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Abstract

It is now widely accepted that image quality should be evaluated using task-based criteria, such as
human-observer performance in a lesion-detection task. The channelized Hotelling observer
(CHO) has been widely used as a surrogate for human observers in evaluating lesion detectability.
In this paper, we propose that the problem of developing a numerical observer can be viewed as a
system-identification or supervised-learning problem, in which the goal is to identify the unknown
system of the human observer. Following this approach, we explore the possibility of replacing the
Hotelling detector within the CHO with an algorithm that learns the relationship between
measured channel features and human observer scores. Specifically, we develop a channelized
support vector machine (CSVM) which we compare to the CHO in terms of its ability to predict
human-observer performance. In the examples studied, we find that the CSVM is better able to
generalize to unseen images than the CHO, and therefore may represent a useful improvement on
the CHO methodology, while retaining its essential features.

Index Terms

Channelized Hotelling observer (CHO); image quality; machine learning; numerical observer;
support vector machine (SVM); task based image evaluation

I. INTRODUCTION

A Critically important aspect of imaging science is the problem of evaluating image quality
[1], which is a necessary ingredient for optimization of imaging systems and image-
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processing algorithms. In the early days of image processing, it was common to use simple
numerical criteria, such as signal-to-noise ratio, to assess image quality in the presence of
blur, noise, and other artifacts. However, it is now widely accepted that the quality of an
image must ultimately be defined by the degree to which the image serves its intended
purpose. For example, if an image is to be used for lesion detection, then image quality
should ideally be judged by the ability of an observer to detect lesions within the image.
Such an approach has become known as task-based assessment of image quality.

In today’s medical imaging, although computer-aided diagnosis now plays a growing role,
the human observer remains the principal agent of diagnostic decisions. Therefore, it is
widely agreed that the diagnostic performance of a human observer is, in most cases, the
ultimate test of image quality. However, empirical studies to assess human observer
performance can be costly and time-consuming. Therefore, it may not be feasible to conduct
such studies during preliminary evaluation of a new imaging technique or algorithm.

To resolve this limitation, Myers and Barrett [2] proposed that a mathematical model called
the channelized Hotelling observer (CHO) be used as a surrogate for human observers for
assessment of detection-task performance. It has been shown that in many situations the
CHO produces detection performance that correlates well with that of human observers
(e.g., [3]–[7]). Therefore, the CHO has justifiably gained wide popularity in the medical-
imaging community as a method for assessing image quality and optimization of image-
processing algorithms (e.g., [7]–[9]).

However, the performance of the CHO does not always correlate well with human-observer
performance, as illustrated by the results shown in [11] and [8]. To remedy this problem, it
is common to introduce a term representing so-called internal noise, [6]–[8], [11], which
diminishes the detection performance of the CHO so that it performs at a level that is more
commensurate with the human observer. For a given imaging application, it is necessary to
adjust this parameter empirically to identify a CHO model that produces the best correlation
with a given set of human-observer data.

In this paper, we argue that the internal noise fitting approach to CHO optimization is, in
essence, a supervised-learning or system-identification problem, as shown in Fig. 1. That is,
the goal of the CHO is to identify the unknown system of the human observer or, in other
words, to learn to predict the output of the human observer. When the CHO is optimized by
adjusting the internal noise parameter, this can be viewed as a model-tuning step for a
learning machine, the goal being to accurately predict some measure of human-observer
performance, such as the area under the receiver-operating characteristic (ROC) curve.

The supervised-learning viewpoint that we advocate in this paper makes apparent two
important issues. First, while the CHO has been proven to be a good model for human-
observer performance, even better models may exist; in particular, there may be models that
can more accurately predict human-observer performance, while also generalizing well to
images not available during observer training. In particular, machine-learning methods such
as support-vector machines (SVM) [13], [14] may be preferred, because these models are
flexible and are known to generalize well to unseen data. Second, when viewing observer
optimization as a supervised-learning problem, it becomes apparent that one must be careful
to use appropriate validation procedures for testing the performance. For example, it is
important not to use the same data for both training and testing of the observer, a mistake
that is sometimes made when evaluating application-specific CHOs.

In this paper, we develop a numerical observer, which we call a channelized SVM (CSVM).
The proposed CSVM is based on the same channel operator as the CHO, but replaces the
CHO’s Hotelling detector with an SVM, which is a supervised learning machine.
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In the experiments described later in the paper, we use subsets of the human-observer data
presented in [7] to optimize the CHO and CSVM, and then use other subsets of these data to
test both models. We optimize both numerical observers for prediction of the area under the
receiver operating characteristic (ROC) curve Az. Such predictions can be used in practice,
for example, to compare image quality across a range of image-reconstruction parameters.

In our experiments, we find that the CHO and CSVM perform equally well when the
training and test images are reconstructed in precisely the same way. However, when the
CHO and CSVM are trained on images reconstructed in one way, then tested using images
reconstructed in a different way, the CSVM significantly outperforms the CHO in terms of
prediction accuracy.

The purpose of a numerical observer is to evaluate an imaging algorithm or device for which
human-observer data are not available. Therefore, we argue that the ability of the CSVM to
generalize from one type of image to another is an important capability. Thus, we propose
that the CSVM may represent a useful improvement on the CHO, while retaining the same
fundamental approach to the problem of image-quality assessment.

It is important to note that the proposed method aims to train the numerical observer on the
images and the human observer scores rather than on the images and the truth status of each
image; therefore it is natural to expect that such a numerical observer will have good
agreement with the human observer. Similar philosophy of using human observer data was
adopted in [27] and [28], where a linear human-observer template was estimated in two-
alternative forced-choice experiments.

This paper expands significantly on previous conference papers of ours [15] and [26], in
which the essential ideas were first introduced. The theory of the method has been refined
since the conference papers, and all of the experimental results in the present paper are new.
The general idea of using a learning machine to model human responses to images is one
that we have used successfully in the past in the context of retrieving relevant mammograms
from a database based on image content [16]. In that work, the goal was to learn to judge the
similarity between two images based on similarity scores reported by human observers.

The rest of the paper is organized as follows. In Section II, we review the CHO and
introduce the proposed CSVM as a model of the human observer. In Section III, we report
experiments to test the CSVM model. In Section IV, we present our conclusions.

II. METHODOLOGY

We begin with a brief introduction to the well-known CHO, on which our proposed image-
quality assessment method is based.

A. Channelized Hotelling Observer

The CHO is a numerical observer that serves as a surrogate for human observers in
evaluations of image quality. In this context, one considers an image to be of good quality if
it permits the numerical observer to perform well in detecting a known signal (e.g., a lesion).

Suppose that an observed image is represented as a vector f by using lexicographic ordering
of the pixel values. In our experiments, f represents an image of myocardial perfusion,
which may or may not exhibit a known perfusion defect at a known location [signal-known-
exactly (SKE)] environment.

As shown in Fig. 1, the CHO is a cascade of two linear operators, which in practice can be
combined into one. The first operator, called the channel operator U, measures features of
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the image by applying nonoverlapping, bandpass filters (Fig. 2), which are intended to
model the human visual system [2]. In our experiments, four rotationally symmetric
bandpass filters were used, having cutoff frequencies of [0.0375, 0.625, 0.125, 0.25, 0.5]
cycles/pixel.

When applied to the image f, the channel operator yields a feature vector

(1)

The second operator, called the Hotelling observer, computes a test statistic for choosing
between the following hypotheses based on the observed feature vector x:

(2)

where p(x|Hj) is the probability density function (PDF) of x given hypothesis Hj, j = 0, 1. In
the present context the CHO is defined as

(3)

where d = μ1 − μ0, in which μj = E[x|Hj] is the expected value of x under hypothesis Hj,
and Σ is a covariance matrix which is modeled as

(4)

where Σj = cov [x|Hj] is the covariance matrix of x under hypothesis Hj, and σ2 is the
variance in one model for the so-called internal noise [7]. Alternative internal noise models
are explored in [6]–[8], [11]. Note that the parameters μj and Σj,j = 0, 1, are determined from
the data or analytically calculated (see [8]–[10] for example). In (3) the internal noise was
estimated during model training, but the model statistics (μj and Σj) were estimated from the
test data. When properly chosen, the internal noise variance σ2 can improve the agreement
between the CHO and the human observer [7], [8]. Without the internal noise term, the
Hotelling observer is equivalent to a generalized likelihood ratio test (GLRT) between the
hypotheses in (2) under the assumption that the PDFs are Gaussian with equal covariance
matrices.

B. Channelized Learning Machine

In this work we adopt a supervised learning machine for identifying f(x) (as seen in Fig. 1),
a function (linear or nonlinear) that maps the extracted image feature vector to human
scores. Thus, we preserve the same structure and channel operator as in the CHO.

For this purpose we first collect a training set of example images, each labeled by a human
observer with a score Y, which is the human observer’s stated confidence in the presence of
a known signal (e.g., a perfusion defect) at a specified location within the image.

Thus, the goal of our learning machine is to obtain prediction of the human observer score,
Y, based on the feature vector x. For this purpose, we consider the following regression
model:

(5)
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in which η is the modeling error. Our aim is to determine a function f(·) that will accurately
predict the score Y, while generalizing well to images outside the training set.

In a preliminary study [15], we investigated the use of both a support vector machine (SVM)
and a neural network for modeling f(·), and found that the former could achieve significantly
better performance. Therefore, in this study we will consider only the SVM.

C. Support Vector Machines

The SVM is a general procedure based on statistical learning theory [17]. SVM embodies
the so-called structural risk minimization (SRM) principle, which has been shown [18] to be
superior to the traditional empirical risk minimization principle. SRM minimizes an upper
bound on the generalization error as opposed to minimizing error on the training data.
Consequently, an SVM tends to generalize well to data outside the training set. We have
used SVM successfully in a similar context to accomplish content-based retrieval of
mammograms [16].

When applied to a regression problem, an SVM can be viewed in concept as a two-step
process, though in practice these steps can be combined into one. In the first step, the input
data vector x is transformed into a higher-dimensional space ℜ through a nonlinear mapping
Ф (·). In the second step, a linear regression is performed in the ℜ space. The net effect of
the two steps is a nonlinear regression having the following form:

(6)

in which vector w and scalar b are parameters determined from training. Specifically, let
{(xi, yi), i = 1, 2, …, l} denote a set of training samples, where yi is the human-observer
score Y for image fi i.e., yi is a specific realization of Y. The parameters w and b in the
regression function in (6) are determined through minimization of the following structured
risk functional:

(7)

where Lε(·) is the so-called ε–insensitive loss function which is defined as

(8)

The function Lε (·) has the property that it does not penalize errors below the parameter ε.
The constant C in (7) determines the trade-off between the model complexity and the
training error.

The optimal solution for w* in (7) can be written in the following form:

(9)

where si, i = 1, …, ls, are a subset of the training examples {xi, i = 1, 2, …, l} called support
vectors.
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Substituting w* into (6) yields

(10)

By introducing a so-called kernel function K(si, x) = Ф(si)
TФ(x), we can write fcsvm(x) in a

compact form as

(11)

As can be seen from (11), the SVM function fcsvm(x) is completely characterized by the
support vectors si,i = 1, …, ls. A training sample (xi, yi) is a margin support vector when |yi
− fcsvm(xi)| = ε, and an error support vector when.|yi − fcsvm(xi)| > ε.

As an illustration, Fig. 3 shows the case of 1-D regression using SVM, where data points
that are identified as support vectors are marked by squares, and the rest of the data points
are marked by circles. The regression function fcsvm(x) is indicated by the thick line and the
ε-insensitivity bands are indicated by the two thin lines along each side of fcsvm(x). Note
that all support vectors are located either on or outside the ε-in-sensitivity bands. For each
support vector si, the kernel function K (si, x) is also plotted with its height proportional to
γi.

From (11), one can directly evaluate the regression function through the kernel function K (·,
·) without the need to define the underlying mapping Ф(·) explicitly. In our experiments, we
used the Gaussian radial basis function (RBF) kernel, which is among the most commonly
used kernels in SVM research, given by

(12)

where  is a constant that defines the kernel width.

The parameters b* and γi, i = 1, …, ls, and the support vectors si, i = 1, …, ls, in the SVM
functional in (10) are determined by quadratic programming. In our experiments we used a
MATLAB implementation to solve the quadratic program [19]. The model parameters C, ε,

and  were determined by using a cross-validation procedure as explained next.

D. Cross-Validation for Performance Evaluation

Cross-validation is a statistical learning evaluation procedure used to estimate the
generalization error of a learning machine. In our experiments, we use k-fold cross
validation, in which the set of available data is first divided into k subsets. During training,
each of these subsets is held-out in turn, and the rest of k − 1 subsets are used for training;
the trained learning machine is then tested on the held-out subset. This process is repeated
for k times and the average generalization error (measured by the mean-squared-error
between predicted and HO scores) is obtained in the end.
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E. Performance Metric

The goal of the numerical observer is to predict the performance of human observers in a
lesion-detection task (SKE paradigm). Therefore, as is commonly done in CHO research, we
adopt the area under the ROC curve Az as a summary measure of detection performance.
Therefore, we define the goal of the numerical observer is to accurately predict the Az value
of the human observer.

To form a predicted Az value using the CSVM, we input each of the test images into the
numerical observer, and record the resulting output value. This step is analogous to
obtaining a score from a human observer. Next, based on all scores thus obtained, we use the
ROCKIT program by Metz [20], [21] to compute Az, as one would normally do for human-
observer scores.

III. PERFORMANCE EVALUATION STUDY

In this section, we describe experiments designed to compare the CSVM and CHO in terms
of their ability to predict human-observer performance, as measured by the area under the
ROC curve Az in a lesion-detection task.

A. Human-Observer Data Set

Our experiments are based on data obtained in a previously published human-observer study
[7] by Narayanan et al. Their study was based on images that simulate myocardial-perfusion
imaging using single-photon emission computed tomography (SPECT). The aim of their
work was to optimize iterative image reconstruction from data obtained using a 99m Tc-
labeled myocardial-perfusion imaging agent. For completeness, we review the salient
features of the human-observer data that we used in our experiments. Further details can be
found in the original paper [7].

An MCAT phantom [22] was used to simulate activity and attenuation maps for a human
torso, including the effects of contractile and wringing heart motions, and respiratory
motion. The phantom images were defined on a 128 × 128 × 128 grid with 0.317 cm voxel
size. A simulated perfusion defect was placed at a fixed position in the left-ventricular wall,
as shown in Fig. 4. This defect provided the signal that the human observers attempted to
detect.

Monte Carlo simulation was used to produce 128 × 128 projection data at 60 angles over a
range of 360°, including the effects of nonuniform attenuation, scatter, and depth-dependent
spatial resolution simulating a low-energy high-resolution collimator. Noise was introduced
corresponding to 3 million counts.

Images were reconstructed from the noisy simulated data using the ordered subsets
expectation-maximization (OSEM) algorithm [23] with either one or five effective
iterations. These images were low-pass filtered with 3-D Gaussian filters with the following
values of the full width at half-maximum (FWHM): 0, 1, 2, 3, 4, or 5 pixels. By choosing
the number of iterations and the FWHM of the filter, one obtains 12 different variations of
the image-reconstruction algorithm.

Two medical physicists evaluated the defect visibility in a signal-known-exactly (SKE)
environment [which also assumes location-known-exactly (LKE)] for images at every
combination of the number of iterations and FWHM of the filter. For each parameter
combination of the reconstruction algorithm, a total of 100 noisy image realizations were
scored by the observers (50 with defect present and 50 with defect absent) on a six-point
scale, following a training session involving an additional 60 images.
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In Fig. 4 we show some examples of the images used in the human-observer study. These
example images were reconstructed from a particular noise realization with one effective
iteration of OSEM, and one of three different levels of smoothing (FWHM = 1, 3, or 5
pixels). Fig. 4 shows images of both the defect-present and defect-absent conditions. The
location of the defect is indicated by arrows. As one can see, the defect is fairly
inconspicuous at all smoothing levels. At low levels of smoothing, it is difficult to
distinguish the defect from noise. At high levels of smoothing, the low contrast of the defect
makes it difficult for human observers to detect.

The image scores from the two observers were pooled together into a single set for
subsequent studies. That is, the scores from the two observers were treated as two
observations of the same images. This would double the number of training samples. This
approach was used here because no large inter-observer variation was observed. This
assumption is justified by the results shown in Fig. 5, which shows that the area under
receiver operating characteristic (ROC) curve, Az, is virtually the same whether the Az
values for two observers are averaged, or whether the observer data are pooled prior to
computing Az. In this figure two sets of sample ROC curves are also shown to demonstrate
the good agreement between the two observers. The error bars represent an average error bar
over two readers as obtained from the ROCKIT program which is a conservative estimate.
Finally, we note that in case there were large interobserver variation, one would need to
carefully design the observer studies (e.g., use more observers) and apply statistical analyses
to remove the interobserver variation in the data (see [29]).

B. Evaluation of the Numerical Observers

In the present context, the purpose of a numerical observer is to provide an estimate of
lesion-detection performance as a measure of image quality in cases when human-observer
data are not available. For example, a numerical observer might be used to optimize a
parameter of an image-reconstruction algorithm by choosing the parameter value that
maximizes observer performance.

However, for such an approach to be useful, the numerical observer must accurately predict
human-observer performance over a wide range of reconstruction parameter settings for
which no human-observer data were available. Thus, in the language of machine learning,
the numerical observer must exhibit good generalization properties.

In this section, we study three different generalization properties of the CHO and CSVM by
selecting the training and test sets in different ways, as we explain next.

1) Comparison 1: Generalization To Unseen Images of the Same Kind—We

began by testing whether each numerical observer can generalize to images that were not
present in the training set, but which are otherwise the same. Specifically, we considered
images produced by precisely the same reconstruction algorithm, but using different noise
realizations than those used in the training phase. The ability to generalize to new images of
the same kind is a necessary, but not sufficient, property for a numerical observer to be
useful.

We trained the numerical observers in the following way. For the CHO, the process of
training consisted of optimizing the selection of the internal noise parameter σ2. In this
experiment, we optimized the internal noise parameter by exhaustive search to ensure that
the best match to the human observer was found.

For the CSVM, training consisted of solving a quadratic programming problem to find
parameters b and γi, i = 1, …, ls, and the support vectors si, i = 1, …, ls for each setting of a
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model parameters C,  and ε. In our experiments, we optimized the values of C,  and ε,
by using a five-fold cross-validation resampling procedure [24]. It was observed in our
experiments that CSVM performance was fairly insensitive to the choice of these
parameters. The same procedure was also used for determining the internal noise parameter
σ2 for the CHO. As explained earlier, by choosing either one or five OSEM iterations, or
one of six values of the filter FWHM, we obtained 12 different combined parameter settings
of the reconstruction algorithm. For each of these 12 settings, we evaluated the average
value of Az predicted by numerical observers by using five-fold cross validation [24] on the
100 images.

The goal of each numerical observer is to produce a predicted Az value that is close to that
of the human observers. As shown in Fig. 6, both CSVM and CHO can almost perfectly
mimic human-observer performance in this case. Error bars represent the standard deviation
of Az obtained by five-fold cross validation.

Note that the entire data set was used in cross-validation optimization of the model
parameters (and internal noise); therefore a positive bias was introduced. In our following
comparisons, this source of bias is avoided because the testing and training sets are mutually
exclusive.

Furthermore, for comparison, Fig. 6 shows a set of results obtained with a channelized linear
regression model (indicated by CLIN). Like the CHO, this is a linear observer model, except
that it is obtained by regressing against the human observer scores (like the CSVM). It is
essentially a special case of CSVM when a first order polynomial kernel is used for SVM.

These results suggest that both CSVM and CHO can accurately generalize to unseen images,
provided that these images are produced in exactly the same way as those used in training.
The linear regression method does not seem to work as well.

2) Comparison 2: Generalization From One Specific Type of Images to

Another—Next, we considered the result of training the numerical observers with images

made using one combination of image-reconstruction parameters, then testing these
observers with new images made using a different combination of reconstruction parameter
values.

In this experiment, we trained each numerical observer using 100 images, all reconstructed
by one of the 12 reconstruction-parameter combinations. We repeated this for each of the 12
combinations, yielding 12 different CHOs and 12 CSVMs. In each of these CHOs and

CSVMs, we used the optimized model parameters, σ2, C, , and ε obtained in the previous
experiment by five-fold cross validation. No test images were used in the selection of the
model parameters of either the CHO or the CSVM.

We then tested each of these CHOs and CSVMs using all of the other images (therefore, no
training images were included in any test set) therefore, the results of the evaluation are
unbiased. Finally, for each reconstruction-parameter combination, we computed the average
predicted value Az and the standard deviation std(Az), in which the average and standard
deviation were taken over all the numerical observers trained on images obtained by a
different set of reconstruction parameters (11 of them).

These results, shown in Fig. 7, indicate that the CSVM could be much more successful in
generalizing to images reconstructed differently than those in the training set. In particular,
the CSVM correctly identified that the peak human-observer performance occurs at FWHM
= 4 for one iteration and FWHM = 3 for five iterations, whereas the CHO estimated peak
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performance to occur at FWHM = 2 and FWHM = 3, respectively. If graphs such as these
were used to optimize the reconstruction algorithm, then the CHO would produce an
inaccurate conclusion in this case.

3) Comparison 3: Generalization From one Broad Class of Images to Another

—In this final comparison, we studied a kind of generaliation that is perhaps most

representative of the practical use of a numerical observer. In this experiment, we trained
both numerical observers on a broad range of images, and then tested them on a different,
but equally broad, set of images. Specifically, we trained both numerical observers using
images for every value of the filter FWHM and one iteration of OSEM, and then tested the
observers using all the images for every value of the filter FWHM with five iterations of
OSEM. Then we repeated the experiment with the roles of one and five iterations reversed.

In this experiment, the parameters of the CHO and CSVM were again optimized to
minimize generalization error measured using five-fold cross validation based on the
training images only. Therefore, no test images were used in any way in the choices of the
model parameters for either numerical observer.

The results of this experiment are shown in Fig. 8. In this situation, the CHO performed
relatively poorly, failing to match either the shape or amplitude of the human-observer Az
curves, while the CSVM was able to produce reasonably accurate predictions of Az in both
cases. The error bars represent standard deviation calculated using fide-fold cross validation
on the testing data.

For comparison, we also show in Fig. 8 results obtained when no internal noise was used for
the CHO. As can be seen, the CHO in this case does not correlate well with the HO.

Afterwards we calculated Kendall’s tau rank correlation coefficient [25] for each experiment
(see Table I). The Kendall tau coefficient measures the degree of correspondence between
two sets of rankings, ranging from −1 (anticorrelated) to +1 (perfectly correlated). In this
case, we used the Kendall tau coefficient to assess the degree of correspondence between the
ranking of reconstruction algorithms of the numerical observers with that of the human
observers. The results shown in Table I show that the CHO can yield highly inaccurate
rankings of image quality, while both the CSVM and CLIN produce consistently good
results (near +1).

IV. CONCLUSION

We have introduced an alternative to the CHO called the channelized support vector
machine (CSVM) (as well as the channelized linear regression model (CLIN) a special case
of CSVM when a first order polynomial kernel is used for SVM), which is intended for use
as a task-based measure of image quality. We found, at least for the data tested, that the
CSVM, obtained by regressing against the human observer scores, can produce more
accurate predictions of human-observer performance than the CHO. Our main finding is
that, while the CHO and CSVM both generalized well to unseen images reconstructed in the
same way as those in the training set, the CHO did not generalize well in this experiment to
unseen images reconstructed in different ways. On the contrary, the CSVM performed well
in predicting human-observer performance in all the cases tested. The CHO is a simpler
detector than CSVM, which is more conducive to analytical analysis of observer
performance. However, the good performance of CSVM may prove beneficial for numerical
analysis of performance.

Brankov et al. Page 10

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 February 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Of course, further studies will be needed to fully validate the CSVM technique; however,
this initial study suggests that the CSVM is a promising method for calculation of accurate
predictions of human-observer performance in lesion-detection tasks.

In future studies, we will evaluate whether the channel operator is the optimal pre-processor
within the CSVM context, and whether other learning machines might perform better than
the support vector machine. In addition we will also consider the feasibility of extending the
proposed methodology for an observer localization task.
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Fig. 1.
Block diagram of a human observer and channelized numerical observer in a lesion-
detection task. A human observer reports score Y describing his confidence that a lesion is
present. Development of a numerical observer can be viewed as a supervised-learning
problem, in which the goal is to identify the unknown human system. In other words, the
goal is to train the numerical observer to produce a value Ŷ = f(x) that closely match the
human-observer score Y.
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Fig. 2.
Feature extraction channels used in the CHO: (a) frequency domain responses and (b) spatial
domain responses.
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Fig. 3.
Illustration of regression using a support vector machine, which is based on elements of the
training set called support vectors, denotes by si, i = 1, …,ls.
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Fig. 4.
Example images of OSEM-reconstructed images with one effective iteration.
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Fig. 5.
Human observer performance variability evaluation: top; Az obtained from pooled data
versus averaging Az over two observers, bottom: Estimated ROC curves using ROCKIT for
two observers at two different reconstruction parameters.
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Fig. 6.
Comparison 1: Results comparing ability of CSVM and CHO to generalize to test images of
the same type, but different noise realizations, as the training images. In this situation, both
the CSVM and CHO are very successful in predicting human-observer performance.
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Fig. 7.
Comparison 2: Results comparing ability of CSVM and CHO to generalize to test images of
a different type from the training-set images. Only the CSVM is able to produce an
approximate match to human-observer performance in this case.

Brankov et al. Page 19

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 February 23.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 8.
Comparison 3: Results comparing ability of CSVM and CHO to generalize from one broad
class of images to another. Only the CSVM is able to produce an approximate match to
human-observer performance in this case.
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TABLE I

Kandall rank correlation coefficient

Methods Comparison 1 Comparison 2 Comparison 3

CSVM 0.91 0.70 0.82

CLIN 0.79 0.79 0.73

CHO 0.79 0.39 0.45
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