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Abstract

Motivation: Machine-learning models trained on protein sequences and their measured functions

can infer biological properties of unseen sequences without requiring an understanding of the

underlying physical or biological mechanisms. Such models enable the prediction and discovery

of sequences with optimal properties. Machine-learning models generally require that their inputs

be vectors, and the conversion from a protein sequence to a vector representation affects the mod-

el’s ability to learn. We propose to learn embedded representations of protein sequences that take

advantage of the vast quantity of unmeasured protein sequence data available. These embeddings

are low-dimensional and can greatly simplify downstream modeling.

Results: The predictive power of Gaussian process models trained using embeddings is compara-

ble to those trained on existing representations, which suggests that embeddings enable accurate

predictions despite having orders of magnitude fewer dimensions. Moreover, embeddings are sim-

pler to obtain because they do not require alignments, structural data, or selection of informative

amino-acid properties. Visualizing the embedding vectors shows meaningful relationships

between the embedded proteins are captured.

Availability and implementation: The embedding vectors and code to reproduce the results are

available at https://github.com/fhalab/embeddings_reproduction/.

Contact: frances@cheme.caltech.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Machine learning (ML) has been used to predict protein properties

from protein sequences to enable protein design and engineering

(Bedbrook et al., 2017b; Fox et al., 2007; Romero et al., 2013). ML

models are useful for predicting the outcomes of complex processes,

such as how a protein sequence encodes function, because they do

not require prior knowledge of specific physical or biological mecha-

nisms. Instead, after training with measured sequences, ML models

infer the properties of unseen sequences. A model capable of predict-

ing the properties of unseen protein sequences enables prediction

and discovery of sequences with optimal properties. For ML models

to learn about protein sequences, we must encode the protein

sequence in a form compatible with the mathematical operations

used in ML models. Generally, this requires that the protein

sequence be encoded as a vector or matrix of numbers. How each

protein sequence is encoded determines what can be learned

(Domingos, 2012). Even the most powerful models produce poor

results if an inappropriate encoding is used. We show that learning

these encodings from data can streamline machine-learning pipelines

while achieving high predictive accuracies.

A protein sequence can be encoded by its physical properties or

directly by its amino acids (Alipanahi et al., 2015; Bedbrook et al.,

2017b; Chang et al., 2016; Fox et al., 2007; Ofer and Linial, 2015;

Romero et al., 2013; Saladi et al., 2018). When using physical
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properties to encode a protein sequence, each individual amino acid

is represented by a collection of physical properties, such as its charge

or hydrophobicity, and each protein is taken to be a combination of

those properties. Properties of the bulk protein, such as its predicted

secondary structures, can also be used to represent the protein.

However, there are countless physical properties that could be used to

describe each amino acid/protein, and the molecular properties that

dictate functional properties are unknown, highly constrained, and

differ between different functional properties. Therefore, selecting

informative properties is challenging because it is difficult to know a

priori what properties will be predictive for a particular task.

Instead of representing a protein with physical properties, one

can directly encode its amino acid sequence. A protein sequence of

length L can be encoded as an L x n matrix, where n is the number

of amino acids. Each row in the matrix consists of (n – 1) 0 s and a

single 1, with the position of the 1 indicating the amino acid residue

at that position in the protein. This vectorization method for catego-

rical data is known as one-hot encoding. One-hot encodings are

inherently sparse, memory-inefficient and high-dimensional. In a

one-hot encoding, there is no notion of similarity between sequence

or structural elements: they are either identical, or not. For example,

in a one-hot encoding of words, the words ‘king’, ‘prince’ and ‘pot’

are all not identical and thus equidistant from each other even

though ‘king’ and ‘prince’ are intuitively more similar in meaning

than ‘king’ and ‘pot’ or ‘prince’ and ‘pot.’ Similarly, to the biologist,

an amino acid sequence of DDD is more similar in meaning to EEE

than to PPP or HHH. Furthermore, one-hot encodings of the pri-

mary sequence require that all sequence variants of interest are

aligned. This alignment must be updated as sequences are added to

the model. If updating the alignment changes its length, or even if

amino acids are added or removed, the dimensionality of the encod-

ing changes. Multiple sequence alignments between distantly-related

proteins require visual validation because there is no universal

standard for choosing the best alignment. Even with visual valida-

tion, it is challenging to confidently align distantly-related sequen-

ces. If the sequences are misaligned, the inputs to ML model are

flawed, and there can be little expectation of success.

While there are a massive number of known protein sequences,

only a tiny fraction have measured properties relevant to any specific

task. Sequences with a measurement for the prediction task are

known as labeled sequences, while those that do not are unlabeled

sequences. The number of known unlabeled sequences will continue

to rise as the cost of DNA-sequencing decreases, but there is no

universal method for measuring all relevant protein properties.

Therefore, the gap between the number of unlabeled and labeled

sequences will continue to grow. However, even unlabeled sequen-

ces contain information about the frequency and patterns of amino

acids selected by evolution to compose proteins. Information con-

tained in unlabeled sequences may be helpful when predicting prop-

erties for a specific set of sequences, especially if the set in question

is small. Specifically, instead of selecting physical properties or using

a one-hot encoding of the sequence, a continuous vector encoding of

each sequence can be learned from unlabeled sequences. This repre-

sentation contains relevant information about the protein sequence

learned from the distribution of sequences in the unlabeled set and is

known as an embedded representation because it embeds the protein

sequences in a vector space.

The process of using unlabeled data to learn an embedded

representation has been well-established by recent work in natural

language processing, where word and document embeddings

are used as an efficient way to encode text for use in sentiment anal-

ysis, machine translation and other tasks (Young et al., 2016).

These examples learn an embedded representation from a large col-

lection of unlabeled texts by assuming that words that appear in

similar contexts have similar meanings. The unlabeled texts are

analogous to the large number of unlabeled protein sequences. For

example, the word2vec model (Mikolov et al., 2013a,b) uses a shal-

low two-layer neural network to learn embeddings using one of two

architectures: skip-gram and continuous bag-of-words. In the

skip-gram architecture, the model uses the current word to predict

its surrounding context words. In contrast, in the continuous bag-

of-words architecture, the current word is predicted from its sur-

rounding context words. The doc2vec model (Le and Mikolov,

2014) extends word2vec by learning embeddings for entire senten-

ces, paragraphs, or documents.

There have been efforts to apply word2vec and doc2vec to repre-

sent protein sequences (Asgari and Mofrad, 2015; Kimothi et al.,

2016; Mazzaferro, 2017; Ng, 2017). These embeddings treat the

amino acid sequence as a document and fragments of the amino acid

sequence of constant length k (k-mers) as words. As shown in

Figure 1, a sequence of nine amino acids can be divided into three

sets of non-overlapping 3-mers. The learned k-mer embeddings

place k-mers that occur in similar contexts near each other in the

embedded space by learning to predict a k-mer from its surrounding

context k-mers and the sequence embedding. These embeddings

have achieved high accuracy in differentiating ordered and disor-

dered proteins and modest accuracy in classifying proteins from

SwissProt into families based only on their primary sequence (Asgari

and Mofrad, 2015). Our goal was to test if such embeddings can be

used in ML to predict specific properties of related proteins. This is

a fundamentally different problem than classifying proteins into

families or predicting a universal binary property across all proteins

because the model must tease apart the effects of subtle sequence

changes from limited labeled data for a specific property.

In this work, we train embedded representations for four protein

property prediction tasks. These tasks cover a range of protein

Fig. 1. The modeling scheme. First, an unsupervised embedding model is

trained on 524 529 unlabeled sequences pulled from the UniProt database.

The UniProt sequences are broken into k lists of non-overlapping k-mers

(Step 1), and then the lists are used to train the embedding model (Step 2).

The doc2vec embedding model learns to predict the vectors for center k-mers

from the vectors for their surrounding context k-mers and the sequence vec-

tors. These sequence vectors are then the embedded representations of the

sequences. Next, information learned during the unsupervised phase is

applied during supervised learning with labeled sequences. The labeled

sequences for each task (localization, T50, absorption and enantioselectivity)

are first broken into k lists of non-overlapping k-mers (Step 3). An embedding

is then inferred for each sequence using the trained embedding model (Step 4).

n is the number of labeled sequences. Finally, during GP regression (Step 5),

the inferred training embeddings X’ and the training labels y are used to train a

GP regression model, which can then be used to make predictions
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families, measured properties and library designs. We show that the

predictive power of models trained using these embeddings is com-

parable to and sometimes exceeds those trained on one-hot encod-

ings, physical amino acid properties, or string mismatch kernels

(Leslie et al., 2004). This suggests that embeddings enable accurate

predictions despite having orders of magnitude fewer dimensions

and being simpler to obtain because they do not require alignments,

structural data, or selection of relevant amino-acid properties.

Finally, we visualize the geometry of the embedding vectors, which

captures meaningful relationships between the embedded proteins.

2 Materials and methods

2.1 Modeling scheme
Figure 1 shows the two-part modeling scheme. Unsupervised doc2-

vec embedding models were trained on 524, 529 protein sequences

with lengths between 50 and 999 amino acids (mean length 326)

obtained from UniProt using the distributed memory architecture

(The UniProt Consortium, 2017). In the distributed memory archi-

tecture, the model learns to predict the central k-mer based on the

sequence embedding and the embeddings for a context window of

k-mers on either side of the central k-mer. The size of the context,

i.e. how many k-mers on either side to consider, is the window

width (w), which can be adjusted in the embedding model. Each

sequence was broken into k lists of non-overlapping k-mers. For

example, for k¼3, there are three lists and each list begins at one of

the first three amino acid positions of the sequence, as shown in

Figure 1. Unsupervised embedding model training was performed

using the lists derived from the UniProt sequences. After unsuper-

vised embedding model training, the embedding model was used to

infer encodings of sequences for input to supervised Gaussian proc-

ess (GP) regression models (Rasmussen and Williams, 2006).

Embeddings for the sequences relevant to each task were determined

by averaging the embeddings for the k lists of k-mers corresponding

to each task sequence. It was found that GP performance was highly

dependent on the order in which the embeddings for these sequences

were inferred. Therefore, embeddings for each of the three

tasks studied were calculated as the average of 100 inference runs

with random input orders. These embeddings represent each task

sequence in a very compact, low-dimensional form. We learn

embeddings with between 4 and 128 dimensions. By comparison,

the other representations used for comparison in this work have

between 103 and 105 dimensions. In addition, sequences from

disparate protein families are embedded in the same vector space,

allowing comparisons between distant sequences and streamlining

down-stream modeling. All doc2vec training and inference was per-

formed in Gensim (Rurek and Sojka, 2010).

For some tasks, it was found that randomizing the UniProt

sequences by shuffling or resampling before unsupervised embed-

ding model training improved downstream performance. Shuffling

refers to scrambling the order of amino acids for each sequence.

Alternatively, resampling refers to drawing sequences of the original

lengths according to the overall observed amino acid frequency for

the UniProt sequences (resample-UniProt) or according to uniform

amino acid frequency (resample-uniform). The embedding model is

then trained on these randomized sequences instead of the original

UniProt sequences. We suspect that this has a regularizing effect on

the embedding model: randomization prevents the embedding model

from overfitting to a set of protein sequences that is not representa-

tive of those in the task. This also suggests that one of the key pieces

of information the unsupervised embedding model learns is the fre-

quency with which different amino acids occur in the same proteins.

The data for each task are taken from different protein engineer-

ing projects. When building a model that must generalize across

diverse families of proteins, the best practice is to minimize sequence

redundancy between the training and test sets (Abbasi and Minhas,

2016). However, protein-engineering projects typically generate

data in a stepwise manner, where each subsequent set of sequences

characterized is determined by previously characterized sequences.

Therefore, we split the training and test sets such that the training

sets contain sequences from earlier steps than those in the test sets,

which come from later steps. This provides a realistic simulation of

machine learning usage in protein engineering.

All embedding models were trained for 25 epochs. Embedding

hyperparameters were chosen using 20-fold cross-validation on the

training sets. We set the dimension to 64 and considered values of k

between 1 and 5, and values of w between 1 and 7. We used GP

regression models with Matérn kernels with �¼5/2. The noise and

kernel hyperparameters were optimized by maximizing the marginal

likelihood (Rasmussen and Williams, 2006). A GP model trained on

the entire training set was then used to predict the relevant proper-

ties for test set sequences. GP models trained on embedded represen-

tations were compared to models trained on one-hot representations

of amino acid sequence, mismatch string kernels with k¼5 and

m¼1, ProFET (Ofer and Linial, 2015) and a subset of AAIndex

(Kawashima et al., 2008). ProFET represents each sequence by

extracting elementary biophysical and sequence-derived features.

AAIndex is a set of 553 properties for each of the 20 amino acids.

64 of these properties were chosen by greedily maximizing the aver-

age cosine distance between the chosen properties. Each amino acid

is therefore represented by a vector of 64 properties, and each pro-

tein is represented by concatenating the property vectors for its

amino acid sequence. For two of the four tasks, structural informa-

tion was available. For those tasks, models were also compared to a

GP model trained on a one-hot representation of both the sequence

and the structure. The structure was encoded in these cases by a

binary indicator vector for the identity of each pair of amino acids

within 4.5 Angstroms in the crystal structure (Romero et al., 2013).

2.2 Tasks
We tested embeddings on four tasks with diverse proteins, different

measured properties and various methods of generating the original

library. The data for these tasks were collected from previous studies

and will only briefly be described here.

Channelrhodopsin (ChR) localization (‘Localization’) Two sepa-

rate, ten-block recombination libraries were designed from three

parental ChRs (CheRiff, C1C2 and CsChrimsonR). Each chimeric

ChR variant in these libraries is composed of blocks of sequence

from the parental ChRs. The data for this task comprise a total of

248 sequences. Genes for these sequences were synthesized and

expressed in human embryonic kidney (HEK) cells, and their mem-

brane localization was measured (Bedbrook et al., 2017a).

Cytochrome P450 thermostability (‘T50’) An eight-block recom-

bination library was designed from three parental cytochrome

P450s (CYP102A1, CYP102A2 and CYP102A3) (Li et al., 2007).

The data for this task include 242 sequences from this library and

19 chimeric cytochrome P450s generated from other parents or

cross-over points (Romero et al., 2013), for a total of 261 sequences.

Genes for these sequences were expressed in Escherichia coli and

their T50s (temperature at which half of the protein was irreversibly

inactivated after a 10-minute incubation) were measured.
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Rhodopsin absorption wavelength (‘Absorption’) Amino acid

substitutions were made in the retinal-binding pocket of

Gloeobacter violaceus rhodopsin (GR) in order to tune its peak

absorption wavelength. GR is a light-activated proton pump

Engqvist et al., (2015). The data for this task consist of GR and 80

blue- and red-shifted variants with 1–5 mutations generated in the

course of tuning its absorption wavelength, for a total of 81

sequences.

Epoxide hydrolase enantioselectivity (‘Enantioselectivity’)

Amino acid substitutions were made in the binding pocket of the

epoxide hydrolase (EH) from Aspergillus niger in order to improve

its preference for the (S)-enantiomer of glycidyl phenyl ether. The

data for this task consist of EH and 151 variants with 1–8 mutations

generated in the course of improving its enantioselectivity, for a

total of 152 variants (Zaugg et al., 2017).

These four tasks include light-sensitive integral membrane

proteins (ChR and GR) and soluble enzymes (cytochrome P450

and EH). The tasks include libraries constructed via recombination

and site-directed mutagenesis and examine a variety of protein

properties. The diversity of tasks allows us to evaluate the generality

of embedded representations. Table 1 summarizes the tasks.

Sequences and measurements are provided as Datasets 1–5 in the

Supplementary Material.

3 Results and discussion

We compared the quality of predictions for GP models trained on

different encodings. Table 2 compares the GP regression results on

the test set for each task using embeddings, physical properties from

AAIndex, ProFET, a mismatch kernel with k¼5 and m¼1, and

one-hot encodings. Supplementary Figures S1–S4 compare the

actual test values to those predicted by GP regression models trained

using each encoding. The embedding hyperparameters chosen for

localization are shuffled, k¼3 and w¼5. For T50, they are no

randomization, k¼3 and w¼7. For absorption, they are resample-

uniform, k¼4 and w¼1. For enantioselectivity, they are resample-

UniProt, k¼3 and w¼7. The cross-validation metrics for each task

and each set of embedding hyperparameters are included as Datasets

5–8 in the Supplementary Material. GP regression predicts a

Gaussian distribution, defined by its mean and variance, for each

evaluation sequence. Predictions were evaluated using the mean

absolute error (MAE), the Kendall s (s) and the Gaussian log-

likelihood (log P). The MAE measures deviation between predicted

and actual values, s measures ordinal accuracy, and log-likelihood

provides a probabilistic measurement of model fit. Together, these

three metrics provide a multifaceted comparison between different

models.

Table 1. Summary of tasks used to evaluate embedded representations

Task n Protein Library Property Citation

Localization 248 Channelrhodopsin Recombination Plasma membrane localization Bedbrook et al. (2017a)

T50 261 Cytochrome P450 Recombination Thermostability Li et al. (2007) and Romero et al. (2013)

Absorption 81 Bacterial rhodopsin Site-saturation Peak absorption wavelength Engqvist et al. (2015)

Enantioselectivity 152 Epoxide hydrolase Site-saturation Enantioselectivity Zaugg et al. (2017)

Table 2. Comparison of learned, dense, embedded representations, ProFET, AAIndex properties, mismatch string kernels and one-hot

representations of sequence and structure for predicting protein properties using GP regression

Task ntrain ntest Representation d MAE s log P

Localization 215 33 Embedding 64 0.73 0.60 �43.5

One-hot seq. and struct. 600 747 0.76 0.60 �43.2

One-hot sequence 7161 0.76 0.59 �43.7

Mismatch kernel – 0.86 0.55 �54.6

ProFET 1173 1.03 0.32 �54.9

AAIndex properties 21 824 0.76 0.55 �44.3

T50 242 19 Embedding 64 2.91 0.61 �59.5

One-hot seq. and struct. 994 980 2.98 0.53 �57.3

One-hot sequence 9786 2.94 0.57 �57.2

Mismatch kernel – 4.03 0.38 �58.5

ProFET 1173 4.93 0.43 �63.7

AAIndex properties 29 824 2.95 0.51 �56.2

Absorption 62 19 Embedding 64 23.3 0.57 �109.2

One-hot sequence 6258 22.1 0.63 �111.0

Mismatch kernel – 17.8 0.68 �103.9

ProFET 1173 53.5 0.32 �174.7

AAIndex properties 19 072 30.1 0.35 �116.4

Enantioselectivity 136 16 Embedding 64 9.14 0.64 �64.5

One-hot sequence 8358 8.16 0.50 �63.3

Mismatch kernel – 7.50 0.46 �65.1

ProFET 1173 27.9 0.27 �76.7

AAIndex properties 25 472 12.5 0.25 �65.7

Notes: ntrain and ntest are the number of training and test examples, respectively. d is the dimension of the representation. MAE is the mean absolute error

between predicted test values and the actual test values. s is the Kendall s between the predicted test values and the actual test values. log P is the log Gaussian like-

lihood of the actual test values given the predicted distributions. All reported metrics are for the held-out test set. All embedding hyperparameters were chosen

using 20-fold cross-validation on the training set. The best performance on each metric for each task is shown in bold.
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For localization, embeddings trained on UniProt sequences

slightly outperform one-hot encodings of sequence and structure.

Previously, we showed that models built on one-hot encodings were

sufficiently accurate to identify sequences that maximize localization

(Bedbrook et al., 2017b). For T50, embeddings achieve the best

MAE and s, while AAIndex achieves the highest log-likelihood. The

one-hot encodings are comparable, while the mismatch kernel and

ProFET perform much worse. Likewise, models built on one-hot

encodings were previously shown to be sufficiently accurate in iden-

tifying sequences that maximize the T50 (Romero et al., 2013). For

absorption, the mismatch kernel achieves the best performance

across metrics, embeddings and the one-hot sequence encoding are

comparable, while ProFET and AAIndex perform much worse.

Finally, for enantioselectivity, embeddings achieve comparable per-

formance to the one-hot sequence encoding and the mismatch kernel

while ProFET and AAIndex are much worse.

For three of the four tasks, the embeddings are the most accurate

by at least one metric even though they have several orders of mag-

nitude fewer dimensions than the other representations. Mismatch

string kernels are calculated directly from the amino acid sequences

without an intermediate vector representation and therefore have no

dimension. This shows that embeddings can be used as a low-

dimensional representation of protein sequences for building

machine-learning models of protein function. The training time for

GP regression is dominated by the O(n3) time to invert the cova-

riance matrix. However, on a 2016 Macbook Pro, models using 64-

dimensional embeddings train approximately 10 times faster than

those using one-hot embeddings of sequence and structure.

To better evaluate the information gained by the embedding

model, we performed three negative controls, which are summarized

in Table 3. First, we trained embedding models only on those

sequences used in the task: during unsupervised embedding model

training, we replaced the �500 000 UniProt sequences with the 81–

261 sequences to be inferred. This decreased GP regression perform-

ance, suggesting that information from the unlabeled sequences

improves predictions and therefore that the unsupervised embedding

model is learning sequence-specific information from the unlabeled

sequence data. Second, we confirmed that scrambling the order of

the amino acids in the task-specific sequences before inferring their

embeddings also decreases regression performance. This demon-

strates that the embedding model is encoding useful information

about the task sequences during the inference step, including infor-

mation related to the order of the amino acids. Finally, we shuffled

the training labels (i.e. the measured properties) for each sequence in

the training set but not the test labels, which should remove the

model’s ability to learn anything about the test set from the training

set. These negative controls show that the embedding model is

applying information from the unlabeled sequences to learn mean-

ingful embeddings for the labeled sequences.

In order to determine how many dimensions are required to rep-

resent a protein sequence, we compared GP model performance for

embeddings inferred from lower-dimensional models with other

hyperparameters held constant. Figure 2 shows that s and MAE

tend to worsen gradually as d decreases until d¼16, and then wor-

sen very steeply. It is likely that predictive performance could be

improved by optimizing d simultaneously with the other embedding

hyperparameters. These results suggest that �32 dimensions encode

enough information about a 250–500 amino acid sequence to make

predictions of the protein’s functional properties.

Likewise, we compared GP model performance for embeddings

inferred from subsets of the UniProt sequences with other hyper-

parameters held constant in order to determine the number of unla-

beled sequences necessary for unsupervised embedding model

training. Figure 3 illustrates that for localization and T50, both s

and MAE show little improvement as the number of unlabeled

sequences increases past 100 000. However, for absorption, MAE

continues to decrease as the number of unlabeled sequences

increases. For enantioselectivity, s continues to increase as the num-

ber of unlabeled sequences increases. The training sets for absorp-

tion and enantioselectivity are smaller than those for localization

and T50. In addition, the localization and T50 tasks use data from

recombination libraries, and the training sets for these tasks are

chosen to maximize information about the unseen members of these

libraries, including those in the test sets. However, the absorption

and enantioselectivity tasks use data from site-directed mutagenesis

experiments, and the training sets are not designed to be informative

about the test sets. Therefore, these tasks may benefit more from the

additional information gained by unsupervised model training.

To visualize the geometry of the learned embeddings, we used

t-distributed stochastic neighbor embedding (t-SNE) (Maaten and

Hinton, 2008) to project the inferred embeddings, AAIndex,

Table 3. Negative controls

Task Control MAE s log P

Localization – 0.73 0.60 �43.5

Task sequences only 0.86 0.50 �50.0

Shuffled task sequences 1.21 0.16 �57.4

Shuffled training labels 1.16 �0.39 �58.3

T50 – 2.91 0.61 �59.5

Task sequences only 5.02 0.45 �63.3

Shuffled task sequences 4.49 0.31 �61.8

Shuffled training labels 5.72 �0.35 �67.1

Absorption – 23.3 0.57 �109.2

Task sequences only 61.4 0.34 �162.1

Shuffled task sequences 61.4 �0.03 �162.0

Shuffled training labels 61.4 �0.43 �162.0

Enantioselectivity – 9.14 0.64 �64.5

Task sequences only 41.3 �0.06 �85.2

Shuffled task sequences 42.7 0.27 �84.7

Shuffled training labels 42.8 0.06 �84.8

Notes: Each task was repeated using embeddings only learned on the task

sequences (Task sequences only), using embeddings inferred from task

sequences with the order of amino acids in each sequence randomized

(Shuffled task sequences), and with the original embeddings but the training

labels randomized between the sequences (Shuffled training labels). Results

for the embeddings selected by cross-validation for each task are included for

comparison.

Fig. 2. Effect of embedding dimension on predictive accuracy. For each task,

embeddings of varying dimensions were trained and then used for GP

regression. The resulting model quality was then evaluated using the Kendall

s and MAE
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ProFET and one-hot encodings of sequence onto a 2-dimensional

space. Projections for ProFET use perplexity 10; the other projec-

tions use perplexity 50. Compared to other methods for dimension-

ality reduction, t-SNE focuses on local structure and tends to extract

clustered local groups. Projections were calculated using scikit-

learn’s implementation of t-SNE with default parameters except

where otherwise specified. Figure 4 shows these 2-dimensional

projections.

The embeddings for localization cluster around each of the three

recombination parents, and variants with fewer mutations from the

parents are closer to the parents. The projections for the AAIndex

properties, ProFET and one-hot encoding for localization show a

similar pattern. The embeddings for T50 also cluster around each of

the three recombination parents, and variants with fewer mutations

are also closer to the parents. The projections for the AAIndex prop-

erties and one-hot encoding for T50 also place variants with fewer

mutations closer to the parents, but there are not three clear clusters.

The projection for ProFET does not show any clear structure. The

embeddings for absorption roughly separate red-shifted and blue-

shifted sequences, with the most blue-shifted sequences in a separate

cluster. The projections for the AAIndex properties, ProFET and

one-hot encoding for absorption show the same blue-shifted cluster

and rough separation. The embeddings for enantioselectivity place

the sequences with the fewest mutations closest to the parent. The

projections for the AAIndex properties, ProFET and one-hot encod-

ing also place variants with fewer mutations closer to the parent.

Across the four diverse tasks, the inferred embeddings capture rela-

tionships between the sequences in the library.

The embedding model embeds sequences for all four tasks

into the same vector space, so relationships between all the task

sequences can also be interrogated. Figure 5 shows a 2-dimensional

projection obtained using t-SNE with perplexity 50 for all of the

embedded representations. The embeddings for each protein family

form their own cluster. Supplementary Figure S5 shows that the

clustering of sequences most similar to each parent can still be

observed for localization and T50, the absorption sequences

still roughly separate by whether they are blue- or red-shifted, and

the enantioselectivity sequences are roughly separated by their

enantioselectivity.

Fig. 3. Effect of number of unlabeled sequences on predictive accuracy. For

each task, embeddings were trained on subsets of the UniProt sequences and

then used for GP regression. The resulting model quality was then evaluated

using the Kendall s and MAE

Fig. 4. Visualization of learned vector representations of protein sequences. Vector representations projected onto 2 dimensions using t-SNE with perplexity

50 (embeddings, AAIndex, sequence) or 10 (ProFET). The sequences for the localization, the T50 and the enantioselectivity tasks are colored by the number of

mutations from the nearest parent. The sequences for the absorption task are colored by peak absorption wavelength. Parents for localization, T50 and enantiose-

lectivity are indicated by red triangles
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4 Conclusions

This work shows that embedding models trained on proteins from

UniProt can be applied to predict the functional properties of a small

number of related proteins, such as those often encountered in pro-

tein engineering. Models trained using embeddings are comparable

to and often outperform those trained on one-hot encodings of

sequence and structural contacts, mismatch string kernels, or amino

acid physical properties across four tasks, showing that embeddings

generalize across protein families, library designs and protein prop-

erties. As few as 32 dimensions are sufficient to achieve competitive

model performance. However, the optimal embedding hyperpara-

meters are highly dependent on the specific task. Negative controls

show that the unsupervised embedding model incorporates informa-

tion from the unlabeled sequences. Furthermore, the inferred embed-

dings show patterns consistent with the library designs when

visualized in a 2-dimensional space. While the number of known pro-

tein sequences is rapidly increasing, it remains time-consuming and

difficult to measure many protein properties of interest. By first train-

ing an unsupervised embedding model on unlabeled protein sequen-

ces, we are able to transfer information encoded in these unlabeled

sequences to a specific task. This allows predictive models while

bypassing many of the difficulties associated with using one-hot

encodings and physical properties to represent protein sequences.
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