z2)

...

ρt+1
l

′
(zN )













=

















ϕ( |z1−µ1|
2γ2

j

) ϕ( |z1−µ2|
2γ2

j

) · · · ϕ( |z1−µM |
2γ2

j

)

ϕ( |z2−µ1|
2γ2

j

) ϕ( |z2−µ2|
2γ2

j

) · · · ϕ( |z2−µM |
2γ2

j

)

...
...

. . .
...

ϕ( |zN−µ1|
2γ2

j

) ϕ( |zN−µ2|
2γ2

j

) · · · ϕ( |zN−µM |
2γ2

j

)



























αt+1
l1

αt+1
l2
...

αt+1
lM











.

Then, we have

∂loss

∂αt+1
l

= −W(kt+1
l ⊗ xt)diag

(

Wt+1
l

)

Kt+1
l (xt+1 − xg).
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