
Learning 3D Object Recognition Strategies

Bruce A. Draper Edward M. Riseman

Computer & Information Science Department,
University of Massachusetts at Amherst t

Abstract

Knowledge-directed vision uses object descriptions to guide the
visual recognition process. It is potentially efficient, since ob-
jects can be found by searching for only their most distinctive
characteristics. For example, roadside warning signs in the U.S.
can be identified by their distinctive yellow color at the same
time office buildings are located by their linear structure. Simi-
larly, the 3D position of some objects can be recovered through
vanishing point analysis, while the location of other objects is
determined by perspective-based point matching.

A major problem in knowledge-directed vision is the
construction of object-directed control strategies. Existing
knowledge-directed systems rely on user-supplied heuristics to
guide the recognition process. Specifying these heuristics has
proven a diilicult and time-consuming process. Worse still, there
is no guarantee that the resulting strategies are either effective
or optimal.

This paper considers the problem of automatically learning
knowledge-directed control strategies. In particular, it addresses
the problem of learning object-specific recognition strategies
from object descriptions and sets of interpreted training images.
A separate recognition strategy is developed for every object in
the domain. The goal of each recognition strategy is to iden-
tify any and all instances of the object in an image, and give
the 3D position (relative to the camera) of each instance. The
goal of the learning process is to build a strategy that minimizes
the expected cost of recognition, subject to accuracy constraints
imposed by the user.

1 Introduction

The goal of computer vision is to identify objects in an image
or image sequence, and to locate them in three dimensions. For
example, when a picture of a house is presented to a vision
system it should be able to determine both the type of object
(i.e. house) and its 3D position relative to the camera. Both ob-
ject identification and object positioning are equally important,
and we refer to their combination as 3D objeci recognition.

In order to recognize an object in an image, a system must
compare data extracted from the image to a description of the
object class. This description, in turn, can suggest what features
to look for in the image. For example, a description in memory
of "house" might constrain the shape of a house, but not its
color, since houses can be painted almost any color. Therefore,

'This work WM supported in part by DARPA and RADC under contract
number F30602-87-C-0140, by DARPA and U.S. Army ETL under contract
number DACA76-89-C-0017, and by the National Science Foundation under
grant number DCR-8500332.

CH2934-8/90/0000/0320$01.00 Q 1990 IEEE 320

when looking for houses, shape primitives should be extracted,
but not color features. The best strategy for recognizing a house
(or any object) is determined by its properties.

This paper considers the problem of automatically learning
object-specific control strategies from object descriptions and
sets of interpreted training images. A separate recognition strat-
egy is developed for every object to be recognized. The goal of
each recognition strategy is to identify any and all instances of
the object in an image, and give the 3D position (relative to the
camera) of each instance. The goal of the learning process is to
build a strategy that minimizes the expected cost of recognition,
subject to accuracy constraints imposed by the user.

In this work, object recognition is modeled as a process
of applying visual knowledge sources to hypotheses. Knowl-
edge sources are routines from the image understanding litera-
ture, such as 2D+3D point matching, vanishing point analysis
and straight line extraction. Hypotheses are intermediate-level
statements about the image and/or 3D world, and can occur
at many levels of abstraction. Examples of hypotheses include
straight line segments, 3D orientation vectors and volumes. At
each step in the recognition process, a knowledge source is ap-
plied to one or more hypotheses. The result is either a new
hypothesis or a discrete evidence value reflecting the quality of
the original hypotheses.

Recognition strategies are represented by recognition
graphs, which are similar in many ways to decision trees. Un-
like decision trees, however, recognition graphs direct hypoth-
esis creation as well as hypothesis classification or verification.
Object-specific strategies are learned in a two step process. The
first step involves learning which hypotheses should be gener-
ated. The second step learns how to verify them efficiently.

This work extends the knowledge-based approach by re-
placing the ad-hoc control heuristics of other systems with well-
motivated control and classification decisions. The user, instead
of supplying heuristics in the form of if-then rules or confidence
functions, specifies accuracy requirements. The system selects
KSs that minimize the expected cost of recognition while achiev-
ing the specified accuracy.

2 System Overview

The top-level design of the Schema Learning System (SLS) is
shown in Figure 1. SLS infers object recognition strategies from
an object description and a set of training images. The object
description contains parameterized knowledge sources that the
user feels may help to recognize the object. SLS tests each KS
in the object description by applying it the training images and
comparing the results to the user's interpretation. In this way,
SLS empirically tests both the accuracy and the efficiency of the
KSs. SLS uses this data to construct a recognition graph. At

W I
I

Stafk (compile-time) : mmic(run-time)

Figure 1: The Schema Learning System (SLS)

“-time, this graph is used to efficiently and accurately re-cog-
nixe the object in images.

The heart of the learning problem is the box labeled “knowl-
edge compiler” in Figure 1. It reasons about competing object
recognition strategies using the recognition graph formalism de-
scribed below. To support this formalism, it distinguishes be-
tween two types of knowledge sources. Hypoflresis generation
KSs create new hypotheses. Vanishing point analysis, which
creates a 3D orientation vector from 2D line segment is one
example. VerificclfionKSs supply symbolic endorsements about
previously existing hypotheses. Pattern classification algorithms
that compare a region’s color to the expected color of an object
are examples; such algorithms are modified to return symbolic
endorsements such as “good-match” ,“average-match”, etc.

2.1 Recognition Graphs

Recognition graphs are most easily thought of as generalized de-
cision trees with choice nodes and chance nodes (see [l], chap-
ter 15). Choice nodes in the graph correspond to hypothesis
knowledge states; the choice to be made is which verification KS
should be executed next. When each choice node in a graph has
just one option, then the recognition graph represents a partic-
ular strategy. When the choice nodes present multiple options,
the recognition graph represents several possible strategies, cor-
responding to the different options of processing at that point.
Chance nodes in the graph represent the run-time application
of a Verification KS. The branches from a chance node represent
the Herent possible outcomes of the KS at run-time, in terms
of the evidential endorsements it might return.

Figure 2 shows part of a recognition graph. Hypotheses be-
gin at start states (to the left in Figure 2) and advance to the
right through a series of knowledge states (depicted as parallel-
ograms). Each knowledge state is a set of endorsements. These
endorsements represent what the system has learned about the
hypothesis so far. Hypotheses are advanced from one state to
another by verification KSs (shown as ellipses with an inscribed
‘V”). Verification KSs return endorsements which describe the
hypothesis.

Although conceptually similar to decision trees, recognition
graphs are a quite distinct representation. As their name im-
plies, recognition graphs are not trees but graphs. When two
verification KSs are applied to a hypothesis, the hypothesis ends
up in the same knowledge state no matter what order the knowl-

/ d P

321

/Level A
Figure 2: Part of a Recognition Graph

edge sources are applied in. Hence there can be two different
paths through the recognition graph to a single state, making it
a directed acyclic graph (DAG) rather than a tree.

Furthermore, because computer vision requires reasoning
over many levels of abstraction, recognition graphs are divided
into layers, one for each type of hypothesis to be considered.
Thus a typical recognition graph might have levels of data ab-
straction for regions, 2D lines, 2D points, 3D orientation vectors,
planes, and 3D poses. At each level in ‘the graph different veri-
fication KSB are defined. For example, a KS that tests the color
of a hypothesis would be used at the region level, but not the
3D orientation level.

Image interpretation proceeds across levels of abstraction
through generation knowledge sources (shown as ellipses with
inscribed “G”s in Figure 2). Generation KSs link knowledge
states at one level of abstraction to knowledge states at another,
show how new hypotheses are created. For example, a vanishing
point analysis KS that makes a 3D orientation vector from a set

I

of 2D line segments is represented as a link from a knowledge
state at the line-set level to a start state of the 3D vector level.
Thus generation links (shown aa ahaded linea is Figure 2) depict
hypothesis creation while verification links (shown as dark lines)
depict hypothesis verification.

Generation KS links are the main difference between recog-
nition graphs and decision trees. Decision trees are devices for
verifying hypotheses. Recognition graphs describe hypothesis
generation as well aa hypothesis verification. The start states at
sny level of abstraction correspond to the generation KSs that
can create hypothesis of that type (UnIike decision trees, each
level of a recognition graph may have multiple start states.).
The verification KS links describe how those hypotheses can be
verified. Hypotheses that prove sufficiently reliable can then be
used aa arguments to generation KSs, which create hypotheses
at the next level of abstraction.

Recognition graphs can represent a variety of strategies.
Bottom-up Strategies are represented by having the generation
KS links point %~p” the hierarchy; top-down strategies are im-
plemented by having them point the other way. Most strategies
are mixed, in that they have generation links going both up and
down the hierarchy. For example, line segment hypotheses can
either be extracted from the image (bottom-up) or predicted
by a road hypothesis (top-down). Refinement strategies can be
represented through seemingly circular links representing iter-
ative processing, as when the perspective KS a projects a 3D
pose hypothesis, creating 2D line segment hypotheses which are
compared to lines extracted from the image and used to gener-
ate a more accurate pose hypothesis (which, if verified, can be
used to revise the 2D line segment hypotheses...).

Once completed, recognition graphs are used to identify ob-
jects in the intuitive way. Hypotheses begin at starting states
determined by the generation KSs that created them.) The op-
tions at that knowledge state represent the different verification
KSs that can be applied to the hypothesis. If the recognition
graph has been optimized by SLS, then the options will be or-
dered in terms of their gain (see Section 2.2.2 below). The veri-
fication KS with the highest gain at the current knowledge state
will be applied to the hypothesis and will return an endorsement
about it. This endorsement effectively moves the hypothesis to
a new knowledge state, where the process is repeated.

Anytime a hypothesis reaches a knowledge state with a gen-
eration KS link, the generation KS is applied to the hypothesis.
This creates zero or more new hypotheses (usually at a different
level of abstraction) which are placed at the appropriate start-
ing state. These hypotheses are then pursued concurrently with
the original hypothesis. The interpretation is finished when all
hypotheses have reached a state from which no action can be
taken. At that point all 3D pose hypotheaes at positive goal
states (see Section 2.2.2) are presented to the user as object
instances.

Finally, recognition graphs are not actually graphs but
hyper-graphs. Many knowledge sources calculate relations be-
tween hypotheses. Consider, for example, a knowledge source
that tests if a 2D line segment lies on the boundary of a region.
This KS operates on two hypotheses at once, and potentially
returns supporting evidence about both of them. The two hy-
potheses start from different knowledge states, and in this case
from different levels of abstraction. If the relationship holds be-
tween them, both hypotheses will be moved to new knowledge

states. In this case the line hypothesis would be moved to a state
indicating that it is supported by region hypothesis, and the re-
gion hypothesis would be moved to one d w t i n g the support of
the line. Thus the KS that testa for thia relation is a hyper-link
in the recognition graph between two pairs of knowledge states.

2.2 The Knowledge Compiler

SLS begins the learning process by building a recognition graph
that includes every possible option at each knowledge state. It
then uses this graph to interpret the training images, exhaus-
tively applying every verificaiton KS to every hypothesis it can
possibly generate. By monitoring this process, SLS is able to
estimate the expected cost of every KS. In addition it learns the
probability of every possible outcome of each verification KS,
and it notes which hypotheses were created by which genera-
tion KSs. This information will be used to l) prune unnecessary
generation KS links from the graph, so that only well-supported
hypotheses are used to create new hypotheses, and 2) order the
verification KSs at each knowledge state according to their gain,
so that run-time monitor knows which KS to apply (if any) to
minimize the expected cost of recognition.

2.2.1 Hypothesis Generation

The next step is to learn how to generate hypotheses. The wer’s
object description may include generation KSs that are not nec-
essary to recognize the object. Moreover, most of the necessary
generation KSs should only by applied to well-supported hy-
potheses. SLS therefore seeks to constrain the application of
generation KSs so that as few hypotheses as possible are gen-
erated from the training images, but all the correct hypotheses
are still created.

SLS determine which hypotheses generated from the train-
ing images are correct by comparing them to the interpreta-
tions supplied by the user. The system then takes each correct
hypothesis and traces back the generation KSs it depends on.
For example, if a correct 3D pose hypothesis was generated by
matching the model vertices to a particular set of 2D points,
then the pose hypothesis is dependent on the matching KS. It
is also dependent on whatever generation KS created the 2D
points, and any generation KSs needed to create its arguments,
etc. In this way, the generation KSs needed to create each cor-
rect hypothesis are determined.

The result of tracing back a hypothesis’ dependencies is an
AND/OR tree, since multiple KSs may generhte the same hy-
pothesis. For example, the 3D pose hypotheses imagined above
might also have been generated by an absolute orientation KS
applied to a set of 3D points. If so, the 3D pose hypothesis is
dependent on either the matching KS and those KSs needed to
extract the 2D points or the absolute orientation KS, along with
whatever KSs are needed to generate the 3D points.

Since the system’s goal is to generate all the correct hy-
potheses, it collects the dependency trees of all the correct hy-
potheses into a single tree by ANDing their top nodes together.
By definition, any set of generation KSs that satisfies this tree
will generate all the correct hypotheses. The system’s job is to
find the particular set of KSs that satisfies this tree while cre-
ating as few incorrect hypotheses as possible. SLS finds this set
by converting the AND/OR tree into disjunctive normal form
(DNF). Each subterm in the DNF expression represents a set of
generation KSs that satisfies the tree. Each of these subterms
is tested, and the one that generates the fewest incorrect or un-

322

necessary hypotheses is selected. Every generation KS not in
this subtew is discarded.

In addition to determining which generation KSs should be
applied, the system must also determine when they should be
applied. Returning to OUT example above, if every 2D point
needed by the matching KS to create a correct 3D object hy-
pothesis received a “high-contrast” endorsement &om a veri-
fication KS, then the matching KS should only be applied to
point hypotheses with this endorsement. By tracing back the
dependencies of the correct hypotheses, the system can deter-
mine what endorsements are shared by the hypotheses needed
for each generation KS. The generation KS is then constrained
so that it is only applied from knowledge states which include
these endorsements. All generation KS links which begin at
states which do not have the required endorsements are pruned
from the recognition graph.

2.2.2 Hypothesis Verification

Oece SLS has learned how to generate hypotheses, its next task
is to learn how to verify them. This in turn can be divided into
two subtasks, classification and optimization. In the fist, SLS
le- how to verify hypotheses. In the second it learns how to
verify them efficiently.

SLS learns to classify 3D pose hypotheses by building an
IDS-style decision tree classifier (121). The classifier’s task is
binary; either a hypothesis has enough support to satisfy the
user’s accuracy requirements or it doesn’t. The training in-
stances are the hypotheses generated from the training images;
the features are the presence (or absense) of particular endorse-
ments on those hypotheses.

Since the classifier is trained on sets of endorsements, it can
be used to classify knowledge states. Any knowledge state at the
3D pose level that is accepted by the classifier is a positive goal
state. All hypotheses that reach positive goal states at the 3D
pose level are included in the final interperetation. Knowledge
states that are not positive goal states and which do not lie
on any path to a positive goal state are negative goal states.
A hypothesis that reaches a negative goal state is immediately
discarded by the system. States which are neither positive nor
negative goal states are undetermined, and indicate that the
hypothesis needs to be verified further.

Positive and negative goal states are also defined at lower
levels of abstraction. Hypotheses such as regions, 2D line seg-
ments and 3D line segments are never included in the final inter-
pretation. Their only purpose is the role they play in creating 3D
pose hypotheses. Consequently an intermediate-level hypothesis
is verified when it has enough supporting endorsements for it to
serve as an argument to a generator KS (as determined in the
previous section). A positive goal state at an intermediate level
of abstraction is therefore any state that satisfies the prerequi-
sites of a generation KS’ . A negative goal state is one which does
not lie on any path to a positive goal state. As before, knowl-
edge states at the intermediate levels that are neither positive
nor negative goal states indicate that more evidence needs to be
acquired.

Once the goal states have been determined at each level of
abstraction, SLS selects and orders the verification KSs so as

‘To be precise, any state such that 1) it satisfies the prerequisites of a
generation KS and 2) no endorsements can be added to it to make it sstisfy
the prerequisita of another generation KS.

to minimize the expected cost of verification. Since SLS has
already “ i z e d the number of hypothwes it generates, the
result is a strategy that approximately “ i z e s the total ex-
pected cost of recognition.

SLS chooses verification KSs by computing the expected
cost of reaching a goal state (either positive or negative) from
each knowledge state in the recognition graph. To do this, it
needs to compute the expected cost of reaching a goal state
from a knowledge state using each of the avdable options. For
example, if two verification KSs (VKSl and VKSZ) CA be exe-
cuted from knowledge state n, SLS will cdculate the expected
cost of reaching a goal state if VKSl is applied first, and the
cost of reaching a goal state starting with VKSZ. The cost of
reaching a goal state from state n would then be the cost of
reaching a goal state using the cheaper of the two options.

More formally, we refer to the cost of promoting a hypoth-
esis from knowledge state n to a goal state as the Expected
Decision Cost (EDC) of state n. We denote the expected cost
of reaching a god state from state n using verification KS k as
EDC(n, k). Since verification KSs return endorsements, we re-
fer to the possible outcomes of a verification KS k as R(k) ,
and the probability of an endorsement e being returned as
P(e lk ,n) , e E R(k).

SLS calculates the EDC’s of knowledge states starting with
the goal states and working backwards through the recognition
graph. Clearly, the EDC of a goal state is zero:

EDC(n) = 0, n E { g o a l Hates}. (1)

The expected cost of promoting a hypothesis to a goal state
using a particular KS is:

EDC(n, k) = C(k) + (P(e(n, k) x EDC(n U e)) (2)
ecR(*)

where n is the knowledge state expressed as a set of endorse-
ments, and C(k) is the estimated cost of applying k (if k can
return the empty set of endorsements, this equation needs to be
extended slightly).

The EDC of a knowledge state, then, is t&e smallest EDC
of the knowledge sources that can be executed s t that state:

EDC(n) = kEKS(n) min (EDC(n, k)) (3)

where K S (n) is the set of KSs that can applied at node n.
Equations 2 and 3 establish a mutually recursive definition

of a node’s expected decision cost. The EDC of a knowledge
state is the EDC of the optimal KS application at the state;
the EDC of a KS application is the expected cost after applying
the KS, plus the cost of the KS. The recursion bottoms out at
goal nodes, whose EDC is zero. Since every path through the
object recognition graph ends at a goal node (either positive or
negative), the recursion is well defined.

If all verification KSs operated on a single hypothesis, then
the cost of verification could be minimized by always selecting
the verification KS that minimized a knowledge state’s EDC. As
mentioned before, however, relational KSs may provide support
for more then one hypothesis at a time. It is therefore necessary
to define the gain of a KS as the s u m of the expected drop in
EDC for each of its arguments, minus the cost of the KS. For a

323

Figure 3: A typical New England road scene containing a cau-
tionary road sign.

single-argument verification KS, the gain is defined. as:

For a verification KS that relates two hypotheses to each other,
the gain is deiined as:

Gain(n1, n2, k) =
EDC(n1) - CclER(C) (P(elln1, k) x EDC(n1 U el))

+EDC(n2) - CcZER(k) (P(e2ln1, k) X EDC(n2 U el))

-C(k)

The optimal overall strategy for verifying hypotheses is the
one that minimizes the expected cost. The expected cost of
verification is minimized by selecting, at each knowledge state,
the KS with the maximum gain.

3 Recognizing-Road Signs in SUA

We will illustrate SLS’ approach with a cursory example of learn-
ing to recognize road signs from the image shown in Figure 3.
Although strategies learned from a single sample are necessarily
over-specitic, the example should demonstrate how the system
works.

SLS begins by makiig a recognition graph out of the user’s
object description. In the case of a road sign, the object descrip-
tion might include generation KSs for vanishing point analysis,
scale estimation from distance and orientation, 2D+3D point
matching, region segmentation, 2D point extraction and straight
line extraction (the last two operating on a “window of interest”
defined by a region). It might also include verification KSs to
test if a region is 1) yellow or 2) four-sided. The vertices of a
wire-frame model of a road sign are included as a parameter of
the’2D+3D point matching KS.

During training, 3D pose hypotheses were created three dif-
ferent ways. All three segment the image and classify the regions
to see which match the expected color of a road sign. The first
method extracts lines from the image near the region hypothesis,

performs vanishing point analysis to estimate its 3D orientation,
and then judges its distance from its size and orientation, pro-
ducing a 3D pose. The second method extracts 2D points from
the image under the region hypothesis and h d s the pose di-
rectly by 2D+3D point matching. The third method is like the
second, except that it uses the comers of the region hypothesis
rather then extracting points directly from the image.

Unfortunately, the pose created by the first method was in-
correct (vanishing point analysis is unreliable when the 2D lines
are nearly parallel, as in Figure 3). Methods two and three,
however, both discovered the sign’s correct pose. The depen-
dency tree for this hypothesis was therefore an OR of methods
two and three. When given a choice between alternate genera-
tion techniques, SLS chooses the one that generates the fewest
total hypotheses. In this case it picked method three, since
the 2D point extraction found five 2D point hypotheses (one of
which corresponded to the tip of the arrow), while the boundary
approximation routine produced only four. SLS therefore kept
only the region segmentation and point matching KSs. All gen-
eration KS links corresponding to other generators were pruned
from the recognition graph. SLS also noticed that the point
matching KS should only be applied to the corners of regions
with the endorsement “good-color-match”. All point matching
KS links not starting from a knowledge state with this endorse-
ment were therefore removed from the graph.

Next SLS learns to verify hypotheses. Since every hypothe-
sis produced by method three was correct, the ID3-style classifier
notes that the start state at the 3D pose level corresponding to
the 2D+3D point matcher is a positive goal state. At the start
state of the region hypothesis level, it notices that the KS that
tests if a region is four-sided has negative gain, while the color
test has a gain of zero. It therefore decides that the color KS
should be executed from that state. Since every result from the
color KS leads directly to a positive or negative goal state, the
four-sided KS is never executed.

4 Conclusions

An object’s description determines the most efficient and accu-
rate method for recognizing the object. An important problem
in vision, therefore, is learning how to recognize an object from
its description and a set of examples. An effective object recog-
nition system must learn which KSs to apply, when to apply
them, and how to integrate their results.

We solve the problem of selecting which knowledge source
to execute when by selecting the KS that minimizes the expected
cost of recognition, subject to accuracy constraints imposed by
the user. We select these KSs at compile-time in a two-step
process. The first step minimizes the number of incorrect or
unnecessary hypotheses generated. The second step learns how
to verify the remaining hypotheses by building a classifier and
then ordering the verification KSs so as to minimize the cost of
verification. The resulting recognition strategy in embedded in
a recognition graph.

References

[l] Frederick S. Hillier and Gerald J. Lieberman. Introduction

[2] J.R. Quinlan. “Induction of Decision Trees”, Machine

to Operations Research. Holden-Day, Inc. 1980.

Learning, 1:81-106 (1986).

324

