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Motivated by the key observation that children generally resemble their parents more than other persons with respect to facial
appearance, distance metric (similarity) learning has been the dominant choice for state-of-the-art kinship veri�cation via facial
images in the wild. Most existing learning-based approaches to kinship veri�cation, however, are focused on learning a genetic
similarity measure in a batch learning manner, leading to less scalability for practical applications with ever-growing amount of
data. To address this, we propose a new kinship veri�cation approach by learning a sparse similarity measure in an online fashion.
Experimental results on the kinship datasets show that our approach is highly competitive to the state-of-the-art alternatives in
terms of veri�cation accuracy, yet it is superior in terms of scalability for practical applications.

1. Introduction

Due to the fact that rich human characteristics, such as
gender, identity, expression, and ethnicity, can be e	ectively
extracted from facial images, a variety of face analysis
problems, ranging from face recognition, facial expression
recognition, and gender estimation to age estimation, have
been extensively studied over the past decades [1]. Kinship
veri�cation using facial images, however, is a relatively new
and challenging problem in biometrics [2], which is mainly
motivated by the phenomenon that children generally look
like their parents more than other people due to the kinship
relation. Recent evidence in psychology has shown that facial
appearance is a reliable cue to measure the genetic similarity
between children and their parents [3–9]. In practice, there
are some important potential applications of kinship veri�ca-
tion via facial images, including missing children search and
social media analysis [10, 11]. Figure 1 presents some image
examples (with kinship relation) from the dataset KinFaceW
[12].

Over the past few years, a few seminal works on kinship
veri�cation using facial images [2, 10, 11, 13–21] have been pro-
posed. Roughly, existing methods for kinship veri�cation
are either feature-based [2, 13, 15–17, 19] or learning-based

[10, 11, 14, 18, 20]. �e former aims for extraction of the dis-
criminative feature from facial images to characterize genetic
property in human appearance. Learning-based approaches,
however, are focused on learning a genetic measure via
training data based on some discriminative learning tech-
nologies, such as subspace learning and distance metric
learning, to improve the separability of facial images for
kinship veri�cation. Despite the promising results by existing
learning-based approaches to kinship veri�cation, they aim
to learn a distance metric (or transform) in a batch learning
way, leading to less e�ciency or scalability even for medium-
scale applications. Unlike the previous learning-based stud-
ies, we aim to learn a sparse similarity measure for kinship
veri�cation in an online manner. Our proposed approach
not only is able to achieve highly competitive veri�cation
accuracy to state-of-the-art kinship veri�cation method but
also is superior in terms of scalability, making it more scal-
able for practical applications with ever-growing amount of
data.

�e rest of this paper is organized as follows. In Section 2
we elaborate our approach to kinship veri�cation from facial
images. Experiments and evaluations on performance are
conducted in Section 3. Finally, we conclude and summarize
the paper in Section 4.
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Figure 1: Some image examples (with kin relation) from KinFaceW
dataset [12]. From top to bottom are the father-son (F-S), father-
daughter (F-D), mother-son (M-S), and mother-daughter (M-D)
kinship relations, respectively.

2. Our Approach

In the past few years, many metric learning methods [23–27]
have been proposed in themachine learning community, and
they have been successfully applied in various vision tasks,
including face recognition [10, 18, 28–34], activity recogni-
tion [35], human age estimation [36], gait recognition [37],
and person reidenti�cation [30, 38, 39]. �e most existing
metric learning methods aim at learning a Mahalanobis
distance metric that measures the squared distance between
a pair of samples �� and ��:

�2� (��, ��) = (�� − ��)
��(�� − ��) , (1)

where ��, �� ∈ R� and� ⪰ 0 is a positive semide�nite (PSD)
matrix. Existing metric learning methods for kinship veri�-
cation (e.g., [10]) are o�en proposed to minimize interclass
variation and maximize intraclass variation simultaneously.
In this work, we instead attempt to learn a genetic similarity
measure explicitly, such that similarity score of a positive
image pair is higher than those of the negative pairs. Let
D = {(��, 	�)}��=1 be the training set consisting of 
 positive
image pairs (with kinship relation), where ��, 	� ∈ R� denote
the facial images of the �th parent and child, respectively. �e
goal of this problem is to learn a similarity measure function
�(�, 	) that speci�es the kinship constraints on any quadruple
input (��, 	�, ��, 		), where (��, 	�) ∈ D,  ̸= �, � ̸= �. Formally,

the kinship constraints for a quadruple input can be written
by

� (��, 	�) ≥ � (��, 		) + 1

� (��, 	�) ≥ � (��, 	�) + 1,
(2)

where (��, 	�) ∈ D,  ̸= �, � ̸= �, and 1 is a margin constant.
�ere exist two triplet constraints for each quadruple input,
on which similarity score of the positive pair is higher
than that of image pair from di	erent family. �is can be
schematically illustrated in Figure 2. We consider here a
parametric similarity function �(�, 	) with bilinear form,

�(�, 	) ≜ ���	, where � ∈ R
�×�. Note that here � is not

necessarily symmetric or PSD. Given the similarity function
and the constraints in (2), the problem of genetic similarity
learning can be formulated as the following optimization
task:

min


∑
(�,�,	)

L (��, 	�, ��, 		; �) + �� (�) , (3)

where �(�) is a sparse regularization term that limits the
model complexity and � > 0. Di	erent from the widely
used OASIS algorithm [22] designed to deal with the triplet
constraints, we aim to directly deal with the quadruple
constraints for kinship veri�cation. �e loss function L for
our problem is de�ned based on the hinge loss ℓ :
L (��, 	�, ��, 		; �) = ℓ (��, 	�, ��; �) + ℓ (��, 	�, 		; �) ,

(4)

where ℓ(�, 	, �; �) = max(0, 1 − �(�, 	) + �(�, �)). �e
optimization task of (3) corresponds to a batch learning
formulation, and it is less e�cient and scalable to practical
applications even for medium-size training set. To tackle this
issue, we instead aim to learn the similarity measure �(�, 	)
parameterized by � in an online manner.

At each time � = 1, 2, . . ., a quadruple instance (��, 	�,
��, 		) is received, and the model is sequentially updated by
solving the following optimization problem:

� �+1 = argmin



L (��, 	�, ��, 		; �) + � tr (�) , (5)

where tr(�) is a trace norm that encourages learning a low
rank similarity matrix � to limit the model complexity. �e
above online optimization can be solved by online gradient
descent:

� �+1 = � � − �∇
L (��, 	�, ��, 		; � �) − ���, (6)

where � > 0 is the learning rate, � is the identity matrix, and
∇
L is the subgradient ofL with respect to�, which can be
computed by

∇
L =

{{{{{{{{{{{
{{{{{{{{{{{
{

�� (	�	 − 2	�� ) + ��	��
ℓ (��, 	�, ��; � �) > 0, ℓ (��, 	�, 		; � �) > 0

�� (	�	 − 	�� )
ℓ (��, 	�, ��; � �) > 0, ℓ (��, 	�, 		; � �) ≤ 0

(�� − ��) 	��
ℓ (��, 	�, ��; � �) ≤ 0, ℓ (��, 	�, 		; � �) > 0

0 otherwise.

(7)
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Input: Training setD = {��; 	�}��=1
Output: Similarity matrix �
(1) Initialize �0 = �; � = 1;
(2) repeat

(3) Construct a quadruple instance (��, 	�, ��, 		) fromD;
(4) Compute the loss ℓ(��; 	�; ��; � �−1), ℓ(��; 	�; 		; � �−1);
(5) Compute the sub-gradient ∇
L according to (7);
(6) Update the similarity matrix � � according to (6);
(7) � = � + 1;
(8) until convergence

Algorithm 1: Online similarity measure learning for kinship veri�cation.

Figure 2: Quadruple constraint for kinship veri�cation. �ere exist
two triplet constraints for each quadruple input, on which the
similarity score of positive pair (denoted by solid arrow) is higher
than those of image pairs from di	erent family (denoted by dotted
arrow).

�eproposed online learning algorithm for genetic similarity
measure is outlined in Algorithm 1.

3. Experiment and Discussion

We conducted experiments on the kin datasets that are pub-
licly available [10, 12] (KinFaceW-I and KinFace-II) to verify
the e	ectiveness of our proposed approach. For both datasets,
there are four kin relations: mother-son (M-S), mother-
daughter (M-D), father-son (F-S), and father-daughter (F-D).
All of the facial images have been aligned and cropped into 64
× 64 pixels.

We performed 5-fold cross validation on the two kin
datasets, where each subset was equally divided into 5-fold
so that each fold consists of nearly the same number of image
pairswith kin relation.�eparameters � and� are empirically

Table 1: Mean veri�cation rate (%) of di	erent approaches on the
KinFaceW-I dataset.

Method Feature F-S F-D M-S M-D Mean

LBP 64.7 65.2 59.4 65.4 63.7

NRML [10] SIFT 70.5 64.0 64.0 60.4 63.8

SPLE 64.1 59.1 63.9 71.0 64.3

LBP 63.1 64.2 57.5 66.1 62.7

OASIS [22] SIFT 68.3 63.0 63.4 60.2 63.7

SPLE 63.6 60.3 64.0 69.1 64.2

LBP 67.2 64.7 56.9 65.3 63.5

Proposed SIFT 70.1 66.0 64.1 61.6 65.5

SPLE 66.1 62.2 64.3 70.0 65.7

set as 1.0 and 10−4, respectively. For the feature representations
of the facial image, three descriptors, SIFT [40], learning-
based (SPLE) [13], and local binary patterns (LBP) [41] are
used. In our experiments, 256 bins are used for LBP, and we
followed the parameter setting in [10] for SPLE and used 200
bins to encode a histogram. For the SIFT descriptors, 16 × 16
patches over a grid with space of 8 pixels are extracted from
each face image.

We have compared our proposed approach with NRML
[10] andOASIS [22].�e former is a state-of-the-art learning-
based kinship veri�cation approach, and the latter repre-
sents a popular algorithm for online similarity learning.
Tables 1 and 2 list the mean veri�cation rate of the three
approaches with di	erent features on the KinFaceW dataset.
As shown in the two tables, our approach outperformsOASIS
and is highly competitive to NRML in terms of veri�cation
rate. In addition, we can make the observation that SPLE is
the best feature representation for our kinship veri�cation
problem. �is is mainly attributed to the coding scheme of
SPLE that is directly learned from the training examples,
leading to better veri�cation accuracy than two other hand-
cra�ed feature descriptors.

It should be noticed that, compared to NRML, our
approach is superior in terms of scalability for practical
applications due to the online learning nature in model
training. We believe this is very important for the kinship
veri�cation on the large-scale dataset with ever-growing
amount of data.
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Table 2: Mean veri�cation rate (%) of di	erent approaches on the
KinFaceW-II dataset.

Method Feature F-S F-D M-S M-D Mean

LBP 69.0 69.5 69.8 69.0 69.5

NRML [10] SIFT 68.0 60.9 60.8 61.4 62.8

SPLE 76.8 73.1 76.8 77.0 75.7

LBP 61.6 63.6 68.7 62.6 64.1

OASIS [22] SIFT 67.2 69.5 65.2 60.1 65.5

SPLE 66.7 67.7 74.7 73.7 70.5

LBP 69.2 68.3 68.9 69.3 68.9

Proposed SIFT 68.7 70.7 65.7 61.6 66.7

SPLE 74.9 71.0 76.9 76.4 74.8

4. Conclusion

We have presented a new scheme for kinship veri�cation
via facial images in wild conditions by explicitly learning
a sparse genetic similarity measure in an online manner.
Experimental results on kinship datasets demonstrated that
our approach is not only highly competitive to the state-of-
the-art algorithm in terms of the veri�cation accuracy but
also superior in terms of scalability for practical applications
with ever-growing amount of data. For future work, we
are interested in investigating the fusion of multiple feature
representations within the online learning framework to
further improve the overall kinship veri�cation performance.
Also, it is helpful for face (kin) veri�cation to work out the
similarity of facial components (e.g., eyes or mouths). In this
setting, robust face landmarks estimation is o�en needed to
parse the face into facial components. How to exploit it in
our proposed approach to work on partially occluded faces or
faces viewed from the side appears to be another interesting
direction of future work.
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