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There is evidence that observers use learned object motion to recognize objects. For

instance, studies have shown that reversing the learned direction in which a rigid object

rotated in depth impaired recognition accuracy.This motion reversal can be achieved by play-

ing animation sequences of moving objects in reverse frame order. In the current study,

we used this sequence-reversal manipulation to investigate whether observers encode

the motion of dynamic objects in visual memory, and whether such dynamic representa-

tions are encoded in a way that is dependent on the viewing conditions. Participants first

learned dynamic novel objects, presented as animation sequences. Following learning,

they were then tested on their ability to recognize these learned objects when their anima-

tion sequence was shown in the same sequence order as during learning or in the reverse

sequence order. In Experiment 1, we found that non-rigid motion contributed to recogni-

tion performance; that is, sequence-reversal decreased sensitivity across different tasks.

In subsequent experiments, we tested the recognition of non-rigidly deforming (Experi-

ment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition

performance was affected by viewpoint changes for both experiments. Learned non-rigid

motion continued to contribute to recognition performance and this benefit was the same

across all viewpoint changes. By comparison, learned rigid motion did not contribute to

recognition performance.These results suggest that non-rigid motion provides a source of

information for recognizing dynamic objects, which is not affected by changes to viewpoint.

Keywords: visual object recognition, motion, spatio-temporal signature, non-rigid motion, reversal effect, view-

dependency, rigid motion, depth rotation

INTRODUCTION

Object motion can play an important role in the detection and

perception of three-dimensional (3D) objects. For example, the

perceptual system can use translational motion to group image

fragments of the same object and segregate it from a cluttered back-

ground (Fahle, 1993; Nygård et al., 2009). In addition, an object’s

3D structure and shape can be recovered from a sequence of two-

dimensional (2D) images that depict its rotations in depth using

structure-from-motion computations (Ullman, 1979; Grzywacz

and Hildreth, 1987).

The role of object motion is not limited to shape recovery.

There is evidence that object motion per se can be directly used to

recognize objects (e.g., Stone, 1998, 1999; Lander and Bruce, 2000;

Knappmeyer et al., 2003; Liu and Cooper, 2003; Newell et al., 2004;

Vuong and Tarr, 2006; Vuong et al., 2009; Setti and Newell, 2010).

For example, Johansson’s (1973) classic point-light display demon-

strates that an observer can use only the motion of dots attached

to the joints of an otherwise invisible human actor to recognize

the actor’s action (e.g., walking or dancing), sex, or even iden-

tity if the observer is highly familiar with the actor (Cutting and

Kozlowski, 1977). Other studies have shown that manipulating an

object’s learned motion can affect observers’ performance on dif-

ferent recognition tasks (e.g., Stone, 1998, 1999; Liu and Cooper,

2003).

However, it is not clear how object motion is encoded in visual

memory. To address this issue, we tested observers’ ability to recog-

nize dynamic objects from different perspective viewpoints. When

an object is seen from different viewpoints, it projects different 2D

retinal images (e.g., imagine viewing a car from the side or from

above). Importantly, the larger the difference between two view-

points is, the more visually dissimilar the projected images will be.

For static objects, measuring how viewpoint changes affect recog-

nition performance has helped to reveal how static object features

(e.g., edges and parts) are encoded in visual memory (e.g., Bie-

derman, 1987; Tarr et al., 1998; Foster and Gilson, 2002). There is

evidence from different recognition tasks that static features can

be encoded in a view-invariant or view-dependent manner (see

Peissig and Tarr, 2007, for a review). Using a similar strategy, we

systematically manipulated the viewpoint to determine whether

object motion is encoded in a view-invariant or view-dependent

manner.

Features that are encoded in a view-invariant manner in visual

memory are robust to changes in viewing conditions (e.g., view-

point change or illumination change). In comparison, features that

are encoded in a view-dependent manner are stored in visual mem-

ory as they appear to an observer under specific viewing conditions

(e.g., like a template). They are thus less robust to changes to view-

ing conditions. One way to distinguish between these two types of
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features is to test recognition performance across changes in view-

points (Peissig and Tarr, 2007). That is, one can test how observers’

recognition performance (e.g., accuracy and/or response times)

varies with changes in viewpoint. Typically, recognition perfor-

mance decreases with increasing differences between a familiar and

a novel viewpoint (e.g., Bülthoff and Edelman, 1992; Tarr et al.,

1998). This robust viewpoint effect across many stimuli and recog-

nition tasks has motivated many computational models to adopt

a view-dependent approach to understanding visual object recog-

nition (e.g., Serre et al., 2007; Ullman, 2007; for a view-invariant

approach, see Hummel and Biederman, 1992).

To date, only a few studies have investigated how object motion

affected recognition performance across changes in viewpoint. For

example, the recognition of non-rigid facial motion (e.g., expres-

sions) has been shown to be less affected by viewpoint changes

than the recognition of rigid (e.g., head nodding) and non-rigid

facial motion combined (Watson et al., 2005). The recognition

of point-light walkers has also been shown to be influenced by

view-dependent information and insensitive to distortions of the

human body’s 3D structure (Bülthoff et al., 1998). More recently,

Vuong et al. (2009) found that observers could use the articula-

tory motion of novel objects to help them recognize objects across

larger viewpoint changes. These articulatory motions are similar

to the movements of the human body.

Stone (1998) referred to the learned motion of a dynamic object

as its spatio-temporal signature. He demonstrated that observers

directly used these signatures for object recognition (Stone, 1998,

1999). In his studies, observers first learned a small set of novel

amoeboid objects that rotated rigidly in depth with a tumbling

motion. During the learning phase, the objects always rotated in

depth in the same manner (and particularly in the same direc-

tion). These objects were presented as an animation consisting

of an ordered sequence of views (i.e., a video). When observers’

reached a learning criterion, Stone reversed the rotation direction

of these now familiar objects, by presenting the learned anima-

tion sequence in reverse frame order (i.e., presenting videos of

the learned objects backward). This sequence-reversal manipula-

tion reduced recognition accuracy by as much as 22%. Impor-

tantly, this manipulation does not disrupt the spatial properties

of the 2D images in the animation sequence nor does it dis-

rupt structure-from-motion processes (Ullman, 1979). Therefore,

sequence-reversal effects supported the claim that a moving object

provides dynamic information per se for recognition, in addition

to static shape information (Stone, 1998, 1999).

Sequence-reversal has been used extensively to study the role

of object motion in recognition across different tasks, stimuli, and

even species. The sequence-reversal effect has been demonstrated

with a large set of 32 rigidly rotating objects, which were implicitly

learned (Liu and Cooper, 2003). In addition, the effect has been

shown to be more prominent when observers identified objects

with highly similar shapes compared to those with highly distinc-

tive 3D structures (Vuong and Tarr, 2006). In addition, Wang and

Zhang (2010) showed that observers were also sensitive to local

frame sequences. In their study, they took an animation sequence

and divided it into shorter sub-sequences. They then reversed the

frame order within these “local” sub-sequences, while preserving

the “global” order of the sub-sequences themselves. They found

that observers’ recognition performance was impaired in this case.

The sequence-reversal effect has also been demonstrated with

non-rigidly moving faces (Lander and Bruce, 2000). Finally, this

effect has even been shown with pigeons, indicating that sequence-

reversal disrupts a source of visual information that is not unique

to human cognition (Spetch et al., 2006).

The current experiments were conducted to investigate the

effect of sequence-reversal on the recognition of dynamic amoe-

boid objects across changes in viewpoint. These objects were

chosen because they lack a distinctive geometric structure and

because they do not constitute a highly familiar object class (e.g.,

faces). If observers rely on an object’s motion, sequence-reversal

would impair recognition performance, compared to preserving

the learned sequence order. On the other hand, there would be

no influence of sequence-reversal if recognition depends strictly

on static view-dependent information (e.g., 2D shape features)

because these features are not disrupted by this manipulation.

In addition, we investigated how the effect of sequence-reversal

interacted with viewpoint changes for non-rigid and rigid object

motion.

MATERIALS AND METHODS

Three experiments were conducted to assess how participants

encoded object motion learned from a specific viewpoint. In

particular, the experiments were designed to determine whether

object motion was encoded for recognition in a view-invariant or

view-dependent manner (Watson et al., 2005; Perry et al., 2006;

Vuong et al., 2009). Each experiment consisted of a familiariza-

tion phase, followed by a testing phase. In the familiarization

phase, participants learned two objects that deformed non-rigidly

(Experiments 1–2) or rotated rigidly in depth over time (Exper-

iment 3). Each object’s motion was the same on every trial dur-

ing this phase. In the testing phase, observers were required to

discriminate the learned target objects from two new distracter

objects.

To replicate previous findings (e.g., Stone, 1998, 1999; Lander

and Bruce, 2000; Liu and Cooper, 2003; Vuong and Tarr, 2006),

we first investigated if sequence-reversal affected the recognition

of novel non-rigidly deforming objects on an old-new recogni-

tion task (Experiment 1a) and a two-interval forced-choice (2IFC)

task (Experiment 1b). Following this, we investigated the effect of

sequence-reversal on recognizing non-rigidly deforming (Experi-

ment 2) or rigidly rotating (Experiment 3) objects across a range

of novel viewpoints.

PARTICIPANTS

Seventy volunteers (age range: 18–35 years) were recruited from

the Institute’s participant database – E1a: 16; E1b: 14; E2: 24; E3:

21. They were paid 8C/h for their time and provided informed

consent, approved by the local ethics committee. All participants

had normal or corrected-to-normal vision and did not participate

in more than one experiment.

APPARATUS

The experiments were conducted on a Macintosh G4 computer,

which was controlled by customized MATLAB software that used

the PsychToolBox extension (Brainard, 1997; Pelli, 1997). The
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stimuli were presented on a 21′′ CRT monitor with a resolution

of 1152 × 864 pixels and a refresh rate of 75 Hz. Participants were

seated 60 cm from the screen. All responses were collected from a

standard keyboard.

MATERIAL

Figure 1 shows an example of the 3D amoeboid object used in

the current study. All the visual stimuli were bounded by a square

that was centered on the screen (diagonal ≈ 15.6˚). The exper-

imental stimuli were derived from animation sequences of 100

numerically labeled images (320 × 320 pixels) that depicted the

objects moving smoothly over time (22 frames/s), either deform-

ing non-rigidly (Experiments 1 and 2) or rotating rigidly in depth

(Experiment 3). Each sequence was rendered from seven camera

viewpoints (see Figure 1B).

The 3D objects and their animation sequences were produced

using 3D Studio Max (v. 7; Autodesk, Montreal). For each object,

the 3D coordinates of a sphere’s vertices were smoothly modulated

by the application of a series of random sinusoidal deformation

fields in Studio Max (see Figure 1A). By randomly shifting the

phase of the sinusoidal deformation fields applied to the base

sphere, we could synthesize amoeboids with different 3D shapes

(Norman et al., 1995).

Non-rigid deformations could be introduced by shifting the

phases of these sinusoidal deformation fields simultaneously at

a rate of ∼0.16 cycles every 20th frame. This induced a smooth

deformation of each object’s 3D structure over time. Alternatively,

each object could be rigidly rotated about its center to a new pose

every 20th frame. This produced a smooth rigid tumbling motion

that did not deform the object’s 3D structure. A randomly deter-

mined sequence of poses ensured that each object had a unique

rigid rotational path in depth.

Altogether, 4 non-rigidly deforming objects were created for

Experiment 1, 16 non-rigidly deforming objects for Experiment 2,

and 16 rigidly rotating objects for Experiment 3. For each par-

ticipant, four objects were randomly selected from the set of

possible objects of the relevant experiment. Two of the objects

were randomly assigned to be targets and two as distracters.

A virtual camera was positioned in front of each object

and focused on its center of mass. This was designated as the

FIGURE 1 | Amoeboid objects were creating by applying a set of

sinusoidal deformation fields (orange outline) that deformed a base

sphere in 3D space (A). View-sequences of the objects moving over time

were rendered from seven virtual cameras (B). The white camera indicates

the 0˚ viewpoint used during the familiarization phase.

0˚ viewpoint (the white camera in Figure 1B). This camera

was rotated clockwise or counter-clockwise along the azimuth.

Ordered sequences of 100 images were then rendered for

each object from seven viewpoints (0˚, ±20˚, ±40˚, ±60˚; see

Figure 1B). Video examples are provided as Supplementary Mate-

rial. All participants learned the objects from the 0˚ viewpoint dur-

ing the familiarization phase. In addition, a grayscale luminance

noise pattern served as a mask.

EXPERIMENTAL PROCEDURE

Figure 2 illustrates the trial sequence on the familiarization and

testing phases for the old-new recognition task (Experiment 1)

and the 2IFC task (Experiments 1b, 2, and 3).

Familiarization phase

The familiarization phase was the same for all three experiments.

During this phase, one of the two target objects was presented on

each trial. The stimulus was a 75-image sequence that was sampled

from the object’s full 100-image sequence. These sequences were

always presented in numerically ascending-order. After the pre-

sentation of each stimulus (∼3.4 s), a noise mask appeared until

participants responded with one of two keys (i.e., y or b) to indi-

cate the object’s identity. Each target was randomly assigned a key.

Participants were provided with an auditory feedback for incorrect

responses. Every participant performed 104 familiarization trials.

Testing phase

During the testing phase, participants had to discriminate tar-

gets learned during the familiarization phase from distracters. In

this phase, the stimuli were shorter animation sequences (i.e., 40

sequential images for Experiment 1a; and 39 sequential images for

Experiments 1b, 2, and 3) of the two targets learned during the

familiarization phase or two distracters. These sequences lasted

∼1.8 s each. For the old-new recognition task (Experiment 1a),

participants were presented with one stimulus on each trial and

had to decide whether that stimulus was old (i.e., one of the tar-

gets) or new (i.e., one of the distracters) by responding with one

of two keys after the stimulus presentation ended. For the 2IFC

task (Experiments 1b–3), two stimuli were presented sequentially

on each trial, one of which was a target and one of which was a

distracter. The target and distracter were separated by a 500 ms

noise mask. There was also a noise mask presented at the end

of the second interval, which stayed on the screen until partici-

pants responded. Each target object appeared equally often in the

first and second interval. Participants had to decide which interval

contained the target object. They were only allowed to respond

after both stimuli had been presented. In all experiments, partici-

pants were encouraged to respond as quickly and as accurately as

possible.

The dynamic objects could be shown in either ascending or

descending-order frame sequences. For the target objects, the

ascending-order sequence was the same (learned) object motion

and the descending-order sequence was the reverse object motion.

For Experiments 2 and 3, target objects could be presented from all

seven viewpoints (i.e., 0˚,±20˚,±40˚,±60˚). The distracter objects

in these two experiments were presented at one of these view-

points, which were randomly chosen. Participants were informed
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FIGURE 2 |Timeline of familiarization and test trials. From top to bottom:

Familiarization trial for all experiments, Old-new recognition test trial for

Experiment 1a, 2IFC recognition test trial for Experiments 1b, 2, and 3. On

familiarization trials, animations for the stimuli were always presented in

ascending sequence order (black arrow) and objects were always presented

from the 0˚viewpoint. On test trials, animations for the stimuli could be

animated in either the same sequence order as during familiarization (black

arrow) or in reverse sequence order (gray arrow). With the exception of

Experiment 1, objects could also be presented from a range of perspective

viewpoints (0˚, ±20˚, ±40˚, ±60˚).

that the target objects’ motion could be reversed relative to their

motion in the familiarization phase. They were instructed to

continue to respond to these as targets.

The test stimuli were sampled only from the central range of the

full 100-image sequences (i.e., images 26–75); images that com-

prised this range were presented equally often during the familiar-

ization phase. The four objects (two targets and two distracters)

were presented equally often. There were an equal number of trials

in all test conditions (sequence order in Experiment 1; sequence

order and viewpoint difference in Experiments 2 and 3). There

were a total of 352 test trials for Experiment 1a, 192 trials for

Experiment 1b, and 224 trials for Experiments 2 and 3.

RESULTS

Recognition performance in the test conditions was measured by

sensitivity (d ′; MacMillan and Creelman, 1991). Figure 3 summa-

rizes sensitivity scores for Experiments 1, 2, and 3, which were col-

lapsed for the direction of the viewpoint difference in Experiments

2 and 3. In the present study, we focused on observers’ sensitivity

data because we were interested in how object motion was encoded

in visual memory. Nonetheless, it should be noted that response-

time results were consistent with sensitivity scores and there was

no evidence of any speed-accuracy trade-offs. The sensitivity data

were submitted to paired-sampled t -tests or repeated-measures

analyses of variance (ANOVAs). Confidence intervals were com-

puted using the within-subjects error term from the sequence

order condition (Experiment 1) or its interaction with viewpoint

difference (Experiments 2 and 3), where appropriate (Loftus and

Masson, 1994). An α-level of 0.05 indicated statistical signifi-

cance. Greenhouse–Geisser corrections were applied when the

assumption of sphericity was violated. In addition, effect sizes

were computed as Cohen’s d and partial η
2 for the t -tests and

ANOVAs respectively (Morris and DeShon, 2002).

EXPERIMENT 1

Experiment 1 tested the effect of sequence-reversal of non-rigidly

deforming amoeboids on an old-new recognition (Experiment

1a) and 2IFC task (Experiment 1b). A significant main effect of

sequence order was found on d ′ scores (E1a: t 15 = 3.19, Cohen’s

d = 0.81; E1b: t 13 = 3.49, Cohen’s d = 1.02). Participants were

more sensitive in recognizing learned objects when they were ani-

mated in the same sequence order as during the familiarization

phase than when they were animated with the reverse order. Like

previous studies on rigid object motion (Stone, 1998, 1999; Liu and

Cooper,2003;Vuong and Tarr,2006;Wang and Zhang,2010), these

results show that recognition performance is similarly sensitive to

learned non-rigid motion.

EXPERIMENT 2

In Experiment 2, we tested the effect of sequence-reversal of non-

rigidly deforming objects across different viewpoints using the

2IFC task. The participants’d ′ scores were submitted to a repeated-

measures ANOVA for the test conditions of sequence order (same,

reverse) and viewpoint difference (0˚, ±20˚, ±40˚, ±60˚).
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FIGURE 3 | Mean sensitivity (d ′) scores of Experiments 1 to 3 (from left to right), when animations were presented in the same (black ) or reverse

(gray ) sequence order. Error bars represent the 95% confidence intervals.

Main effects were found for both sequence order (F 1,23 = 13.0,

partial η
2 = 0.36) and viewpoint difference (F 2,44.9 = 42.8, par-

tial η
2 = 0.65). Sequence-reversal and novel objects viewpoints

produced lower d ′ scores. In addition, d ′ decreased linearly as

a function of viewpoint difference, as revealed by a significant

linear trend (F 1,23 = 67.2, partial η2 = 0.75). There was no signifi-

cant interaction between sequence order and viewpoint difference

(F 1,69 = 0.66, partial η
2 = 0.03). That is, the sequence-reversal

effect was constant across the different viewpoints. Taken together,

these findings show that the recognition of non-rigidly deforming

objects was sensitive to changes to the learned viewpoint as well as

learned object motion.

EXPERIMENT 3

Experiment 3 was identical to Experiment 2 except that we tested

the effect of sequence reversal with rigidly rotating objects. The d ′

data from Experiment 3 were submitted to the same ANOVA as

in Experiment 2. In contrast to Experiment 2, there was no sig-

nificant effect of sequence order (F 1,20 = 2.18, partial η
2 = 0.10).

However like the previous experiment, there was a significant effect

of viewpoint difference (F 3,60 = 13.3, partial η
2 = 0.40). More

specifically, d ′ decreased linearly as a function of viewpoint dif-

ference (F 1,20 = 22.9, partial η
2 = 0.53). There was no significant

interaction between sequence order and viewpoint difference in

Experiment 3 (F 1,60 = 0.56, partial η
2 = 0.03). Thus, the recog-

nition of rigidly rotating objects in this experiment was sensitive

to changes to the learned viewpoint but not to learned object

motion.

DISCUSSION

In the current study, we used a sequence-reversal manipulation to

test the extent to which observers encoded object motion per se

during learning, and how robust such dynamic representations

are to viewpoint changes (Stone, 1998, 1999; Liu and Cooper,

2003; Vuong and Tarr, 2006; Wang and Zhang, 2010). We found a

sequence-reversal effect for non-rigidly deforming objects across a

variety of tasks (Experiments 1 and 2): Observers performed more

accurately (as measured by sensitivity) when target objects were

shown in the same sequence order than when they were shown

in the reverse sequence order, even though sequence reversal did

not disrupt the objects’ 3D structure or set of available 2D images.

We also found a large viewpoint effect when observers were tested

with these objects (Experiment 2): Observers’ sensitivity decreased

with increasing viewpoint changes from the learned viewpoint.

Importantly, however, the benefit of preserving the learned object

motion was constant across all magnitudes of viewpoint change.

In contrast to non-rigid motion, we found a viewpoint effect

but no sequence-reversal effect when the objects rotated rigidly

in depth (Experiment 3). Taken together, these results provide

insights into how object motion is encoded in visual memory,

and provide important constraints for different models of object

recognition.

LEARNED NON-RIGID OBJECT MOTION PROVIDES A VIEW-INVARIANT

BENEFIT TO DYNAMIC OBJECT RECOGNITION

In combination with previous studies, our results suggest that the

process of visual object recognition relies on both view-dependent

shape information as well as motion information (Stone, 1998,

1999; Liu and Cooper, 2003; Vuong and Tarr, 2006; Wang and

Zhang, 2010). This conclusion has several important implica-

tions. First, by using visually similar amoeboid objects that did

not have distinctive static shape features, our results directly show

that non-rigid object motion can be encoded in visual object mem-

ory. Second, learned non-rigid object motion contributes directly
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to the recognition process in a view-invariant manner, although

dynamic objects seem to be encoded in view-dependent man-

ner. That is, the pattern of recognition performance suggests that

the contribution of learned non-rigid object motion does not

deteriorate with increasing disparity between learned and novel

viewpoints. Lastly, our findings extend the results from previous

studies showing that non-rigid object motion can facilitate view

generalization (Watson et al., 2005; Vuong et al., 2009). Impor-

tantly, our results show that this facilitation is not restricted to

a highly familiar object class (i.e., faces) or restricted to only

articulatory motion.

The pattern of recognition performance in Experiment 2 –

namely, a consistent contribution of object motion across view-

point differences – mirrors one that has been reported before

(Foster and Gilson, 2002). Foster and Gilson observed that cer-

tain object properties, such as the number of discernible parts,

led to a uniform benefit to the recognition of novel bent-wire

objects, regardless of the viewpoint of the test objects. Objects

that were discriminable on the basis of the number of their parts

were better recognized than those that did not differ with respect

to this property. Nonetheless, observers’ recognition performance

with these objects also decreased with increasing differences in

viewpoint.

Foster and Gilson (2002) proposed that the successful recogni-

tion of an object can depend on multiple sources of information,

those that are accessible across views and those that are dependent

on view-familiarity. Visual object recognition can rely on either

or both contributions. Like the number of object parts, learned

non-rigid motion could constitute an object property that can

be accessed across a range of viewpoints and, thus, provides a

view-invariant benefit to recognition. However, recognition can

also continue to rely on view-dependent information such as

image-based features of an object’s shape.

Interestingly, we did not find a significant benefit of learned

motion for rigidly rotating objects (Experiment 3). Previous stud-

ies which demonstrated a reversal effect with rigid rotation used

the same tumbling motion across all objects (Stone, 1998, 1999;

Liu and Cooper, 2003; Vuong and Tarr, 2006). In our current

study, each object had a unique tumbling motion. Future work

will be necessary to determine if this stimulus difference could

account for the contrasting results. However, it should be noted

that the reversal effect is not automatic; it can be mediated by fac-

tors such as shape similarity and task difficulty (Liu and Cooper,

2003; Vuong and Tarr, 2006). For example, it has been shown to

be more prominent in the recognition of blobby objects similar

to the ones used here and less so with objects which have highly

distinctive parts (Vuong and Tarr, 2006). In addition, it is more

apparent in the recognition of objects that were learned moving

fast compared to those that were learned moving slow (Balas and

Sinha, 2009).

Future experiments will be needed to determine the particular

spatio-temporal aspects of motion that are encoded to give rise to

the view-invariant benefit we observed here. For example, optic-

flow patterns could be directly represented as a dynamic object

property for subsequent recognition (Casile and Giese, 2005). In

the next two sections, we outline some possible mechanisms that

could explain the contribution of object motion to recognition.

TEMPORAL ASSOCIATIONS FOR LEARNING OBJECT MOTION

In a dynamic environment, subsequent views of the same object

tend to occur in close temporal proximity, even if these views

are drastically different from each other. Several researchers

have suggested that this temporal contingency can induce time-

dependent Hebbian learning between neuronal units – possibly

in the anterior inferotemporal (IT) brain regions (Miyashita,

1988) – that is sensitive to the order of view-dependent shape

features present in successive images of an animation sequence

(Wallis and Bülthoff, 2001; Wallis, 2002). Learning these spatio-

temporal associations of a dynamic object can be reinforced

with repeated exposure to that object undergoing the same

motion. Thus, a learned animation sequence will lead to a larger

neural response than a reversed animation sequence (Wallis,

1998).

Our results are consistent with this form of temporal-

associative learning. While a temporal-associative account of

dynamic object learning remains plausible, it is unlikely to fully

explain the contribution of learned object motion to recognition

performance. For example, a purely temporal-associative account

suggests that the contribution of learned motion to object recog-

nition is automatic, regardless of whether the motion is rigid or

non-rigid. However, we did not find any benefits of rigid motion

for object recognition in our study.

HIERARCHICAL MODELS FOR THE RECOGNITION OF LEARNED OBJECT

MOTION

In addition to temporal-associative mechanisms, other researchers

have proposed hierarchical-processing mechanisms that could

provide insights into how object motion can be encoded in

visual memory and contribute to object recognition in a view-

invariant manner. Generally, these hierarchical models assume

that visual features are progressively processed from simple fea-

tures (e.g., edges) to more complex features that are conjunc-

tions of simpler ones (Riesenhuber and Poggio, 1999; Serre et al.,

2007).

Although these models were originally proposed for static fea-

tures, they can be extended to include dynamic features. For

example, Giese and Poggio (2003) introduced a motion path-

way that operates in parallel with a form pathway. This motion

pathway contributes to visual recognition by processing visual

motion in a feed-forward and hierarchical fashion, employing

principles similar to those proposed for the form pathway (Riesen-

huber and Poggio, 1999). Giese and Poggio’s model proposes that

visual motion is first processed in early visual cortex (V1, V2) by

direction-selective neurons. The motion signals are subsequently

pooled by detectors for local optic-flow patterns such as translation

and expansion in the temporal lobe (e.g., hMT+). Eventually, these

relatively simple optic-flow patterns are pooled by detectors that

respond selectively to complex optic-flow patterns that define the

individual moments of familiar movement sequences (e.g., STS).

Thus, complex static and dynamic features at the end of both path-

ways can, in principle, encode the unique spatio-temporal patterns

of an object’s learned motion.

Giese and Poggio’s (2003) model was originally intended for

the recognition of biological motion. Nonetheless, it should also

generalize to the recognition of novel object classes with unique
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spatio-temporal patterns. Indeed, our results in combination with

previous studies suggest that different types of motion (rigid

versus non-rigid) can lead to more accurate recognition across dif-

ferent viewpoint changes (see also, Watson et al., 2005; Perry et al.,

2006; Vuong et al., 2009; Wallis et al., 2009). Within Giese and

Poggio’s model, this would suggest that recognition performance

is influenced by optic-flow patterns, in the mid- and especially the

later processing stages of visual motion. Speculatively, these fea-

tures could capture the motion information that our participants

relied upon for object recognition (Watson et al., 2005; Perry et al.,

2006; Vuong et al., 2009; Wallis et al., 2009).

CONCLUSION

The contribution of learned object motion to the recognition

of dynamic objects is view-invariant. However, our results sug-

gest that any such contributions of object motion are not auto-

matic but may depend on the requirements of the recogni-

tion task instead. Computational models of object recognition

should consider the contribution of motion-based information,

independently from image-based information about an object’s

shape. Future studies should also investigate the conditions that

lead to a stronger reliance on certain types of information over

others.
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