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Abstract

In this paper, we address the problem of estimating and

removing non-uniform motion blur from a single blurry im-

age. We propose a deep learning approach to predicting

the probabilistic distribution of motion blur at the patch

level using a convolutional neural network (CNN). We fur-

ther extend the candidate set of motion kernels predicted

by the CNN using carefully designed image rotations. A

Markov random field model is then used to infer a dense

non-uniform motion blur field enforcing motion smooth-

ness. Finally, motion blur is removed by a non-uniform de-

blurring model using patch-level image prior. Experimental

evaluations show that our approach can effectively estimate

and remove complex non-uniform motion blur that is not

handled well by previous approaches.

1. Introduction

Image deblurring [2, 6, 9, 11, 14, 19, 23, 30] aims at

recovering sharp image from a blurry image due to camera

shake, object motion or out-of-focus. In this paper, we focus

on estimating and removing spatially varying motion blur.

Non-uniform deblurring [10, 13, 20] has attracted much

attention in recent years. Methods in [7, 8, 26, 31] work

on non-uniform blur caused by camera rotations, in-plane

translations or forward out-of-plane translations. They are

effective for removing non-uniform blur consistent with

these motion assumptions. Another category of approaches

works on non-uniform motion blur caused by object mo-

tion. They estimate blur kernels by analyzing image statis-

tics [17], blur spectrum [1], or with a learning approach us-

ing hand-crafted features [3]. Other approaches [13, 29]

jointly estimate the sharp image and blur kernels using

a sparsity prior. It is still challenging today to remove

strongly non-uniform motion blur captured in complex

scenes.

In this work, we propose a novel deep learning-based ap-

proach to estimating non-uniform motion blur, followed by

∗WILLOW project-team, Département d’Informatique de l’Ecole Nor-

male Supérieure, ENS/Inria/CNRS UMR 8548.

a patch statistics-based deblurring model adapted to non-

uniform motion blur. We estimate the probabilities of mo-

tion kernels at the patch level using a convolutional neural

network (CNN) [5, 12, 15, 16], then fuse the patch-based

estimations into a dense field of motion kernels using a

Markov random field (MRF) model. To fully utilize the

CNN, we propose to extend the candidate motion kernel

set predicted by CNN using an image rotation technique,

which significantly boost its performance for motion kernel

estimation. Taking advantage of the strong feature learning

power of CNNs, we can well predict the challenging non-

uniform motion blur that can hardly be well estimated by

the state-of-the-art approaches.

Figure 1 illustrates our approach. Given a blurry image,

we first estimate non-uniform motion blur field by a CNN

model, then we deconvolve the blurry image. Our approach

can effectively estimate the spatially varying motion ker-

nels, which enable us to well remove the motion blur.

1.1. Related Work

Estimating accurate motion blur kernels is essential to

non-uniform image deblurring. In [7, 8, 25, 26, 31], non-

uniform motion blur is modeled as a global camera motion,

which basically estimates an uniform kernel in the camera

motion space. Methods in [10, 13, 29] jointly estimate the

motion kernels and sharp image. They rely on a sparsity

prior to infer the latent sharp image for better motion kernel

estimation. Different to them, we estimate motion blur ker-

nels directly using the local patches, which does not require

the estimation of camera motion or a latent sharp image.

Another category of approaches [1, 4] estimates spatially

varying motion blur based on local image features. The

method in [1] estimates motion blur based on blur spectrum

analysis of image patch in Fourier transform space. [17]

predicts motion blur kernel using natural image statistics.

[4] estimates motion blur by analyzing the alpha maps of

image edges. [3] learns a regression function to predict mo-

tion blur kernel based on some hand-crafted features. Dif-

ferent to them, we estimate motion blur kernels using a con-

volutional neural network, followed by a carefully designed

motion kernel extension method and MRF model to predict
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Figure 1. An example illustrating our approach. Given an image with non-uniform motion blur (left). We first estimate the field of

non-uniform motion blur kernels by a convolutional neural network (middle), then deconvolve the blurred image (right).

a dense field of motion kernels. Our approach can well esti-

mate complex and strong motion blur, which can hardly be

well estimated by the previous approaches.

Recently, there has been some related work on learning-

based deblurring approaches. [21] proposes a discrimina-

tive deblurring approach using cascade of Gaussian CRF

models for uniform blur removal. [22] proposes a neural

network approach for learning a denoiser to suppress noises

during deconvolution. [28] designs an image deconvolu-

tion neural network for non-blind deconvolution. These

approaches above focus on designing better learning-based

model for uniform blur removal. Our approach works on

a more challenging task of non-uniform motion blur esti-

mation and removal. Our CNN-based approach provides an

effective method for solving this problem.

2. Learning a CNN for Motion Blur Estimation

We propose to estimate spatially-varying motion blur

kernels using a convolutional neural network. The basic

idea is that we first predict the probabilities of different mo-

tion kernels for each image patch. Then we estimate dense

motion blur kernels for the whole image using a Markov

random field model enforcing motion smoothness.

θ

m = (l,θ )

l
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Figure 2. Representation of motion blur kernel by motion vector

and generation of motion kernel candidates.

Before giving the details of our approach, let us first

introduce our general formulation for non-uniform motion

blur. We consider non-uniform image blur caused by object

or camera motion. Given a blurry image I , we represent

the local motion blur kernel at an image pixel p ∈ Ω (Ω is

the image region) by a motion vector mp = (lp, op), which

characterizes the length and orientation of the motion field

in p when the camera shutter is open. As shown in Fig. 2(a),

each motion vector determines a motion kernel with non-

zero values only along the motion trace. The blurry image

can then be represented by I = k(M) ∗ I0, i.e., the con-

volution of a latent sharp image I0 with the non-uniform

motion blur kernels k(M) determined by the motion field

M = {mp}p∈Ω.

In the following paragraph, we also represent the motion

vector mp as (up, vp) in Cartesian coordinate system based

on the transform:

up = lp cos(op), vp = lp sin(op). (1)

The estimation of spatially-varying motion blur kernels

is equivalent to estimating the motion field1 from a single

blurry image. In our approach, we do not make any global

parametric assumptions (e.g., homography) on the motion,

therefore the motion kernel estimation is challenging, and

we only use local image regions for predicting these kernels.

2.1. Patch­level Motion Kernel Estimation by CNN

We now present our approach to predicting motion blur

kernels (or equivalently, the motion vector) at the patch

level. We decompose the image into overlapping patches

of size 30 × 30. Given a blurry patch Ψp centered at pixel

p, we aim to predict the probabilistic distribution of motion

kernels:
P (m = (l, o)|Ψp) (2)

for all l ∈ Sl and o ∈ So, Sl and So are the sets of motion

lengths and orientations respectively. In the followings, we

1Note that motions m = (l, o) and m
′ = (l, o + 180◦) generate the

same motion blur kernel. We therefore only need to estimate the motions

with o ∈ [0, 180◦).
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Figure 3. Structure of CNN for motion kernels prediction. It is composed of 6 layers of convolutional layers and fully connected layers. It

outputs the probability of each candidate motion kernel using soft-max layer. The right sub-figure shows the learned filters in C1.

call this distribution as motion distribution.

Taking the problem of motion kernel estimation as a

learning problem, we utilize convolutional neural network

to learn the effective features for predicting motion distri-

butions in Eqn. (2). We generate a set of candidate motion

kernels by discretizing the motion space, i.e., the ranges of

length and orientation of the motion vectors. In our imple-

mentation, we discretize the range of motion length into 13

samples from l = 1 to 25 with interval of two, and dis-

cretize the range of motion orientation [0, 180◦) into 6 sam-

ples from 0◦ to 150◦ with interval of 30◦. Note that when

the motion length l = 1, all motion vectors correspond to

the same blur kernel (i.e., identity kernel) on image grid re-

gardless of the motion orientation. We therefore generate

73 candidate motion vectors (shown in Fig. 2(c)) in differ-

ent combinations of motion lengths and orientations. We

denote the above set of motion kernel candidates as S and

the sets of motion lengths and motion orientations as Sl and

So respectively. Obviously, these candidate motion vectors

are far from dense in the continuous motion space. In Sec-

tion 2.2 we will show how to extend the motion kernels of

CNN to predict motion kernels outside the set S.

Given the candidate motion kernel set S, we next con-

struct and learn CNN for predicting the motion distribution

over S given a blurry patch. The convolutional neural net-

work is constructed as follows. As shown in Fig. 3, the net-

work has six layers: C1−M2−C3−M4−F5−S6. C1
is a convolutional layer using filters (7× 7× 3) followed by

ReLU (i.e., f(x) = max(x, 0) [15]) non-linear transform;

M2 is a max-pooling layer over 2 × 2 cells with stride 2;

C3 is a convolutional layer using 256 filters (5 × 5 × 96);

M4 is a max-pooling layer same as M2; F5 is a fully con-

nected layer with 1024 neurons; S6 is a soft-max layer with

73 labels, and each label corresponds to a candidate motion

blur kernel in S as shown in Fig. 2(c).

To train the CNN model, we generate a large set of train-

ing data T = {Ψk,mk}
K
k=1, which are composed of blurry

patch / motion kernel pairs. We synthetically generate

blurry images by convolving clean natural images with the

73 possible motion kernels, then randomly crop 30×30×3
color patches from the blurry images as the training patches

{Ψk}
K
k=1, and take the labels of corresponding ground-truth

motion kernels as the training labels {mk}
K
k=1. We gener-

ate training data using 1000 images randomly sampled from

PASCAL VOC 2010 database and finally construct a train-

ing set of around 1.4 million pairs of blurry patches and

their ground-truth motion kernels. Using Caffe [5]2, we

train the CNN model in one million iterations by stochas-

tic gradient descent algorithm with batches of 64 patches in

each iteration.

Because the final layer of the CNN is a soft-max layer,

we can predict the probabilities of motion kernels given an

observed blurry patch Ψ as

P (m = (l, o)|Ψ) =
exp((wS6

c )TφF5(Ψ))∑
n exp((w

S6
n )TφF5(Ψ))

, (3)

where wS6
c is the vector of weights on neuron connections

from F5 layer to the neuron in S6 layer representing the

motion kernel (l, o), c is the index of (l, o) in S. φF5(Ψ) is

the output features of F5 layer of a blurry patch Ψ, which

is a 1024-dimensional feature vector.

In our implementation, we also tried to learn more com-

plex CNN structures (e.g., with one more convolutional

layer or more filters in convolutional layers), but the learn-

ing speed is significantly slower while the final prediction

results are not significantly improved. Figure 3 (right)

shows examples of automatically learned filters by our CNN

model for motion kernel prediction. These filters reflect di-

verse local structures in sharp or blurry patch instances.
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p
(I )

Ψ
p
(R

θ
I )
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I R

θ
I

θ = −24
o

Figure 4. Motion kernel estimation on a rotated patch. I is a blurry

image, RθI is the rotated image with θ (θ = −24
o in this case).

2.2. Extending the Motion Kernel Set of CNN

Our learned CNN model can predict the probabilities
of 73 candidate motion kernels in S. Obviously, they are

not sufficiently dense in the motion space. We next extend

the motion kernel set predicted by the CNN to enable the

prediction for motion kernels outside S.

2http://caffe.berkeleyvision.org
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Figure 5. Extension of motion kernel set predicted by CNN using rotated images. For an image I , we generate its rotated images

R−6◦I,R−12◦I, R−18◦I,R−24◦I , then feed each patch and its rotated versions into the CNN to predict motion distributions. By con-

catenating all the motion distribution estimations, we can estimate the probabilities of more densely sampled motion kernels.

We make the extension based on the following observa-

tion. As shown in Fig. 4, given a blurry image I , we rotate

it by θ degrees (denoted as RθI , Rθ is a rotation operator).

For a pair of patches Ψp(I) and its rotated version Ψp(RθI)
cropped from I and RθI centered at pixel p respectively,

if we can predict that the motion kernel of Ψp(RθI) is

m = (l, o), then we can deduce directly that the motion

kernel of corresponding patch Ψp(I) in I is m = (l, o− θ).
Based on the above observation, we can estimate the

probabilities of motion kernels for patch Ψp(I) using its

rotated patch Ψp(RθI). By feeding the rotated patch into

CNN, we can estimate the probabilities of motion kernels

for the rotated patch: P (m = (l, o)|Ψp(RθI)),m ∈ S,

then we can deduce that the motion distribution of the orig-

inal patch Ψp(I) before rotation is:

P (m = (l, o− θ)|Ψp(I)) = P (m = (l, o)|Ψp(RθI)). (4)

Note that motion m = (l, o − θ) may not belong to the

motion kernel set of CNN (i.e., S).

By carefully designing the image rotations, we can

extend the motion kernel set of CNN as follows. Re-

member that the original CNN can predict probabilities

of 73 motion kernels in S with orientations in So =
{0◦, 30◦, 60◦, 90◦, 120◦, 150◦} with interval of 30◦. As

shown in Fig. 5, given a blurry image I , we first generate its

rotated images R−6◦I, R−12◦I, R−18◦I, R−24◦I with ro-

tation angles within [0, 30◦) and interval of 6◦. For each

patch Ψp(I) centered at pixel p, we extract its rotated ver-

sions Ψp(RθI) (θ ∈ {−6◦,−12◦,−18◦,−24◦}) from the

rotated images. By feeding these patches into CNN, we can

predict the probabilities of motion kernels for patch Ψp(I)
using each patch based on Eqn. (4):

P (m = (l, o)|Ψp(I)) = P (m = (l, o)|Ψp(I)),

P (m = (l, o+ 6◦)|Ψp(I)) = P (m = (l, o)|Ψp(R−6◦I)),

P (m = (l, o+ 12◦)|Ψp(I)) = P (m = (l, o)|Ψp(R−12◦I)),

P (m = (l, o+ 18◦)|Ψp(I)) = P (m = (l, o)|Ψp(R−18◦I)),

P (m = (l, o+ 24◦)|Ψp(I)) = P (m = (l, o)|Ψp(R−24◦I)),

where l ∈ Sl, o ∈ So. By concatenating all the above es-

timations from one patch and its rotated versions, we can

therefore predict the motion distribution in an extended mo-

tion kernel set of CNN: P (m = (l, o)|Ψp(I)), o ∈ So
ext =

{0◦, 6◦, 12◦, · · · , 174◦}, l ∈ Sl. After motion kernels ex-

tension, we can totally predict probabilities of 361 candi-

date motion kernels3 for an image patch by CNN, which is

almost 5 times of the number of candidate motion kernels in

S predicted by CNN. Note that this process does not require

the CNN retraining, but just feed this image and its rotated

versions to our learned CNN.

(a)	
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  Es1ma1on	
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  CNN	
  mo1on	
  

kernel	
  set	
  extension	
  (MSE	
  =	
  10.3) 
(c)	
  Es1ma1on	
  with	
  CNN	
  mo1on	
  

kernel	
  set	
  extension	
  (MSE	
  =	
  8.4) 

Figure 6. Effect of CNN motion kernel set extension.

Figure 6 shows an example of motion kernel estimation

without and with CNN motion kernel set extension. In this

example, we synthetically generate the motion blur using a

camera motion. As shown in Fig. 6(b), the estimated mo-

tion kernels suffer from blocky artifacts in the blue rectangle

because all pixels in it are predicted to have the same orien-

tation due to the large quantization interval of motion orien-

tations. By extending the motion kernel set of CNN, we can

predict more accurate motion kernels shown in Fig. 6(c).

The mean squared error (MSE) w.r.t. ground-truth motion

kernels is reduced from 10.3 to 8.4.

3. Dense Motion Field Estimation by MRF

The CNN predicts distribution of motion kernels in an

image at the patch level. We now discuss how to fuse these

3There are totally 390 possible kernels by combining the motion

lengths in Sl (|Sl| = 13) and motion orientations in So
ext

(|So
ext

| = 30).

But the motion kernels {m = (l, o)}o∈So
ext

when l = 1 are all the same,

we only retain one of them.
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Figure 7. Examples of motion kernel probabilities. The left of (b) show four blurry patches cropped from (a). Each color map on the right

of (b) shows the probabilities of motion kernels in different motion lengths and orientations estimated for each blurry patch by CNN. Note

that the high probability regions are local in each map. (c) shows our final motion kernel estimation.
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Figure 8. Example of non-uniform motion kernel estimation. (b) Estimation using the unary term of Eqn.(6), i.e., choosing the motion

kernel with highest confidence for each pixel. (c) Estimation using the full model of Eqn.(6) with motion smoothness constraint. (d)

Ground-truth motion blur. MSE motion is an accuracy measurement of motion blur defined in Section 5.

patch-level motion kernel estimations into a dense field of

motion kernels for the image.

Given an image I , we sample 30 × 30 × 3 overlapping

color patches with a spatial interval of 6 pixels over image

I . Each patch Ψp(I) produces motion kernel probabilities:

P (m = (l, o)|Ψp(I)) (l ∈ Sl, o ∈ So
ext) by applying the

CNN. Figure 7(b) shows examples of motion distribution

maps for four blurry patches, and each of them is sparse and

composed of one local high probability region. We assume

that the pixels in patch Ψp(I) share the same motion dis-

tribution. Then each pixel has multiple estimates for each

motion kernel probability from all patches containing it. For

a pixel p, we perform weighted average over the multiple

estimates of each motion kernel probability, and define the

confidence of motion kernel m = (l, o) at pixel p as

C(mp = (l, o)) =

1

Z

∑

q:p∈Ψq

Gσ(||xp − xq||
2)P (m = (l, o)|Ψq), (5)

for all l ∈ Sl, o ∈ So
ext. xp is the coordinate of pixel p.

As a Gaussian function, Gσ(||xp − xq||
2) imposes higher

weights on the patch Ψq in the summation if its center pixel

q is closer to pixel p. σ is set to 10 in our implementation.

This means that we trust more the motion prediction from

the patch containing pixel p closer to its patch center. Z =∑
q:p∈Ψq

Gσ(||xp − xq||) is a normalization constant.

We further assume that the motion kernels are spatially

smooth. This is reasonable because the moving objects or

camera are moving smoothly during capturing image, and

nearby pixels should have similar motions. Then we esti-

mate the dense motion field M = {mp = (lp, op)}p∈Ω

over image I by optimizing the following MRF model:

minM
∑

p∈Ω

[−C(mp = (lp, op)) +

∑

q∈N(p)

λ[(up − uq)
2 + (vp − vq)

2], (6)

where lp ∈ Sl, op ∈ So
ext, (up, vp) and (uq, vq) are motion

vectors mp and mq in Cartesian coordinates that are related

to (lp, op) and (lq, oq) by Eqn. (1). N(p) is the neighbor-

hood of p. By minimizing the energy function, the first term

encourages to choose the motion kernel for each pixel with

higher confidence estimated by CNN, and the second term

enforces the smoothness of nearby motion kernels.

For each pixel, there are 361 motion kernel candidates,

it is inefficient to optimize the MRF problem with such a

large number of candidate labels. We therefore generate

candidate motion kernels for each pixel by selecting the top

20 motion kernels with highest confidence values, together

with 30 sampled motion candidates from the remaining can-

didates to make the motion kernel candidate set for each

pixel both prominent and diverse. Since the candidate label

sets are spatially varying, we cannot use the off-the-shelf

graph cut toolbox [24], we therefore optimize the energy

by max-product belief propagation algorithm. Predicting

dense motion blur for an image of size 300 × 400 takes
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around 80 seconds using CPU including computing patch-

level motion distributions by CNN.

Figure 8 shows an example of motion blur estimation.

As shown in Fig. 8(b, c), the full MRF model can effectively

remove the noisy estimates in Fig. 8(b) using smoothness

term, and quantitative results are significantly improved.

4. Non-Uniform Motion Deblurring

With the dense non-uniform motion kernels estimated

by CNN, we now deconvolve the blurry image to estimate

the sharp image. It is challenging to deconvolve the image

blurred by non-uniform motion blur. We adapt the uniform

deconvolution approach in [32] to the non-uniform decon-

volution problem. The non-uniform deconvolution is mod-

eled as optimizing:

minI
λ

2
||k(M) ∗ I −O||22 −

∑

i∈Ω

log(P (RiI)) (7)

where O is the observed blurry image, Ri is an operator to

extract the patch located at i from an image. P (·) is the

prior distribution of natural image patches, which is mod-

eled as a Gaussian mixture model learned from natural im-

age patches [32].

Different to uniform deblur in [32], the first term in

Eqn.(7) is modeled for non-uniform motion blur. We op-

timize the above problem by half-quadratic splitting algo-

rithm, i.e., optimizing: minI,{zi}
λ
2 ||k(M) ∗ I − O||22 +∑

i∈Ω(
β
2 ||RiI − zi||

2
2 − log(P (zi))), where auxiliary vari-

ables {zi} are introduced. We iteratively optimize I and

{zi} by increasing β. In the iterations, we need to opti-

mize the following two sub-problems. (1) By fixing {zi},

we optimize sharp image: minI
λ
2 ||k(M) ∗ I − O||22 +∑

i∈Ω(
β
2 ||RiI − zi||

2
2). (2) By fixing I , we optimize {zi}:

minzi
β
2 ||RiI − zi||

2
2 − log(P (zi)), i ∈ Ω.

For sub-problem (1), the blur kernels k(M) are non-

uniform and determined by spatially varying motion vectors

M . By re-writing the non-uniform convolution as matrix-

vector multiplication (i.e., k(M)∗I = KMI ), we optimize

sharp image by solving the linear equations deduced by set-

ting the gradients of cost in sub-problem (1) to zeros:

[λKT
MKM + β

∑

i∈Ω

(RT
i Ri)]I = λKT

MO + β(
∑

i∈Ω

RT
i zi). (8)

We solve these linear equations using a conjugate gradient

algorithm. In the implementation, all the involved matrix-

vector multiplications can be efficiently implemented by

convolutions or local operations around each pixel. RT
i z

is an operation to put the patch z back to the region where

it was extracted. The sub-problem (2) can be optimized fol-

lowing [32]. In implementation, we set the patch size to

8×8, λ = 2×105, and β is increased from 50 to 3200 with

a ratio of 2 in 7 iterations of alternative optimizations.

Table 1. Comparison of motion kernel estimation on 15 test images

with synthetic motion blur. “BlurSpect” is based on the approach

in [1]. “SLayerRegr” is the extension of approach in [3].

Methods DL MRF DL noMRF DL noLE BlurSpect SLayerRegr

MSE motion 7.83 16.35 9.01 44.56 65.10

PSNR motion 44.55 37.14 43.17 26.58 22.70

5. Experiments

To evaluate the quantitative accuracy of our approach

for non-uniform motion kernel estimation, we gener-

ate 15 synthetic blurred images with ground-truth non-

uniform motion kernels caused by camera motions (rota-

tion and translation). The examples shown in Figs. 5-

8 are from this synthetic image set. Given the es-

timated motion blur kernels M = {up, vp}p∈Ω and

ground-truth motion blur kernels Mgt = {ugt
p , vgtp }p∈Ω

in the Cartesian coordinate system, we measure the ac-

curacy of the estimated motion kernel by the mean-

squared-error (MSE motion): MSE motion(M,Mgt) =
1

2|Ω|

∑
p∈Ω[(up − ugt

p )2 + (vp − vgtp )2] and peak signal-to-

noise ratio (PSNR motion): PSNR motion(M,Mgt) =

−10 log MSE motion(M,Mgt)
d2
max

, dmax = 25 is the maximum

motion length.

Figure 9 presents four examples with strongly non-

uniform motion blur captured for scenes with complex

depth layers. The first three examples are real-captured

blurry images, and the final example is a synthetic blurry

image. All these examples show that our CNN-based ap-

proach can effectively predict the spatially varying motion

kernels.

In Table 1, we evaluate and compare our approach to the

other approaches for non-uniform motion kernel estimation.

“DL noMRF” is our approach using only the unary term in

Eqn. (6). “DL noLE” is our MRF-based approach with-

out using the motion kernel set extension. “DL MRF” is

our full estimation approach. “BlurSpect” is the approach

proposed in [1]. It was originally designed for estimating

horizontal or vertical motion blur, and we extend it to esti-

mate motion kernels with orientations in So
ext by the tech-

nique in Section 2.2. “SLayerRegr” is an extended version

of approach in [3]. The original approach learns a logis-

tic regressor to estimate discrete motion kernels in horizon-

tal direction using hand-crafted features. To predict mo-

tion kernels in other directions, we implement [3] using the

same features and learn SVMs for predicting 73 motion ker-

nels in S, then extend motion kernel set by the method

in Section 2.2. “SLayerRegr” can be seen as a learning

machine with a single layer of hand-crafted features. As

shown in Table 1, both “BlurSpect” and “SLayerRegr” per-

form poorly on estimating the challenging non-uniform mo-

tion blur with diverse motion lengths and orientations. Our

approach can effectively estimate the motion kernels with

average MSE motion 7.83 and PSNR motion 44.55. More-
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Figure 9. Examples on motion kernel estimation. The first three columns are real blurry images, the last column shows a synthetic picture

with camera rotation (MSE motion = 9.9).

Figure 10. Examples of non-uniform motion deblurring. The first and second columns show the blurry images and our results. The third

and fourth columns show the results of methods in [18, 26, 27, 29] using their source codes. These examples are challenging because the

motion blur kernels are strongly non-uniform and the scenes are complex. Our estimated motion blur fields are shown in Figs. 9, 12 .

over, the motion kernel set extension and motion smooth-

ness constraint significantly improve the accuracy of motion

kernel estimation.

Figure 10 compares deblurring results of our approach,

non-uniform deblurring approaches [26, 29] and uniform

deblurring approaches [18, 27], for which the source codes

are available. Except for ours, none of these methods han-

dles the non-uniform blur in a satisfying manner for these

examples. Our approach estimates more accurate motion

blur kernels, which enables us to produce better final de-
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Table 2. Accuracies of motion kernel estimation and blur removal on 15 test images with synthetic motion blur. “BlurSpect” is based on

the approach in [1]. “SLayerRegr” is the extension of approach in [3]. “MSE ker” is an error for non-uniform blur kernel estimation using

the average MSE of blur kernels across image pixels. “PSNR deblur” is the PSNR of the final deblurred results. The number in each table

cell is the mean value over the image set.

DL MRF DL noMRF DL noLE BlurSpect SLayerRegr TwoPhase [27] MargLike [18] NonUnif [26] UnNatural [29]

MSE ker 0.024 0.029 0.041 0.250 0.127 0.108 0.119 0.193 0.165

PSNR deblur 24.81 24.66 24.61 21.72 19.04 21.26 18.49 20.65 21.33
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Figure 11. Comparison to [13]. Our CNN can better predict the different motion layers. The deblurring result of [13] is over-sharpened

and image details are removed, while our result is visually more natural.
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Figure 12. Comparison of motion kernel estimation. “BlurSpect” and “SLayerRegr” are based on the methods in [1] and [3] respectively.

blurring results. The method in [13] is an effective approach

for motion deblurring. Because its source code is not avail-

able, we directly compare it on examples of [13] in Fig. 11.

Our approach can better “recognize” the complex motions.

The deblurring result of [13] is commonly over-sharpened,

but our deblurring result is visually more natural.

In Table 2, we qualitatively compare our method to the

state-of-the-art non-blind debluring approaches for both the

motion blur kernel estimation and the final deblurred re-

sults. We define an error of “MSE ker” for non-uniform

motion blur estimation using average MSE of blur kernels

across pixels in an image, and the MSE of each pixel is de-

fined by the mean per-element squared difference between

the estimated and ground-truth kernels after aligning ker-

nels by centers. Contrary to the “MSE motion” that mea-

sures the kernel error in the linear motion space, this error

term directly measures the kernel differences in the spatial

domain. We also evaluate the deblurring result by the PSNR

of the deblurred image (denoted as “PSNR deblur”) w.r.t.

the ground-truth clean image. All the values in Table 2 are

the mean values over the image set. We can not qualita-

tively compare to the approach in [13] because the source

codes are not available. These results clearly show that our

approach can produce significantly better results both in the

motion blur kernel estimation and the motion blur removal

than the compared state-of-the-art approaches.

Figure 12 shows an example of motion blur estimation

by different non-uniform blur estimation approaches. Our

approach can produce significantly better non-uniform mo-

tion blur field than the compared approaches.

6. Conclusion

In this paper, we have proposed a novel CNN-based non-

uniform motion deblurring approach. We learn an effective

CNN for estimating motion kernels from local patches. Us-

ing an MRF model, we are able to well predict the non-

uniform motion blur field. This leads to state-of-the-art mo-

tion deblurring results. In the future, we are interested in

designing a CNN for estimating the general non-uniform

blur kernels. We are also interested in designing an CNN

system that can estimate and remove general non-uniform

blurs in a single framework.
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