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ABSTRACT Lossless image compression is an important research field in image compression. Recently, 
learning-based lossless image compression methods achieved impressive performance compared with 
traditional lossless methods, such as WebP, JPEG2000, and FLIF. The aim of the lossless image compression 
algorithms is to use shorter codelength to represent images. To encode an image with fewer bytes, eliminating 
the redundancies among the pixels in the image is highly important. Hence, in this paper, we explore the idea 
of combining an autoregressive model for the raw images based on the end-to-end lossless architecture 
proposed to enhance the performance. Furthermore, inspired by the successful achievements of Channel-
conditioning models, we propose a Multivariant Mixture distribution Channel-conditioning model (MMCC) 
in our network architecture to boost performance. The experimental results show that our approach 
outperforms most classical lossless compression methods and existing learning-based lossless methods. 

INDEX TERMS Lossless Image Compression, Autoregressive model, Channel-conditioning model 

I. INTRODUCTION 
Image compression is an important task in many research 
fields. Along with the development of technology, more and 
more fields have greater demand for image compression. In 
many important technical fields, such as medicine, remote 
sensing, details of the image are crucial. Compared with lossy 
image compression, lossless image compression can preserve 
all details in the picture. Therefore, lossless compression is a 
crucial research topic in the above fields. As well as lossy 
image compression, lossless compression tries to capture the 
spatial correlations of the image to reduce the spatial 
redundancies in the compressed bitstream. Therefore, how to 
design the architecture of the network to reduce redundancy is 
the main task of image compression. JPEG2000 [1], WebP [2], 
and FLIF [3] are representative traditional compression 
methods. They rely on hand-crafted designed encoder and 
decoder to capture the spatial correlation between pixels. For 
instance, FLIF is the current state-of-the-art non-learned 
algorithm. It relies on a well-designed entropy coding method 
called “meta-adaptive near-zero integer arithmetic coding” 
(MANIAC). MANIAC is a dynamic data structure utilized as 
a context model in FLIF. With MANIAC, FLIF achieves 
remarkable performance. 

With the development of deep learning in recent years, 
learning-based image compression methods have achieved a 

better performance than classical compression methods. The 
critical aim of both traditional and learning-based lossless 
image compression methods is to find an appropriate 
distribution that is as close to the real distribution as possible. 
Flow-based models admit exact likelihood optimization with 
bijective mappings. iVPF [22] is one of the remarkable flow-
based methods. In [22], Zhang et al. proposed the Modular 
Affine Transformation (MAT) algorithm, which achieves 
exact bijective mapping without any numerical error. As for 
other learning-based lossless compression methods, [10-11] 
also obtain an impressive performance. L3C [10] that can 
propose a fully parallel hierarchical probabilistic model can 
outperform WebP, JPEG2000, and PNG. In [11], RC 
leverages BPG to obtain a lossy reconstruction and uses the 
proposed RC (Residual Compressor) network to achieve 
lossless compression. In [12], it proposed an end-to-end 
lossless image compression framework based on their lossy 
image compression work [9]. [12] utilized an autoregressive 
model for the latents to lift the performance. Utilizing the 
autoregressive model could help the model to obtain an 
accurate probability by estimating the discrete probability of 
the raw pixel values. The probability of pixels in image is 
modelled in sequence. Although autoregressive models are 
powerful methods, they are very time-consuming.  
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In this paper, we consider data compression with channel-
wise architecture and widely used architecture in lossy image 
compression, such as [8], [9], into our framework. First, we 
utilize channel-conditional (CC) models [5] to replace the 
autoregressive context model for the latents to solve the time-
consuming disadvantage of utilizing the autoregressive model. 
CC is proposed to solve the shortcoming that autoregressive 
models decode each symbol in sequence. As well as 
autoregressive models, CC models capture the redundancies 
between pixels. Therefore, CC models could be interpreted as 
efficient autoregressive models along the channel dimension. 
Second, original channel-conditioning models adopt the 
SGM-based entropy model, the performance of SGM 
distribution is not as good as multivariant mixture distribution, 
such as the Gaussian mixture model (GMM). Therefore, in 
this paper, we propose a multivariant mixture distributions CC 
model (MMCC) to better approximate the real distribution. 

We test our method on DIV2K [16], CLICP, and CLICM 
[17]. The result shows that our method outperforms most 
traditional lossless image compression methods, such as PNG 
[6], JPEG 2000, and FLIF [3]. For learning-based methods, 
our method achieved better performance compared with L3C 
[10] and RC [11]. 

II. RELATED WORKS 

A. LOSSLESS COMPRESSION ALGORITHMS 
According to Shannon’s source coding theory [23], the 
codelength of lossless image compression could be formulated 
as: 
 𝐻(𝑝) =  𝔼 ( ) [−𝑙𝑜𝑔 𝑝(𝑥)] (1) 
 𝑝(𝑥) is the distribution of raw images 𝑥. The ideal situation 
is that the distribution we choose is the real distribution of raw 
images. However, the real distribution of raw images is 
intractable. To use shorter codelength to encode raw images, 
it is crucial that the distribution we choose is accurate. 
Generative models are often used to estimate the probability 
of input data in lossless image compression. In addition, there 
are several other methods that have been successfully applied 
to lossless image compression. 

Lossless Coding The aim of data/image compression is that 
using fewer bits to represents original data or images. The 
advantages of data/image compression are the reduced data 
transmission time and communication bandwidth. There are 
several approaches to lossless code images. Traditional 
entropy coding methods include Hoffman coding [7], AC 
(Arithmetic Coding) [24], and asymmetric numeral system 
(ANS) [25]. [31] proposes a lossless data compression method 
using machine learning. The model used is a sequence-to-
sequence recurrent neural network (RNN) model for both 
compression and decompression.  

Generative methods Flow-based lossless compression 
methods like IDF [21], and iVPF [22] achieve impressive 
performance. Lossless compression requires discrete data for 

entropy coding, while common flows are continuous. To 
address this issue, IDF [21] proposed an invertible mapping 
between discrete data and latent variables. iVPF [22] explored 
the effectiveness of volume-preserving flow for lossless 
compression with the proposed novel computation algorithm 
Modular Affine Transformation (MAT). Experiments show 
that iVPF achieves impressive performance among flow-
based lossless algorithms. However, most flow-based lossless 
compression methods have some constraints on flow layers to 
ensure bijections between input data and the latents, which 
limits the feasibility of the performance. 

Autoregressive methods The autoregressive model is not 
only widely used in image compression but also in image 
generation and super-resolution. Gated PixelCNN [18], 
PixcelCNN [19], and PixelCNN++ [20] are impressive works 
of the autoregressive model. PixcelCNN [19] estimates the 
joint distribution 𝑝(𝑥) of the current pixel conditions on all the 
previously generated pixels left and above the current pixel: 
 𝑝(𝑥) = 𝑝(𝑥 |𝑥 , ⋯ , 𝑥 ) (2) 

 
The value 𝑝(𝑥 | 𝑥 , ⋯ , 𝑥 ) is the probability of the 𝑖 −𝑡ℎ pixel 𝑥𝑖 given all the previous pixels 𝑥1 , . . . , 𝑥𝑖 − 1. The aim 

of utilizing autoregressive models is to capture the spatial 
correlations between pixels and eliminate the redundancies 
among the latents. With the help of autoregressive methods, 
we could provide a more accurate distribution for the encoder 
and decoder to compress images with less bits. 

L3C [10] can be deemed as a VAE-based hierarchical 
probabilistic model with auxiliary feature representations. The 
proposed struct in [12] can be regarded as an optimized VAE-
based end-to-end framework for the lossless image 
compression task. 

The framework of GOLLIC [29] utilizes a three-level 
hierarchical framework based on the L3C [10]. A self-
supervised clustering module is introduced in GOLLIC to 
capture the long-term dependencies inside the image. 

Other methods RC [11] leverages BPG to compress raw 
images into lossy images and calculates the residuals between 
the raw images and lossy images. The residuals are then 
compressed with a convolutional neural network. Recent 
works also introduce classical machine learning methods like 
K-Mean clustering to boost performance [29], [32]. [33] 
employs a deep learning-based approach which built on the 
ML concepts of RESL framework for computing the residual-
error for a dual prediction method like RC. [34] proposed a 
lossy architecture plus residual coding which could achieve 
both lossless and near-lossless image compression. [35] 
proposed a lossless image compression framework that 
decomposes an input image into low-frequency and high-
frequency regions, enabling a coarse-to-fine processing 
approach. [36] developed an efficient end-to-end generative 
model-based architecture for lossless image compression. 
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B. CONTEXT MODEL 
The context model is used to predict the probability of 
unknown codes based on latents that have already been 
decoded. This method is boost in [8], where hyper latent and 
context are used jointly to predict both the mean and scale 
parameter of the entropy model. The adopted autoregressive  
context model in [8] explores the spatial dimension. In their 
following work, Channel-conditioning model (CC model) is 
proposed in [5]. CC model could be regarded as a different 
type of autoregressive model, in which explores the 
correlations among pixels along the channel dimension rather 
than the spatial dimensions. CC model first divides channels 
into 𝑁 slices. Then CC model compresses the first slide solely 
based on the information provided by the hyperprior. And the 
hyperprior and decompressed first slide are utilized to encoder 
and decoder the second slice, and so on. Finally, all the 
decoded slices are concatenated to form the final output and 
transformed into the final reconstructed image.  

Inspired by the impressive performance achieved by the CC 
model in lossy image compression. We proposed a 
multivariant mixture distribution CC model (MMCC) to boost 
the performance of our lossless image compression work. The 
details will be discussed in the Method section. 

C. FORMULATION OF LEARNING-BASED IMAGE 
COMPRESSION 
Our framework is inspired by the framework widely adopted 
in learning-based lossy compression methods [8-9]. In the 
framework of a classical learning-based lossy image 
compression, the operation can be formulated as [13]: 
 

 
𝑦 = 𝑔 (𝑥; 𝜙) 𝑦 = 𝑄(𝑦) 𝑥 = 𝑔 (𝑦; 𝜃) 

(3)

where 𝑥 stands for the raw images, and 𝑥 is the reconstructed 
images. The latents presentation before quantization and 
compressed codes are denoted as 𝑦 and 𝑦, respectively. 𝜙 and 𝜃 denote the parameters that need to be optimized for analysis 
and synthesis transforms. 𝑄  denotes the quantization, and 𝑈|𝑄  represents quantization and entropy coding. The input 
image 𝑥  is first encoded as the latent representations 𝑦 
through an analysis transform 𝑔𝑎(𝑥; 𝜙). Then the latents 𝑦 
are quantized to discrete values 𝑦, and 𝑦 will be losslessly 
coded with the hyperprior. On the decoder side, the 
reconstructed image 𝑥  can be recovered with the synthesis 
transform 𝑔𝑠(𝑦; 𝜃). In [27], a hyperprior entropy model is 
proposed by adding a hierarchical autoencoder. In addition, a 
conditional Gaussian scale mixture model with zero-mean and 
scale parameters 𝜎  was also introduced to the model 𝑦  in 
[27]. Based on [27], an enhanced entropy model with an 
autoregressive context model is proposed in [8]. Following 
that, [9] proposed a learning-based image compression with a 
discretized Gaussian mixture likelihoods and attention 
modules.  

Unlike lossy image compression, in lossless image 
compression, errors are not acceptable. Therefore, in our 
framework, instead of outputting reconstructed images, the 
output 𝑦 is the predicted probability for raw images 𝑥. Since 
we have the probability of 𝑥, we could lossless encode the 
images 𝑥 . The structure we proposed can be deemed as a 
hierarchical VAE-based compression method. 

III. METHOD 
In this section, we first introduce the details of proposed 
MMCC model and autoregressive model adopted for raw 
image. Finally, we introduce the L2-norm that we utilized to 
speed up training. 

FIGURE 1. Network architecture. 
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A. FORMULATION OF LOSSLESS IMAGE 

COMPRESSION 
The workflow in this study follows a similar approach to that 
of lossy image compression, as illustrated in Figure 1. The 
lossless image compression consists of two components: the 
main path and the hyper path. The main path can be described 
as follows: 
 

 
𝑦 = 𝑔 (𝑥;  Φ) 𝑦 = 𝑄(𝑦) (𝜇 , 𝜎 , 𝜋 ) = 𝑔 (𝑦;  𝜃) 

(4)

 
where the variables 𝑥, 𝑦, and ŷ represent a raw image, a latent 
presentation before quantization, and a quantized latent 
presentation, respectively. 𝜙 and 𝜃 are trainable parameters of 
the encoder 𝑔  and decoder 𝑔 . 

The latent representation, denoted as 𝑦 , is generated by 
feeding the raw images 𝑥 into the encoder 𝑔 . To encode the 
latent representation 𝑦 , it needs to undergo a quantization 
process denoted by 𝑄. The output of the quantization operator 𝑄  is represented as 𝑦 . To achieve lossless encoding and 
decoding of 𝑦, we model its distribution as a Gaussian mixture 
distribution with parameters 𝜇 , 𝜎 , and 𝜋  which are 
generated by the proposed Multivariate Mixture CC Model 
(MMCC). Subsequently, 𝑦 is transmitted to the decoder 𝑔 . 
Unlike lossy image compression, the output of the decoder 𝑔  
consists of parameters that are used for lossless encoding of 
the raw images. 

The hyperprior path is consisted of the hyper encoder ℎ  and the hyper decoder ℎ . It can be formulated as follows: 

 

 
𝑧 = ℎ (𝑦; Φ ) �̂� = 𝑄(𝑧) 𝜇 , 𝜎 , 𝜋 = ℎ (�̂�; 𝜃 ) 

(5)

 
where 𝑧  and �̂�  represent a hyperprior presentation before 
quantization and a quantized hyperprior presentation, 
respectively. The parameters 𝜇 , 𝜎 , and 𝜋  are generated by 
the hyper decoder and will later be used as inputs for the 
proposed Multivariate Mixture CC Model (MMCC) along 
with the sliced 𝑦. The detailed explanation of MMCC will be 
provided in the next section.  

To modify the quantization errors (𝑦 − 𝑦), we employ the 
Latent Residual Prediction (LRP) method, which is further 
elaborated in Figure 2. 

B. MULTIVARIATE MIXTURE CC MODEL 
The context model plays a crucial role in estimating the feature 
parameters. In Figure 2, we present the workflow of the 
Multivariate Mixture CC Model (MMCC). The input to 
MMCC consists of the parameters generated by the hyper 
decoder and the quantized latents 𝑦. The latents 𝑦 are evenly 
split into N slices along the channel dimensions, with each 
slice containing 𝑊 ×  𝐻 ×  𝐶 / 𝑁 values. 

The encoding and decoding process of the slices in MMCC 
follows a sequential dependency. The first slice, 𝑦 , is 
encoded and decoded solely based on the hyperprior. The 
second slice, 𝑦 , is encoded and decoded considering both the 
first slice and the hyperprior, and so on. This process can be 
formulated as: 
  

           
(a)                                                                                                                                    (b) 

FIGURE 2. (a)The Workflow of MMCC. ENC stands for encoder block and DEC represents decoder block.  
(b) The architecture of LRP (latent residual prediction). 
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𝑦 = 𝑦 , 𝑦 , … , 𝑦  𝜇 , 𝜎 , 𝜋 = 𝑀𝑀𝐶𝐶 𝜇 , 𝜎 , 𝜋 , 𝑦𝑦 = 𝐿𝑅𝑃(𝑦 ) 𝑦 = 𝑦 , 𝑦 , … , 𝑦   𝜇 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝜇 ) 𝜎 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝜎 ) 𝜋 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝜋 ) 

(6)

 
where 𝑦  represents the latents, 𝑦 , 𝑦 , ..., 𝑦 denote the 
individual slices of 𝑦, 𝑦  denotes the output of the LRP, which 
signifies the variable 𝑦 modified by incorporating the 
quantization error using the LRP method. Additionally, 𝑦  
represents the slices before the 𝑖 − 𝑡ℎ index that have been 
modified by the quantization error. 𝜇 , 𝜎 , and 𝜋  denote 
the slice of 𝜇 , 𝜎 , and 𝜋 , respectively. 𝜇 , 𝜎 , and 𝜋  
denote the parameters of the Gaussian mixture distribution 
utilized for the encoding and decoding of the latents 𝑦. This 
process shares similarities with the autoregressive context 
model, although the autoregressive model operates among 
spatial dimensions. The original CC model, proposed earlier, 
used the Signal Gaussian distribution for the hyperprior model. 
However, previous research has demonstrated the 
effectiveness of multivariate mixture distributions [12]. 
Therefore, in our work, we introduce the Multivariate Mixture 
CC Model (MMCC) to further enhance the performance of our 
model. 

The motivation behind considering a Gaussian Mixture 
Model (GMM) is to create a more flexible parameterized 
model capable of achieving arbitrary likelihoods. GMMs can 
provide improved accuracy in complex areas such as 
boundaries and edges, which makes them well-suited for our 
purposes. 

C. AUTOREGRESSIVE CONTEXT MODEL FOR RAW 
IMAGE 
Autoregressive context model can effectively capture spatial 
correlations to predict current pixel, which is like classical 
intra prediction. Autoregressive context model is usually 
implemented in the format of a 𝑁 × 𝑁  mask convolution. 
More details about mask convolution could be found in [8]. 
Different with the latents 𝑦, the input image 𝑥 only has three 
channels. The redundancies mostly exist in spatial dimensions. 
We tried to increase the number of channels of 𝑥 by imply 
space-to-depth operation [21]. However, the performance 
 becomes worse, we speculate the reason is that space-to-depth 
operation destroy the structure of the original image and the 
model could not learn an accurate distribution. Therefore, to 
eliminate the redundancies in raw image, we adopt an 7 × 7 
autoregressive context model to 𝑥.  

D. LOSS FUNCTION 
Different lossy image compression, if we use the lossy loss 
function to train our lossless image compression model. It 

takes quite a long time to find a proper and accurate 
distribution during the training. To speed up this process, we 
leverage the L2 -norm. L2 -norm calculates the difference 
between the ground-truth value and the predicted mean value, 
the formulation is shown in the following: 
 𝐿 = ∥ 𝜇 − 𝑥 ∥ + ∥ 𝜇 − 𝑦 ∥  (7)
 

Hence, the loss function for training could be formulated as: 
 𝐿 = 𝔼 −𝑙𝑜𝑔 𝑝 (𝑥|𝑦) + 𝔼 −𝑙𝑜𝑔 𝑝 (𝑦|�̂�)+ 𝔼 −𝑙𝑜𝑔 𝑝 ̂ (�̂�|𝜑) + 𝜆 ∙ (∥ 𝜇 − 𝑥 ∥ + ∥ 𝜇 − 𝑦 ∥ ) 

(8)

 𝜆 responses to control the weights of L2-norm term. Normally, 𝜆  sets as 0.6 for the first 20 epochs. After 20 epochs, we 
choose to set 𝜆 as 0. This L2-norm shares the same idea with 
mean square error (MSE) loss in lossy image compression. 
The details of L2-norm are discussed in [12]. 

IV. EXPERIMENTS 
A. TRAINING DETAILS 
Our model is built on the architecture of Cheng2020 in 
CompressAI platform [30]. It is worth noting that the output 
channel number of𝑔  is 3 × 3 × 𝐾 , where 𝐾  represents the 
parameter chosen for GMM. For the purposes of this paper, 
the value of 𝐾 for GMM has been set to 3. For training, we 
choose about 40000 images from the ImageNet [14] and 
cropped the size to 256×256 before randomly feeding them 
into the network. The total number of parameters is 709M in 
our model. These images are not ideal for the lossless 
compression task, but we are not aware of a similarly large-
scale lossless training data set. We set the number of channels 𝑁  = 192 for main path and 𝑀  = 320 for hyper path. The 
number of slices is 10. During the training, the number of 𝐾 
for GMM is set as 3.  

The model was optimized using Adam [15] with a batch 
size of 8, and the learning rate was set to 1× 10-4 at the 
beginning of training. After 100 epochs, the learning rate 
dropped to 1×10-5. Our model was trained about 400 epochs 
to obtain stable performance. We ran all the experiments by 
the machine equipped with an NVIDIA GeForce RTX 3090 
with 24GBs of memory. 

B. EVALUATION   
For comparison, we evaluate our model on three widely used 
lossless high-resolution image compression datasets, 
CLIC.pro (CLIC.P), CLIC.mobile (CLIC.M), DIV2K. In 
addition, we also evaluate our model on Kodak [6] and 
CIFAR10. All the results are measured by bits per sub-pixel 
(bpsp) in our paper. 

CLIC.mobile and CLIC.pro are released as part of the 
“Workshop and Challenge on Learned Image Compression” 
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(CLIC). CLIC.mobile contains 61 images taken using cell 
phones, while CLIC.pro contains 41 images from DSLRs, 
retouched by professionals. DIV2K is a super-resolution 
dataset with high-quality images. Kodak dataset [6] consists 
of 24 uncompressed 768×512 color images, widely used in 
evaluating lossy image compression methods. The CIFAR10 
is a low-resolution dataset consists of 60000 32x32 color 
images in 10 classes, with 6000 images per class. There are 
50000 training images and 10000 test images. 

The models shown in the Table I, we only report the 
compression performance published by their authors, because 
their codes are either difficult to be generalized to arbitrary 
datasets or unavailable.  
It can be observed from Table I that our method outperforms 
the classical methods PNG [4] for all datasets. FLIF is the 
state-of-art classical lossless image compression method. Our 
proposed model lift about 5.4% performance compared with 
FLIF among the three high-resolution datasets. As for Kodak 
and CIFAR10, FILF outperform our model slightly.  

For the learning-based methods, we lift about 30% and 12% 
performance compared with Cheng [12] and L3C [10] in high-
resolution datasets, respectively. GOLLIC [29] and RC [11] 
are both an enhanced work based on L3C [10], the results 
show that our work outperforms RC and GOLLIC for all three 
high-resolution datasets. As for the state-of-the-art flow-based 
model iVPF, it outperforms our model. For high-resolution 
datasets, our model is slightly worse compared with iVPF. As 
for CIFAR10 dataset, the performance of our model is not 
ideal. It's worth noting that iVPF is trained on low-resolution 
datasets with 64 ×  64 patch size while our model is trained 
on 256 ×  256 patch size. Since iVPF has not open source, 
we are unable to compare the inference time with it. In Table 
V, we compare inference time with another flow-based model 
IDF [21]. Inference time measures evaluation of 10,000 test 
images with a batch size of 100. It can be observed that our 
model has less inference time. 

 
 

V. ABLATION STUDY 
Autoregressive context model From Table II, it can be 
observed that the model with an extra autoregressive model 
for 𝑥 lifts the performance of compression.  

In Table IV, we shown the performance with different size 
of autoregressive context model. The baseline in Table IV is 
[12]. Compared with 5 × 5  masked convolution, 7 × 7 
masked convolution achieves better performance. We only 
explore the size of 5 × 5  and 7 × 7  masked convolution 
which are normally adopted size of masked convolution. 

MMCC model GMM is sensitive to the selection of the 
value of K. In Table III, we explore the different setting 
number K of GMM. In the first row, SGM-based CC means 
the value of K is 1. From the table that we could observed that 
the best performance is when K equal to 3. 
 

TABLE II 
PERFORMANCE OF DIFFERENT MODELS 

Model CLIC.P 
(bpsp) 

CLIC.M
(bpsp) 

DIV2K
(bpsp) 

[12] 3.282 3.134 3.392
[12] + 7×7 autoregressive 

model for 𝑥 2.839 2.632 2.942
MMCC + 7×7 

autoregressive model for 𝒙 (ours)
2.621 2.414 2.729 

 
TABLE III  

PERFORMANCE OF SGM-BASED CC MODELS AND MMCC 
MODELS 

Models 
CLIC.P 
(bpsp) 

CLIC.M
(bpsp) 

DIV2K 
(bpsp) 

SGM-based CC 3.015 2.824 3.125 
MMCC (K=3) 2.621 2.414 2.729 
MMCC (K=5) 2.721 2.528 2.822 

 
  

TABLE I 
 COMPRESSION PERFORMANCE ON DIFFERENT DATASETS. 

 

Model 
CLICP 
(bpsp) 

CLICM 
(bpsp) 

DIV2K 
(bpsp) 

CIFAR10
(bpsp) 

Kodak 
(bpsp) 

Ours 2.63 2.43 2.74 4.89 2.94 
Cheng [12] 3.36 3.23 3.48 - - 

RC [10] 2.93 2.54 3.08 - - 
L3C [11] 2.94 2.64 3.09 - 3.26 
iVPF [22] 2.39 2.54 2.68 3.20 - 

GOLLIC [29] 2.83 2.62 3.07 - - 
FLIF [3] 2.78 2.49 2.91 4.19 2.90 
PNG [4] 4.00 3.90 4.24 5.87 4.35 
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TABLE IV  
BITS ALLOCATION FOR DIFFERENT PARTS 

Models 
CLICP 
(bpsp) 

CLICM 
(bpsp) 

DIV2K 
(bpsp) 

[12] + 5×5 
autoregressive 

model for 𝑥 
2.942 2.759 3.064 

[12] + 7×7 
autoregressive 

model for 𝑥 
2.839 2.632 2.942 

 
TABLE V  

 INFERENCE TIME ON CIFAR10 
Models Our IDF 

Time (s) 0.23 20.58 
 

VI. CONCLUSION 
In this paper, we explore the idea of adding an autoregressive 
model for the raw images to reduce the redundancies between 
pixels. Furthermore, inspired by the impressive performance 
the CC model achieved. We proposed the MMCC model for 
the latents. Experiments demonstrate that our proposed 
method outperforms classical lossless image compression 
methods, such as PNG and FLIF. For learning-based methods, 
we outperform L3C and RC for all test datasets. Furthermore, 
the image size of evaluation datasets for lossless image 
compression is much larger compared with lossy image 
compression. Hence, to further improve our work, we could 
investigate different forms of context models to capture 
global-scope spatial correlations and cross-channel 
relationships between the pixels. Moreover, it would be 
interesting to explore domain-specific applications, e.g., for 
medical image data and remote sensing. 
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