
MANUSCRIPT FOR REVIEW, 2015 1

Learning a Deep Model for Human Action
Recognition from Novel Viewpoints

Hossein Rahmani, Ajmal Mian and Mubarak Shah

Abstract—Recognizing human actions from unknown and unseen (novel) views is a challenging problem. We propose a Robust

Non-Linear Knowledge Transfer Model (R-NKTM) for human action recognition from novel views. The proposed R-NKTM is a

deep fully-connected neural network that transfers knowledge of human actions from any unknown view to a shared high-level

virtual view by finding a non-linear virtual path that connects the views. The R-NKTM is learned from dense trajectories of

synthetic 3D human models fitted to real motion capture data and generalizes to real videos of human actions. The strength

of our technique is that we learn a single R-NKTM for all actions and all viewpoints for knowledge transfer of any real human

action video without the need for re-training or fine-tuning the model. Thus, R-NKTM can efficiently scale to incorporate new

action classes. R-NKTM is learned with dummy labels and does not require knowledge of the camera viewpoint at any stage.

Experiments on three benchmark cross-view human action datasets show that our method outperforms existing state-of-the-art.

Index Terms—Cross-view, dense trajectories, view knowledge transfer.

✦

1 INTRODUCTION

Video based human action recognition has many applica-

tions in human-computer interaction, surveillance, video

indexing and retrieval. Actions or movements generate

varying patterns of spatio-temporal appearances in videos

that can be used as feature descriptors for action recog-

nition. Based on this observation, several visual repre-

sentations have been proposed for discriminative human

action recognition such as space-time pattern templates [1],

shape matching [2]–[4], spatio-temporal interest points [5]–

[10], and motion trajectories based representation [11]–

[14]. Especially, dense trajectory based methods [12]–[14]

have shown impressive results for action recognition by

tracking densely sampled points through optical flow fields.

While these methods are effective for action recognition

from a common viewpoint, their performance degrades

significantly under viewpoint changes. This is because

the same action appears different and results in different

trajectories when observed from different viewpoints.

A practical system must recognize human actions from

unknown and more importantly unseen viewpoints. One

approach for recognizing actions across different view-

points is to collect data from all possible views and train

a separate classifier for each case. This approach does not

scale well as it requires a large number of labelled samples

for each view. To overcome this problem, some techniques

infer 3D scene structure and use geometric transformations
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Fig. 1: Existing cross-view action recognition techniques [15]–
[23] connect two different views with a set of linear transfor-
mations that are unable to capture the non-linear manifolds on
which real actions lie. (a) Li and Zickler [23] construct cross-view
action descriptors by applying a set of linear transformations on
view-dependent descriptors. The transformations are obtained by
uniformly sampling a few points along the path connecting source
and target views. (b) Wang et al. [21] learn a separate linear
transformation for each body part using samples from training
views to interpolate unseen views. (c) Our proposed R-NKTM
learns a shared high-level space among all possible views. The
view-dependent action descriptors from both source and target
views are independently transferred to the shared space using a
sequence of non-linear transformations.

to achieve view invariance [3], [24]–[27]. These methods

often require robust joint estimation which is still an open

problem in real-world settings. Other methods focus on

view-invariant spatio-temporal features [28]–[32]. However,

the discriminative power of these methods is limited by

their inherent structure of view-invariant features [33].

Knowledge transfer-based methods [17]–[23], [34] have

recently become popular for cross-view action recognition.

These methods find a view independent latent space in
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Fig. 2: Framework of the proposed R-NKTM learning algorithm. A realistic 3D human model (a) is fitted to a real mocap sequence
(b) to generate 3D action video (c) which is projected to plains viewed from n “ 108 angles. Projection from only two viewpoints
are shown in (d). This results in n sequences of 2D pointclouds that are connected sequentially to construct synthetic trajectories
(red curves in (d)) which are used to learn a general codebook (e). A bag-of-features approach is used to build the dense trajectory
descriptors (f) from which a single R-NKTM (g) is learned. Note that instead of action labels, we use dummy labels where each 3D
video gets a different label. The R-NKTM is learned once only and generalizes to real videos for cross-view feature extraction.

which features extracted from different views are directly

comparable. For instance, Li and Zickler [23] proposed

to construct virtual views between action descriptors from

source and target views. They assume that an action de-

scriptor transforms continuously between two viewpoints

and the virtual path connecting two views lies on a hyper-

sphere (see Fig. 1-(a)). Thus, [23] computes virtual views

as a sequence of linearly transformed descriptors obtained

by making a finite number of stops along the virtual path.

This method requires samples from both source and target

views during training to construct virtual views.

To relax the above constraint on training data, Wang

et al. [21] used a set of discrete views during training to

interpolate arbitrary unseen views at test time. They learned

a separate linear transformation between different views for

each human body part using a linear SVM solver as shown

in Fig. 1-(b), thereby limiting the scalability and increasing

the complexity of their approach.

Existing view knowledge transfer approaches are unable

to capture the non-linear manifolds where realistic action

videos generally lie, especially when actions are captured

from different views. This is because they only seek a set

of linear transformations to construct virtual views between

the descriptors of action videos captured from different

viewpoints. Furthermore, such methods are either not ap-

plicable or perform poorly when recognition is performed

on videos acquired from unknown and, more importantly,

unseen viewpoints.

In this paper, we propose a different approach to view

knowledge transfer that relaxes the assumptions on the

virtual path and the requirements on the training data.

We approach cross-view action recognition as a non-linear

knowledge transfer learning problem where knowledge

from multiple views is transferred to a shared compact

high-level space. Our approach consists of three phases.

Figure 2 shows an overview of the first phase where a Ro-

bust Non-linear Knowledge Transfer Model (R-NKTM) is

learned. The proposed R-NKTM is a deep fully-connected

network with weight decay and sparsity constraints which

learns to transfer action video descriptors captured from

different viewpoints to a shared high-level representation.

The strongest point of our technique is that we learn a

single R-NKTM for mapping all action descriptors from

all camera viewpoints to a shared compact space. Note that

the labels used in Fig. 2 are dummy labels where every

sequence is given a unique label that does not correspond

to any specific action. Thus, action labels are not required

while R-NKTM learning or while transferring training

and test action descriptors to the shared high-level space

using the R-NKTM. The second phase is training where

action descriptors from unknown views are passed through

the learned R-NKTM to construct their cross-view action

descriptors. Action labels of training data are now required

to train the subsequent classifier. In the test phase, view-

invariant descriptors of actions observed from unknown

and previously unseen views are constructed by forward

propagating their view dependent action descriptors through

the learned R-NKTM. Any classifier can be trained on the

cross-view action descriptors for classification in a view-

invariant way. We used a simple linear SVM classifier to

show the strength of the proposed R-NKTM.

Our R-NKTM learning scheme is based on the obser-

vation that similar actions, when observed from different

viewpoints, still have a common structure that puts them

apart from other actions. Thus, it should be possible to

separate action related features from viewpoint related

features. The main challenge is that these features cannot

be linearly separated. The second challenge comes from
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learning a non-linear model itself which requires a large

amount of training data. Our solution is to learn the R-

NKTM from action trajectories of synthetic 3D human

models fitted to real motion capture (mocap) data. By

projecting these 3D human models to different views, we

can generate a large corpus of synthetic trajectories to

learn the R-NKTM. We use k-means to generate a general

codebook for encoding the action trajectories. The same

codebook is used to encode dense trajectories extracted

from real action videos in the training and test phases.

The major contribution of our approach is that we learn

a single Robust Non-linear Knowledge Transfer Model (R-

NKTM) which can bring any action observed from an un-

known viewpoint to its compact high-level representation.

Moreover, our method encodes action trajectories using a

general codebook learned from synthetic data and then

uses the same codebook to encode action trajectories of

real videos. Thus, new action classes from real videos can

easily be added using the same learned NTKM and code-

book. Comparison with eight existing cross-view action

recognition methods on four benchmark datasets including

the IXMAS [31], UWA3D Multiview Activity II [35],

Northwestern-UCLA Multiview Action3D [21], and UCF

Sports [36] datasets shows that our method is faster and

achieves higher accuracy especially when there are large

viewpoint variations.

This paper is an extension of our prior work [37] where

we transferred a given action acquired from any viewpoint

to its canonical view. Knowledge of the canonical view was

required for NKTM learning in [37]. This is a problem

because the canonical view is not only action dependent,

it is ill-defined. For example, what would be the canonical

view of a person walking in a circle? Another limitation

of [37] is that cylinders were fitted to the mocap data to

approximate human limbs, head and torso. The trajectories

generated from such models do not accurately represent

human actions. In this paper, we extend our work by

removing both limitations. Firstly, we no longer require

identification of the canonical view for learning the new

R-NKTM and use dummy labels instead. Secondly, we

fit realistic 3D human models to the mocap data and

hence generate more accurate trajectories. Using 3D human

models also enables us to vary, and hence model, the

human body shape and size. Besides these extensions, we

also perform additional experiments on two more datasets

namely, the UWA3D Multiview Activity II [35] and UCF

Sports [36] datasets. We denote our prior model [37] by

NKTM and the one proposed in this paper by R-NKTM.

2 RELATED WORK

The majority of existing literature [1]–[14], [38]–[41] deals

with action recognition from a common viewpoint. While

these approaches are quite successful in recognizing actions

captured from similar viewpoints, their performance drops

sharply as the viewpoint changes due to the inherent view

dependence of the features used by these methods. To tackle

this problem, geometry based methods have been proposed

for cross-view action recognition. Rao et al. [30] introduced

an action representation to capture the dramatic changes of

actions using view-invariant spatio-temporal curvature of

2D trajectories. This method uses a single point (e.g. hand

centroid) trajectory. Yilmaz and Shah [24] extended this

approach by tracking the 2D points on human contours.

Given the human contours for each frame of a video,

they generate an action volume by computing point corre-

spondences between consecutive contours. Maximum and

minimum curvatures on the spatio-temporal action volume

are used as view-invariant action descriptors. However,

these methods require robust interest points detection and

tracking, which are still challenging problems.

Instead of using geometry constraints, Junejo et al. [32]

proposed Self-Similarity Matrix that is constructed by com-

puting the pairwise similarity between any pair of frames.

Hankelet [28] represents actions with the dynamics of

short tracklets, and achieves cross-view action recognition

by finding the Hankelets that are invariant to viewpoint

changes. These methods perform poorly on videos ac-

quired from viewpoints that are significantly different from

those of the training videos (e.g. the top view of IXMAS

dataset) [20], [37].

Recently, transfer learning approaches have been em-

ployed to address cross-view action recognition by explor-

ing some form of statistical connections between view-

dependent features extracted from different viewpoints. A

notable example of this category is the work of Farhadi

et al. [18], who employed Maximum Margin Clustering to

generate split-based features in the source view, then trained

a classifier to predict split-based features in the target view.

Liu et. al. [20] learned a cross-view bag of bilingual words

using the simultaneous multiview observations of the same

action. They represented the action videos by bilingual

words in both views. Zheng [34] proposed to build a

transferable dictionary pair by forcing the videos of the

same action to have the same sparse coefficients across

different views. However, these methods require feature-

to-feature correspondence at the frame-level or video-level

during training, thereby limiting their applications.

Li and Zickler [23] assume that there is a smooth

virtual path connecting the source and target views. They

uniformly sampled a finite number of points along this

virtual path and considered each point as a virtual view i.e. a

linear transformation function. Action descriptors from

both views are augmented into cross-view feature vectors

by applying a finite sequence of linear transformations

to each descriptor. Recently, Zhang et al. [22] extended

this approach by applying an infinite sequence of linear

transformations. Although these methods can operate in

the absence of feature-to-feature correspondence between

source and target views, they still require the samples from

target view during training.

More recently, Wang et al. [21] proposed cross-

view action recognition by discovering discriminative

3D Poselets and learning the geometric relations

among different views. However, they learn a separate

transformation between different views using a linear SVM

solver. Thus many linear transformations are learned for
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mapping between different views. For action recognition

from unseen views, all learned transformations are used

for exhaustive matching and the results are combined with

an AND-OR Graph (AOG). This method also requires 3D

skeleton data for training which is not always available.

Gupta et al. [15] proposed to find the best match for each

training video in large mocap sequences using a Non-linear

Circular Temporary Encoding method. The best matched

mocap sequence and its projections on different angles

are then used to generate more synthetic training data

making the process computationally expensive. Moreover,

the success of this approach depends on the availability

of a large mocap dataset which covers a wide range of

human actions [15], [16].

Deep Learning Models: Deep learning models [42]–[44]

can learn a hierarchy of features by constructing high-level

representations from low-level ones. Due to the impres-

sive results of such deep learning on handwritten digit

recognition [43], image classification [45] and object de-

tection [46], several methods have been recently proposed

to learn deep models for video based action recognition.

Ji et al. [47] extended the deep 2D convolutional neural

network (CNN) to 3D where convolutions are performed

on 3D feature maps from spatial and temporal dimensions.

Simonyan and Zisserman [48] trained two CNNs, one for

RGB images and one for optical flow signals, to learn

spatio-temporal features. Gkioxari and Malik [49] extended

this approach for action localization. Donahue et al. [50]

proposed an end-to-end trainable recurrent convolutional

network which processes video frames with a CNN, whose

outputs are passed through a recurrent neural network.

None of these methods is designed for action recognition

in videos acquired from unseen views. Moreover, learning

deep models for the task of cross-view action recognition

requires a large corpus of training data acquired from

multiple views which is unavailable and very expensive to

acquire and label. These limitations motivate us to propose

a pipeline for generating realistic synthetic training data and

subsequently learn a Robust Non-linear Knowledge Trans-

fer Model (R-NKTM) which can transfer action videos

from any view to a high level space where actions can be

matched in a view-invariant way. Although learned from

synthetic data, the proposed R-NKTM is able to generalize

to real action videos and achieve state-of-the-art results.

3 PROPOSED TECHNIQUE

The proposed technique comprises three main stages in-

cluding feature extraction, Robust Non-linear Knowledge

Transfer Model (R-NKTM) learning, and cross-view action

description. In the feature extraction stage, synthetic dense

trajectories are first generated by fitting 3D human models

to mocap sequences and projecting the resulting 3D videos

on plains corresponding to different viewpoints. The 2D

dense trajectories are then represented by bag-of-features.

In the model learning stage, a deep fully-connected net-

work, called R-NKTM, is learned such that it transfers the

view-dependent trajectory descriptors of the same action

observed from different viewpoints to a shared high-level

virtual view. In the third stage, the dense trajectory descrip-

tors of real action videos are passed through the learned R-

NKTM to construct cross-view action descriptors. Details

of each stage are given below.

3.1 Feature extraction

Dense trajectories have shown to be effective for action

recognition [12]–[15]. Our motivation for using dense tra-

jectories is that they can be easily extracted from conven-

tional videos as well as the synthetic 3D videos generated

from mocap data.

3.1.1 Dense trajectories from videos

To extract trajectories from videos, Wang et al. [12], [13]

proposed to sample dense points from each frame and

track them using displacement information from a dense

optical flow field. The shape of a trajectory encodes the

local motion pattern. Given a trajectory of length L, a

sequence S of displacement vectors ∆Pt “ pPt`1 ´Ptq “
pxt`1 ´ xt, yt`1 ´ ytq is formed and normalized as:

S “
p∆Pt, ...,∆Pt`L´1q

řt`L´1

i“t }∆Pi}
. (1)

The descriptor S encodes the shape of the trajectory.

To embed appearance and motion information, a spatio-

temporal volume aligned with the trajectory is subdivided

into a spatio-temporal grid and HOG, HOF and MBH

descriptors are computed in each cell of the grid. The

bag-of-features approach is then employed to construct a

histogram of visual word occurrences for each descriptor

(trajectory shape, HOG, HOF, MBH) separately. The final

descriptor is a concatenation of these four histograms.

However, it is important to note that unlike [12], [13] we

only use the trajectory descriptors since their extraction

using multiple viewpoints and scales is computationally

efficient as shown in Section 3.1.2. The same process,

on the other hand, is computationally very expensive for

the remaining three descriptors i.e. HOG, HOF, and MBH.

Moreover, using trajectories only is also robust to changes

in visual appearance due to clothing and lighting conditions.

3.1.2 Dense trajectories from mocap sequences

Figure 2 gives an overview of the steps involved in

generating synthetic dense trajectories using different

human body shapes performing a large number of actions

rendered from numerous viewpoints. Details are below.

3D Human body models: There are different ways to

generate 3D human models. For example, Bogo et al. [51]

developed the FAUST dataset containing full 3D human

body scans of 10 individuals in 30 poses. However, the

skeleton data is not provided for these scans. Another

way to generate a 3D human model is to use the open

source MakeHuman software [52] which can synthesize

different realistic 3D human shapes in a predefined pose

and also provide the joints positions which can be used for

generating human models in different poses. We use this

technique for generating the 3D human models in our work.



MANUSCRIPT FOR REVIEW, 2015 5

Fig. 3: Virtual cameras are placed on the hemisphere looking
towards the center of the sphere to generate 108 virtual views.

Fitting 3D human models to mocap sequences: Several

approaches [53], [54] have been proposed in the literatures

to fit a 3D human model to the motion capture skeleton

data of a human subject. For instance, the SCAPE

method [54] learns pose and body-shape deformation

models from the training scans of different human bodies

in a few poses. Given a set of markers, SCAPE constructs

a full mesh which is consistent with the SCAPE models,

best matches with the given markers and maintains realistic

muscle deformations. This method takes approximately 3

minutes to generate each frame. Another example is the

MoSh method [53] which estimates an accurate 3D body

shape directly from the mocap skeleton without the use of

3D human scans. MoSh is also able to estimate soft-tissue

motions from mocap data and subsequently use them

to produce animations with subtlety and realism. MoSh

requires about 7 minutes to estimate a subject’s shape.

However, these methods are computationally expensive

to apply on a large corpus of mocap sequences. Thus,

we use the open source Blender package [55] to fit

3D human models to mocap data. Given a 3D human

model generated by the MakeHuman software and a

mocap sequence, Blender normalizes the mocap skeleton

data with respect to the skeleton data of the human

model and then fits the model to the normalized mocap

data. This process results in a synthetic but realistic full

3D human body video corresponding to a mocap sequence.

Projection from multiple viewpoints: We deploy a

total of 108 synthetic cameras (at distinct latitudes and

longitudes) on a sphere surrounding the subject performing

an action, as shown in Fig. 3. Given a perspective camera

and a frame of a synthetic full 3D human body sequence,

we deal with self-occlusions by removing points that

are not visible from the given camera viewpoint. First,

we perform back-face culling by removing 3D points

which their normals face away from the camera. Then,

the hidden point removal technique [56] is applied on the

remaining 3D points. This gives us a set of visible 3D

points corresponding to the given viewpoint. The visible

3D points are projected to the x´y plain using perspective

projection resulting in a 2D pointcloud. We repeat this

process for all 108 cameras and all frames of the synthetic

full 3D human body sequence, thereby, 108 sequences of

2D pointclouds are generated for each synthetic full 3D

human action sequence corresponding to a mocap sequence.

Dense trajectory extraction: Since we already have dense

correspondence between the 3D human models in each

pose, it is straight forward to extract trajectory features

from their projected sequence of 2D pointclouds by sim-

ply connecting them in time over a fixed horizon of L

frames. A sequence S of normalized displacement vectors

∆Pt is calculated for each point (1). Note that we use

the same L “ 15 for both synthetic and real videos.

We represent each video (synthetic or real) by a set of

motion trajectory descriptors. We construct a codebook

of size k “ 2000 by clustering the trajectory descriptors

with k-means. It is important to note that clustering is

performed only over the synthetic trajectory descriptors to

learn the codebook. Thus, unlike existing cross-view action

recognition techniques [15]–[17], [20], [23] the codebook

we learn does not use the trajectory descriptors of real

videos from IXMAS [31], UWA3DII [35] or Northwestern-

UCLA [21] datasets. We call this the general codebook.

We consider each cluster as a codeword that represents a

specific motion pattern shared by the trajectory descriptors

in that cluster. One codeword is assigned to each trajectory

descriptor based on the minimum Euclidean distance. The

resulting histograms of codeword occurrences are used as

trajectory descriptors. Real action videos are encoded with

the same codebook. Recall that unlike dense trajectory-

based methods [12], [13] which use HOF, HOG, and MBH

descriptors along with trajectories, our method only uses

trajectory descriptors.

3.2 Non-linear Knowledge Transfer Model

Besides the limitations of employing linear transforma-

tion functions between views, existing cross-view action

recognition methods [15], [18], [20]–[23] are either not

applicable to unseen views or require augmented training

samples which cover a wide range of human actions.

Moreover, these methods do not scale well to new data

and need to repeat the computationally expensive model

learning process when a new action class is to be added.

To simultaneously overcome these problems, we propose a

Robust Non-linear Knowledge Transfer Model (R-NKTM)

that learns to transfer the action trajectory descriptors from

all possible views to a shared compact high-level virtual

view. Our R-NKTM is learned using synthetic training data

and is able to generalize to real data without the need for

retraining or fine-tuning, thereby increasing its scalability.

As depicted in Fig. 4, our R-NKTM is a deep network,

consisting of Q fully-connected layers (where Q “ 4)

followed by a softmax layer and ppqq units in the q-th

fully-connected layer where q “ 1, 2, ¨ ¨ ¨ , Q and pp1q “
2000, pp2q “ 1000, pp3q “ 500, pp4q “ 2488. For a given

training sample x
i
j P Rk, where x

i
j is the j-th sample in i-

th view, the output of the first layer is h
p1q “ fpWp1qxi

j `

b
p1qq P Rpp1q

, where W
p1q P Rpp1qˆk is a weight matrix

to be learned in the first layer, b
p1q P R

pp1q

is a bias

vector, and fp¨q is a non-linear activation function which

is typically a ReLU (Rectified Linear Unit), sigmoid or

tangent hyperbolic function. The ReLU function, fpaq “
maxp0, aq, does not suffer from the gradient vanishing

problem like the sigmoid and tangent hyperbolic functions

do. Moreover, it has been shown that deep networks can be



MANUSCRIPT FOR REVIEW, 2015 6

Fig. 4: Assume that there are n virtual paths connecting n input
views to a shared high-level virtual view. We show only 3 different
virtual paths for 3 views. Our R-NKTM learns to find this shared
high-level space and the non-linear virtual paths connecting input
views to this shared space. Dummy labels are used to learn the
model i.e. every video is given a different unique label.

trained efficiently using the ReLU function even without

the need for pre-training [57]. Finally, ReLU generates

sparse representations with true zeros that are suitable

for exploiting sparsity in the data which is the case for

histogram of codeword occurrences [57]. Therefore, we use

ReLU as the activation function in our proposed model.

The output of the first layer h
p1q is used as the input

of the second layer. The output of the second layer is

computed as :

h
p2q “ fpWp2q

h
p1q ` b

p2qq P Rpp2q

, (2)

where W
p2q P Rpp2qˆpp1q

, bp2q P Rpp2q

, and fp¨q are the

weight matrix, bias, and non-linear activation function of

the second layer, respectively. Similarly, the output of the

second layer hp2q is used as the input of the third layer and

the output of the third layer is computed as

h
p3q “ fpWp3q

h
p2q ` b

p3qq P Rpp3q

, (3)

where W
p3q P Rpp3qˆpp2q

, bp3q P Rpp3q

, and fp¨q are the

weight matrix, bias, and non-linear activation function of

the third layer, respectively. The output of the last fully-

connected layer is computed as

gpxi
jq “ h

pQq “ fpWpQq
h

pQ´1q ` b
pQqq P RppQq

(4)

where gp¨q is a non-linear transformation function deter-

mined by the parameters W
pqq and b

pqq. The output of the

last fully-connected layer hpQq is passed through a softmax

layer to find the appropriate class label.

We use this structure to find a shared high-level space

among all possible views. Specifically, in our problem, the

inputs to the R-NKTM are synthetic trajectory descriptors

corresponding to mocap sequences over different views,

while the output is their dummy class labels. Since we

use the CMU mocap dataset [58] consisting of 2488 action

sequences, the last fully-connected layer has 2488 units

whose outputs are given to the softmax layer. The basic

idea of this R-NKTM is that regardless of the input view

of an unknown action (recall that we do not use the action

labels of the mocap sequences), we encourage the output

class label of the R-NKTM to be the same for all views of

the given action. We explain this idea in the following.

Assume that there is a virtual path which connects any

view to a single shared high-level virtual view. Therefore,

there are n different virtual paths connecting n input views

to the shared virtual view as shown in Fig. 4. We consider

each virtual path as a set of non-linear transformations of

action descriptors. Moreover, assume that the videos of the

same action over different views share the same high-level

feature representation. Given these two assumptions, our

objective is to find this shared high-level virtual view and

the intermediate virtual views connecting the input views

to the shared virtual view.

The learning of the proposed R-NKTM is carried

out by updating its parameters θK “ tθW, θbu,

where θW “ tWp1q,Wp2q, ¨ ¨ ¨ ,WpQqu and θb “
tbp1q,bp2q, ¨ ¨ ¨ ,bpQqu, for minimizing the following ob-

jective function over all samples of the input views:

E1pθK ;xi
j P Xq “

1

2nm

m
ÿ

j“1

n
ÿ

i“1

ℓpzj , gpxi
jqq (5)

where n is the number of viewpoints, m is the number of

samples in the mocap dataset (for CMU mocap dataset [58]:

m “ 2488), zj denotes class label of the j-th mocap

sequence i.e. zj “ j and ℓ denotes softmax loss function.

Due to the high flexibility of the proposed R-NKTM

(e.g. number of units in each layer ppqq, θK), appropriate

settings in the configuration of the R-NKTM are needed to

ensure that it learns the underlying data structure. Since the

input data x
i
j P Rpp0q

, where pp0q “ 2000, we discard the

redundant information in the high dimensional input data

by mapping it to a compact, high-level and low dimensional

representation. This operation is performed by 3 fully-

connected layers (hp1q,hp2q,hp3q) of the R-NKTM.

To avoid over-fitting and improve generalization of the

R-NKTM, we add weight decay Jw and sparsity Js regular-

ization terms to the training criterion i.e. the loss function

(5) [59], [60]. Large weights cause highly curved non-

smooth mappings. Weight decay keeps the weights small

and hence the mappings smooth to reduce over-fitting [61].

Similarly, sparsity helps in selecting the most relevant

features to improve generalization.

E2pθK ;xi
j P Xq “ E1pθK ;xi

j P Xq ` λwJw ` λsJs (6)

where λw and λs are the weight decay and sparsity pa-

rameters respectively. The Jw penalty tends to decrease the

magnitude of the weights θW “ tW1,W2,W3u:

Jw “

Q
ÿ

q“1

}Wpqq}2F , (7)
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Fig. 5: Visualization of R-NKTM layer outputs for four unseen mocap sequences. Each sequence gives 108 descriptors corresponding

to different views. The outputs of the R-NKTM layers (source view x
i
j and three virtual views h

p1q, hp2q, hp3q) are visualized as
images. The 108 rows in an image correspond to 108 viewpoints of the same action. The norm of correlation coefficient (Cn) is
shown above each image where larger values indicate higher similarity between the rows. Note that as the action descriptors progress
through the R-NKTM layers, the similarity of the same action observed from 108 viewpoints increases.

where }Wpqq}2F returns the Frobenius norm of the weight

matrix W
pqq of the q-th layer. Let

ρ̂
pqq
t “

1

M

n
ÿ

i“1

mi
ÿ

j“1

h
pqq
t pxi

jq , (8)

be the mean activation of the t-th unit of the q-th layer

(averaged over all the training samples x
i
j P X). The Js

penalty forces the ρ̂
pqq
t to be as close as possible to a spar-

sity target ρ and is defined in terms of the Kullback-Leibler

(KL) divergence between a Bernoulli random variable with

mean ρ̂
pqq
t and a Bernoulli random variable with mean ρ as

Js “

Q
ÿ

q“1

ÿ

t

KLpρ}ρ̂
pqq
t q

“

Q
ÿ

q“1

ÿ

t

ρ log
ρ

ρ̂
pqq
t

` p1 ´ ρq log
1 ´ ρ

1 ´ ρ̂
pqq
t

.

(9)

The reasons for using these two regularization terms

are twofold. Firstly, not all features are equally important.

Secondly, sparsity forces the R-NKTM to find a compact,

shared and high-level virtual view, hp3q, by selecting only

the most critical features. A dense representation may not

learn a good model because almost any change in the input

layer modifies most of the entries in the output layer.

Our goal is to solve the optimization problem

E2pθK ;xi
j P Xq in (6) as a function of θW and θb.

Therefore, we use stochastic gradient descent through back-

propagation to minimize this function over all training

samples in the mocap data x
i
j P X.

Figure 5 visualizes the output features of the learned R-

NKTM layers for four mocap actions that were not used

during learning. In each case, a 3D human model was fitted

to the mocap sequence and projected from 108 viewpoints.

Dense trajectories of each view were calculated to get 108

descriptors which were then individually passed through

the learned R-NKTM. Figure 5 shows the outputs of each

layer as an image. As expected, the outputs of the shared

virtual view h
p3q are very similar for all 108 views. Note

that we drop the outputs of the last fully-connected h
p4q

and softmax layers because they are the 2048 class scores

which correspond to dummy labels.

3.3 Cross-View Action Description

So far we have learned an R-NKTM whose input is a

synthetic trajectory descriptor corresponding to a mocap

sequence fitted with a 3D human model and observed from

any arbitrary view. The output of the model is the class label

which is the same for all views of the sequence. However,

our aim is to extract cross-view action descriptors from real

videos acquired from any arbitrary view.

Given a real human action video, the view-dependent

descriptor x is constructed by extracting dense trajectories

from multiple spatial scales of the given video and then

building the histogram of codeword occurrences using the

learned general codebook as discussed in Section 3.1.

Recall that the R-NKTM learns to find a shared high-

level virtual view, hp3q, and the intermediate virtual views,

h
p1q,hp2q, lie on the virtual path connecting the input view

and the shared virtual view. This means that we have a

set of non-linear transformation functions which transfer

the view-dependent action trajectory descriptor x from

an unknown view to the shared high-level virtual view.

Recall that we remove the last fully-connected h
p4q and

softmax layers because these layers correspond to dummy

labels which do not provide any useful information for

representing real videos.

We describe an action video as alterations of its view-

dependent descriptor along the virtual path. The cross-

view action descriptor is constructed by concatenating the

transformed features along the virtual path into a long

feature vector
“

x,hp1q,hp2q,hp3q
‰

. This new descriptor

implicitly incorporates the non-linear changes from the

unknown input view to the shared high-level virtual view.

Since the feature vector contains all the virtual views from

the source to the shared view, it is more robust to viewpoint

variations. To perform cross-view action recognition on any

real action video dataset, we use the samples with their

corresponding labels from a source view i.e. training data,

and extract their cross-view action descriptors. Then, we

train a linear SVM classifier to classify these actions. For a
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Fig. 6: Extracting cross-view action descriptors from real videos. The view-dependent dense trajectory descriptor x is extracted from
a training or test video and forward propagated through the learned R-NKTM for transfer to the shared high-level virtual view by
performing a set of non-linear transformations. Each transformation results in a virtual view lying on the non-linear virtual path
connecting the input and shared virtual views. The outputs of these transformation functions tvS ,v1,v2,v3u are concatenated to

form a cross-view action descriptor. Note that the last fully-connected h
p4q and the softmax layers of the R-NKTM are removed during

feature extraction because they correspond to the dummy labels used during R-NKTM learning.

given sample at test time (i.e. samples from target view), we

simply extract its cross-view descriptor and feed it to the

trained SVM classifier to find its label. Figure 6 shows an

overview of the proposed method for extracting cross-view

action descriptors from real videos.

4 EXPERIMENTS

We evaluate our proposed method on four benchmark

datasets including the INRIA Xmas Motion Acquisi-

tion Sequences (IXMAS) [31], UWA3D Multiview Ac-

tivity3DII (UWA3DII) [35], Northwestern-UCLA Multi-

view Action3D (N-UCLA) [21], and UCF Sports [36]

datasets. We compare our performance to the state-of-the-

art action recognition methods including Dense Trajectories

(DT) [13], Hankelets [28], Discriminative Virtual Views

(DVV) [23], Continuous Virtual Path (CVP) [22], Non-

linear Circulant Temporal Encoding (nCTE) [15], AND-

OR Graph (AOG) [21], Long-term Recurrent Convolutional

Network (LRCN) [50], and Action Tube [49].

We report action recognition results of our method for

unseen and unknown views i.e. unlike DVV [23] and

CVP [22] we assume that no videos, labels or corre-

spondences from the target view are available at training

time. More importantly, unlike existing techniques [15],

[21]–[23], [49], [50] we learn our R-NKTM and build

the codebook using only synthetic motion trajectories gen-

erated from mocap sequences. Therefore, the R-NKTM

and the codebook are general and can be used for cross-

view action recognition on any action video without the

need for retraining or fine-tuning. More precisely, we use

the same learned R-NKTM to evaluate our algorithm on

IXMAS [31], UWA3DII [35] and N-UCLA [21] datasets.

However, nCTE [15], DVV [23], CVP [22] and AOG [21]

need to learn different models to transfer knowledge

across views for different datasets. Action Tube [49] and

LRCN [50] require to fine-tune a pre-trained model for each

action video dataset.

In addition to the accuracy of our method, we report the

recognition accuracy of the NKTM proposed in our prior

work [37]. As shown in Fig. 7, the view knowledge transfer

Fig. 7: NKTM [37] learns to bring any action observed from an
unknown viewpoint to its canonical view. NTKM architecture is
different from the R-NKTM proposed in this paper (see Fig. 4).

Fig. 8: Sample frames from the IXMAS [31] dataset. Each row
shows one action captured simultaneously by 5 cameras.

model in [37] uses a different architecture consisting of

2000 units at the input/output layers and 1000 units at the

two hidden layers. Moreover, it learns to transfer actions

observed from unknown viewpoints to their canonical view.

4.1 Implementation Details

For a fair comparison, we pass the dense trajectory

descriptors, instead of spatio-temporal interest point

descriptors, to DVV [23] and CVP [22]. Moreover, we

use 10 virtual views, each with a 30-dimensional features.

The baseline results are obtained using publicly available

implementations of DT [13], Hankelets [28], nCTE [15],

DVV [23], LRCN [50] and Action Tube [49] or from the

original papers.

Dense Trajectories Extraction: To generate synthetic

dense trajectory descriptors from multiple viewpoints,
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TABLE 1: Accuracy (%) comparison with state-of-the-art methods under 20 combinations of source (training) and target (test) views
on the IXMAS [31] dataset. Each column corresponds to one source|target view pair. The last column shows the average accuracy.
The best result of each pair is shown in bold. AOG [21] cannot be applied to this dataset because the 3D joint positions are not
provided. Note that DVV and CVP require samples from the target view which are not required by our method.

Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean

DT [13] 93.9 64.2 81.8 27.6 87.6 66.4 75.2 22.4 70.0 83.0 73.9 53.3 75.5 77.0 67.0 34.8 42.1 25.8 63.3 48.8 61.7
Hankelets [28] 83.7 59.2 57.4 33.6 84.3 61.6 62.8 26.9 62.5 65.2 72.0 60.1 57.1 61.5 71.0 31.2 39.6 32.8 68.1 37.4 56.4
DVV [23] 72.4 13.3 53.0 28.8 64.9 27.9 53.6 21.8 36.4 40.6 41.8 37.3 58.2 58.5 24.2 22.4 30.6 24.9 27.9 24.6 38.2
CVP [22] 78.5 19.5 60.4 33.4 67.9 29.8 55.5 27.0 41.0 44.9 47.0 41.0 64.3 62.2 24.3 26.1 34.9 28.2 29.8 27.6 42.2
nCTE [15] 94.8 69.1 83.9 39.1 90.6 79.7 79.1 30.6 72.1 86.1 77.3 62.7 82.4 79.7 70.9 37.9 48.8 40.9 70.3 49.4 67.4
LRCN [50] 66.7 63.6 39.4 16.7 60.6 51.5 36.4 16.7 63.3 27.3 50.0 30.3 45.5 47.9 42.1 15.2 14.8 13.6 18.2 13.9 36.7
Action Tube [49] 68.5 65.2 24.2 17.0 65.8 57.6 45.5 13.3 63.6 32.7 57.0 26.1 44.2 35.5 63.9 14.5 17.0 14.8 22.1 12.7 38.1

NKTM 92.7 84.2 83.9 44.2 95.5 77.6 86.1 40.9 82.4 79.4 85.8 71.5 82.4 80.9 82.7 44.2 57.1 48.5 78.8 51.2 72.5
R-NKTM 92.7 80.3 83.9 55.2 95.5 80.6 86.4 47.0 82.7 83.6 83.6 75.5 85.8 85.2 84.9 44.2 56.0 53.0 79.0 52.4 74.1

we use the CMU Motion Capture dataset [58] which

contains over 2600 mocap sequences of different subjects

performing a variety of daily-life actions. We remove

the short sequences containing less than 15 frames

since dense trajectories require L “ 15 minimum

frames. The remaining 2488 mocap sequences are used

for generating synthetic training data to learn the R-

NKTM. Each sequence is treated as a different action

and given a unique dummy label. We can generate as

many different views from the 3D videos as we desire.

Using azimuthal angle φ P Φ “ t00 : 200 : 3400u, and

zenith angle θ P Θ “ t00, 100, 300, 500, 700, 900u, we

generate (n “ 108) camera viewpoints and project the 3D

videos. Dense trajectories are then extracted from the 2D

projections and clustered into k “ 2000 clusters using

k-means to make the general codebook. From real videos,

we extract dense trajectories using the method by Wang

et al. [13]. We take the length of each trajectory L “ 15

for both mocap and video sequences. As recommended

by [13], we use 8 spatial scales spaced by a factor of

1{
?
2 and the dense sampling step size 5 for video samples.

R-NKTM Configuration: We used multi-resolution

search [59] to find optimal hyper-parameter values such

as weight decay, sparsity and units per layer. The idea is

to test some values from a larger parameter range, select

a few best configurations and then test again with smaller

steps around these values. To optimize the number of R-

NKTM layers, we tested networks with increasing number

of layers [62] and stopped where the performance peaked

on our validation data. We used a momentum of 0.9, weight

decay λw “ 0.0005, sparsity parameter λs “ 0.5, and

sparsity target ρ “ 0.05.

4.2 IXMAS Dataset

This dataset [31] consists of synchronized videos observed

from 5 different views including four side views and a

top view. It contains 11 daily-life actions including check

watch, cross arms, scratch head, sit down, get up, turn

around, walk, wave, punch, kick, and pick up. Each action

was performed three times by 10 subjects. Figure 8 shows

examples from this dataset.

We follow the same evaluation protocol as in [15], [23],

[28] and verify our algorithm on all possible pairwise

view combinations. In each experiment, we use all videos

from one camera as training samples and then evaluate

the recognition accuracy on the video samples from the 4

remaining cameras. Comparison of the recognition accuracy

for 20 possible combinations of training and test cameras

is shown in Table 1.

R-NKTM achieves better recognition accuracy than the

NKTM [37] which requires to define a same canonical

view for all actions. Moreover, the proposed R-NKTM

outperforms the state-of-the-art methods on most view pairs

and achieves 74.1% average recognition accuracy which is

about 7% higher than the nearest competitor nCTE [15].

It is interesting to note that our R-NKTM can perform

much better (about 10% on average) than the nearest

competitor nCTE [15] when camera 4 is considered as

either source or target view (see Table 2). As shown in

Fig. 8, camera 4 captured videos from the top view, so the

appearance of these videos is completely different from the

videos captured from the side views (i.e. camera 0 to 3).

Hence, we believe that the recognition results on camera

4 are the most important for evaluating cross-view action

recognition. Moreover, some actions such as check watch,

cross arms, and scratch head are not available in the mocap

dataset. However, our R-NKTM achieves 66.7% average

accuracy on these three actions which is about 11% higher

than nCTE [15]. This demonstrates that the proposed R-

NKTM is able to transfer knowledge across views without

requiring all action classes in the learning phase.

Among the knowledge transfer based methods, DVV [23]

and CVP [22] did not perform well. The deep learning

based methods such as LRCN [50] and Action Tube [49]

achieve low accuracy because they were originally pro-

posed for action recognition from a common viewpoint.

DT [13] achieves a high overall recognition accuracy be-

cause the motion trajectories of action videos captured from

the side views are similar. However, its average accuracy

when camera 4 is considered as either source or target view,

is over 18% lower than our proposed method.

Figure 9 compares the class specific action recognition

accuracies of our proposed R-NKTM with NKTM [37].

R-NKTM achieves higher accuracies for all action classes

excluding check watch. This demonstrates the effectiveness

of our new architecture for cross-view action recognition.
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Fig. 9: Per class recognition accuracy of our proposed R-NKTM
and NKTM [37] on the IXMAS [31] dataset.

TABLE 2: Average accuracies (%) on the IXMAS [31] dataset
e.g. C0 is the average accuracy when camera 0 is used for training
or testing. Each time, only one camera view is used for training
and testing. R-NKTM gives the maximum improvement for the
most challenging case, Camera 4 (top view).

Method C0 C1 C2 C3 C4

DT [13] 67.8 66.4 67.6 66.8 39.8
Hankelets [28] 59.7 59.9 65.0 56.3 41.2
DVV [23] 44.7 45.6 31.2 42.0 27.3
CVP [22] 50.0 49.3 34.7 45.9 31.0
nCTE [15] 72.6 72.7 73.5 70.1 47.5
LRCN [50] 46.3 40.1 43.3 36.3 17.4
Action Tube [49] 45.7 41.7 48.5 37.2 17.2

NKTM 77.8 75.2 80.3 74.7 54.6
R-NKTM 78.4 78.0 80.7 75.8 57.8

4.3 UWA3D Multiview Activity II Dataset

This dataset [35] consists of a variety of daily-life human

actions performed by 10 subjects with different scales. It

includes 30 action classes: one hand waving, one hand

Punching, two hand waving, two hand punching, sitting

down, standing up, vibrating, falling down, holding chest,

holding head, holding back, walking, irregular walking,

lying down, turning around, drinking, phone answering,

bending, jumping jack, running, picking up, putting down,

kicking, jumping, dancing, moping floor, sneezing, sitting

down (chair), squatting, and coughing. Each subject per-

formed 30 actions 4 times. Each time the action was

captured from a different viewpoint (front, top, left and

right side views). Video acquisition from multiple views

was not synchronous thus there are variations in the actions

besides viewpoints. This dataset is challenging because

of varying viewpoints, self-occlusion and high similarity

among actions. For instance, action drinking and phone

answering have very similar motion, but the location of

hand in these two actions is slightly different. Also, actions

like holding head and holding back have self-occlusion.

Moreover, in the top view, the lower part of the body

was not properly captured because of occlusion. Figure 10

shows four sample actions observed from 4 viewpoints.

We follow [35] and use the samples from two views as

Fig. 10: Sample frames from the UWA3D Multiview Activi-
tyII [35] dataset. Each row shows one action acquired from 4

different views.

training data, and the samples from the remaining views

as test data. Table 3 summarizes our results. The proposed

R-NKTM significantly outperforms NKTM [37] and the

state-of-the-art methods on all view pairs. The overall

accuracy of the view knowledge transfer based methods

such as DVV [23] and CVP [22] is low because motion

and appearance of many actions look very similar across

view changes.

It is interesting to note that our method achieves 67.5%

average recognition accuracy which is about 8% higher

than than the nearest competitor nCTE [15] when view 4

is considered as the test view. As shown in Fig. 10, view 4

is the top view which is challenging because the lower part

of the subject’s body was not fully captured by the camera.

Figure 11 compares the class specific action recognition

accuracies of R-NKTM and NKTM [37]. The proposed

R-NKTM achieves better recognition accuracy on most

action classes. The easiest action to identify is jumping

jack with an average accuracy of 95.4% and the hardest

is phone answering with an average accuracy of 33.3%.

These results are not surprising, since jumping jack is one

of the activities with the most discriminative trajectories

while phone answering is confused with drinking because

the motion of these actions is very similar.

It is important to note that for many actions in the

UWA3D Multiview ActivityII dataset such as holding chest,

holding head, holding back, sneezing and coughing, there

are no similar actions in the CMU mocap dataset. However,

our method still achieves high recognition accuracies for

these actions. This demonstrates the effectiveness and gen-

eralization ability of our proposed model for representing

human actions from unseen and unknown views in a view-

invariant space.

4.4 N-UCLA Multiview Action3D Dataset

This dataset [21] contains RGB, depth and skeleton data

captured simultaneously by 3 Kinect cameras. The dataset

consists of 10 action categories including pick up with one

hand, pick up with two hands, drop trash, walk around,

sit down, stand up, donning, doffing, throw, and carry.

Each action was performed by 10 subjects from 1 to 6
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TABLE 3: Comparison of action recognition accuracy (%) on the UWA3D Multiview ActivityII dataset. Each time two views are
used for training and the remaining ones are individually used for testing. Our method achieves the best performance in all cases.

Sources|Target t1, 2u|3 t1, 2u|4 t1, 3u|2 t1, 3u|4 t1, 4u|2 t1, 4u|3 t2, 3u|1 t2, 3u|4 t2, 4u|1 t2, 4u|3 t3, 4u|1 t3, 4u|2 Mean

DT [13] 57.1 59.9 54.1 60.6 61.2 60.8 71 59.5 68.4 51.1 69.5 51.5 60.4
Hankelets [28] 46.0 51.5 50.2 59.8 41.9 48.1 66.6 51.3 61.3 38.4 57.8 48.9 51.8
DVV [23] 35.4 33.1 30.3 40.0 31.7 30.9 30.0 36.2 31.1 32.5 40.6 32.0 33.7
CVP [22] 36.0 34.7 35.0 43.5 33.9 35.2 40.4 36.3 36.3 38.0 40.6 37.7 37.3
nCTE [15] 55.6 60.6 56.7 62.5 61.9 60.4 69.9 56.1 70.3 54.9 71.7 54.1 61.2
LRCN [50] 53.9 20.6 43.6 18.6 37.2 43.6 56.0 20.0 50.5 44.8 53.3 41.6 40.3
Action Tube [49] 49.1 18.2 39.6 17.8 35.1 39.0 52.0 15.2 47.2 44.6 49.1 36.9 37.0

NKTM 60.1 61.3 57.1 65.1 61.6 66.8 70.6 59.5 73.2 59.3 72.5 54.5 63.5
R-NKTM 64.9 67.7 61.2 68.4 64.9 70.1 73.6 66.5 73.6 60.8 75.5 61.2 67.4

Fig. 11: Per class recognition accuracy of the proposed R-NKTM and NKTM [37] on the UWA3D Multiview ActivityII [35] dataset.

Fig. 12: Sample frames from Northwestern-UCLA Multiview
Action3D dataset [21]. Each column shows a different action.

times. Fig. 12 shows some examples. This dataset is very

challenging because the subjects performed some walking

within most actions and the motion of some actions such

as carry and walk around are very similar. Moreover, most

activities involve human-object interactions.

We follow [21] and use the samples from the first

two cameras for training and samples from the remaining

camera for testing. The comparison of the recognition

accuracy is shown in Table 4. The proposed R-NKTM

again outperforms the NKTM [37] and achieves the highest

recognition accuracy.

Figure 13 compares the per action class recognition

accuracy of our proposed R-NKTM and NKTM [37].

Our method achieves higher accuracy than NKTM [37]

for most action classes. Note that a search for some

actions such as donning, doffing and drop trash returns

TABLE 4: Accuracy (%) on the N-UCLA Multiview dataset [21]
when the samples from the first two cameras are used for training
and the samples from the third camera for testing. DVV and
CVP use samples from the target view. AOG requires the joint
positions of training samples. Our method neither requires target
view samples nor joint positions.

Method Accuracy

DT [13] 72.7
Hankelets [28] 45.2
DVV [23] 58.5
CVP [22] 60.6
nCTE [15] 68.6
AOG [21] 73.3
LRCN [50] 64.7
Action Tube [49] 61.5

NKTM 75.8
R-NKTM 78.1

no results on the CMU mocap dataset [58] used to learn

our R-NKTM. However, our method still achieves 76.8%

average recognition accuracy on these three actions which

is about 10% higher than nCTE [15]. Moreover, walk

around and carry have maximum confusion with each

other because the motion of these actions are very similar.

4.5 UCF Sports Dataset

While the focus of the proposed approach is on action

recognition from unknown and unseen views, we also

evaluate its performance for recognizing actions from pre-

viously seen views to have a baseline and to show that our
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Fig. 13: Per class recognition accuracy of the proposed R-
NKTM and NKTM [37] on the Northwestern-UCLA Action3D
dataset [21].

TABLE 6: Comparison of action recognition accuracy (%) on
the UCF Sports dataset.

Method Only trajectories HOG+HOF+MBH+Traj.

DT [13] 75.2 88.2

R-NKTM 76.7 90.0

method performs equally good when the viewpoint of the

test action is not novel. The evaluation is performed on

the UCF Sports dataset [36] containing videos from sports

broadcasts in a wide range of scenes. As recommended

in [36], we use the Leave-One-Out (LOO) cross-validation

scheme. We compare our proposed method to the dense

trajectory based method (DT) [13]. We choose DT [13] as

our baseline because it is most relevant to our work as it

employs dense trajectory descriptors. As shown in Table 6,

using only trajectory descriptors, our method achieves 1.5%

higher accuracy than DT [13]. However, combining HOG,

HOF, and MBH descriptors with the trajectory descriptor

significantly increases the recognition accuracy of DT [13]

by 13%. Similarly, adding these features to our cross-view

action descriptor significantly improves the accuracy of our

method to 90% which is about 2% higher than DT [13].

Combining the view dependent HOG, HOF and MBH

descriptors with our cross-view descriptor also improves the

recognition accuracy for the multiview case especially when

the difference between the viewpoints is not large. Table 5

shows comparative results of combined descriptors and

the cross-view trajectory only descriptors on the IXMAS

dataset. The accuracy of most source|target combinations

from side views have improved by using the combined

features. This is because the appearance of these views is

quite similar.

4.6 Effects of Concatenating Virtual Views

We evaluate the intermediate performance of our cross-

view descriptor by sequentially adding the virtual views.

Figures 14 and 15 show the recognition accuracy on IX-

MAS and UWA3DII datasets respectively for all possible

source|target view pairs. For most source|target view pairs

of IXMAS dataset, the accuracy increases as more virtual

views are added to the cross-view action descriptor. The

TABLE 7: Computation time (in minutes) including feature
extraction on the N-UCLA dataset [21] when cameras 1, 2 videos
are used as source and camera 3 videos are used as target views.
Train+1 is the time required to add a new action class after training
with 9 classes. Testing time is for classifying 429 action videos.

Method Train+1 Testing

AOG [21] 780 240
nCTE [15] 19 12

R-NKTM 0.52 12

maximum incremental gain is obtained when camera 4

(top view) is used as training or test view. The minimum

gain is for 0|1 view pair because the viewpoints of these

cameras are very similar. Thus the raw trajectory descriptors

already achieve high accuracy. Fig. 15 shows that for all

source|target view pairs of UWA3DII dataset, the recog-

nition accuracy increases by adding virtual views to the

descriptor.

4.7 Computation Time

It is interesting to note that our technique outperforms

the current cross-view action recognition methods on the

IXMAS [31], UWA3DII [35] and N-UCLA [21] datasets

by transferring knowledge across views using the same

R-NKTM learned without supervision (without real action

labels). Therefore, compared to existing cross-view action

recognition techniques, the proposed R-NKTM is more

general and can be used in on-line action recognition sys-

tems. More precisely, the cost of adding a new action class

using our approach in an on-line system is equal to SVM

training. On the other hand, this situation is computationally

expensive for most existing techniques especially for our

nearest competitors [15], [21] as shown in Table 7. For

instance nCTE [15] requires to perform computationally

expensive spatio-temporal matching for each video sample

of the new action class. Similarly, AOG [21] needs to retrain

the AND/OR structure and tune its parameters. Table 7

compares the computational complexity of the proposed

method with AOG [21] and nCTE [15]. Compared to

AOG [21] and nCTE [15], the training time of the proposed

method for adding a new action class is negligible. Thus, it

can be used in an on-line system. Moreover, the test time

of the proposed method is much faster than AOG [21] and

comparable to nCTE [15]. However, nCTE [15] requires

30GB memory to store the augmented samples whereas

our model requires 57MB memory to store the learned R-

NKTM and the general codebook.

5 CONCLUSION

We presented an algorithm for unsupervised learning of a

Robust Non-linear Knowledge Transfer Model (R-NKTM)

for cross-view action recognition. We call it unsupervised

because the labels used to learn the R-NKTM are just

dummy labels and do not correspond to actions that we

want to recognize. The proposed R-NKTM is scalable as

it needs to be trained only once using synthetic data and

generalizes well to real data. We presented a pipeline for

generating a large corpus of synthetic training data required

for deep learning. The proposed method generates realistic
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TABLE 5: Effects of combining HOG, HOF, MBH with our proposed cross-view descriptor on the IXMAS [31] dataset

Source|Target 0|1 0|2 0|3 0|4 1|0 1|2 1|3 1|4 2|0 2|1 2|3 2|4 3|0 3|1 3|2 3|4 4|0 4|1 4|2 4|3 Mean

R-NKTM (Traj. only) 92.7 80.3 83.9 55.2 95.5 80.6 86.4 47.0 82.7 83.6 83.6 75.5 85.8 85.2 84.9 44.2 56.0 53.0 79.0 52.4 74.1

R-NKTM (all) 96.7 80.3 89.1 51.5 96.7 80.9 88.5 43.3 79.7 87.9 84.8 73.9 86.1 87.9 87.9 43.3 54.5 50.3 84.2 52.4 75.0

Fig. 14: IXMAS dataset: Effects of adding features from different layers to the cross-view action descriptor e.g. 1 ` 2 ` 3 means
that the descriptor is built by concatenating features from the source view, virtual view 1 and virtual view 2 as shown in Fig. 4.

Fig. 15: UWA3DII dataset: Effects of adding features from different layers to the cross-view action descriptor

3D videos by fitting 3D human models to real motion

capture data. The 3D videos are projected on 2D plains

corresponding to a large number of viewing directions and

their dense trajectories are calculated. Using this approach,

the dense trajectories are realistic and easy to compute

since the correspondence between the 3D human poses is

known a priori. A general codebook is learned from these

trajectories using k-means and then used to represent the

synthetic trajectories for R-NKTM learning as well as the

trajectories extracted from real videos during training and

testing. The major strength of the proposed R-NKTM is

that a single model is learned to transform any action from

any viewpoint to its respective high level representation.

Moreover, action labels or knowledge of the viewing angles

are not required for R-NKTM learning or R-NKTM based

representation of real video data. To represent actions in

real video sequences, their dense trajectories are coded with

the general codebook and forward propagated through the

R-NKTM. A simple linear SVM classifier was used to

show the strength of our model. Experiments on bench-

mark multiview datasets show that the proposed approach

outperforms existing state-of-the-art.
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