
Learning a Dynamic Classification Method to Detect

Faces and Identify Facial Expression

Ramana Isukapalli1, Russell Greiner2, and Ahmed Elgammal3

1 Lucent Technologies, Bell Labs Innovations, Whippany, NJ 07981, USA
2 University of Alberta, Edmonton, CA T6G 2E8, CA
3 Rutgers University, New Brunswick, NJ 08854, USA

Abstract. While there has been a great deal of research in face detection and

recognition, there has been very limited work on identifying the expression on

a face. Many current face detection projects use a [Viola/Jones] style “cascade”

of Adaboost-based classifiers to interpret (sub)images — e.g., to identify which

regions contain faces. We extend this method by learning a decision tree of such

classifiers (DTC): While standard cascade classification methods will apply the

same sequence of classifiers to each image, our DTC is able to select the most

effective classifier at every stage, based on the outcomes of the classifiers already

applied. We use DTC not only to detect faces in a test image, but to identify the

expression on each face.

1 Introduction

The pioneering work of Viola and Jones [12] has led to a host of face detectors based

on “cascade classifiers”, where each classifier is learned by applying Adaboost [4] (or

some related algorithm [11,13]) to a database of training images of faces and non-faces.

The underlying principle in all these algorithms is to learn multiple classifiers during

the training phase, then (at performance time), run these classifiers as a “cascade” on

each region (at various resolutions) of the test image — i.e., in a sequence one after

another, eliminating non-faces at each stage.

In general, there can be many sub-clusters within the class of face images — in par-

ticular, perhaps one sub-cluster corresponds to people with the same facial expression

while another corresponds to people with some other expression.

Moreover, one of our learned classifiers might do very well on one cluster, but

relatively poorly on another. Consider, for example, the examples shown in Figure 1,

and notice the positive instances can be grouped into 3 clusters. (Here, imagine every

instance labeled “+” corresponds to a HappyFace, “✸” to a SadFace and “✷” to an An-

gryFace”. Note all 3 are faces — i.e., should be labeled positively by a face detector.)

Now consider two possible classifiers, corresponding to the set of separating lines la-

beled C1 (respectively C2). Neither is perfect. If we are trying to separate only the “+”

labeled positive instances from the negative instances, we would get better results using

C1; but if dealing with “✸” labeled or “✷” labeled instances, then C2 would preferred.

Of course, this same idea holds for different possible cascade of classifiers: different

cascades might be preferable for different clusters of images.

W. Zhao, S. Gong, and X. Tang (Eds.): AMFG 2005, LNCS 3723, pp. 69–83, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

70 R. Isukapalli, R. Greiner, and A. Elgammal

Fig. 1. Two classifiers on set of positive and negative examples. Note various sub-clusters

of positive examples.

At performance time, our performance system DTC will scan through an unlabeled

image. For each sub-image W , it will (1) quickly sort W to the cluster best able to

process this sub-image, and (2) apply to W the classifier cascade appropriate to this

cluster. If W passes all of those classifiers, it is declared a “face”, and moreover assigned

the expression E associated with this cluster. The challenge is learning these two sub-

procedures. To do this, we first run the [12] algorithm on a training set whose image

regions are labeled only as face (vs non-face), but without any expression data. This

produces a set of Adaboost classifiers C = {C1, . . . , CN}. We then use these Cis as

features, to produce a decision tree that attempts to partition a second labeled training

set, which is a collection of images whose faces are each labeled with an expression

(as well as non-faces), into sub-collections containing faces with the same expression.

At each leaf node of this decision tree we then assemble a sequence of classifiers (each

taken from the C set) to form a cascade appropriate to this cluster. (Note each cluster can

have its own classifier sequence.) By construction, the resulting face detection system

will not only detect faces, but also associate every such face detected in a test image

with an expression.

This framework has two advantages over the standard model of cascade classifiers.

First, the standard model can only assign a binary “face vs non-face” label to each

subimage. By contrast, our system can return several labels, corresponding to facial

expression (as well as “non-face”). Second, while one classifier (or cascade of clas-

sifiers) might work well in identifying images in one cluster, that classifier (cascade)

might not work well for another. Unfortunately the existing cascade-based detection

techniques are static and image-independent, in that they apply a fixed set of classifiers

in a fixed order to any image. By contrast, our dynamic classification technique DTC

can decide which classifier to use at any stage, based on the outcomes of the previous

Learning a Dynamic Classification Method to Detect Faces 71

classifiers. That is, while DTC also applies a sequence of classifiers to detect faces, the

actual sequence can vary — hence it can apply different cascades of classifiers to dif-

ferent images. Our evidence suggests that such dynamic classifiers have slightly better

accuracy in detecting faces.

Our DTC corresponds to an augmented decision tree, whose internal nodes each

correspond to a version of a classifier (which computes a real-valued score given an

image) and whose arcs each correspond to a range of those values. Each leaf node

corresponds to a partitioning of the possible sub-images; we then identify with each

such leaf node both a further sequence of classifiers and also a specific facial expression.

Note that each sub-cluster (and hence the leaf node) identifies the facial expression. We

also identify a sequence of classifiers with each leaf node. To classify a test (sub)image

I , DTC will apply the classifier associated with root of the decision tree to I , then use

the outcome of that classifier to determine which subtree to explore. It then recurs:

applying the classifier at the root of that subtree, etc. (Hence, the classifier applied at

stage s depends on the outcomes of the classifiers at stage 1, 2, . . . , s−1.) On reaching

a leaf node ℓ, DTC will then apply the associated classifier cascade, and accepts I as

a face if all of the classifier agree with this claim. If I is labeled as a face, it is also

assigned ℓ’s facial expression.

Section 2 describes how we produce this DTC system from a collection of labeled

images. In particular, this section shows how we use dynamic programming and ab-

stractions to sidestep the serious combinatorial issues — e.g., the exponential number

of possible decision trees, and possible cascades.

This section also explains the details of how we build a DTC and how we use it

to detect faces and identify the expressions on each detected face. Section 3 evaluates

our work in the domain of face detection; Section 4 presents relevant work related to

our research.

2 Learning the DTC Classifier

This section describes how we learn our DTC from two sets of labeled images — one

training set FLT 1, that identifies the embedded faces (but not the expressions), and a

second smaller one, FELT2, that labels the embedded faces with the associated expres-

sions. Each face image in the FELT set contains a single face that is hand-labeled with

one of { sad, fear, surprise, happy, no expression }.

There are three steps to building the DTC classifier. We first use the standard ap-

proach [12] to build a cascade of Adaboost classifiers C = 〈C1, . . . , CN 〉, based only

on the FLT training set; see Section 2.2. We next use the FELT data to produce a fixed-

depth decision tree whose nodes each correspond to one of these Cis, with the goal of

partitioning the FELT set into sub-clusters of face images with similar expressions; see

Sections 2.3. Each leaf node is now identified with a single expression. Third, we add a

further fixed-size sequence of classifiers, taken from {C1, . . . , CN}, to each leaf node;

see Section 2.4.

1 Face-Labeled Training set.
2 Face-Expression-Labeled Training set.

72 R. Isukapalli, R. Greiner, and A. Elgammal

Later, to use DTC to classify some region of an image, we first drop that region into

the decision tree, and let it sort itself down to a leaf. We then run the associated sequence

of classifiers. If that image “passes” each member of that sequence, it is labeled as

a face, and given the expression label associated with the leaf node. Otherwise it is

declared a non-face; see Section 2.5.

We give the motivation to our approach first and then present the details of our

algorithm.

2.1 Motivation

Figure 1 shows two classifiers C1 and C2 that are each, independently, trying to separate

positive from negative examples; each line of C1 (resp., C2) denotes a linear separator,

whose intersection corresponds to the classifier. At a high level, the positive examples

can be approximately grouped into three sub-clusters.

Below, we will consider classifiers that map an image into a real “SCO-value” (de-

fined later), not just a bit; see below. A set of N such classifiers therefore map each

image into a point in N -dimensional space, and face images can be seen as forming

sub-clusters in this space. If we can partition them meaningfully along “d1 ≪ N” (a

predetermined constant, see below) dimensions, then we can retrieve the sub-clusters.

Partitioning the images based on any single classifier Ci is equivalent to finding its pro-

jection on the ith dimension in the N dimensional space; we can then split the images

based on the classifier’s value, into two (perhaps equal) groups. If we take such pro-

jections and partition the images repeatedly along d1 dimensions corresponding to d1

classifiers, then we can retrieve the (at most 2d1) sub-clusters.

It is also important to choose the d1 most effective classifiers. The positive instances

in Figure 1 include members of a left-most sub-cluster, labeled “✸” and a right-most

one labeled “+”.We can see that the positive instances in these two sub-clusters have

different ranges for their X–values, while they have a similar range for the Y –value.

This means it is easy to separate the left-most cluster from the right-most if we project

the data into the X–axis, but this is not true if we consider projection into the Y -axis.

Of the many ways to partition the images, we wanted the partitions that are asso-

ciated with common facial expressions, based on the images in the FELT dataset. Sec-

tion 2.3 shows how we build a fixed-depth decision tree, “DTC”, using the C classifiers

(from the FLT-based cascade) to do this.

Each leaf here corresponds to a single facial expression. We also find a sequence of

another d2 classifiers that are specifically chosen to remove the false positives from the

sub-cluster.

2.2 Learning a Cascade of Classifiers

Our implementation first uses Viola-Jones approach [12] to produce a cascade of Ad-

aboost classifiers, 〈C1, C2, . . . CN 〉: First apply Adaboost to the entire collection of

labeled images in the training set FLT to produce a classifier C1. Let T1 be the images

that C1 labeled positively. Then apply Adaboost to T1 to produce the C2 classifier; then

let C3 be the classifier Adaboost produces when given T2 (which are the images C2

labeled positively), and so forth, to produce N classifiers. In our case we tell Adaboost

Learning a Dynamic Classification Method to Detect Faces 73

how many linear separators each classifier should use. However, the algorithm decides

how many classifiers N it needs to build.

Our DTC will use this set of classifiers, but will structure them into a decision tree,

rather than simply use them in this sequence.

SCO-Value: Each Ci classifier will reject many of the images. For each image it passes,

it will also compute a real-value, as follows: Let 〈c1
i , c

2
i , . . . c

k
i 〉 be the linear separators3

of the boosted classifier Ci and let c
j
i (W) be the outcome of applying c

j
i to a train-

ing image W . We define SCO-value (“sum of classifier output values”), Vi(W) =
∑k

j=1 c
j
i (W) as the sum of the outputs of the linear separators of Ci.

Adaboost is designed to choose the best features from the over-a-hundred-thousand

possible candidates. They are likely to fall on salient features specific to faces — like

eyes, nose, mouth, etc. Since SCO-value uses the outcomes of these classifiers, we

anticipate partitioning face images based on these values should group images of similar

features into one sub-cluster.

2.3 Building the Basic Decision Tree

Figure 2(a) presents the learning algorithm. It has two goals: first, to partition the im-

ages in the FELT set into meaningful sub-clusters of face images with the same face

expression, and second, to find the most effective sequence of d2 classifiers for each

sub-cluster.

We first restrict the set of classifiers, paring the list from C = {C1, . . . , CN} down

to a smaller set. To do this, we view each of these classifiers individually, as if we were

planning to use only it to label images. For any classifier Ci and for a specified data set

of images S (here, we use FLT.) we compute the score

R(Ci, S) = ℓ × FN(Ci, S) + FP (Ci, S) (1)

where FN(Ci, Sj) is the number of false negatives Ci returns over the set S and

FP (Ci, S) is the number of false positives in S. (We set ℓ = 10 in this work, as

false negatives are much worse than false positives — as a subsequent classifier may

eliminate the false positive, but once any classifier has removed a false negative, it will

never be recovered.) We then use only the best M = 10 such classifiers.

Next, we produce a depth-d1 decision tree, whose features each correspond to one of

these M classifiers. Its goal is to partition the FELT data, into clusters with the same fa-

cial expression. (We used d1 = 3 here.) In general, achieving this objective can be very

expensive, as there are several thousands of training images, and a huge number of pos-

sible decision trees. We use a two stage divide-and-conquer approach to help sidestep

this. First, we use a dynamic programming tableau to learn an optimal depth-d1 decision

tree. Each node at depth d corresponds to the set of images based on the application of a

specific sequence of d classifiers. The single depth-0 node 〈〉 contains all of the images

considered, S. To compute the images in the 〈(Ci, +)〉 node: First let C1(S) be the sub-

set of S that pass the C1 classifier; assume these are sorted based on their SCO-value

3 Each ci is a “rectangular feature”, the outcome of which is computed using “integral images”.

See [12] for details.

74 R. Isukapalli, R. Greiner, and A. Elgammal

Learn DTC(T : FLT TrainingSet, V : FELT TrainingSet)
• Build a cascade of Adaboost classifiers

〈C1, C2, . . . CN 〉 using images in T .

• Let C1:M = 〈C1, . . . , CM 〉 = the M classifiers

with highest individual score on T (Equation 1)

• Build decision tree based on C1:M :

During tree expansion, at depth i

after applying any Ci from each of All sequences

− Remove each image that Ci classifies as a non-face

− Partition remaining images into two equal halves

based on their Ci-based SCO-value

− Apply each Ci+1 to each half and continue

• Compute utility at each leaf (representing sub-cluster)

• Propagate utility up the tree, for any node nd

at depth d

− U(nd) = max {U(nd+1)}
− Let C∗

d+1 yield max. utility when applied on nd

− Associate C∗

d+1 with F(nd), store 〈F(nd), C∗

d+1〉
− Merge all the δ-equivalent F(nd) nodes into one,

store one classifier C∗

i with the maximum utility

• For each leaf, find best sequence of d2

additional classifiers

Use DTC(It : Test Image)
• Set ratio = 1.0
⋆ For each window W (of 24 × 24 pixels) within It

◦ For 1 ≤ i ≤ d1

– Find abstract state F(ni) “closest” to W

– Apply C∗

i associated with F(ni)
◦ If 〈C1, C2, . . . Cd1

〉 label the window as a face

– Find the corresponding sub-cluster, i.e., F(nd1
)

– Apply d2 classifiers associated with F(nd1
)

– If these d2 classifiers also label W as a face,

mark W as a face

• Set ratio := ratio × 0.8
Resize It by a factor of ratio.

• If It.length ≥ 24 and It.width ≥ 24, goto ⋆

• For each detected face Fi

◦ Using images in the matching sub-cluster SC,

compute P (E|SC) for each expression E.

◦ Assign expression E∗ =
arg maxE{P (E|SC)} to Fi

Fig. 2. (a) Learning algorithm to discover sub-clusters and find “effective” sequence of classifiers

for each sub-cluster; (b) Dynamic classification algorithm

as 〈w1, . . . , wm/2, wm/2+1, . . . , wm〉, where V1(wj) > V1(wk) when j > k. Then the

〈(C1, +)〉 node contains {w1, . . . , wm/2}, and 〈(C1,−)〉 contains {wm/2+1, . . . , wm}.

Learning a Dynamic Classification Method to Detect Faces 75

Similarly 〈(C2, +)〉 contains half of the images in C2(S) — those with the highest V2(·)
values — and 〈(C2,−)〉 contains the other half of the C2(S) images. And so forth for

the other 〈(Ci,±)〉 nodes. We can then compute 〈(C1, +), (C2, +)〉 that contains half

of the 〈(C1, +)〉 images that pass the C2 classifier, and 〈(C1, +), (C2,−)〉 that contains

the other half, etc. We continue for d1 levels, producing
(

M
d1

)

× 2d1 nodes. Each node

at depth d1 corresponds to a sub-cluster; we found that no sub-cluster contained more

than 83 images.

We now want to determine the best decision tree within this tableau — the one that

leads to the “purest” leaf nodes.

Computing the Utilities, First d1 Classifiers: Each leaf of the tree represents a pos-

sible sub-cluster.. We want the sub-clusters that are as “pure” as possible, which we

compute based on the utility

U(Sd+1) = K1 × γ∗

exp × |Sd+1| − K2 × FN(Sd+1)

where |Sd+1| denotes the number of images in the sub-cluster Sd+1 (which might

include some false positives) and FN(Sd+1) denotes total false negatives in Sd+1

(recall this is after applying 〈C1, C2 . . . Cd〉) and γ∗

exp = maxe{γe} where γe is

the fraction of face images in Sd+1 with a particular expression e ∈{ sad, fear,

surprise, no expression, happy}. (We used the constants K1 = 100 and K2 = 10.)

The idea is to assign high utility value to sub-clusters that group face images of the

same expression and a low utility value to sub-clusters that have high false nega-

tives. For any internal node Si we define U(Si) = maxj{U(Sj
i+i} as the maximum

utility of its children, {Sj
i+i}j .

Using these, we propagate the utility up the tree. We collect the 〈F(Si), C∗

i 〉 tuples

and also the corresponding utilities, for all depths i, 1 ≤ i ≤ d1. F(Si) represents the

“abstract state” representation of S1, (see below for the notion of abstract states) C∗

i

denotes the classifier that, when applied to Si, transitions it to another state S∗

i+1, with

the maximum utility among the children of Si. For every two states Si and Sj (i �= j)

that are δ-equivalent (see blow for the definition of δ-equivalent states) we retain only

one state that has a higher utility and the corresponding classifier.

State Abstraction: At any stage during detection (testing phase) our algorithm first tries

to determine the closest matching sub-cluster for each face detected in a test image.

To be more precise, after applying classifiers 〈C1, C2, . . . , Ci−1〉 to a window in the

image, DTC applies the most appropriate classifier Ci. To choose Ci, we compare the

performance of Ci in a “similar situation” on the training data. For that we need to

have some kind of a “state representation” that allows us to effectively perform such

comparisons quickly.

In general, with each node s in the decision tree, we can identify both the

sequence of classifiers 〈C1, . . . , Ck〉 on the path from root to s, and also a set

of training images Ss that will reach s. We can also identify each s with an ab-

stract state F(s) = 〈[Vmin,1, Vmax,1], [Vmin,2, Vmax,2], . . . [Vmin,k, Vmax,k]〉, for

each i, where [Vmin,i, Vmax,i] is the range of SCO-values of Ss associated with

classifier Ci.

76 R. Isukapalli, R. Greiner, and A. Elgammal

Further, we say two abstractions are “δ-equivalent”, written F(s1) ≈δ F(s2), iff:

– s1 and s2 have applied the same set of classifiers, not necessarily in the same order.

– For every classifier Ci used in F(s1) and F(s2), |V
(1)
min,i − V

(2)
min,i| ≤ δ and

|V
(1)
max,i−V

(2)
max,i| ≤ δ, where δ is a pre-defined constant. We set δ = 70 throughout

this work.

The result of abstraction is that a large number of complex states can be described

by a small number of compact state descriptions. Of course, the same abstract state can

represent multiple states — it is possible that F(s1) = F(s2) even if s1 �= s2.

2.4 Further Pruning

The d1 classifiers leading to a leaf node both identify the sub-cluster, and also filter

away many, but not all, of the non-faces. We therefore use another set of d2 classifiers,

specific to each leaf node, to help filter out the other non-faces. We noticed that each

sub-cluster has just a fraction of the total number of the training data (none had more

than 83, from the FELT data of 2672 images). Further, we noticed the number of false

positives was not very high (less than 27) for each sub-cluster (see Section 3). So, we

select a classifier C∗

d1+1 for each state Sd (d1 ≤ d ≤ (d1 + d2)) such that C∗

d1+1 has

not been used earlier and C∗

d1+1 = arg maxCd1+1
{R(Sd, Cd1+1)}. We apply C∗

d1+1,

update false positives and false negatives and repeat the process until d2 such classifiers

are found. At performance time, this means our DTC algorithm will use at most a total

of d1+d2 classifiers for any image, which collectively form the most effective sequence

of classifiers for that particular sub-cluster. (Of course, can be different sequences for

different images.)

2.5 Detection Using the Dynamic Classifier

The DTC detection algorithm, shown in Figure 2(b), both detects faces within a given

image and also identifies the expression of each such face into a sub-cluster. This

face detection mechanism is very similar to the cascade classifiers method [12,13], ex-

cept that it chooses the classifiers dynamically, based on the outcomes of the previous

classifiers.

This process examines each 24 × 24 pixel window in the image; it then rescales

and repeats. For each window W , DTC first applies the classifier C∗

1 associated with

root. This might reject the window W ; if so the process terminates (i.e., DTC continues

with the next window). Otherwise, DTC computes the SCO-value associated with C∗

1

on W and uses this value to decide which subsequent classifier C∗

2 to apply. Again this

could reject W , but if not, C∗

2 ’s SCO-value identifies the next classifier C∗

3 to apply to

W . This can continue for d1 steps, until W reaches a leaf, ℓ.If so, DTC then runs the

sequence of d2 additional classifiers associated with ℓ, and declares W to be a face only

if it passes all of these classifiers. (Here, it had passed all d1 + d2 classifiers.)

We also identify each detected face W with a facial expression: Recall there are

many expression-labeled training images associated with this leaf node ℓ; we assign to

W the most common of these expressions.

Learning a Dynamic Classification Method to Detect Faces 77

2.6 Computational Complexity of Learning

Let N be the total number of classifiers and P be the total number of images. We sort

the N classifiers based on their utility on the training data and choose M best from

them. We expand the tree exhaustively up to a depth of d1 using the M classifiers. At

every depth, we apply a classifier Cd, collect the images classified as faces by Cd as

positives, sort them based on the SCO-metric of Cd and partition the positive images

into two halves4. Hence the total complexity of the process is O(
(

M
d1

)

× P lg(P)). This

is computationally expensive. However, since the number of training images is halved

on each branch, this process terminates rapidly. In fact, starting with several thousands

of images, we can obtain sub-clusters of size less than 100 by expanding the tree to a

depth no greater than 3 or 4, which can be done in a few minutes.5

3 Empirical Studies — Face Detection

In this section we show how we apply our ideas to the challenging domain of face detec-

tion and show its performance on several images. The training set flt has 1600 images

of faces and 2320 images of non-faces6, each of size 24 × 24 pixels. The face images

include faces of many people, some having glasses, beard and many with different fa-

cial expressions, etc. Some training images of faces in FLT are shown in Figure 3(a) The

FELT set has a total of 917 face images of the five basic expressions (sad, fear, surprise,

no-expression and happy). It also has 2320 non-face images. Some of the face images

in FELT are shown in Figure 3(b).

During the training stage, we built a cascade of 21 classifiers using Adaboost, based

respectively on { 7 15 30 30 50 50 50 100 120 140 160 180 200 200 200 200 200 200

200 200 200} linear separators. We sort these classifiers based on their score S(Ci, T)
on the training data and select the 10 best classifiers. Using the 10 classifiers, we do

a depth first search as explained in Section 2.3 up to a depth of d1 = 3 and find sub-

clusters. Each sub-cluster included between 26–83 images, some of which could be

false positives. The number of false positives was in the range {0 ..27}, for any sub-

cluster. Figure 4 shows face images of the same expression from some interesting sub-

clusters that our algorithm learned.

For each sub-cluster we find another sequence d2 = 13 classifiers 7 that have the

maximum score on the images of the sub-cluster, as explained in Section 2.3. The (d1 +
d2) classifiers learned by our algorithm form the most effective sequence for the sub-

cluster they are associated with.

To detect faces in any given test image, we use the dynamic detection technique

given in Figure 2(b) and explained in Section 2.5. We ran it over 150 images mostly

4 We compute the SCO-metric V i
j of every classifier Ci on every training image Ij and also

whether Ci classifies Ij as face or not, apriori. So, there are no extra computation during the

tree expansion stage.
5 The training time for building the classification tree on a 1 GHz. computer with 256 Mb. RAM

running Windows-2000, using MS Visual C++ was about 5 minutes.
6 Most of these images were downloaded from the web from popular databases like Olivetti

Research & AT&T, Caltech, Yale, JAFFE, PICS, etc.
7 We set these values after initial experiments on many test images.

78 R. Isukapalli, R. Greiner, and A. Elgammal

(a) Faces in the FLT set

(b) Faces in the FELT set with five different expressions — fear, happy, no expression, sad and

surprised

Fig. 3. Face images in the FLT and FELT sets

from Olivetti Research database face images and could successfully identify the ex-

pression. Figure 5 shows the performance of our detection algorithm on a number of

face images with various expressions. The figure also shows a graph plotting P (E|SC),
which indicates the probability of expression E for the detected face. We assign the ex-

pression E∗ with maximum P (E|SC) to the expression. Note that expressions can be

mixed — like happy and surprised, sad and fear and so on. The graph below indicates

the probability of each expression.

3.1 ROC Curve

To find out the effectiveness of our face detection algorithm, we ran it on 178 image

face images of the MIT-CMU database with a total of over 532 faces and covering

(a)

(b)

(c)

(d)

(e)

Fig. 4. Various sub-clusters discovered from the FELT data — (a) Sad (b) Fear (c) Surprised (d)

No Expression (e) Happy

Learning a Dynamic Classification Method to Detect Faces 79

(a)

(b)

(c)

(d)

(e)

Fig. 5. Performance on several test images — (a) happy (b) no expression (c) sad (d) fear (e)

surprise. For each test image, the corresponding graph below shows the probability of each of the

five expressions.

80 R. Isukapalli, R. Greiner, and A. Elgammal

Fig. 6. Classification results on sample images from MIT-CMU database

82

83

84

85

86

87

88

89

90

91

92

93

0 50 100 150 200 250 300 350

False Positives

Cas
DTC

✸

✸

✸

✸

✸ ✸

✸

Fig. 7. ROC curve

more than 30 million windows. Figure 6 shows the performance of our algorithm on

two images, each with several faces. Figure 7 compares the ROC curves for our face

detection algorithm with that of Viola-Jones cascade classification algorithm. 8 Note

that Viola-Jones detection method uses 21 classifiers, while our algorithm uses only

a subset of 16. Since our algorithm is built using the 21 classifiers of the Viola-Jones

algorithm, all the parameters (like the number of linear separators for each classifier,

the training data from which they are built) are exactly the same. An important point to

note — since our algorithm uses only a subset of the classifiers as Viola-Jones method,

it detects every face that Viola-Jones method detects.

8 This is the implementation of the Viola-Jones method [12] by Wu and Rehg.

Learning a Dynamic Classification Method to Detect Faces 81

The main difference is the way they choose the classifiers — Viola-Jones method is

static, while our algorithm is dynamic. Our technique can adapt itself to choose the most

effective classifier specific to the sub-cluster. Hence, it can apply complex classifiers

(with a high number of linear classifiers) very early in the detection process.

The points on the ROC curve are obtained by varying the number of classifiers

applied in the range [4–21] for Viola-Jones method and [4–16] for our method. As can

be seen from the graph, both the methods seem to have similar performance, with a

peak detection rate of 92.5%, while our algorithm does marginally better.

3.2 Efficiency

We ran our Viola Jones algorithm and our algorithm on 400 images of Olivetti Research

database face images, each with a size of 92 × 112 pixels and each image having ex-

actly one face. On average Viola-Jones algorithm took 0.189 seconds per image while

our algorithm took 0.243 seconds. The increase in computational time can be attributed

to two reasons — our algorithm not only detects faces but also assigns an expression

to each detected face, that involves extra computation. Secondly, Viola-Jones algorithm

is a static algorithm optimized for speed. It uses boosted classifiers with smaller num-

ber (less than 10) of weak classifiers, that are faster to execute, early in the detection

process. We cannot detect the best matching sub-clusters (to find out expression) by

choosing classifiers statically. Hence, our algorithm may select more complex classi-

fiers (that take more time to execute) in the early stages of detection. However, complex

classifier can also prune off several thousands of false positives initially increasing the

overall detection efficiency.

4 Previous Work

There has been limited work in identifying face expressions. Liu and others [7,3,2] track

facial features and analyze them for facial expressions. Others proposed several other

methods [1] almost all of them are based on methods that do a local analysis of facial

features, like mouth, eyes, etc. Our work is significantly different from all these — we

don’t use sequence of images or analyze facial features explicitly, but use training set

to group face images of expression into sub-clusters. We associate each detected face

with a sub-cluster to identify the expression.

Many researchers have recently proposed several methods for detecting faces in

images; see [8,10,9] for a small sample. There has been a lot of interest in the cas-

cade classification methods using classifiers, after the seminal work of Viola and Jones

[12,11,13]. All of the cascade classification methods are static — the number of clas-

sifiers and the order in which they are applied is fixed; i.e., the same for each instance.

Although our approach also uses classifiers, it differs because the order of those sub-

classifiers can change for different images. We present an algorithm to learn a dynamic

classification method, that decides which classifier to apply to an image based on the

outcome of the classifiers already applied. Grossman [5] presented a tree-based detec-

tion method, which selects a linear combination of weak classifiers dynamically, based

on the outcome of the previous weak classifiers. Our work is also dynamic but differs

82 R. Isukapalli, R. Greiner, and A. Elgammal

significantly as we build a classification tree using these subclassifiers in the internal

nodes. Moreover, the aim of our work is not only to detect faces but to discover different

sub-groups in training images of faces and to associate each face that is detected in a test

image to one of these. Thus, it is an extension to simple face detection. [6] addressed

related issues in a feature-based face-recognition system by posing the task a “Markov

Decision Problem (MDP)”. They use dynamic programming to produce an optimal

policy, π∗, that maps “states” to “actions” (feature detector) for that MDP, then used

that optimal policy to recognize faces efficiently. We use similar techniques here in this

work — we aim to find the best sequence of classifiers here, to detect faces and also

each detected face to a sub-cluster.

5 Conclusions

We give future directions to extending this work and present the contributions of our

work.

5.1 Directions for Future Work

In this work we use classifiers to achieve two objectives — to detect faces and to group

each detected face into one sub-group. There are several interesting extensions to this

work; it can extended to partition training images into sub-clusters of faces with and

without (external) features like glasses, moustache, etc. The detection system can be

used to differentiate people with these features from those without these features.

It will be interesting to try our method on gender classification also. This work can

be directly extended to do multiple object detection. Our concept of sub-clusters of

faces can be directly correlated to different objects. We can still use a binary (positive

and negative) classifier where the training images of all the objects to be detected are

positive examples and the rest are negative examples. The training phase of computing

the rewards and building a classifier will be quite similar, where the most effective

sequence of classifiers will be those that can separate images of different objects into

separate clusters. The detection phase will be guided by the dynamic classifier where a

classifier with the maximum utility will be selected at each stage.

Finally, we believe that with suitable modifications our approach can be used for

gesture recognition, where each sub-cluster corresponds to face images that belong to

people with the same gesture.

5.2 Contributions

The main contribution of our work is that it assigns expression to faces during detec-

tion. Our training algorithm partitions training images into sub-clusters of similar ex-

pressions. During detection, every detected face is matched to one of these sub-clusters

to identify the expression. Another novel aspect of our work is that our face detection

method is dynamic. We present an algorithm to learn a dynamic classification method

that applies the most effective classifier based on the outcome of the previously applied

classifiers.

Learning a Dynamic Classification Method to Detect Faces 83

References

1. B. Abboud and F. Davoine Facial expression recognition and synthesis based on appearance

model, Signal Processing and Image Communication, Elsevier, Vol. 19, No. 8, pp. 723-740,

Sep. 2004

2. J.F. Cohn, T. Kanade, T.K. Wu, Y.T. Lien and A.Zlochower, Facial Analysis: Preliminary

analysis of a new image processing based method International Society for Research in

Motion, Toronto, 1996

3. J.F. Cohn, A. Zlochower, J. Lien, Y.T. Wu and T.Kanade Automated face coding: A computer

vision based method of facial expression analysis Seventh European Conference on Facial

Expression, Measurement and Meaning, Salzburg, Austria, 1997.

4. Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an

application to boosting. Computational Learning Theory: Eurocolt, 1995.

5. E. Grossmann. Adatree: boosting a weak classifier into a decision tree. In IEEE Workshop

on Learning in Computer Vision and Patter Recognition, 2004.

6. R. Isukapalli, and R. Greiner Use of Off-line Dynamic Programming for Efficient Image

Interpretation IJCAI, Acapulco, Mexico, Aug 2003

7. Y. Liu, K. Schmidt, J.F. Cohn and S. Mitra Facial asymmetry quantification for expression

invariant human identification Computer Vision and Image Understanding, pp. 138–151, vol

91, 2003

8. H. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection. IEEE Transac-

tions on Patten Analysis and Machine Intelligence (PAMI), 1998.

9. D. Roth, M. Yang, and N. Ahuja. A snowbased face detector. In Neural Information Pro-

cessing Systems (NIPS), 2000.

10. H. Schneiderman and T. Kanade. A statistical method for 3d object detection applied to faces

and cars. In International Conference on Computer Vision (ICCV), 2000.

11. P. Viola and M. Jones. Fast and robust classification using asymmetric adaboost and a detec-

tor cascade. In Proceedings of the Conference on Computer Vision and Pattern Recognition

(CVPR), 2001.

12. P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In

Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), 2001.

13. J. Wu, J.M. Rehg, and M.D. Mullin. Learning a rare event detection cascade by direct feature

selection. In Proceedings of Advances in Neural Information Processing Systems (NIPS),

2003.

	Introduction
	Learning the dtc Classifier
	Motivation
	Learning a Cascade of Classifiers
	Building the Basic Decision Tree
	Further Pruning
	Detection Using the Dynamic Classifier
	Computational Complexity of Learning

	Empirical Studies --- Face Detection
	ROC Curve
	Efficiency

	Previous Work
	Conclusions
	Directions for Future Work
	Contributions

