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Abstract

A label consistent K-SVD (LC-KSVD) algorithm to learn

a discriminative dictionary for sparse coding is presented.

In addition to using class labels of training data, we

also associate label information with each dictionary item

(columns of the dictionary matrix) to enforce discriminabil-

ity in sparse codes during the dictionary learning process.

More specifically, we introduce a new label consistent con-

straint called ‘discriminative sparse-code error’ and com-

bine it with the reconstruction error and the classification

error to form a unified objective function. The optimal solu-

tion is efficiently obtained using the K-SVD algorithm. Our

algorithm learns a single over-complete dictionary and an

optimal linear classifier jointly. It yields dictionaries so that

feature points with the same class labels have similar sparse

codes. Experimental results demonstrate that our algorithm

outperforms many recently proposed sparse coding tech-

niques for face and object category recognition under the

same learning conditions.

1. Introduction

Sparse coding has been successfully applied to a variety

of problems in computer vision and image analysis, includ-

ing image denoising [5], image restoration [22, 25], and im-

age classification [29, 28, 4]. Sparse coding approximates

an input signal, y, by a sparse linear combination of items

from an over-complete dictionary D. The performance of

sparse coding relies on the quality of D. [28] employs the

entire set of training samples as the dictionary for discrimi-

native sparse coding, and achieves impressive performances

on face recognition. Many algorithms [16, 18, 27] have

been proposed to efficiently learn an over-complete dictio-

nary that enforces some discriminative criteria.

To scale to large training sets, small-size dictionary

learning has been developed by [28, 19, 1, 24, 33, 6].

In [28], training samples are manually selected to construct

the dictionary. [19] learns a separate dictionary for each

class, with classification then being performed based on re-

construction error. However, dictionary construction dur-

ing training and sparse coding during testing are typically

time-consuming when there are a large number of classes.

In [1], a dictionary learning algorithm, K-SVD, is intro-

duced to efficiently learn an over-complete dictionary from

a set of training signals. This method has been applied to

infill missing pixels and to image compression. K-SVD fo-

cuses on the representational power (best sparse represen-

tation for the training signals) of the learned dictionary, but

does not consider the discrimination capability of the dictio-

nary. The method of optimal directions (MOD) [6] shares

the same effective sparse coding as K-SVD. [24] obtains a

discriminative dictionary by iteratively updating dictionary

items based on the results of a linear predictive classier. Dis-

criminative K-SVD algorithm (D-KSVD) proposed in [33]

unifies the dictionary and classifier learning processes.

We present a supervised algorithm to learn a compact

and discriminative dictionary for sparse coding. We explic-

itly incorporate a ‘discriminative’ sparse coding error cri-

terion and an ‘optimal’ classification performance criterion

into the objective function and optimize it using the K-SVD

algorithm. The learned dictionary is then both reconstruc-

tive and discriminative, in contrast to traditional construc-

tive ones [6, 1, 28, 22]. The learned dictionary provides

‘discriminative’ sparse representations of signals; hence we

achieve good accuracy on object classification even with a

simple multiclass linear classifier, in contrast to other exist-

ing sparse coding approaches [30, 20, 19, 29] which learn

one classifier for each pair of categories. Our approach

is efficient and bounded by the complexity of K-SVD. It

learns the discriminative dictionary and the linear classifier

simultaneously. This is in contrast to dictionary learning

approaches such as [30, 20] which iteratively solve sub-

problems in order to approximate a joint solution, or those

approaches [13, 3, 19, 21] which learn the dictionary and

classifier separately.

Sec. 2 presents the objective function for learning a

reconstructive dictionary and a discriminative dictionary.

Sec. 3 describes a label consistent K-SVD algorithm for

simultaneously learning a dictionary with a discriminative

and reconstructive criteria, and an optimal multiclass linear

classifier. Sec. 4 presents experimental results and analysis.

Sec. 5 concludes the paper and discusses future work.
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1.1. Related Work

Supervised dictionary learning techniques for sparse

coding have attracted much attention in recent years. Some

approaches learn multiple dictionaries or category-specific

dictionaries [34, 31, 19]. Ref. [34, 31] incorporate a boost-

ing procedure into dictionary learning and learn multiple

dictionaries with complementary power. In [19], one dic-

tionary is learned for each class; Classification is based on

the corresponding reconstruction error - it does not leverage

the sparse codes.

Algorithms which attempt to incorporate discriminative

terms into the objective function during training have been

described in [30, 20, 33, 19, 21, 24, 3, 13]. The discrim-

ination criteria include softmax discriminative cost func-

tion [19, 21, 20, 3], Fisher discrimination criterion [13],

linear predictive classification error [33, 24] and hinge loss

function [30, 17].

Most previous approaches treat dictionary learning and

classifier training as two separate processes, e.g. [13, 3, 19,

12, 21, 34, 26]. In these approaches, a dictionary is typi-

cally learned first and then a classifier is trained based on

it. Sparse representations are used as image features trained

later with a classifier, e.g. SVM. More sophisticated ap-

proaches [30, 24, 20, 33] unify these two processes into a

mixed reconstructive and discriminative formulation. Our

approach also falls into this category. Ref. [30, 20] learn

simultaneously an over-complete dictionary and multiple

classification models for each class, which might not scale

well to a large number of classes. The approach in [24] it-

eratively updates the dictionary based on the outcome of a

linear classifier; it may suffer from a local minimum prob-

lem because it alternates between dictionary construction

and classifier design. Ref. [33] incorporated classification

error into the objective function, but it does not guarantee

the discriminability of the resulting sparse codes when us-

ing a small-size dictionary.

Compared to these approaches, our approach more effec-

tively learns a single compact discriminative dictionary and

a universal multiclass linear classifier (for all categories) si-

multaneously. Our learned dictionary has good representa-

tional power (spanning all subspaces of object classes), and

enforces better discrimination capabilities for all classes.

2. Dictionary Learning

2.1. Dictionary Learning for Reconstruction and
Sparse Coding

Let Y be a set of n-dimensional N input signals, i.e.

Y = [y1...yN ] ∈ Rn×N . Learning a reconstructive dic-

tionary with K items for sparse representation of Y can be

accomplished by solving the following problem:

< D, X >= argmin
D,X

‖Y − DX‖2

2
s.t.∀i, ‖xi‖0 ≤ T (1)

where D = [d1...dK ] ∈ Rn×K (K > n, making the

dictionary over-complete) is the learned dictionary, X =
[x1, ..., xN ] ∈ RK×N are the sparse codes of input sig-

nals Y , and T is a sparsity constraint factor (each signal

has fewer than T items in its decomposition). The term

‖Y − DX‖2

2
denotes the reconstruction error.

The construction of D is achieved by minimizing the

reconstruction error and satisfying the sparsity constraints.

The K-SVD algorithm [1] is an iterative approach to min-

imize the energy in Equation 1 and learns a reconstruc-

tive dictionary for sparse representations of signals. It is

highly efficient and works well in applications such as im-

age restoration and compression.

Given D, sparse coding computes the sparse representa-

tion X of Y by solving:

X = arg min
X

‖Y − DX‖2

2
s.t.∀i, ‖xi‖0 ≤ T (2)

2.2. Dictionary Learning for Classification

The sparse code x can be directly used as a feature for

classification. A good classifier f(x) can be obtained by

determining its model parameters W ∈ Rm×K satisfying:

W = arg min
W

∑

i

L{hi, f(xi, W )} + λ1‖W‖2

F (3)

where L is the classification loss function, hi is the label

of yi and λ1 is a regularization parameter (which prevents

overfitting). Typical loss functions are the logistic loss func-

tion [20], square hinge loss [30] and a simple quadratic loss

function [24, 33].

Separating the dictionary learning from the classifier

learning might make D suboptimal for classification. It

is possible to jointly learn the dictionary and classification

model, as in [30, 24, 20, 33], which attempt to optimize the

learned dictionary for classification tasks. In this case, an

objective function for learning D and W jointly can be de-

fined as:

< D, W, X >= arg min
D,W,X

‖Y − DX‖2

2

+
∑

i

L{hi, f(xi, W )} + λ1‖W‖2

F s.t.∀i, ‖xi‖0 ≤ T (4)

Practically, these approaches appear to require learning

relatively large dictionaries to achieve good classification

performance, leading to high computation cost. This prob-

lem is aggravated when good classification results can only

be obtained using a classification architecture based on mul-

tiple pairwise classifiers, as in [30, 20].

We will show that good classification results are obtained

using only a small, single unified dictionary (and a single

multiclass linear classifier) by a simple extension to the ob-

jective function for joint dictionary and classifier construc-

tion. This extension enforces a label consistency constraint
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on the dictionary - intuitively that the class distributions that

a dictionary element ‘contributes’ to during classification

are highly peaked in one class. We refer to this method as

label consistent K-SVD (LC-KSVD) since it employs the

original K-SVD algorithm to obtain its solution.

3. Label Consistent K-SVD

We aim to leverage the supervised information (i.e. la-

bels) of input signals to learn a reconstructive and discrim-

inative dictionary. Each dictionary item will be chosen so

that it represents a subset of the training signals ideally from

a single class, so each dictionary item dk can be associated

with a particular label. Hence there is an explicit corre-

spondence between dictionary items and the labels in our

approach.

We subsequently focus on the effects of adding a label

consistent regularization term, and a joint classification er-

ror and label consistent regularization term into the objec-

tive function in Equation 1 for learning a dictionary with

more balanced reconstructive and discriminative power. We

refer to them as LC-KSVD1 and LC-KSVD2, respectively,

in the following.

3.1. LC­KSVD1

The performance of the linear classifier depends on the

discriminability of the input sparse codes x. For obtaining

discriminative sparse codes x with the learned D, an objec-

tive function for dictionary construction is defined as:

< D, A, X >= arg min
D,A,X

‖Y − DX‖2

2

+α‖Q − AX‖2

2
s.t.∀i, ‖xi‖0 ≤ T (5)

where α controls the relative contribution between recon-

struction and label consistent regularization, and Q =
[q1...qN ] ∈ RK×N are the ‘discriminative’ sparse codes

of input signals Y for classification. We say that qi =
[q1

i ...qK
i ]t = [0...1, 1, ...0]t ∈ RK is a ‘discriminative’

sparse code corresponding to an input signal yi, if the non-

zero values of qi occur at those indices where the input sig-

nal yi and the dictionary item dk share the same label. For

example, assuming D = [d1...d6] and Y = [y1...y6], where

y1, y2, d1 and d2 are from class 1, y3, y4, d3 and d4 are

from class 2, and y5, y6, d5 and d6 are from class 3, Q can

be defined as:

Q ≡




1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1




A is a linear transformation matrix. Here we identify a

linear transformation, g(x; A) = Ax, which transforms the

original sparse codes x to be most discriminative in sparse

feature space RK .

The term ‖Q − AX‖2

2
represents the discriminative

sparse-code error, which enforces that the sparse codes X
approximate the discriminative sparse codes Q. It forces the

signals from the same class to have very similar sparse rep-

resentations (i.e. encouraging label consistency in resulting

sparse codes), which results in good classification perfor-

mance using a simple linear classifier.

3.2. LC­KSVD2

As in [30, 24, 20, 33], we aim to include the classi-

fication error as a term in the objective function for dic-

tionary learning, in order to make the dictionary optimal

for classification. Here we use a linear predictive classi-

fier f(x; W ) = Wx. An objective function for learning a

dictionary D having both reconstructive and discriminative

power can be defined as follows:

< D, W, A, X >= arg min
D,W,A,X

‖Y − DX‖2

2

+α‖Q − AX‖2 + β‖H − WX‖2

2 s.t.∀i, ‖xi‖0 ≤ T (6)

where the term ‖H − WX‖2

2
represents the classifica-

tion error. W denotes the classifier parameters. H =
[h1...hN ] ∈ Rm×N are the class labels of input signals Y .

hi = [0, 0...1...0, 0]t ∈ Rm is a label vector corresponding

to an input signal yi, where the non-zero position indicates

the class of yi. α and β are the scalars controlling the rela-

tive contribution of the corresponding terms.

Assuming discriminative sparse codes X ′ = AX and

A ∈ RK×K is invertible, then D′ = DA−1,W ′ = WT−1.

The objective function in Equation 6 can be rewritten as:

< D′, W ′, X ′ >= arg min
D′,W ′,X′

‖Y − D′X ′‖2

2

+α‖Q − X ′‖2

2
+ β‖H − W ′X ′‖2

2
s.t.∀i, ‖xi‖0 ≤ T (7)

The first term represents the reconstruction error, the second

term the discriminative sparse-code error, and the third term

the classification error. The second term ‖Q − X ′‖2

2
can

make the sparse codes discriminative between classes while

the third term ‖H − W ′X ′‖ supports learning an optimal

classifier.

The dictionary learned in this way will be adaptive to the

underlying structure of the training data (leading to a good

representation for each member in the set with strict sparsity

constraints), and will generate discriminative sparse codes

X regardless of the size of the dictionary. These sparse

codes can be utilized directly by a classifier, such as in [28].

The discriminative property of sparse code x is very impor-

tant for the performance of a linear classifier.

In the following section, we describe the optimization

procedure for LC-KSVD2. LC-KSVD1 utilizes the same

procedure except that the H and W components in Equa-

tion 8 and Equation 14 are excluded. During training, D, A
and X are computed first by Equation 5, and then the matrix

W is trained using Equation 14 for classification.
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Figure 1. Examples of sparse codes using different sparse coding approaches on the three evaluated datasets. X axis indicates the dimensions

of sparse codes, Y axis indicates a sum of absolute sparse codes for different testing samples from the same class. The curves in 1st, 2nd,

3rd and 4th row correspond to class 35 in Extended YaleB (32 testing frames), class 69 in AR Face (6 testing frames), class 78 (29

testing frames) and class 41 (55 testing frames) in Caltech101 respectively. (a) are sample images from these classes. The sparse coding

approaches include: (b) K-SVD [1]; (c) D-KSVD [33]; (d) SRC [28]; (e) SRC* [28]; (f) LLC [27] (30 local bases); (g) LLC [27] (70 local

bases); (h) LC-KSVD1; (i) LC-KSVD2. Each color from the color bars in (h) and (i) represents one class for a subset of dictionary items.

The black dashed lines demonstrate that the curves are highly peaked in one class. The two examples from Caltech101 demonstrate that a

large intra-class difference is enforced between classes via LC-KSVD. The figure is best viewed in color and 600% zoom in.

3.3. Optimization

We use the efficient K-SVD algorithm to find the optimal

solution for all parameters simultaneously. Equation 6 can

be rewritten as:

< D, W, A, X >= arg min
D,W,A,X

‖




Y√
αQ√
βH


 −




D√
αA√
βW


 X‖2

2 s.t.∀i, ‖xi‖0 ≤ T (8)

Let Ynew = (Y t,
√

αQt,
√

βHt)t, Dnew =
(Dt,

√
αAt,

√
βW t)t. The matrix Dnew is L2 normalized

column-wise. The optimization of Equation 8 is equivalent

to solving the following problems:

< Dnew, X >= arg min
Dnew,X

{‖Ynew − DnewX‖2

2
}

s.t.∀i, ‖xi‖0 ≤ T (9)

This is exactly the problem that K-SVD [1] solves. Fol-

lowing K-SVD, dk and its corresponding coefficients, the

k-th row in X , denoted as xk
R, are updated at a time. Let

Ek = (Y −
∑

j 6=k djx
j
R), and x̃k

R, Ẽk denote the result of

discarding the zero entries in xk
R and Ek , respectively. dk

and x̃k
R can be computed by solving the following problem:

< dk, x̃k
R >= arg min

dk,x̃k

R

{‖Ẽk − dkx̃k
R‖2

F } (10)

A SVD operation is performed for Ẽk, i.e. UΣV t =
SVD(Ẽk). Then dk and x̃k

R are computed as:

dk = U(:, 1)

x̃k
R = Σ(1, 1)V (:, 1) (11)

Finally x̃k
R is used to replace the non-zero values in xk

R.

LC-KSVD learns D, A and W simultaneously, which

avoids the problem of local minima and is scalable to a

large number of classes. In addition, it allows us to eas-

ily combine another discriminative term, i.e. discriminative

sparse-code error, into the objective function. It produces a

discriminative sparse representation regardless of the size of

the dictionary. Figure 1 shows examples of sparse codes of

one testing class from three evaluated datasets using differ-

ent approaches. From this figure, we can see that LC-KSVD

ensures that signals from the same class have similar sparse

codes, which is very important for linear classification.

3.3.1 Initialization of LC-KSVD

We need to initialize the parameters D0, A0 and W0 for

LC-KSVD. For D0, we employ several iterations of K-SVD

within each class and then combine all the outputs (i.e dic-

tionary items learning from each class) of each K-SVD. The

label of each dictionary item dk is then initialized based on

the class it corresponds to and will remain fixed during the
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entire dictionary learning process 1, although dk is updated

during the learning process. Dictionary elements are uni-

formly allocated to each class with the number of the ele-

ments proportional to the dictionary size.

In order to initialize A0, we employ the multivariate

ridge regression model [10], with the quadratic loss and L2

norm regularization, as follows:

A = argmin
A

‖Q − AX‖2 + λ2‖A‖2

2 (12)

which yields the following solution:

A = (XXt + λ2I)−1XQt (13)

Similarly, for W0, we again use the ridge regression

model and obtain the following solution:

W = (XXt + λ1I)−1XHt (14)

Given the initialized D0, we perform the original K-SVD

algorithm to compute the sparse codes X of training signals

Y . Then the X can be used to compute the initial A0 in

Equation 13 and W0 in Equation 14.

3.4. Classification Approach

We obtain D = {d1...dK}, A = {a1...aK} and W =
{w1...wK} from Dnew by employing the K-SVD algo-

rithm [1]. We cannot simply use D, A and W for testing

since D, A and W are L2-normalized in Dnew jointly in the

LC-KSVD algorithm, i.e.∀k, ‖(dt
k,
√

αat
k,
√

βwt
k)t‖2 = 1.

The desired dictionary D̂, transform parameters Â and clas-

sifier parameters Ŵ are computed as follows:

D̂ = { d1

‖d1‖2

,
d2

‖d2‖2

...
dK

‖dK‖2

}

Â = { a1

‖d1‖2

,
a2

‖d2‖2

...
aK

‖dK‖2

}

Ŵ = { w1

‖d1‖2

,
w2

‖d2‖2

...
wK

‖dK‖2

} (15)

For a test image yi, we first compute its sparse representa-

tion xi by solving the optimization problem:

xi = arg min
xi

{‖yi − D̂xi‖2

2
} s.t.‖xi‖0 ≤ T (16)

Then we simply use the linear predictive classifier Ŵ to

estimate the label j of the image yi:

j = argmax
j

(l = Ŵxi) (17)

where l ∈ Rm is the class label vector.

1We do associate a unique and fixed class label to each dictionary item,

but an input signal of a class certainly can (and does) use dictionary items

from other classes, as the sparse codes in Figure 1(h) and 1(i) illustrate.

4. Experiments

We evaluate our approach on two public face databases:

Extended YaleB database [9], AR face database [23], and

on a multiclass object category dataset: Caltech101 [7].

We compare our results with K-SVD [1], D-KSVD [33],

sparse representation-based classification (SRC) [28] and

LLC [27] 2.

The feature descriptors used in the Extended YaleB

database and AR Face database are random faces [28, 33],

which are generated by projecting a face image onto a ran-

dom vector. We follow the standard setting in [33]. The size

of a random-face feature in Extended YaleB is 504 while

the size in AR face is 540. For the Caltech101 dataset, we

first extract sift descriptors from 16 × 16 patches which are

densely sampled using a grid with a step size of 6 pixels;

then we extract the spatial pyramid feature [15] based on the

extracted sift features with three grids of size 1 × 1, 2 × 2
and 4 × 4. To train the codebook for spatial pyramid, we

use the standard k-means clustering with k = 1024. Finally,

the spatial pyramid feature is reduced to 3000 dimensions

by PCA.

In each spatial sub-region of the spatial pyramid, the

vector quantization codes are pooled together to form a

pooled feature. These pooled feature from each sub-region

are concatenated and normalized as the final spatial pyra-

mid feature of an image. The sparse codes for the Cal-

tech101 dataset are computed from spatial pyramid fea-

tures. There are two kinds of pooling methods: (1) sum

pooling [15]: xout = x1+, ..., +xn; (2) max pooling [29]:

xout = max(x1, ..., xn), where xi is the vector quantiza-

tion code. Then these pooled features are normalized by:

(1) L1 normalization: xout = xout/
∑

i xi; (2) L2 normal-

ization: xout = xout/‖xout‖2. Different combinations are

evaluated in our experiment. Following the common eval-

uation procedure, we repeat the experiments 10 times with

different random spits of the training and testing images to

obtain reliable results. The final recognition rates are re-

ported as the average of each run. The sparsity factor used

in all of our experiments is 30.

4.1. Evaluation on the Extended YaleB Database

The Extended YaleB database contains 2, 414 frontal-

face images of 38 persons [9]. There are about 64 im-

ages for each person. The original images were cropped

to 192 × 168 pixels. This database is challenging due to

varying illumination conditions and expressions. We ran-

domly select half of the images (about 32 images per per-

son) as training and the other half for testing. Each face

image is projected onto a 504-dimensional vector with a

randomly generated matrix from a zero-mean normal dis-

2D-KSVD and SRC results are based on our own implementations,

which allowed us to standardize the learning parameters across methods.

1701



Table 1. Recognition results using random-face features on the Ex-

tended YaleB database. The 2nd column is the result when we used

all 64 images for each person. The 3rd column is the result when

we removed 10 poor-quality images for each person.
Method Acc.(%) Acc.(%)

K-SVD(15 per person) [1] 93.1 98.0

D-KSVD(15 per person) [33] 94.1 98.0

SRC(all train. samp.) [28] 97.2 99.0

SRC*(15 per person) [28] 80.5 86.7

LLC(30 local bases) [27] 82.2 92.1

LLC(70 local bases) [27] 90.7 96.7

LC-KSVD1(15 per person) 94.5 98.3

LC-KSVD2(15 per person) 95.0 98.8

LC-KSVD2(all train. samp.) 96.7 99.0

Table 2. Computation time for classifying a test image on the Ex-

tended YaleB database.
Method Avg. Time (ms)

SRC(all training samples) [28] 20.78

SRC*(15 per person) [28] 11.22

LC-KSVD1(15 per person) 0.52

LC-KSVD2(15 per person) 0.49

tribution. Each row of the matrix is L2 normalized. The

learned dictionary consists of 570 items, which corresponds

to an average of 15 items per person. Unlike the K-SVD [1]

and D-KSVD [33], there is an explicit correspondence be-

tween the dictionary items and the labels of people in our

approach, which is similar to the SRC algorithm [28] but

our approach uses fewer training samples.

We evaluate our approach and compare it with K-

SVD [1], D-KSVD [33], SRC [28] and the recently pro-

posed LLC algorithm [27]. We measure the performance

of the SRC algorithm using dictionaries with two different

sizes (all training samples and 15 samples per person). For

fair comparison, the number of local bases, which deter-

mines the sparsity of the LLC codes, is chosen as the same

value as the sparsity factor (i.e. T = 30) used in our im-

plementation. For evaluating the importance of the number

of local bases, we also evaluate the LLC algorithm with 70
local bases.

The results are summarized in Table 1. The weight fac-

tors α and β are set to 16 and 4 respectively in our experi-

ment. Most of the failure cases are from images taken un-

der extremely bad illumination conditions. Hence we per-

form another experiment with these bad images excluded

(about 10 for each person). The results of this experiment

are listed in the third column of Table 1. Our approaches al-

ways achieve better results than the KSVD, D-KSVD, LLC.

Additionally, our approach outperforms the competing SRC

algorithm when it uses the same size dictionary (i.e. SRC*).

In addition, we compare our approaches with SRC in

terms of the computation time for classifying one test im-

age. The time is computed as an average over all the test im-

ages. As shown in Table 2, our approach is approximately

22 times faster than SRC*. If a database is provided with

more categories, a small dictionary for sparse coding can

save even more time (see the results for AR face database).

Table 3. Recognition results using random face features on the AR

face database.
Method Acc. (%)

K-SVD(5 per person) [1] 86.5

D-KSVD(5 per person) [33] 88.8

SRC(all train. samp.) [28] 97.5

SRC*(5 per person) [28] 66.5

LLC(30 local bases) [27] 69.5

LLC(70 local bases) [27] 88.7

LC-KSVD1(5 per person) 92.5

LC-KSVD2(5 per person) 93.7

LC-KSVD2(all train. samp.) 97.8

Table 4. Computation time for classifying a test image on the AR

face database.
Method Avg. Time (ms)

SRC(all training samples) [28] 83.79

SRC*(5 per person) [28] 17.76

LC-KSVD1(5 per person) 0.541

LC-KSVD2(5 per person) 0.479

4.2. Evaluation on the AR Face Database

The AR face database consists of over 4, 000 color im-

ages of 126 persons. Each person has 26 face images

taken during two sessions. Compared to the Extended

YaleB database, these images include more facial varia-

tions including different illumination conditions, different

expressions and different facial ‘disguises’ (sunglasses and

scarves). Following the standard evaluation procedure, we

use a subset of the database consisting of 2600 images from

50 male subjects and 50 female subjects. For each person,

we randomly select 20 images for training and the other 6
for testing. Each face image of size 165 × 120 pixels, is

projected onto a 540-dimensional vector with a randomly

generated matrix. The learned dictionary has 500 dictio-

nary items, i.e. 5 items per person. As discussed earlier,

there is an explicit correspondence between the dictionary

items and the labels of people.

We evaluate our approaches using random face features

and compared with state-of-art approaches including K-

SVD [1], D-KSVD [33], SRC [28] and LLC [27]. For

SRC, we learn two dictionaries with two different dictio-

nary sizes. All the approaches use the same learning pa-

rameters. The recognition results are summarized in Ta-

ble 3. Our approaches outperform K-SVD, D-KSVD, LLC

and SRC*. Note that SRC degrades dramatically when it

uses 5 samples per person.

In addition, we compare our approaches with SRC in

terms of the computation time for classifying one test im-

age. As shown in Table 4, our approach is approximately

35 times faster than SRC*. As expected, a small dictionary

can save more time for a database consisting of many train-

ing images, and the performance does not degrade much

compared to using the entire set of training images as the

dictionary.

4.3. Evaluation on the Caltech101 Dataset

The Caltech101 dataset [7] contains 9144 images from

102 classes (i.e. 101 object classes and a ‘background’
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class) including animals, vehicles, flowers, etc. The sam-

ples from each category have significant shape variability.

The number of images in each category varies from 31 to

800. Following the common experimental settings, we train

on 5, 10, 15, 20, 25 and 30 samples per category and test on

the rest.

We evaluate our approach using spatial pyramid features

and compare the results with K-SVD [1], D-KSVD [33],

SRC [28] and other state-of-art approaches [32, 15, 11, 2,

14, 24, 8, 29, 27]. The comparative results are shown in Ta-

ble 5. Our approaches consistently outperform all the com-

peting approaches. The basic reason for the good recogni-

tion performance, even with only a few training examples,

is that the new label consistent constraint encourages the in-

put signals from the same class to have similar sparse codes

and those from different classes to have dissimilar sparse

codes.

We randomly select 30 images per category as train-

ing data, and evaluate our approach using different dictio-

nary sizes K = 510, 1020, 1530, 2040, 2550 and 3060;

We compare the classification accuracy of K-SVD [1], D-

KSVD [33] and SRC [28]. Figure 2(a) shows that our ap-

proaches maintain a high classification accuracy and out-

perform the other three competing approaches significantly

when we use a smaller size dictionary.

We also compare the training time of a dictionary with

K-SVD and D-KSVD. As shown in Figure 2(b), we can

train approximately 13 times faster when we use a dictio-

nary with a size of 510 rather than 3060. More importantly,

as shown in Figure 2(a), the classification accuracy of LC-

KSVD degrades only slightly when using the dictionary of

size 510. We compare our approach with SRC in terms of

computation time of classifying one test images, using dif-

ferent dictionary sizes. As shown in Table 6, the computa-

tion time of our approach is significantly faster (about 310
times) than SRC.

In addition, we evaluate different combinations of pool-

ing methods and normalization methods for computing spa-

tial pyramid features. As can be seen from Figure 2(c),

‘max pooling’ followed by ‘L2 normalization’ generates

the best classification accuracy. Note that ‘sum pool-

ing’ followed by ‘L1 normalization’ generates the his-

tograms, which were used in the original spatial pyramid

features [15].

There were a total of 9 classes achieving 100% classifi-

cation accuracy when using 30 training images per category.

Figure 3 shows some samples from seven of these classes.

5. Conclusions

We proposed a new dictionary learning approach, label

consistent K-SVD (LC-KSVD) algorithm, for sparse cod-

ing. Our main contribution lies in explicitly integrating the

‘discriminative’ sparse codes and a single predictive linear

Table 5. Recognition results using spatial pyramid features on the

Caltech101 dataset.

number of train. samp. 5 10 15 20 25 30

Malik [32] 46.6 55.8 59.1 62.0 - 66.20

Lazebnik [15] - - 56.4 - - 64.6

Griffin [11] 44.2 54.5 59.0 63.3 65.8 67.60

Irani [2] - - 65.0 - - 70.40

Grauman [14] - - 61.0 - - 69.10

Venkatesh [24] - - 42.0 - - -

Gemert [8] - - - - - 64.16

Yang [29] - - 67.0 - - 73.20

Wang [27] 51.15 59.77 65.43 67.74 70.16 73.44

SRC [28] 48.8 60.1 64.9 67.7 69.2 70.7

K-SVD [1] 49.8 59.8 65.2 68.7 71.0 73.2

D-KSVD [33] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD1 53.5 61.9 66.8 70.3 72.1 73.4

LC-KSVD2 54.0 63.1 67.7 70.5 72.3 73.6

Table 6. Computation time (ms) for classifying a test image on the

Caltech101 dataset.

Dictionary size 510 1020 1530 2040 2550 3060

SRC [28] 173.44 343.12 520.88 662.40 835.34 987.55

LC-KSVD1 0.59 1.09 1.62 2.21 2.83 3.50

LC-KSVD2 0.54 0.98 1.44 1.94 2.50 3.17

(a) accordion, acc: 100%

(b) car, acc: 100%

(c) tree, acc: 100%

(d) minaret, acc: 100%

(e) scissors, acc: 100%

(f) stopsign, acc: 100%

(g) trilobite, acc: 100%

Figure 3. Example images from classes with high classification

accuracy from the caltech101 dataset.

classifier into the objective function for dictionary learning.

Additionally, the solution to the new objective function is

efficiently achieved by simply employing the original K-

SVD algorithm. Unlike most existing dictionary learning

approaches that rely on iteratively solving sub-problems in

order to approximate a global solution, our approach is able

to learn the dictionary, discriminative coding parameters
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Figure 2. Performance comparisons on the Caltech101. (a) Performance on the Caltech101 with varying dictionary size; (b) Training time

on the Caltech101 with varying dictionary size; (c) Performance on the Caltech101 with different spatial-pyramid-matching settings.

and classifier parameters simultaneously.

The experimental results show that our approach yields

very good classification results on three well-known pub-

lic datasets with only one simple linear classifier, which is

unlike some competing approaches learning multiple classi-

fiers for categories to gain discrimination between classes.

Our approach outperforms recently proposed methods in-

cluding D-KSVD [33], SRC [28] and LLC [27], especially

when the number of training samples is small. Possible fu-

ture work includes extending our approach to learn a dictio-

nary with a discriminative and representation power based

on local image patches, and apply it to object recognition.
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