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Abstract

It is often desirable to evaluate an image based on its

quality. For many computer vision applications, a perceptu-

ally meaningful measure is the most relevant for evaluation;

however, most commonly used measure do not map well to

human judgements of image quality. A further complication

of many existing image measure is that they require a refer-

ence image, which is often not available in practice. In this

paper, we present a “blind” image quality measure, where

potentially neither the groundtruth image nor the degrada-

tion process are known. Our method uses a set of novel

low-level image features in a machine learning framework

to learn a mapping from these features to subjective image

quality scores. The image quality features stem from natu-

ral image measure and texture statistics. Experiments on a

standard image quality benchmark dataset shows that our

method outperforms the current state of art.

1. Introduction

In numerous computer vision, computer graphics, and

image processing applications it is necessary to evaluate im-

age quality. The measurement of “quality” cannot be easily

defined, as it often depends on context and personal prefer-

ences. However, when restricted to low-level aspects, image

quality as perceived by human observers is a measurable

and consistent property [23], even when comparing images

with different content and degradation types.

In the signal and image processing literature, the most

common measure for judging image quality are straightfor-

ward measure such as PSNR (Peak-Signal-To-Noise) [25],

yet, it is well known that PSNR does not correlate well with

perceptual quality. Furthermore many measure require a

reference image for comparison, making them useful only

in limited situations, such as in synthetic experiments.

In most practical cases, a reference image is not avail-

able, and image quality assessment is more difficult. Re-

covering a reference image or its properties (either explic-

itly or implicitly) for image quality assessment is equivalent

to the general “blind image enhancement” problem, which

is ill-conditioned even if the degradation process is known.

Recent work has sought to break these limitations by

developing more perceptually meaningful reference-based

measure [27] and ones that do not require a reference [20].

While existing methods have shown some promise, they

still do not predict human quality judgements very accu-

rately. One of the largest difficulties in computing a percep-

tually relevant score is the variability in how different types

of image degradation processes affect an image’s structure

and statistics. As a result the scores from exiting meth-

ods often are biased by the type of degradation, making it

difficult to compare quality between images with different

or unknown degradation processes, e.g. comparing a blurry

image to a noisy image.

The Blind Image Quality Index (BIQI) addressed this

problem by using distortion-specific image quality measure

as well as a distortion-type classifier [17]. They learn a

mapping for images under five different types of distortion

(noise, blur, JPEG, JPEG2000, fast fading) over a range of

distortion amount. Given a new image they have to identify

the distortion type and then measure it. Although BIQI per-

forms impressively in its specific setup, its utility is some-

what limited. It requires an accurate classification of the

distortion type, which is itself a difficult problem. Conse-

quently it does not address the bias very well, as shown in

Fig. 1(a). And it assumes that only one distortion type dom-

inates, which is often not the case in practice. This hard

classification can prohibit computing a meaningful qual-

ity measure. Furthermore, it is not trivial to extend BIQI

method to handle additional distortion types, as a dual prob-

lem needs to be solved to both reliably recognize and mea-

sure the distortion.

We propose a learning based blind image quality mea-

sure (LBIQ) that is more perceptually correlated and less bi-

ased by distortion type, as shown in Fig. 1(b). Our measure

addresses the above limitations by designing novel low-

level image quality features that measure aspects of image

structure and statistics that are useful for discriminating de-

graded and un-degraded images. Instead of using a small

number of measure, LBIQ achieves good performance by
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Figure 1. Computational v.s. subjective scores on the LIVE image

quality assessment database [24]. Ideally the plot would scatter on

the dashed line. Due to the variability of how different types of

distortion degrades image structure and statistics, BIQI is biased

by the type of degradation, yet, our LBIQ measure minimizes this

bias by incorporating numerous image quality features in a learn-

ing framework. Besides, the rich set of feature we use ensures

LBIQ to be more tightly correlated to the subjective score.

combining and incorporating numerous image quality fea-

tures with a regression algorithm. The algorithm is able to

correlate the underlying structure of distorted images with

perceptual image quality without the need to provide a ref-

erence image.

The key contributions of our method include: (1) sev-

eral novel low-level features for measuring image quality

and (2) an algorithm to combine these features in order to

learn a perceptually relevant image measure. To the best of

our knowledge, our method is the first perceptually accu-

rate image quality measure that does not require a reference

image nor knowledge of the image degradation process and

provides scores that are not biased by the degradation type.

Our experimental results show that our LBIQ measure sig-

nificantly outperforms state of art blind image quality as-

sessment methods.

2. Related work

There are numerous cases where it is desirable to com-

putationally evaluate image quality. For most applications,

a perceptual accurate measure is the most relevant measure

for evaluation, as a human observer is the final consumer of

the image. Depending on the application, the measurement

of “image quality” conveys many different aspects from

how much is the image degraded by a specific distortion

type to how “realistic” or “beautiful” an image looks.

2.1. Low­level quality assessment

A common use of an image quality measure is to judge

the accuracy of an image compression or rendering algo-

rithm against some reference “ground-truth” solution. In

these cases, the relevant evaluation measure are known

as “full-reference” measure. Since the reference image is

known, a quality index can be computed from an image dis-

similarity measure such as PSNR [25]. As direct measure

often do not correlate well to image quality as perceived

by human observers, numerous researchers have extended

image dissimilarity measure to be more perceptually mean-

ingful [27, 14]. Further improvements have been made by

modulating and pooling local reference scores according to

the gradient of the reference image [13].

Unfortunately, there are numerous cases where a refer-

ence image is unavailable, such as when judging the quality

of a denoising algorithm on a real-world dataset, where the

underlying noise-free image is unknowable. In this case,

one would need a “no-reference” or “blind” measure. In

a “no-reference” measure, while the ground-truth image is

unknown, some assumptions about the underlying image

structure or content is usually made. Several different ap-

proaches have been taken along these lines. One approach

is to model artifacts for specific types of image degradation

and then measure the amount of these artifacts present in an

image to determine a quality measure. Another approach is

to correlate natural image statistics with subjective measure,

e.g. the BLIINDS measure [20] predicted perceptual image

quality by linear regression on DCT statistics.

2.2. High­level quality assessment

The definition of “image quality” can be as high-level

as measuring “realism” or “beauty” of an image. In this

regime, digital forensics algorithms aims at differentiat-

ing real photographs from photo-realistic synthesized im-

ages [5, 16] and doctored photographs [6]. Evaluating the

aesthetic quality of photographs [4, 12, 15] is also a very re-

lated area of work. The primary distinction is that aesthetic

quality appears to be a much more subjective and personal-

ized measure than that of low-level image quality [23]. Al-

though these final goals slightly differ from image quality

assessment, the underlying goals are quite similar, as syn-

thesized images can be viewed as being (slightly) distorted

images, and our work is in some sense a subset of aesthetic

quality. We utilize some of the concepts in this related area

of work to develop our low-level image features, but ex-

plicitly focus on an objective evaluation of how distortions

affect perceptual image quality.

2.3. Learning­based quality assessment

To achieve good generalization across image content and

distortion types and to have a perceptually meaningful re-

sult, we learn a measure that combines a number of low-

level features to map to image quality scores from human

observers. This concept has been also used by other recent

works in evaluating image quality, especially in the case of

high-level image measure such as digital forensics and pho-

tograph aesthetics.
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There has also been some work involving using learning

techniques for the low-level aspect of image quality, e.g. [2]

used SVM regression to assess the quality of color images

given a known reference image.

Jung and Leger [11] used artificial neural networks to

compute a blind image quality index, but only apply this

framework in situations with a specific type of distortion.

BIQI [17] computed a more generic quality measure with

SVM and addressed the bias across distortion by identifying

distortion type first. While our LBIQ measure shares some

similarities with this work, in that we too learn an image-

quality measure from image features, our contribution in

not only from the learning framework we use, but also from

our design of a rich set of low-level features. Our feature set

allows any distortion type to find a considerably large set of

supporting features for evaluating its quality, which enables

our algorithm to have good generalization power across im-

ages and distortion types regardless of image content and

the potential presence of multiple distortions types in one

image.

3. Image quality features

The key contributions of our work are our analysis and

development of novel low-level features for measuring im-

age quality and the use of these features to learn an image

measure that correlates with the perception of human ob-

servers. In such learning based paradigms, the strength of

the results heavily weighs on having a comprehensive set of

discriminant features for the desired task. Given previous

work, we believe that the task of image quality assessment

benefits from a thorough analysis of current measure and

features and this analysis leads to a better understanding of

the area and the development of novel features.

Thus our methodology for selecting and designing rele-

vant features included a lengthy process of extracting differ-

ent features across a set of images and distortions and ob-

serving trends and correlations that reflected the change in

perceptual quality. For this process, we tested each feature

on the LIVE Image Quality dataset [24]. This dataset in-

cludes 29 reference images, each containing around 30 im-

ages that covers 5 distortion types: JPEG2000, JPEG, white

noise, blur, and analog transmission loss of JPEG2000 en-

coded images (also known as fast fading). The percep-

tual score of each image is computed by collecting evalu-

ations of about 23 trained human subjects, removing outlier

subjects and scores, and finally compensating for the bias

across reference images and subjects.

The design of our features relies on several key observa-

tions regarding image quality:

• A good objective function (or image prior) for image

enhancement is a good measure of image quality;

Figure 2. Reference image used for extracting features that are vi-

sualized in subsequent figures in this paper.

• Texture statistics are a good indicator of distortion ar-

tifacts;

• Noise and blur are two fundamental degradation pro-

cess that occur in a variety of distortion types, and can

be directly measured.

In the following sections we present the image quality

features we used to learn our LBIQ measure. For each fea-

ture, we illustrate its behavior on images of the same ref-

erence image (Fig. 2) of similar subjective quality but with

different distortion types.

3.1. Natural image statistics

We assume that an image that is likely to be a “natural”

image is also of high quality and thus investigate numerous

objective functions used in the literature of image enhance-

ment. Among them, we have found that high-frequency

responses of images are an effective facility for many im-

age enhancement problems. Although they appear in differ-

ent forms from image gradients [3], DCT coefficients [28]

to field of experts responses [19], the statistics of these re-

sponses behave similarly.

In our work, we use complex pyramid wavelet transform

due to its reconstruction properties, pyramid representation,

and translational invariance property[18].

Under this setup, natural images are most commonly de-

scribed as images whose real or imaginary coefficients fol-

low a zero-peak, heavy-tailed distribution. As shown in

Fig. 3(a), noise smooths the distribution of the wavelet co-

efficients, while blur compresses the distribution towards

zero by reducing contrast of the image. The extent of blur

in compressed images is not as significant as with Gaussian

blurred images of the same quality because the former also

suffers from compression artifacts, which is not conveyed

in the distribution of real coefficients.

In our test data, we found it more effective to repre-

sent the coefficients by magnitude and phase instead. Sim-

ilar to real coefficient distributions, we found blur com-

presses the magnitude distribution and noise changes its

shape (Fig. 3(b)). The phase distribution of the coefficients
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Figure 3. Marginal histograms of wavelet coefficients.

shows a distinct capability to discriminate compression ar-

tifacts by showing a oscillating pattern (Fig. 3(c)), resulting

from quantization error produced by compression.

The distribution can be compactly described by analyt-

ical models. It has been found that the real and imaginary

coefficients distribution can be modeled by a generalized

Gaussian [3]:

p(x; γ, λ) =
γλ1/γ

2Γ(1/γ)
exp (−λ|x|γ) , (1)

and the magnitude distribution can be modeled with a

Weibull distribution [7]:

p(x; γ, λ) =

{

λγxγ−1 exp (−λ|x|γ) x ≥ 0
0 x < 0

. (2)

With these two models, we can evaluate the maximal

likelihood of an image as a natural image with a MAP

(Maximum A-Posteriori) estimate. In our implementation,

we estimated the generalized Gaussian and Weibull param-

eters with MLE(Maximal Likelihood Estimation). Both

the estimated model parameters and the likelihood achieved

with these parameters are used as features, in order to con-

vey both prior distribution of parameters and the likelihood

of the image under the most likely parameters.

The cross-scale distribution of wavelet coefficient mag-

nitude is also a meaningful feature, as high quality image

often show self-similarity across scales [8]. Accordingly,

the coarse scale and fine scale coefficients are statistically

correlated. The behavior of a distortion on this joint distri-

bution is similar to what occurs to the marginal distributions

(Fig. 4(b)); the only difference is that the extent of degrada-

tion is larger in the finer scale than the coarser scale.

3.2. Distortion texture statistics

When the distortion becomes severe, the likelihood of

being a natural image is so low that it is difficult to discrim-

inate the difference in quality using a natural image model.

However, a distortion-specific texture typically arises. For

instance, JPEG images often present an 8x8 block texture,

and JPEG2000 images of high compression rates often suf-

fer from ringing around corners and edges. Therefore, the

prominence of these textures is a good measure that com-

plements that of natural image prior based features. We ob-

served in the test data that the cross-scale distribution of

coefficient phase a good indicator of distortion-induce local

image texture, as shown in Fig. 4(b).
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Figure 4. Cross-scale wavelet coefficient distribution for

JPEG2000 distorted images of bad quality.

3.3. Blur/noise statistics

Although each distortion types has a distinctive way to

degrade image structure, we found blur and noise funda-

mental to various distortion types. In the following we char-

acterize these two degradation processes with three existing

techniques.

Patch PCA singularity Due to the redundancy of natu-

ral images in content, the intrinsic dimensionality of local

patches of an image is much lower than its actual dimen-

sion. Therefore, we perform principal component analysis

on these patches and use the singular values as an indicator

of the intrinsic dimensionality of the patch manifold. The

singular values are then a meaningful measure of smooth-

ness vs. randomness in a patch. Increases in image blur

will squeeze the values to zero as it goes to less significant

eigenvectors. In comparison, noise increases evenly in each

eigenvectors and results in a more uniform distribution in

singular values(Fig. 5(a)).

Two-color prior based blur statistics Joshi et al. show

that the “two-color model”, i.e., assuming that all local col-

ors are a linear combination of two colors, is a good model

for natural, sharp images [10]. Thus we use the method de-

scribed by Joshi et al. to fit each local patch with a two color

model and recover a primary and secondary color layer, an

alpha layer, and a residual image. The alpha layer is a good

indication of blur as a more peaked alpha distribution in-

dicates a sharper image (i.e., more pixels in the image are

exactly equal to the primary or secondary and are not in-
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Figure 5. Singularities of 5 × 5 patches and Two-color model co-

efficient histograms.
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(a) M1: marginal distribution

feature # dimension

negative log histogram of magnitude 720

negative log histogram of real 720

negative log histogram of phase 720

MLE estimates of GGD parameter/likelihood of real 36

MLE estimates of WBD parameter/likelihood of magnitude 36

(b) M2: cross-scale joint distribution

feature # dimension

negative log histogram of phase 7200

negative log histogram of magnitude 7200

(c) M3: blur/noise statistics

feature # dimension

Patch PCA singular values 25

negative log histogram of alpha value 10

negative log histogram of residual 20

step edge based blur/noise estimation 2

Table 1. List of features for each kernel machine

between) and residual image is a good measure of noise arti-

facts, since independently distributed colored noise lies out-

side the color model. Therefore, we use the log distribution

of the alpha and residual image as image quality features.

As shown in Fig. 5(b), blurry images have more transparent

pixels and therefore have a less peaked distribution of alpha

values in comparison to the reference image, while noisy

images are not well modeled by the two-color model and

thus have larger residual.

Direct blur kernel and noise estimation As a final mea-

sure of blur and noise level, we run the blind kernel estima-

tion method of Joshi et al. [9] to compute a spatially invari-

ant blur kernel and noise level estimate. This method makes

predictions based on edges in the images and tries to infer

a kernel that would produce the observed edges from as-

sumed underlying step edges. We use the maximum of the

covariance of the blur kernel as a feature and the reported

standard deviation of the noise as a separate feature.

4. Learning algorithm

While each feature is carefully designed and motivated

by the physical properties of image distortions, we cannot

expect that each individual feature would work well across

all the distortion types. Consequently, we propose exploit-

ing the complementary properties of all the features by com-

bining different predictors to build an estimator that predicts

a perceptual image quality measure. In particular, our LBIQ

measure consists of an ensemble of regressors trained on

three different groups of features (summarized in Table 1),

whose outputs are then further combined to produce the fi-

nal LBIQ score.

As many of our features are negative log histograms, the

dimensionality of the features is extremely high. There-

fore, we first perform principal component analysis (PCA)

for each group of feature in order to reduce to a lower di-

mension, which is selected by cross validation. These low-

dimensional projections are then used to train a ǫ-SVM re-

gression model [21] for each group of feature. Formally,

if we denote the low dimension projection of jth feature

coefficients/histogram for image i as xj
i , we then solve the

following optimization problem:

w
j = argmin

w

1

2
||w||2 + C

∑

i

ξi + C
∑

i

ξ∗i (3)

s.t.
∑

n

wnk(x
j
i , x

j
n) + bj − yi ≤ ǫ+ ξi,ξi ≥ 0 (4)

yi −
∑

n

wnk(x
j
i , x

j
n)− bj ≤ ǫ+ ξi,ξi, ξ

∗

i ≥ 0 (5)

Here yi is the subjective image quality of the i−th image

and k(·, ·) is the kernel function. In our implementation, we

use radial basis function(RBF) as a kernel:

k(x, xi) = exp(−γ|x− xi|
2). (6)

Once this optimization is performed, the image quality for

a test image can be computed as:

ȳj =
∑

i

k(xj , xj
i )w

j
i + bj (7)

We combine the results of our three individual SVM re-

gression outputs using a weighted linear combination of the

the kernel SVM outputs:

LBIQ =
∑

j

µj · ȳ
j . (8)

The weights of the linear combination are learned by

minimizing prediction error on the validation set:

µ∗ = argmin
∑

i

(LBIQi − yi)
2

(9)

This is a least squares minimization problem, and the

unique, global optimum can be easily found by solving a

small linear system. We experimented training a kernel re-

gression on the concatenation of all features, but found that

our combination of multiple SVMs to be more effective and

far more efficient.

5. Implementation details

Although there is some redundancy in our feature sets,

we didn’t prone the features as we found the combination

of all features outperform using a subset of it. Besides, we

projected all features into the log space as we found this

would allow the RBF kernel to produce a more meaningful

distance metric.

The complex steerable pyramid we use has 3 scales and

4 orientations. When computing histograms of wavelet co-

efficients, we discretize each coefficient into 60 bins for

marginal histograms and 30 bins for joint histograms. In

computing the two-color prior based features, we perform

color clustering on local 5 × 5 patches. The resulting al-

pha values and residuals are discretized into 20 bins. We
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Figure 6. The t-SNE embedding of the concatenated feature space.

In both images, each point corresponds to an image. In left image,

color encodes subjective quality score; in right image, color en-

codes distortion type. This embedding verifies that our designed

feature set naturally clusters images degraded in a similar way and

by a similar extent.

actually only used the first 10 bins in the alpha histogram,

noticing that the over-saturated alpha values does not help

prediction.

We used LIBSVM [1] to perform the regression. Both

the dimension of PCA and the SVM parameters are selected

by cross validation. In particular, we select PCA dimension

for each SVM among 20, 40, 60, and 80, and tune the SVM

parameters with a 2D grid search in the log space followed

by a simplex search based refinement.

6. Experimental results

We perform experiments to explore (1) how well do our

features capture variations due to different distortions type,

(2) how well does the learned predictive model perform on

the task of assessing perceptual image quality, and (3) the

failure modes. All experiments are tested on the LIVE im-

age quality assessment database [24].

We split the dataset into a training set of 10 reference

images, a validation set of 5 reference images and a test

set of 14 reference images. Because we are interested in

gaining generalization power across images, we made sure

that these three sets do not overlap in reference images. The

actual number of images in each set is spanned by the 5

types of distortions and 5 to 6 distortion levels per type.

Local neighborhood embedding of features We investi-

gate how well the features are able to capture the variations

due to distortion type by performing non-linear dimension-

ality reduction using the t-SNE [26] algorithm to recover a

local embedding using the feature representation of the im-

ages. Figure 6 shows the embedding of the LIVE dataset

with color encoding the subjective quality score(left) and

distortion type(right) of each image. We observe that this

embedding tends to cluster together blurry images regard-

less of the source of blur (Gaussian, JPEG2000, etc.) while

separating them from noisy images. This means we can

predict the quality of an image from all relevant distortion

types, rather than referring to a specific subset of the train-

ing data as BIQI. Further, adjacent images in the t-SNE em-
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Figure 7. Median root mean square error between prediction and

subjective score (lower means better). Much of the strength of

our LBIQ measure comes from the second kernel machine which

trains on cross-scale histogram and statistics of wavelet coeffi-

cients. However, the combination of all three machines decreases

the Median RMSE up to 1.

bedding are typically close in quality, also guaranteeing the

exemplar to be expressive enough for prediction.

Regression performance We first examine regression

performance on individual machines. Fig. 7 shows the root-

mean-square prediction error for all distortion types by the

three kernel machines we trained (lower values are better).

We found that the second SVM, which was trained on cross-

scale wavelet coefficients, was best performing because it

is both effective in images of good quality with the self-

similarity feature and in images with severe distortions with

the phase based texture feature. However, the combination

of all SVMs takes advantage of the strength of all three ma-

chines, and improve the performance on challenging data

such as JPEG2000 and fast fading images.

Next, we explore predictive power of the learned SVM

regression model. Since many applications require a re-

liable order of images based on quality, we used Spear-

man order correlation coefficient as the final performance

measure (higher means better). We compared the perfor-

mance of our LBIQ measure with BIQI [17] as the state of

art blind image quality assessment method. We conducted

150 rounds of performance evaluation. In each round

we randomly partitioned the dataset into three content-

independent sets for training, validation, and testing. As

shown in Fig. 8, our method significantly out-performs

BIQI for every distortion type without explicitly estimating

the distortion types.

We also performed a more thorough comparison to nu-

merous full-reference measure including PNSR, multi-scale

SSIM and VIF and blind measure including BIQI and BLI-

INDS [20]. As shown in Fig. 9, our LBIQ measure is very

competitive compared to state of art blind quality indices

such as BIQI and BLIINDS. It also outperforms PNSR, the

most common full-reference measure. Although it is not

as good as that of SSIM and VIF, we believe the perfor-

mance of LBIQ is comparable to these two contemporary
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Figure 8. Median spearman order correlation between prediction

and subjective score (higher the better) on each distortion type and

the entire dataset. Our LBIQ measure significantly outperforms

BIQI in all distortion types (as reported in [17]). The error bar

provides the minimal and maximal spearman correlations achieved

through 150 test runs.

reference-based methods yet the no-reference requirement

of LBIQ makes the problem much harder.

Success and failure modes Finally we evaluate our

method on individual subsets of the same reference images

to examine the success and failure modes of our algorithm.

We found that the poorly performing datasets typically in-

clude periodic textures, such as with roof tiles or water,

that are difficult to discriminate from JPEG artifacts (see

Fig. 10(a)). In comparison, the reference image achieving

highest correlation (Fig. 10(b)) is composed of smooth ar-

eas of sky and water and texture areas of stones and grass,

as well as step edges: all well conveyed in our natural image

model.

7. Conclusions

In this work, we dived into the design of low level fea-

tures for image quality assessment by looking into features

derived from natural image statistics, texture features and

blur/noise estimation. After in-depth analysis, we found

that the magnitude and phase of high-frequency filter re-

sponses encapsulate much more information than the con-

ventional real-imaginary (i.e. odd and even filter) represen-

tations as they can capture compression artifacts with the

phase features. Also, using this representation to model the

cross-scale wavelet coefficient distributions renders features

very well correlated with perceptual image quality. Our use

of direct blur/noise measurements also produces useful fea-

tures for image quality assessment. Neighborhood embed-

ding of our proposed features well clusters images of similar

quality and relevant distortion type, indicating good poten-

tial to generalize our learned measure to new images and

distortion types. To take advantage of the strength of all

features, we used kernel SVM to combine different features.

Experiments on the LIVE image quality benchmark dataset

shows that our method significantly outperforms state of art

no-reference image assessment algorithm in all aspects.

LBIQ	
   BIQI	
   BLIIND	
   PNSR	
   SSIM	
   VIF	
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   0.89	
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   0.79	
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Figure 9. Median spearman order correlation between prediction

and subjective score on the entire dataset through 150 test runs.

Our method (blue) perform much better than state of art blind qual-

ity indices (red) and comparably to current reference-based quality

indices (green) although we do not require a reference image.

For future work, we believe our algorithm can be im-

proved by using a more elegant learning framework such

as boosting or image specific weighting to combine the fea-

tures. Besides, observing that the strength of the RBF kernel

relies on dense sample of image, we also consider doing a

larger user study to enrich the training set we use. We also

think it worthwhile to apply our image quality features and

learning algorithm to create a new full-reference measure

and, given that LBIQ eliminates distortion-specific bias so

well, expect it to become the new frontier in reference-based

image quality assessment .
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