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Abstract—In this letter, we propose a Gaussian mixture model
(GMM)-based channel estimator which is learned on imperfect
training data, i.e., the training data are solely comprised of
noisy and sparsely allocated pilot observations. In a practical
application, recent pilot observations at the base station (BS) can
be utilized for training. This is in sharp contrast to state-of-the-
art machine learning (ML) techniques where a training dataset
consisting of perfect channel state information (CSI) samples is
a prerequisite, which is generally unaffordable. In particular, we
propose an adapted training procedure for fitting the GMM
which is a generative model that represents the distribution
of all potential channels associated with a specific BS cell.
To this end, the necessary modifications of the underlying
expectation-maximization (EM) algorithm are derived. Numeri-
cal results show that the proposed estimator performs close to the
case where perfect CSI is available for the training and exhibits
a higher robustness against imperfections in the training data as
compared to state-of-the-art ML techniques.

Index Terms—Robust channel estimation, imperfect data,
generative model, Gaussian mixture, OFDM system.

I. INTRODUCTION

C
HANNEL estimation plays a crucial role in enhanc-

ing wireless communications systems. Recently, ML

approaches were successfully leveraged for channel estimation.

The goal is to exploit a priori information about all possible

channels of mobile terminals (MTs) associated with a specific

BS cell and its radio propagation environment to improve

the channel estimation quality. This is generally intractable

to model analytically but is represented in terms of a training

dataset that is available at the BS.

Thereby, different learning techniques can be distinguished.

In end-to-end learning, the channel estimation is not performed

explicitly, but a network is trained to directly perform signal

detection [1]. A different approach is to learn a nonlinear

regression mapping from the pilot observation in the input to a

channel estimate at the output of a network by utilizing ground-

truth CSI samples [2], [3]. In contrast to that, it was recently

proposed to train a generative model that represents the

channel distribution of the whole BS cell, which is afterwards

leveraged for channel estimation [4], [5].

A common prerequisite of ML-based approaches is the

availability of a representative training dataset consisting of

perfect CSI samples. However, the construction of such a

dataset is a challenging task in practice. One possibility is to

perform costly measurement campaigns for each BS, which is
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generally unaffordable. A different attempt is to use channel

simulators, e.g., [6]. The inherent problem of simulators is the

mismatch between the real and the artificially generated data,

leading to performance losses. Another problem is that the BS

environment may change over time which is difficult to track.

This leads to the idea of utilizing pilot observations, which are

received in great numbers at the BS during regular operation

and capture the environmental information, as training data.

Although the data aggregation is then cheap and the dataset

can be continuously updated to account for varying conditions,

the dataset contains imperfections, e.g., noise and sparse pilot

allocations. However, these imperfections can be mitigated by

specific training adaptations since they follow a known model.

Contributions: In this letter, we propose an adaptation of the

EM algorithm to fit a GMM with noisy, and possibly sparsely

allocated, pilot observations. We derive new update steps for

the GMM parameters that take the system model, i.e., the

model of the imperfections, into account. Additionally, we

show that imposing structural features to the covariances of

the GMM acts as a regularization which enhances the channel

estimation performance, especially for sparse pilot allocations.

It is discussed that the presented method is particularly robust

against imperfections in the training data, in contrast to

commonly used regression-based ML techniques. Finally, the

discussed properties are verified with simulations for both a

spatial and a doubly-selective fading model.

Notation: The identity matrix of dimension N × N is

denoted by IN . The column-wise vectorization and the trace

of a matrix is denoted by vec(·) and tr(·), respectively. We

denote a positive semi-definite (PSD) matrix C which fulfills

xHCx ≥ 0 for all x 6= 0 as C � 0.

II. SYSTEM AND CHANNEL MODELS

We consider the general system model of pilot observations

y = Ah+ n, (1)

where A∈ CM×N is the known observation matrix, h ∈ CN is

the wireless channel with an unknown probability density func-

tion (PDF) fh, and additive white Gaussian noise (AWGN)

n ∼ NC(0,Cn = σ2
IM ). In this letter, we consider the

following two instances of (1).

A. Spatial System Model

Consider a single-input multiple-output (SIMO) system

where a BS equipped with N antennas serves single-antenna

MTs in a single-user uplink transmission. After correlating

the pilot sequence for a single snapshot we obtain y = h+n,

following the model in (1) with M = N and A = IN .

http://arxiv.org/abs/2301.06488v2
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We work with a spatial channel model [3] where channels

are modeled conditionally Gaussian: h|δ ∼ NC(0,Cδ). The

random vector δ collects the angles of arrival and path

gains of the main propagation clusters between a MT and

the BS. A different spatial channel covariance matrix Cδ is

computed for each sample by means of the steering vector of

a uniform linear array (ULA) antenna array at the BS, cf. [3].

B. Doubly-Selective Fading System Model

In this case, we consider a single-input single-output (SISO)

transmission in the spatial domain over a doubly-selective

fading channel h = vec(H), where H ∈ CNc×Nt rep-

resents the time-frequency response of the channel for Nc

carriers and Nt time slots. This is a typical setup in

orthogonal frequency-division multiplexing (OFDM) systems.

When only Np positions of the Nt × Nc time-frequency

response are occupied by pilot symbols, there is a selection

matrix A ∈ {0, 1}Np×NcNt which represents the pilot posi-

tions. This leads to observations as described in (1) where

N = NcNt and M = Np. In this work, we consider a

diamond-shaped pilot allocation scheme which is known to

be mean square error (MSE)-optimal [7].

For the construction of a scenario-specific channel dataset,

we use the QuaDRiGa channel simulator [6]. We consider an

urban macrocell (UMa) scenario following the 3GPP 38.901

specification, where the BS is placed at a height of 25m and

covers a sector of 120°. Each MT is either placed indoors

(80%) or outdoors (20%) and moves with a certain velocity v
in a random direction, which is captured by a drifting model.

III. LEARNING A GMM FROM IMPERFECT DATA

A. Scenario-Specific Imperfect Training Dataset

Having access to training data that represent the environ-

ment of a BS cell, i.e., the typically complex and intractable

channel PDF fh, in combination with ML techniques, has

been shown to substantially improve the channel estimation

performance. The common prerequisite of these data-aided

techniques is the availability of a training dataset H con-

sisting of perfect CSI samples, i.e., L channel realizations

H = {hℓ}Lℓ=1. However, this assumption is impractical if the

training data are collected at a BS during regular operation.

That is, the training data stem from certain pilot positions at

a finite signal-to-noise ratio (SNR), i.e., Y = {yℓ}Lℓ=1, cf. (1).

Note that these data can be pre-processed in different ways,

e.g., by denoising or interpolating the pilot positions. Although

these training data are corrupted by various imperfections, the

statistical information about the system model can be utilized

to mitigate these effects, as shown in the following.

B. GMM-based Channel Estimator with Adapted Training

In [4], a channel estimator was introduced that is based on

a GMM whose application consists of two phases. First, in an

offline training phase a K-components GMM of the form

f
(K)
h (h) =

K
∑

k=1

πkNC(h;µk,Ck), (2)

where πk, µk, and Ck are the mixing coefficients, means,

and covariances of the kth GMM component, respectively,

is fitted by maximum likelihood optimization with the well-

known EM algorithm, cf. [8, Sec. 9.2], via training samples

from H in order to approximate the underlying distribution fh
of the channels in the whole BS cell. Due to the Gaussianity

of the noise with the known covariance matrix Cn and the

known observation matrix A, the PDF of the observations

fy can be approximated by means of the GMM f
(K)
y (y) =

∑K

k=1 πkNC(y;Aµk,Cy,k), where Cy,k = ACkA
H + Cn,

which can be straightforwardly computed once (2) is known,

cf. (1). Second, the trained GMM is leveraged to perform

channel estimation by computing a convex combination of

linear minimum mean square error (MMSE) estimates for a

given pilot signal y, i.e.,

ĥGMM =

K
∑

k=1

γk(y)
(

CkA
HC−1

y,k(y −Aµk) + µk

)

(3)

where γk(y) is the responsibility of the kth component, i.e.,

the probability that the component k is responsible for the

observation y [8, Sec. 9.2]. In [9], the estimator was extended

to impose structural features to the channel covariances Ck in

the training of the GMM for saving complexity and memory.

However, so far, the GMM was trained on a dataset com-

prised of perfect channels H, cf. Section III-A. If we naively

replace H with the noisy, possibly pre-processed, training

data Y from pilot observations (1), a severe performance

loss can be expected due to the imperfections in the training

data. Therefore, in the following, we propose adapted training

procedures for the GMM that drastically alleviates the effects

of the imperfect training data by utilizing the knowledge of

the system model (1) and possibly existing structural features

of the covariances.

We first discuss the case of training data that is corrupted

by AWGN following the model in (1) with A = IN , cf.

Section II-A. The main idea is to adapt the EM algorithm

such that the PDF fy of the observations is approximated

by the GMM f
(K)
y (y). Due to zero-mean AWGN, the up-

dates of the mixing coefficients πk and the means µk are

unchanged with respect to the classical EM algorithm, cf. [8,

Sec. 9.2]. However, we would like to include the constraint

that Cy,k = Ck + Cn, following the model (1). The GMM

for the channel distribution (2) can then be directly obtained

since Cn is known. The derivation for the update of Ck is

given in the following.

Theorem 1. Given noisy pilot observations Y , the maximum

likelihood solution C∗
k for the covariance in the EM algorithm

is given by computing the eigenvalue decomposition (EVD)

Ĉy,k −Cn = V diag(ξ)V H (4)

with Ĉy,k = 1
Nk

∑L

ℓ=1 γk,ℓ(yℓ − µk)(yℓ − µk)
H, Nk =

∑L

ℓ=1 γk,ℓ, and γk,ℓ being the responsibility of component k
for data point yℓ. Afterwards, an elementwise truncation of

the negative eigenvalues via ξPSD = max(0, ξ) is performed

such that

C∗
k = V diag(ξPSD)V H. (5)
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Proof. The maximization of the expected complete log-

likelihood, cf. [8, Sec. 9.3], of the pilot observations with

respect to the kth channel covariance Ck is given by

C∗
k = argmax

Ck�0

K
∑

j=1

L
∑

ℓ=1

γj,ℓ logNC(yℓ;µj ,Cj +Cn) (6)

= argmax
Ck�0

L
∑

ℓ=1

γk,ℓ logNC(yℓ;µk,Ck +Cn) (7)

= argmax
Ck�0

− log det(Ck +Cn)− tr(Ĉy,k(Ck +Cn)
−1)

(8)

where from (6) to (7) it is used that the maximization depends

only on the kth GMM component, and (8) follows from

the definition of the Gaussian PDF and Ĉy,k from above.

Thus, the optimization simplifies to a maximization of the

Gaussian likelihood of the kth GMM component. The optimal

solution for the case of a Gaussian likelihood is derived in [10,

Appendix] and is obtained with the EVD and the truncation

of the negative eigenvalues. This can be applied to (8) through

a substitution of Ĉy,k which yields the solution in (5).

Next, we consider the case where the pilot observations stem

from the OFDM model in Section II-B, i.e., only a few channel

entries are observed according to the pilot pattern represented

by A. To adapt the training procedure, we combine the insights

from Theorem 1 together with the EM algorithm for missing

entries, cf. [11, Chapter 11]. We first define a selection matrix

Ā∈ {0, 1}(NcNt−Np)×NcNt which represents the positions that

are not allocated with pilots, i.e., AĀT = 0. After an initial

interpolation step, one EM iteration is performed in the usual

way to have initial estimates of the GMM parameters. The

updates of the mixing coefficients πk and means µk are again

unchanged with respect to the classical EM algorithm due to

the zero-mean AWGN. The adapted updates of the covariances

Ck are derived in the following.

Theorem 2. Given sparsely allocated and noisy pilot obser-

vations Y , first, a linear MMSE estimate of the unobserved

and noisy channel entries ȳℓ,k is computed via the current

statistics of the kth GMM component as

ȳk,ℓ = Āµk + ĀCkA
T(ACkA

T+Cn)
−1(yℓ−Aµk). (9)

Afterwards, a fully interpolated sample, given as ŷk,ℓ =
ATyℓ + ĀTȳk,ℓ, is used to update

Ĉy,k =
1

Nk

L
∑

ℓ=1

γk,ℓ(ŷk,ℓ−µk)(ŷk,ℓ−µk)
H+ĀTΣkĀ (10)

where Nk =
∑L

ℓ=1 γk,ℓ and

Σk = ĀCkĀ
T−ĀCkA

T(ACkA
T+Cn)

−1ACkĀ
T. (11)

Finally, to account for the AWGN, the update of the channel

covariance matrix C∗
k is computed via the EVD of Ĉy,k−Cn

and the truncation of the negative eigenvalues, cf. Theorem 1.

Proof. The steps (9)–(11) are derived in the EM algorithm

for missing data, cf. [11, Chapter 11], where the additional

covariance term (11) accounts for the estimated covariance

of the missing entries. Given the estimate of the observation

covariance Ĉy,k in (10), the subsequent projection via the

EVD to get the maximum likelihood estimation of the channel

covariance C∗
k is a direct consequence of Theorem 1.

Additionally, it is possible to enforce covariances with a

specific structure [9]. In this letter, we are focusing espe-

cially on the case of block-Toeplitz covariances, constructed

as Ck = QH diag(ck)Q, where Q is a truncated 2D-

discrete Fourier transform (DFT) matrix. This structure fits

particularly well in the OFDM case [9]. It is important

to mention that the imposed structural constraints on the

covariances can be understood as a regularization technique.

Interestingly, as shown later in Section IV, this regularization

allows for performance gains, especially in the case of sparse

pilot allocations.

Algorithm 1 summarizes the proposed adapted EM algo-

rithm for fitting the GMM in the OFDM case from Section II-B

with noisy and sparsely allocated pilot observations with

structured covariances. If we consider the spatial model from

Section II-A, the steps 8, 9, and 14 can be omitted. For

unstructured covariances, the steps 2, 20, 21, and 22 are

dropped.

C. Discussion about Robustness

The first stage of training the GMM is equivalent to learn

a generative model that represents the channel distribution of

the whole BS cell. On the one hand, this generative model

allows to leverage prior information about the distribution of

the channels in the whole BS cell that enhances the channel

estimation performance [4]. On the other hand, it can be

adapted to imperfections in the training data as discussed

above which is motivated by model-based insights. This is a

fundamental difference to common learning-based estimators

that are trained to learn a regression mapping between pilot

observations and channel estimates, which inherently rely on

perfect CSI samples, e.g., [1]–[3]. Thus, the proposed GMM

approach allows for a more robust solution with respect to

various imperfections in the training data because of its ability

to adapt the training procedure accordingly and introduce

structural regularization, cf. Section III-B.

An important advantage of the GMM estimator is that

only the training phase must be changed in contrast to [4]

where perfect training CSI is assumed to be available. Thus,

the online complexity and the number of parameters of the

estimator do not change. Furthermore, the GMM is universal

and requires further adaptation only in case of changing

parameters of the propagation environment which can be

conveniently tracked with the frequently received pilots at the

BS. Additionally, it has to be trained only once for a given

SNR and can then be applied to any other SNR value, which is

in contrast to learning-based estimators where the dependency

on the SNR is crucial, e.g., [2], [3]. Fortunately, since the

proposed covariance updates in Theorem 1 and Theorem 2

are the maximum likelihood solutions, all favorable properties

of the EM algorithm, such as a monotonically increasing

likelihood, are preserved.
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Algorithm 1 Adapted EM with Structured Covariances.

Require: Y , K , A, Cn, {µ
(1)
k ,C

(1)
k , π

(1)
k }

K
k=1, Q, i = 1, imax

1: Get selection matrix Ā such that AĀT = 0

2: Initialize {c
(1)
k ← QC

(1)
k QH}Kk=1

3: while i < imax and convergence criterion not met do

4: {C
(i)
y,k ← AC

(i)
k AT +Cn}

K
k=1

5: for k = 1 to K do

6: for ℓ = 1 to L do

7: γk,ℓ ←
π
(i)
k

NC(yℓ;Aµ
(i)
k

,C
(i)
y,k

)
∑

K
j=1 π

(i)
j

NC(yℓ;Aµ
(i)
j

,C
(i)
y,j

)
{E-step}

8: ȳk,ℓ ← Āµ
(i)
k + ĀC

(i)
k ATC

(i),−1
y,k (yℓ −Aµ

(i)
k )

9: ŷk,ℓ ← ATyℓ + ĀTȳk,ℓ {interpolated sample}
10: end

11: Nk ←
∑L

ℓ=1 γk,ℓ
12: π

(i+1)
k ← Nk

L
{mixing coefficient update}

13: µ
(i+1)
k ← 1

Nk

∑L

ℓ=1 γk,ℓŷk,ℓ {mean update}

14: Σk ← ĀC
(i)
k ĀT − ĀC

(i)
k ATC

(i),−1
y,k AC

(i)
k ĀT

15: ŷk,ℓ ← ŷk,ℓ − µ
(i+1)
k

16: C
(i+1)
y,k ← 1

Nk

L
∑

ℓ=1

γk,ℓŷk,ℓŷ
H
k,ℓ + ĀTΣkĀ

17: Vk, ξk ← EVD(C
(i+1)
y,k −Cn)

18: ξPSD
k ← max(0, ξk) {elementwise max}

19: C
(i+1)
k ← Vk diag(ξ

PSD
k )V H

k

20: Θk ← Q
(

C
(i),−1
k C

(i+1)
k C

(i),−1
k −C

(i),−1
k

)

QH

21: c
(i+1)
k ← c

(i)
k + diag

(

diag(c
(i)
k )Θk diag(c

(i)
k )

)

22: C
(i+1)
k ← QH diag(c

(i+1)
k )Q {covariance update}

23: end

24: i← i+ 1
25: end

26: return {µ
(i)
k ,C

(i)
k ,π

(i)
k }

K
k=1

IV. SIMULATION RESULTS

We present numerical results to evaluate the proposed

method for two different channel models in comparison to

state-of-the-art estimators. We set E[‖h‖2] = N such that the

SNR = 1/σ2. We choose K = 64 GMM components which is

practically reasonable [4]. We utilize L = 105 training samples

for all data-based approaches, and evaluate on 104 test samples

of different MTs that are not part of the training data.

A. Spatial Channel Model

We first evaluate the channel estimation performance for the

spatial model from Section II-A with A = IN . The GMM esti-

mator which is based on perfect CSI is denoted by “GMM H”,

whereas the GMM estimator that is naively used without any

modifications on training data from Y is denoted by “GMM

mismatch”. The proposed approach with adapted training from

Section III-B is denoted by “GMM Y”. We analyze the perfor-

mance in comparison with the following baseline estimators.

The curve labeled “genie” represents the utopian MMSE esti-

mator that has full knowledge of Cδ for each sample. We fur-

ther evaluate the least squares (LS) solution ĥLS = y. We in-

clude the convolutional neural network (CNN) estimator from
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Fig. 1. Spatial channel model from Section II-A with N = 128 BS antennas
and one propagation cluster. The SNR is the same for training and evaluation.

[3], that learns a regression mapping, labeled “CNN”. The

CNN consists of two layers with rectified linear unit (ReLU)

activation and we use the truncated DFT matrix for the

input/output transform, cf. [3]. To achieve a fair comparison,

the CNN estimator is trained on data from Y , which clearly

introduces an unavoidable mismatch in the learning phase.

In Fig. 1, the channel estimation performance of the above

discussed estimators is shown for N = 128 BS antennas and

one propagation cluster, consisting of multiple sub-paths. The

depicted SNR is the same in both training and evaluation,

i.e., a different set of training data Y is given for each SNR

value, which mimics a realistic situation. The GMM estimator

with perfect CSI H performs very close to the genie-MMSE

estimator which is in accordance with the findings in [4]. If

the GMM estimator is fitted naively with data from Y without

modifications to the training procedure, this leads to a severe

performance loss of about 5dB for the whole SNR range.

However, with the proposed modifications, a performance

close to the perfect CSI case, and thus to the genie-MMSE

estimator, is possible, purely based on training data from Y .

The CNN estimator has a substantial performance loss as

compared to the proposed estimator, especially in the high

SNR regime.

B. Doubly-Selective Fading Channel Model

We consider a typical OFDM frame structure of Nc = 12
carriers having a spacing of 15kHz, yielding a bandwidth

of 180kHz, and Nt = 14 time slots, cf. Section II-B. In

both the training and the test dataset we consider MTs which

move with a fixed but random velocity between three and

130km/h, i.e., each MT in the datasets has a velocity drawn

from the uniform distribution v ∼ U(3, 130)km/h. This should

represent a practical BS environment where different MTs

are moving with a different velocity. We evaluate once again

the GMM estimator with perfect CSI from H and a naive

version where the GMM is fitted with linearly interpolated data

from Y , labeled “GMM lin-int”. The proposed approach with

adapted training from Section III-B and linear interpolation

as initialization is denoted by “GMM Y”. In the OFDM

case, we can impose structural features to the covariances

as regularization on the adapted approach. In this letter, we

focus on block-Toeplitz matrices as discussed in [9], labeled as
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Fig. 2. OFDM model from Section II-B with Nc = 12, Nt = 14, and
Np = 18. The SNR is the same for training and evaluation.
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Fig. 3. OFDM model from Section II-B with Nc = 12, Nt = 14, and
SNR = 15dB. The SNR is the same for training and evaluation.

“GMM Y toep”. We compare our proposed methods with the

typically used linear interpolator, labeled “lin-int”, and with

a linear MMSE estimator based on a cell-wide global sample

covariance computed with linearly interpolated data from Y ,

labeled as “samp-cov lin-int”. In this case the genie-MMSE

estimator is not computable since no covariance statistics

are provided from the simulator [6]. We also compare with

the ML-based ChannelNet from [2] (we adopt the same

architecture and hyperparameters) where the training data are

comprised of linearly interpolated samples from Y for a fair

comparison.

In Fig. 2, the performances of the above discussed estima-

tors are evaluated for Np = 18 pilots over different SNR

values. It can be seen that the ChannelNet has no performance

improvement over linear interpolation, which is a consequence

of the imperfect training data. The sample covariance and the

naive GMM approach based on linearly interpolated training

data exhibit some performance improvement over linear in-

terpolation in the low and medium SNR range, whereas for

high SNRs, an error floor because of the imperfections in

the training data can be observed. The adapted GMM version

without structural constraints is performing close to the perfect

CSI case in the low SNR range, but also seems to saturate for

high SNRs. In this SNR-region, the block-Toeplitz structured

adapted GMM performs especially well, showing performance

gains over all other approaches even for high SNR values. This

leads to the conclusion that the structural regularization, which

is possible with the GMM, is of great value when having noisy

training data with missing entries.

In Fig. 3, we show a similar setup as above for a fixed SNR

of 15dB over varying numbers of pilots. Thereby, linear inter-

polation and the ChannelNet perform worst with a saturation

at a high error floor, which was similarly observed before. It

can be seen that the differences between the sample covariance,

naive GMM, and adapted (unconstrained) GMM become more

distinctive for higher numbers of pilots where the adapted

version is outperforming them and has a decreasing gap to the

perfect CSI based GMM. This can be reasoned with a domi-

nating systematic error for sparse pilot allocations. In contrast,

the block-Toeplitz based adapted GMM shows a substantial

performance gain over the baselines even for low numbers of

pilots, which is an effect of the structural regularization. As

expected, the difference between the structurally unconstrained

and constrained adapted GMM decreases for higher numbers

of pilots.

V. CONCLUSION

In this letter, a GMM-based robust channel estimator was

proposed which can be applied in spatial and OFDM systems.

Thereby, the training data are purely comprised of sparsely

allocated and noisy pilot observations, without perfect CSI

samples. Simulation results demonstrated that the performance

of the proposed adapted GMM estimator is close to the version

which utilizes perfect training CSI with the same online

complexity and memory overhead. Additionally, state-of-the-

art baselines are outperformed. Based on these findings, the su-

perior robustness properties against imperfect training data of

the generative model-aided estimator in contrast to regression-

based ML approaches were discussed. In future work, one may

also account for imperfections due to interference which is not

considered in this letter.
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