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Abstract

To recognize an object in an image one must have some
internal model of how that object may appear. We show
how to learn such a model from a series of training images
depicting a class of objects. The model represents a 3D
object by a set of characteristic views, each defining a
probability distribution over variation in object appear-
ance. Features identified in an image through perceptual
organization are represented by a graph whose nodes
include feature labels and numeric measurements. Image
graphs are partitioned into characteristic views by an
incremental conceptual clustering algorithm. A learning
procedure generalizes multiple image graphs to form a
characteristic view graph in which the numeric measure-
ments are described by probability distributions. A match-
ing procedure, using a similarity metric based on a non–
parametric probability density estimator, compares image
and characteristic view graphs to identify an instance of a
modeled object in an image. We present experimental
results from a system constructed to test this approach. The
system is demonstrated learning to recognize partially
occluded objects in images using shape cues.

1. Introduction
To recognize an object in an image one must have some
expectation of how the object may appear. We are interest-
ed in acquiring models of objects from image data and
using the acquired models for recognition and other tasks.
We have in mind the following scenario. One presents to
the learning system a series of example images, each
depicting a particular object from some viewpoint. From
those examples the system develops a model of the object’s
appearance. When presented with a test image, the system
can identify and rank apparent instances of the object in
that image. By learning models directly from images the
system should be able to avoid the problem, faced by most
current approaches to model–based recognition, of having
to estimate actual appearance from an idealized model. In
particular, the system can learn the actual range of variation
in the object’s appearance under normal viewing condi-
tions. We can also expect this learning system to be more
convenient to use than one that must first be supplied with
its models in some encoded form.

An object may vary in appearance because of changes in
camera position, lighting, or the object’s shape. Further

variation is possible due to noise and to differences among
individual instances of the object. Accommodating such
variation is a recurring issue in the design of a system that
learns to recognize objects. The scheme used to represent
image content must be stable so that whenever variation is
small, changes in representation are likely to be small also.
The scheme used to model an object’s appearance must
adequately describe the possible variation. The learning
procedure must generalize enough to overcome insignifi-
cant variation, but not so much as to confuse dissimilar
objects. And the procedure used to identify modeled objects
in images must tolerate the likely range of mismatch
between model and image.

In a previous paper [7], we considered the problem of
learning a single characteristic view from a series of 2D
training images. We are now extending that work by con-
sidering the problem of learning a set of characteristic
views, automatically chosen to be sufficient for represent-
ing all aspects of a 3D object. Here we describe and
demonstrate the procedures for learning and recognizing
single characteristic views, and we describe the extensions
now under development for learning covering sets of char-
acteristic views.

A noteworthy feature of our approach is that it produces
a model representing a probability distribution over varia-
tions in object appearance. Depending on the training
images used to create it, the model can either represent a
specific object with precision, or it can be a generalization
encompassing an entire class of similar objects. Moreover,
objects can be recognized as similar in general appearance,
yet still be distinguished according to their detailed
features.

2. Related research
Among published model learning approaches, one due to
Connell and Brady [2] most closely resembles our own.
They use graphs to represent the part/whole and adjacency
relations among object regions described by smoothed local
symmetries. An attribute of a region, such as its elongation
or curvature, is encoded symbolically by the presence or
absence of additional graph nodes. A structural learning
procedure forms a model graph from multiple example
graphs, most commonly by deleting any nodes not shared
by all graphs. Similarity between two graphs is measured
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by counting the nodes they do share. In our own approach
we have placed greater importance on the need to represent
probabilistic information. Rather than weight each feature
of an object with equal importance, we weight each accord-
ing to how likely it is to be seen with the object. Where
Connell and Brady encode numeric attributes symbolically
with predetermined categories, we keep them in numeric
form and use them to estimate probability distributions. Our
measure of graph similarity is based on this probabilistic
information.

Segen [9] describes an approach where both the model
and the features used to represent it are learned from
images. Clusters of n–ary relations among distinguished
points (e.g., curvature extrema) define features, and once a
relation’s cluster membership is determined its numeric
attributes are discarded. Thus the clustering determines the
extent of shape discrimination and generalization. In con-
trast, we include numerical attributes in the model and learn
appropriate ranges for those attributes for each model
feature.

In representing a model we use an attributed graph in
which attribute values are characterized by probability dis-
tributions. This structure is similar to what Wong and oth-
ers have called a random graph. He and McArthur [6] use
the random graph to represent and to learn an object model
from images in which the pose or feature correspondences
have been provided. Attributes record feature positions in
3D space, and their distributions are modeled as Gaussian.
Our approach does not require that correspondence or pose
be given, and we make less restrictive assumptions about
the form of attribute distributions so that our models can
represent flexible objects and classes of similar objects.

3. Approach
The approach may be summarized as follows. Using shape
features found in 2D training images, the system learns a
model of a 3D object. The model is organized as a series of
characteristic views that are formed automatically from the
training images by a conceptual clustering algorithm. Each
characteristic view represents a probability distribution over
variations in object appearance throughout a range of view-
points. The probability distribution, which is estimated
using data collected from training images, describes the
probability of various features being observed and the
probability distribution of various numeric measurements.
Recognizing an object in a test image, then, involves find-
ing the most probable correspondence between features of
the test image and those of some characteristic view. The
form of the probability estimate allows the search for this
optimal correspondence to be performed efficiently.

3.1 Image representation

Any image input to the system, whether for training or for
recognition, is first represented as an attributed graph by a
perceptual organization process. This image graph  contains
explicit information about the presence and spatial
arrangement of significant features in the image. For our
experiments, these features include line and circular arc
segments, their junctions, parallel pairs of lines and arcs,
closed regions, and ribbons. Features are intended to satisfy
the viewpoint invariance and detection conditions described
in [5], to represent explicitly all important appearance dis-
tinctions among objects of interest, and to be easily detect-
ed. All are found by a bottom–up, data–driven process of
grouping and abstraction controlled by several thresholds
and other parameters (like, for example, [1]).

Once detected in an image, a feature is represented by a
token  that records the type of feature plus its image loca-
tion, orientation, and scale. Depending on the feature type,
the token may include additional numerical attributes, such
as the angle of a corner, that are always expressed in a
manner invariant with respect to translation, rotation, and
scaling in the image plane. The attributes associated with a
token form its attribute vector .

All but the lowest–level tokens are created by grouping
or abstracting others. An image graph records the hierarchy
of tokens created from a single image: each node represents
a token and the directed arcs represent composition and
abstraction. The image graph deliberately retains informa-
tion that may be redundant.

3.2 Model representation

A model comprises a series of characteristic views, each
represented by a characteristic view graph  (CV graph).
Like an image graph, a CV graph has nodes that are feature
tokens, and arcs that represent composition and abstraction
relations among features. So that it can represent not just
one appearance but a distribution of them, the CV graph
contains additional statistical information. Each token has
counts of the times that token was matched by an image
token during training, plus lists of the attribute and position
vectors of the matching image tokens. The overall graph
has a count of the training examples used to create it. As
described in the following section, this information is used
to estimate the probability that a model feature will be
observed in an image of the object, and the probability that
is will have a particular set of attribute values.

3.3 Matching CV and image graphs

To identify an instance of an object in an image the system
must find a match between a CV graph and an image graph.
That match will likely be a partial one, with some image
features not explained by the model (perhaps because there
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are other objects in the scene) and some model features not
found in the image (perhaps because of shadows or occlu-
sion). However, the partial match should, in some sense, be
an optimal one that jointly maximizes both the number of
tokens matched and the quality or closeness of those
matches. Our matching procedure is guided by a graph sim-
ilarity measure that combines both of these factors, weight-
ing each according to past matching experience as recorded
by the CV graph. The measure combines empirical statis tics
using the rules of Bayesian probability theory to judge the
likelihood that a given pairing of CV tokens with image
tokens corresponds to an actual instance of the object in the
image.

Since the graph similarity measure is described in detail
in [7] we will only briefly summarize it here. It is essen-
tially of the following form:

g match between CV graph and image graph( ) =
log L i matches j( )

match between
CV node i and
image node j

∑ + log L i is left unmatched( )
unmatched
CV node i

∑

The log-likelihood of a match between an image node
and a CV node (log L ( i matches j)) is estimated from the
image node’s attribute vector plus the series of attribute
vectors recorded in the CV node. The estimation problem is
this: given a series of vectors ak, 1 ≤ k  ≤ r, drawn at random
from an unknown distribution, estimate the probability of
some vector a according to that distribution. This could be
solved by assuming that the distribution is of some parame-
terized form (e.g., normal) and using the ak  to estimate
those parameters (e.g., the mean and variance). However,
the attribute vector distributions may be complex since they
depend not only on sensor noise and measurement errors,
but also systematic variations in object shape, lighting, and
pose. Therefore we have chosen a non–parametric estima-
tion method. In its simplest, form, this method estimates
probability density by summing contributions from a series
of overlapping kernels:

f a( ) = 1

r hd K
a − ak

h






k
∑

where d is the dimension of the vectors ak , h is a constant
smoothing factor, and K is a kernel function. We use the
Epanechnikov kernel because it has finite support and can
be computed quickly:

K x( ) =
1
2 cd

−1 d + 2( ) 1 − xTx( ) if  xTx < 1

0 otherwise







where cd is the volume of a d–dimensional sphere of unit
radius. The smoothing factor, h, strikes a balance between
the smoothness of the estimated distribution and its fidelity
to the observations ak .

A match optimizing the metric g is found by depth–first
search of the space of consistent matches. Although this
search requires time exponential in the size of the CV
graph, it remains practical because the search has a low
branching factor. To speed the search we do the following:

• All terms are precomputed. Then any match pairs (i , j)
for which L(i matches j) < L(i remains unmatched) are
eliminated immediately since, in such cases, a better
score is obtained with i left unmatched.

• Each CV token is ranked according to a measure of
specificity favoring CV tokens with few match alterna-
tives yet high probabilities of matching. More specific
tokens are matched earlier in the search to minimize
backtracking.

• A branch of the search tree is pruned whenever it is
found that the branch cannot improve upon the best
match already obtained. An upper bound on g within a
branch is obtained by assuming that each unmatched
CV token matches its best unmatched image token.

After the first match is struck between a CV token and
an image token, each subsequent token match is found in
either of two ways. First an attempt is made to match any
unmatched CV tokens that are directly connected to the
subgraph already matched. If no such matches can be
found, we choose a CV token that is not directly connected
and try to match it. Using token matches already adopted
we predict the position of the unmatched token. This pre-
diction employs the tokens’ position vector series, which
record the relative positions of those tokens as found in
training images. Matched tokens that by their nature can be
localized reliably (e.g., junctions) contribute to an estimated
distribution of token location. Those whose orientation and
scale can be measured reliably (e.g., parallel lines) con-
tribute to distributions of token orientation and scale. Thus
a distribution of positions is obtained for the unmatched
token, and matching image tokens are sought at those posi-
tions.

3.4 Model learning procedure

The model learning procedure partitions the training images
into clusters representing different characteristic views of
the object. At the same time, within each cluster, it merges
the training images into a single CV graph representing that
cluster’s characteristic view. Here we’ll describe first the
method of partitioning into clusters, and then the method of
merging each cluster’s contents into a single CV graph.

An incremental conceptual clustering algorithm is used
to create clusters among the training images as they are
obtained. Like, for example, COBWEB [3], the algorithm
makes a series of local changes in cluster partitions accord-
ing to a global measure of cluster quality while training
examples are added incrementally. We use a measure of
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cluster quality, based on Rissanen’s minimum description
length principle [8], that seeks to optimize both the com-
plexity of the model and the degree to which the model
accounts for the training images. With the clusters denoted
by Ci, their corresponding CV graphs denoted by Gi , and
the training images denoted by xj, the description length
measure to be minimized is of the following form:

D = description length of Gi
i

∑ − log P x j |Gi( )
xj ∈Ci

∑
i

∑

Here P(xj | Gi) denotes the probability of observing training
image xj as an instance of the characteristic view denoted
by cluster Ci and CV graph Gi . It is estimated in the same
way that the graph similarity measure, g, is computed for an
optimal match between xj and Gi , using a non-parametric
probability density estimator to estimate the probability
associated with each node match.

Within each cluster, the training imags are merged into a
single CV graph. An initial CV graph is formed from the
first training image assigned to a cluster. When a subse-
quent training image is assigned to the same cluster, an
optimal match is found between its image graph and the
current CV graph. Each CV token that matches an image
token is updated by adding the image token’s attribute and
position vectors to the series recorded with the CV token.
New tokens are added to the CV graph for those image
tokens that weren’t matched by the model, and CV tokens
that aren’t matched often enough in training images are
eventually dropped. The net effect of each training image is
to extend the CV graph in some areas, prune it in others,
and augment the series of attribute vectors it contains. This
process is repeated with each training image to complete
the CV graph.

3.5 Recognition procedure

Recognition of an object in a test image is achieved when a
satisfactory match is found between a CV graph represent-
ing a characteristic view of the object, and the image graph
derived from the test image. In the simplest form of
recognition procedure, which we have adopted initially,
each CV graph is matched against the image graph and the
match that scores highest is taken as indicating the presence
of the corresponding object.

Two important refinements of this procedure remain for
further work. First, an indexing scheme should be used to
rank CV graphs for matching. Indexing could, for example,
employ groups of features, as in [4]. Secondly, a decision
procedure is needed that will validate an optimal match,
and either accept or reject it. The procedure will likely need
more information than that provided by the graph similarity
measure, g, which confounds the effects of both occlusion
and shape variation. The validation might be performed by

projecting edgels of the model into the image according to
the mapping determined by the optimal match, and then
checking the correspondence between projected and actual
edgels.

4. Results
A system that learns a single, characteristic view has been
implemented and tested. This “2D” system includes the
perceptual organizing, graph matching, and CV graph
learning components of the full “3D” system, which
remains under development. Figures 1 and 2 show the 2D
system learning a model for a characteristic view of a cup,
and then recognizing that cup in a scene cluttered with
other objects.

The 2D system shows good ability to generalize across
objects of similar appearance while still discriminating
among them on the basis of small distinctions in appear-
ance. Generalization relies on finding many  features that
are similar among objects, while discrimination relies on
finding some that differ. The learning procedure discovers
the relative importance of each feature, and the extent to
which its attributes may be expected to vary. An illustration
of the system’s generalization and discrimination perfor-
mance may be found in [7].
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