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Abstract 

Knowledge-directed vision uses object descriptions to guide the 
visual recognition process. It is potentially efficient, since ob- 
jects can be found by searching for only their most distinctive 
characteristics. For example, roadside warning signs in the U.S. 
can be identified by their distinctive yellow color at the same 
time office buildings are located by their linear structure. Simi- 
larly, the 3D position of some objects can be recovered through 
vanishing point analysis, while the location of other objects is 
determined by perspective-based point matching. 

A major problem in knowledge-directed vision is the 
construction of object-directed control strategies. Existing 
knowledge-directed systems rely on user-supplied heuristics to 
guide the recognition process. Specifying these heuristics has 
proven a diilicult and time-consuming process. Worse still, there 
is no guarantee that the resulting strategies are either effective 
or optimal. 

This paper considers the problem of automatically learning 
knowledge-directed control strategies. In particular, it addresses 
the problem of learning object-specific recognition strategies 
from object descriptions and sets of interpreted training images. 
A separate recognition strategy is developed for every object in 
the domain. The goal of each recognition strategy is to iden- 
tify any and all instances of the object in an image, and give 
the 3D position (relative to the camera) of each instance. The 
goal of the learning process is to build a strategy that minimizes 
the expected cost of recognition, subject to accuracy constraints 
imposed by the user. 

1 Introduction 

The goal of computer vision is to identify objects in an image 
or image sequence, and to locate them in three dimensions. For 
example, when a picture of a house is presented to a vision 
system it should be able to determine both the type of object 
(i.e. house) and its 3D position relative to the camera. Both ob- 
ject identification and object positioning are equally important, 
and we refer to their combination as 3D objeci recognition. 

In order to recognize an object in an image, a system must 
compare data extracted from the image to a description of the 
object class. This description, in turn, can suggest what features 
to look for in the image. For example, a description in memory 
of "house" might constrain the shape of a house, but not its 
color, since houses can be painted almost any color. Therefore, 
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when looking for houses, shape primitives should be extracted, 
but not color features. The best strategy for recognizing a house 
(or any object) is determined by its properties. 

This paper considers the problem of automatically learning 
object-specific control strategies from object descriptions and 
sets of interpreted training images. A separate recognition strat- 
egy is developed for every object to be recognized. The goal of 
each recognition strategy is to identify any and all instances of 
the object in an image, and give the 3D position (relative to the 
camera) of each instance. The goal of the learning process is to 
build a strategy that minimizes the expected cost of recognition, 
subject to accuracy constraints imposed by the user. 

In this work, object recognition is modeled as a process 
of applying visual knowledge sources to hypotheses. Knowl- 
edge sources are routines from the image understanding litera- 
ture, such as 2D+3D point matching, vanishing point analysis 
and straight line extraction. Hypotheses are intermediate-level 
statements about the image and/or 3D world, and can occur 
at many levels of abstraction. Examples of hypotheses include 
straight line segments, 3D orientation vectors and volumes. At 
each step in the recognition process, a knowledge source is ap- 
plied to one or more hypotheses. The result is either a new 
hypothesis or a discrete evidence value reflecting the quality of 
the original hypotheses. 

Recognition strategies are represented by recognition 
graphs, which are similar in many ways to decision trees. Un- 
like decision trees, however, recognition graphs direct hypoth- 
esis creation as well as hypothesis classification or verification. 
Object-specific strategies are learned in a two step process. The 
first step involves learning which hypotheses should be gener- 
ated. The second step learns how to verify them efficiently. 

This work extends the knowledge-based approach by re- 
placing the ad-hoc control heuristics of other systems with well- 
motivated control and classification decisions. The user, instead 
of supplying heuristics in the form of if-then rules or confidence 
functions, specifies accuracy requirements. The system selects 
KSs that minimize the expected cost of recognition while achiev- 
ing the specified accuracy. 

2 System Overview 

The top-level design of the Schema Learning System (SLS) is 
shown in Figure 1. SLS infers object recognition strategies from 
an object description and a set of training images. The object 
description contains parameterized knowledge sources that the 
user feels may help to recognize the object. SLS tests each KS 
in the object description by applying it the training images and 
comparing the results to the user's interpretation. In this way, 
SLS empirically tests both the accuracy and the efficiency of the 
KSs. SLS uses this data to construct a recognition graph. At 
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Figure 1: The Schema Learning System (SLS) 

“-time, this graph is used to efficiently and accurately re-cog- 
nixe the object in images. 

The heart of the learning problem is the box labeled “knowl- 
edge compiler” in Figure 1. It reasons about competing object 
recognition strategies using the recognition graph formalism de- 
scribed below. To support this formalism, it distinguishes be- 
tween two types of knowledge sources. Hypoflresis generation 
KSs create new hypotheses. Vanishing point analysis, which 
creates a 3D orientation vector from 2D line segment is one 
example. VerificclfionKSs supply symbolic endorsements about 
previously existing hypotheses. Pattern classification algorithms 
that compare a region’s color to the expected color of an object 
are examples; such algorithms are modified to return symbolic 
endorsements such as “good-match” ,“average-match”, etc. 

2.1 Recognition Graphs 

Recognition graphs are most easily thought of as generalized de- 
cision trees with choice nodes and chance nodes (see [l], chap- 
ter 15). Choice nodes in the graph correspond to hypothesis 
knowledge states; the choice to be made is which verification KS 
should be executed next. When each choice node in a graph has 
just one option, then the recognition graph represents a partic- 
ular strategy. When the choice nodes present multiple options, 
the recognition graph represents several possible strategies, cor- 
responding to the different options of processing at that point. 
Chance nodes in the graph represent the run-time application 
of a Verification KS. The branches from a chance node represent 
the Herent possible outcomes of the KS at run-time, in terms 
of the evidential endorsements it might return. 

Figure 2 shows part of a recognition graph. Hypotheses be- 
gin at start states (to the left in Figure 2) and advance to the 
right through a series of knowledge states (depicted as parallel- 
ograms). Each knowledge state is a set of endorsements. These 
endorsements represent what the system has learned about the 
hypothesis so far. Hypotheses are advanced from one state to 
another by verification KSs (shown as ellipses with an inscribed 
‘V”). Verification KSs return endorsements which describe the 
hypothesis. 

Although conceptually similar to decision trees, recognition 
graphs are a quite distinct representation. As their name im- 
plies, recognition graphs are not trees but graphs. When two 
verification KSs are applied to a hypothesis, the hypothesis ends 
up in the same knowledge state no matter what order the knowl- 
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Figure 2: Part of a Recognition Graph 

edge sources are applied in. Hence there can be two different 
paths through the recognition graph to a single state, making it 
a directed acyclic graph (DAG) rather than a tree. 

Furthermore, because computer vision requires reasoning 
over many levels of abstraction, recognition graphs are divided 
into layers, one for each type of hypothesis to be considered. 
Thus a typical recognition graph might have levels of data ab- 
straction for regions, 2D lines, 2D points, 3D orientation vectors, 
planes, and 3D poses. At each level in ‘the graph different veri- 
fication KSB are defined. For example, a KS that tests the color 
of a hypothesis would be used at the region level, but not the 
3D orientation level. 

Image interpretation proceeds across levels of abstraction 
through generation knowledge sources (shown as ellipses with 
inscribed “G”s in Figure 2). Generation KSs link knowledge 
states at one level of abstraction to knowledge states at another, 
show how new hypotheses are created. For example, a vanishing 
point analysis KS that makes a 3D orientation vector from a set 
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of 2D line segments is represented as a link from a knowledge 
state at the line-set level to a start state of the 3D vector level. 
Thus generation links (shown aa ahaded linea is Figure 2) depict 
hypothesis creation while verification links (shown as dark lines) 
depict hypothesis verification. 

Generation KS links are the main difference between recog- 
nition graphs and decision trees. Decision trees are devices for 
verifying hypotheses. Recognition graphs describe hypothesis 
generation as well aa hypothesis verification. The start states at 
sny level of abstraction correspond to the generation KSs that 
can create hypothesis of that type (UnIike decision trees, each 
level of a recognition graph may have multiple start states.). 
The verification KS links describe how those hypotheses can be 
verified. Hypotheses that prove sufficiently reliable can then be 
used aa arguments to generation KSs, which create hypotheses 
at the next level of abstraction. 

Recognition graphs can represent a variety of strategies. 
Bottom-up Strategies are represented by having the generation 
KS links point %~p” the hierarchy; top-down strategies are im- 
plemented by having them point the other way. Most strategies 
are mixed, in that they have generation links going both up and 
down the hierarchy. For example, line segment hypotheses can 
either be extracted from the image (bottom-up) or predicted 
by a road hypothesis (top-down). Refinement strategies can be 
represented through seemingly circular links representing iter- 
ative processing, as when the perspective KS a projects a 3D 
pose hypothesis, creating 2D line segment hypotheses which are 
compared to lines extracted from the image and used to gener- 
ate a more accurate pose hypothesis (which, if verified, can be 
used to revise the 2D line segment hypotheses...). 

Once completed, recognition graphs are used to identify ob- 
jects in the intuitive way. Hypotheses begin at starting states 
determined by the generation KSs that created them.) The op- 
tions at that knowledge state represent the different verification 
KSs that can be applied to the hypothesis. If the recognition 
graph has been optimized by SLS, then the options will be or- 
dered in terms of their gain (see Section 2.2.2 below). The veri- 
fication KS with the highest gain at the current knowledge state 
will be applied to the hypothesis and will return an endorsement 
about it. This endorsement effectively moves the hypothesis to 
a new knowledge state, where the process is repeated. 

Anytime a hypothesis reaches a knowledge state with a gen- 
eration KS link, the generation KS is applied to the hypothesis. 
This creates zero or more new hypotheses (usually at a different 
level of abstraction) which are placed at the appropriate start- 
ing state. These hypotheses are then pursued concurrently with 
the original hypothesis. The interpretation is finished when all 
hypotheses have reached a state from which no action can be 
taken. At that point all 3D pose hypotheaes at positive goal 
states (see Section 2.2.2) are presented to the user as object 
instances. 

Finally, recognition graphs are not actually graphs but 
hyper-graphs. Many knowledge sources calculate relations be- 
tween hypotheses. Consider, for example, a knowledge source 
that tests if a 2D line segment lies on the boundary of a region. 
This KS operates on two hypotheses at once, and potentially 
returns supporting evidence about both of them. The two hy- 
potheses start from different knowledge states, and in this case 
from different levels of abstraction. If the relationship holds be- 
tween them, both hypotheses will be moved to new knowledge 

states. In this case the line hypothesis would be moved to a state 
indicating that it is supported by region hypothesis, and the re- 
gion hypothesis would be moved to one d w t i n g  the support of 
the line. Thus the KS that testa for thia relation is a hyper-link 
in the recognition graph between two pairs of knowledge states. 

2.2 The Knowledge Compiler 

SLS begins the learning process by building a recognition graph 
that includes every possible option at each knowledge state. It 
then uses this graph to interpret the training images, exhaus- 
tively applying every verificaiton KS to every hypothesis it can 
possibly generate. By monitoring this process, SLS is able to 
estimate the expected cost of every KS. In addition it learns the 
probability of every possible outcome of each verification KS, 
and it notes which hypotheses were created by which genera- 
tion KSs. This information will be used to l) prune unnecessary 
generation KS links from the graph, so that only well-supported 
hypotheses are used to create new hypotheses, and 2) order the 
verification KSs at each knowledge state according to their gain, 
so that run-time monitor knows which KS to apply (if any) to 
minimize the expected cost of recognition. 

2.2.1 Hypothesis Generation 

The next step is to learn how to generate hypotheses. The wer’s 
object description may include generation KSs that are not nec- 
essary to recognize the object. Moreover, most of the necessary 
generation KSs should only by applied to well-supported hy- 
potheses. SLS therefore seeks to constrain the application of 
generation KSs so that as few hypotheses as possible are gen- 
erated from the training images, but all the correct hypotheses 
are still created. 

SLS determine which hypotheses generated from the train- 
ing images are correct by comparing them to the interpreta- 
tions supplied by the user. The system then takes each correct 
hypothesis and traces back the generation KSs it depends on. 
For example, if a correct 3D pose hypothesis was generated by 
matching the model vertices to a particular set of 2D points, 
then the pose hypothesis is dependent on the matching KS. It 
is also dependent on whatever generation KS created the 2D 
points, and any generation KSs needed to create its arguments, 
etc. In this way, the generation KSs needed to create each cor- 
rect hypothesis are determined. 

The result of tracing back a hypothesis’ dependencies is an 
AND/OR tree, since multiple KSs may generhte the same hy- 
pothesis. For example, the 3D pose hypotheses imagined above 
might also have been generated by an absolute orientation KS 
applied to a set of 3D points. If so, the 3D pose hypothesis is 
dependent on either the matching KS and those KSs needed to 
extract the 2D points or the absolute orientation KS, along with 
whatever KSs are needed to generate the 3D points. 

Since the system’s goal is to generate all the correct hy- 
potheses, it collects the dependency trees of all the correct hy- 
potheses into a single tree by ANDing their top nodes together. 
By definition, any set of generation KSs that satisfies this tree 
will generate all the correct hypotheses. The system’s job is to 
find the particular set of KSs that satisfies this tree while cre- 
ating as few incorrect hypotheses as possible. SLS finds this set 
by converting the AND/OR tree into disjunctive normal form 
(DNF). Each subterm in the DNF expression represents a set of 
generation KSs that satisfies the tree. Each of these subterms 
is tested, and the one that generates the fewest incorrect or un- 
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necessary hypotheses is selected. Every generation KS not in 
this subtew is discarded. 

In addition to determining which generation KSs should be 
applied, the system must also determine when they should be 
applied. Returning to OUT example above, if every 2D point 
needed by the matching KS to create a correct 3D object hy- 
pothesis received a “high-contrast” endorsement &om a veri- 
fication KS, then the matching KS should only be applied to 
point hypotheses with this endorsement. By tracing back the 
dependencies of the correct hypotheses, the system can deter- 
mine what endorsements are shared by the hypotheses needed 
for each generation KS. The generation KS is then constrained 
so that it is only applied from knowledge states which include 
these endorsements. All generation KS links which begin at 
states which do not have the required endorsements are pruned 
from the recognition graph. 

2.2.2 Hypothesis Verification 

Oece SLS has learned how to generate hypotheses, its next task 
is to learn how to verify them. This in turn can be divided into 
two subtasks, classification and optimization. In the fist, SLS 
le- how to verify hypotheses. In the second it learns how to 
verify them efficiently. 

SLS learns to classify 3D pose hypotheses by building an 
IDS-style decision tree classifier (121). The classifier’s task is 
binary; either a hypothesis has enough support to satisfy the 
user’s accuracy requirements or it doesn’t. The training in- 
stances are the hypotheses generated from the training images; 
the features are the presence (or absense) of particular endorse- 
ments on those hypotheses. 

Since the classifier is trained on sets of endorsements, it can 
be used to classify knowledge states. Any knowledge state at the 
3D pose level that is accepted by the classifier is a positive goal 
state. All hypotheses that reach positive goal states at the 3D 
pose level are included in the final interperetation. Knowledge 
states that are not positive goal states and which do not lie 
on any path to a positive goal state are negative goal states. 
A hypothesis that reaches a negative goal state is immediately 
discarded by the system. States which are neither positive nor 
negative goal states are undetermined, and indicate that the 
hypothesis needs to be verified further. 

Positive and negative goal states are also defined at lower 
levels of abstraction. Hypotheses such as regions, 2D line seg- 
ments and 3D line segments are never included in the final inter- 
pretation. Their only purpose is the role they play in creating 3D 
pose hypotheses. Consequently an intermediate-level hypothesis 
is verified when it has enough supporting endorsements for it to 
serve as an argument to a generator KS (as determined in the 
previous section). A positive goal state at an intermediate level 
of abstraction is therefore any state that satisfies the prerequi- 
sites of a generation KS’ . A negative goal state is one which does 
not lie on any path to a positive goal state. As before, knowl- 
edge states at the intermediate levels that are neither positive 
nor negative goal states indicate that more evidence needs to be 
acquired. 

Once the goal states have been determined at each level of 
abstraction, SLS selects and orders the verification KSs so as 

‘To be precise, any state such that 1) it satisfies the prerequisites of a 
generation KS and 2) no endorsements can be added to it to make it sstisfy 
the prerequisita of another generation KS. 

to minimize the expected cost of verification. Since SLS has 
already “ i z e d  the number of hypothwes it generates, the 
result is a strategy that approximately “ i z e s  the total ex- 
pected cost of recognition. 

SLS chooses verification KSs by computing the expected 
cost of reaching a goal state (either positive or negative) from 
each knowledge state in the recognition graph. To do this, it 
needs to compute the expected cost of reaching a goal state 
from a knowledge state using each of the avdable options. For 
example, if two verification KSs ( VKSl and VKSZ) CA be exe- 
cuted from knowledge state n, SLS will cdculate the expected 
cost of reaching a goal state if VKSl is applied first, and the 
cost of reaching a goal state starting with VKSZ. The cost of 
reaching a goal state from state n would then be the cost of 
reaching a goal state using the cheaper of the two options. 

More formally, we refer to the cost of promoting a hypoth- 
esis from knowledge state n to a goal state as the Expected 
Decision Cost (EDC) of state n. We denote the expected cost 
of reaching a god state from state n using verification KS k as 
EDC(n,  k). Since verification KSs return endorsements, we re- 
fer to the possible outcomes of a verification KS k as R(k) ,  
and the probability of an endorsement e being returned as 
P(e lk ,n ) , e  E R(k). 

SLS calculates the EDC’s of knowledge states starting with 
the goal states and working backwards through the recognition 
graph. Clearly, the EDC of a goal state is zero: 

EDC(n) = 0, n E { g o a l  Hates}. (1) 

The expected cost of promoting a hypothesis to a goal state 
using a particular KS is: 

EDC(n, k) = C(k) + (P(e(n, k) x EDC(n U e)) (2) 
ecR(*) 

where n is the knowledge state expressed as a set of endorse- 
ments, and C(k) is the estimated cost of applying k (if k can 
return the empty set of endorsements, this equation needs to be 
extended slightly). 

The EDC of a knowledge state, then, is t&e smallest EDC 
of the knowledge sources that can be executed s t  that state: 

EDC(n) = kEKS(n) min (EDC(n, k)) (3) 

where K S ( n )  is the set of KSs that can applied at node n. 
Equations 2 and 3 establish a mutually recursive definition 

of a node’s expected decision cost. The EDC of a knowledge 
state is the EDC of the optimal KS application at the state; 
the EDC of a KS application is the expected cost after applying 
the KS, plus the cost of the KS. The recursion bottoms out at 
goal nodes, whose EDC is zero. Since every path through the 
object recognition graph ends at a goal node (either positive or 
negative), the recursion is well defined. 

If all verification KSs operated on a single hypothesis, then 
the cost of verification could be minimized by always selecting 
the verification KS that minimized a knowledge state’s EDC. As 
mentioned before, however, relational KSs may provide support 
for more then one hypothesis at a time. It is therefore necessary 
to define the gain of a KS as the s u m  of the expected drop in 
EDC for each of its arguments, minus the cost of the KS. For a 
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Figure 3: A typical New England road scene containing a cau- 
tionary road sign. 

single-argument verification KS, the gain is defined. as: 

For a verification KS that relates two hypotheses to each other, 
the gain is deiined as: 

Gain(n1, n2, k) = 
EDC(n1) - CclER(C) (P(elln1, k) x EDC(n1 U el)) 

+EDC(n2) - CcZER(k) (P(e2ln1, k) X EDC(n2 U el)) 

-C(k) 

The optimal overall strategy for verifying hypotheses is the 
one that minimizes the expected cost. The expected cost of 
verification is minimized by selecting, at each knowledge state, 
the KS with the maximum gain. 

3 Recognizing-Road Signs in SUA 

We will illustrate SLS’ approach with a cursory example of learn- 
ing to recognize road signs from the image shown in Figure 3. 
Although strategies learned from a single sample are necessarily 
over-specitic, the example should demonstrate how the system 
works. 

SLS begins by makiig a recognition graph out of the user’s 
object description. In the case of a road sign, the object descrip- 
tion might include generation KSs for vanishing point analysis, 
scale estimation from distance and orientation, 2D+3D point 
matching, region segmentation, 2D point extraction and straight 
line extraction (the last two operating on a “window of interest” 
defined by a region). It might also include verification KSs to 
test if a region is 1) yellow or 2) four-sided. The vertices of a 
wire-frame model of a road sign are included as a parameter of 
the’2D+3D point matching KS. 

During training, 3D pose hypotheses were created three dif- 
ferent ways. All three segment the image and classify the regions 
to see which match the expected color of a road sign. The first 
method extracts lines from the image near the region hypothesis, 

performs vanishing point analysis to estimate its 3D orientation, 
and then judges its distance from its size and orientation, pro- 
ducing a 3D pose. The second method extracts 2D points from 
the image under the region hypothesis and h d s  the pose di- 
rectly by 2D+3D point matching. The third method is like the 
second, except that it uses the comers of the region hypothesis 
rather then extracting points directly from the image. 

Unfortunately, the pose created by the first method was in- 
correct (vanishing point analysis is unreliable when the 2D lines 
are nearly parallel, as in Figure 3). Methods two and three, 
however, both discovered the sign’s correct pose. The depen- 
dency tree for this hypothesis was therefore an OR of methods 
two and three. When given a choice between alternate genera- 
tion techniques, SLS chooses the one that generates the fewest 
total hypotheses. In this case it picked method three, since 
the 2D point extraction found five 2D point hypotheses (one of 
which corresponded to the tip of the arrow), while the boundary 
approximation routine produced only four. SLS therefore kept 
only the region segmentation and point matching KSs. All gen- 
eration KS links corresponding to other generators were pruned 
from the recognition graph. SLS also noticed that the point 
matching KS should only be applied to the corners of regions 
with the endorsement “good-color-match”. All point matching 
KS links not starting from a knowledge state with this endorse- 
ment were therefore removed from the graph. 

Next SLS learns to verify hypotheses. Since every hypothe- 
sis produced by method three was correct, the ID3-style classifier 
notes that the start state at the 3D pose level corresponding to 
the 2D+3D point matcher is a positive goal state. At the start 
state of the region hypothesis level, it notices that the KS that 
tests if a region is four-sided has negative gain, while the color 
test has a gain of zero. It therefore decides that the color KS 
should be executed from that state. Since every result from the 
color KS leads directly to a positive or negative goal state, the 
four-sided KS is never executed. 

4 Conclusions 

An object’s description determines the most efficient and accu- 
rate method for recognizing the object. An important problem 
in vision, therefore, is learning how to recognize an object from 
its description and a set of examples. An effective object recog- 
nition system must learn which KSs to apply, when to apply 
them, and how to integrate their results. 

We solve the problem of selecting which knowledge source 
to execute when by selecting the KS that minimizes the expected 
cost of recognition, subject to accuracy constraints imposed by 
the user. We select these KSs at compile-time in a two-step 
process. The first step minimizes the number of incorrect or 
unnecessary hypotheses generated. The second step learns how 
to verify the remaining hypotheses by building a classifier and 
then ordering the verification KSs so as to minimize the cost of 
verification. The resulting recognition strategy in embedded in 
a recognition graph. 
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