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Abstract

Recent work shows how to use local spatio-temporal fea-
tures to learn models of realistic human actions from video.
However, existing methods typically rely on a predefined
spatial binning of the local descriptors to impose spatial in-
formation beyond a pure “bag-of-words” model, and thus
may fail to capture the most informative space-time rela-
tionships. We propose to learn the shapes of space-time fea-
ture neighborhoods that are most discriminative for a given
action category. Given a set of training videos, our method
first extracts local motion and appearance features, quan-
tizes them to a visual vocabulary, and then forms candi-
date neighborhoods consisting of the words associated with
nearby points and their orientation with respect to the cen-
tral interest point. Rather than dictate a particular scaling
of the spatial and temporal dimensions to determine which
points are near, we show how to learn the class-specific dis-
tance functions that form the most informative configura-
tions. Descriptors for these variable-sized neighborhoods
are then recursively mapped to higher-level vocabularies,
producing a hierarchy of space-time configurations at suc-
cessively broader scales. Our approach yields state-of-the-
art performance on the UCF Sports and KTH datasets.

1. Introduction

Automatic recognition of human activities in video
would be useful for surveillance, content-based summa-
rization, and human-computer interaction applications, yet
it remains a challenging problem. Some approaches seek
ways to measure directly how humans are moving in the
scene, using techniques for tracking, body pose estimation,
or space-time shape templates [27, 28, 24, 10, 29], while
others aim to categorize activities based on the video’s over-
all pattern of appearance and motion, often using spatio-
temporal interest operators and local descriptors to build the
representation [30, 20, 5, 15, 31, 18, 9].
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Figure 1. The most discriminative space-time neighborhoods of
local descriptors (denoted by circles) may depend on the activity
category. For example, for running (first row) a larger temporal ex-
tent and smaller spatial extent is most useful, whereas for swinging
(second row), the reverse is true. The main idea of the proposed
method is to learn class-specific vocabularies of variable-shaped
space-time neighborhoods.

In particular, recent work has shown promising results
using local spatio-temporal descriptors together with bag-
of-words models, where the local features are quantized to
form a “visual vocabulary”, and a video clip is summarized
by the histogram of its feature occurrences [30, 5, 15, 18,
21, 9, 19, 11]. The representation has a number of advan-
tages: being local, the features have robustness to viewpoint
changes and occlusions; being relatively sparse, they can be
stored and manipulated efficiently. Further, by including
both dynamic and static components (e.g., optical flow and
gradient histograms), they can capture not only what kind
of motion occurs, but also what kind of context and actors
are present, without requiring reliable tracks on a particu-
lar subject. Various developments building on this general
framework have yielded impressive results for realistic ac-
tivities in Hollywood movies or YouTube videos.

However, a key limitation of spatio-temporal interest
point representations is that they can be too local, failing
to capture adequate spatial or temporal relationships. In
the extreme, the orderless bag-of-words lacks cues about



motion trajectories, before-after relationships, or the rela-
tive layout of objects and actions. In an attempt to over-
come this problem, several alternatives have been pro-
posed to capture mid-level structure using space-time bins
of points, with partitions formed either globally at the level
of the entire clip (e.g., a histogram for the upper third of
the frames is recorded separately from one for the lower
third) [15, 4, 31, 19, 35, 11], or else in a feature-centered
manner where a cuboid with multiple sub-bins is used to
describe a point’s neighborhood [6, 9]. Unfortunately, a
global binning makes the representation sensitive to posi-
tion or time shifts in the clip segmentation, and using pre-
determined fixed-size space-time grid bins (whether global
or feature-centered) assumes that the proper volume scale is
known and uniform across action classes. Such uniformity
is not inherent in the features themselves, given the large
differences between the ways in which they are laid out for
different activities (see Figure 1).

To address this problem, we propose to learn the shapes
of space-time feature neighborhoods that are most discrim-
inative for a given action category. The idea is to form
new features composed of the neighborhoods around the
raw initially-detected interest points, taking into account
the visual words to which the neighboring features corre-
spond and their orientation with respect to the central in-
terest point. We quantize the resulting neighborhood de-
scriptors to form a higher-level vocabulary in which each
word encodes an interest point and the loose configuration
of neighbors; repeating the process recursively, we compute
a hierarchy of words that capture space-time configurations
at successively broader scales.

When identifying which features are nearest to one an-
other to build a neighborhood, there is an important scaling
ambiguity—particularly between the spatial and temporal
dimensions: i.e., is an interest point three pixels away closer
or further than an interest point that is three video frames
away? To address this, we generate several candidate dis-
tance metrics to evaluate the proximity of points, and learn
the combination of variable-sized neighborhood features
among all vocabulary levels that is best for the given recog-
nition task. The selected shapes allow our method to cap-
ture varying extents of appearance and motion cues. The
ultimate classifier used for recognition combines the neigh-
borhoods of different sizes and vocabulary levels to arrive
at a rich description of the actions performed in the videos.

We apply the approach to learn human activity categories
with the UCF Sports [29] and KTH [30] datasets, and show
that it improves the state of the art. We further analyze
the advantages of the proposed variable-sized neighbor-
hoods and hierarchy compared to a traditional fixed binning,
and examine the types of discriminative neighborhoods our
method discovers.

2. Related Work
Activities can be analyzed based on tracked humans and

their shapes and limb motions (e.g. [27, 28, 24, 10, 29]),
or alternatively, by forgoing direct body tracking and de-
scribing the overall appearance and motion patterns within
a video clip (e.g. [30, 20, 5, 15, 31, 18, 9]). Work on the ac-
tivity recognition problem in general is too broad to cover
here; we therefore focus the discussion below on the most
relevant techniques using interest points, neighborhood fea-
tures, feature selection, and/or hierarchical representations.

A number of current approaches entail the use of local
space-time interest points [30, 5, 20, 15, 3, 18, 31, 4, 19, 11].
Many build representations using visual vocabularies com-
puted with gradient-based descriptors extracted at the inter-
est points [5, 15, 4, 30, 31], while others build descriptors
from the point positions themselves [3, 9]. The advantages
of combining both static and dynamic descriptors have also
been demonstrated [20, 18, 19, 11].

The strategy of generating compound neighborhood-
based features—explored initially for static images and ob-
ject recognition [34, 26, 16, 17, 25]—has since been ex-
tended to video. One approach is to subdivide the space-
time volume globally using a coarse grid of histogram
bins [15, 4, 31, 11]. A second approach is to place grids
around the raw interest points, and compute a new repre-
sentation using the positions of the interest points that fall
within the grid cells surrounding that central point [9]. In
contrast to these methods, our feature-centered neighbor-
hood descriptors are variable in size and shape, with their
extent determined discriminatively per class; further, each
compound feature captures both the appearance/motion and
relative orientation of the surrounding points.

Feature selection techniques allow activity models to
emphasize the most relevant cues. To identify informative
local video descriptors, boosting [12, 6], PageRank [18],
and item-set mining [23, 9] have all been explored. When
using the global grid-based histograms, performance im-
proves when one chooses or learns the most discriminative
bins [15, 31, 11]. In particular, the authors of [31, 11] in-
corporate multiple kernel learning (MKL) to optimize the
combination of grid channels; our method also integrates
MKL, though in our case it is for the sake of determin-
ing which combination of distance metrics between interest
points forms the most discriminative neighborhoods.

Aside from discriminative local neighborhoods, the
other main theme in our work is to develop a hierarchy
of descriptors for activity recognition. Related ideas have
been considered with static images for object recognition:
the “hyperfeatures” of [1] divide the image into a grid of
overlapping tiles, with increasing coarseness of the grids at
higher levels in the hierarchy; the models in [2, 25] com-
bine raw interest points into local feature types and sub-
sequently parts or objects. The success of these methods



helps motivate our strategy; however, the problem is dis-
tinct in video, mainly due to issues of computing neighbors
in a joint multi-feature space (both space and time).

Hierarchical representations for local-feature activity
recognition have only been explored to a limited extent [20,
9]. The authors of [20] construct a constellation model for
actions, where each part is itself a bag-of-words, and show
how to use probabilistic latent topic models to introduce a
layer between the visual words and video sequences in [21].
Most recently, the authors of [9] explore a recursive use
of frequent item-set mining to efficiently obtain informa-
tive 2-d interest points within fixed-size quadrants at mul-
tiple scales. In contrast, our method finds neighborhoods
of varying shape, depending on which layouts enhance the
differences between action classes, and our feature encod-
ing relies on the motion and appearance of local features
rather than the distribution of interest point positions.

3. Approach

Our approach develops a richer vocabulary for bag-of-
words-based activity recognition. The process involves con-
structing a hierarchy of vocabularies using neighborhoods
of spatio-temporal feature points, where the neighborhoods
themselves are feature-centered, and their variable shape in
the space and time dimensions is automatically learned.

In the following, we define our initial descriptors (Sec-
tion 3.1), explain how we generate candidate neighborhoods
and record their descriptions (Section 3.2), how to construct
a hierarchy of those neighborhoods (Section 3.3), and, fi-
nally, how we discriminatively learn the combination of
neighborhood extents and levels (Section 3.4).

3.1. Interest Points and Initial Descriptors

The inputs to our algorithm are space-time interest points
and their associated local descriptors. To detect interest
points, we use one of two methods: either a dense sampling
throughout the video, or else a sparse sampling using the
method of [14], which is a space-time extension of the Har-
ris operator. For the initial descriptors, we use histograms of
oriented spatio-temporal gradients, which characterize the
motion and appearance within a volume surrounding the in-
terest point. Specifically, for the dense interest points we
extract HoG3D descriptors [13], and for the sparse points
we use histograms-of-optical-flow (HoF) and histograms-
of-oriented-gradients (HoG), as described in [15].

We use standard procedures to form what we call the
“level-0” vocabulary: we sample a random set of descrip-
tors from training videos, cluster each feature type sepa-
rately using k-means, and use the k centers as the visual
words. At this point, each feature in a video can be mapped
to a level-0 word. Thus, each video clip V is initially de-
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Figure 2. Neighborhood formation overview. The 3d axes in the
upper-left depict the 8 orientations relative to the central point.
Each letter denotes a space-time orientation. In the center, we
depict three frames with their features and corresponding visual
words (shapes represent word identity). The histogram at the bot-
tom is our neighborhood representation. For example, neighbor 1
(q1) is (G=above, right, and before) the central feature p, and its
word is of type “triangle”, so we increment the bin for word “trian-
gle” and orientation G in the first row. We also increment the count
in the cells directly below, recording the neighbors cumulatively.

scribed by a set of point-word tuples:

V = {〈x1, y1, t1, w
(0)
1 〉, . . . , 〈xnv

, ynv
, tnv

, w(0)
nv
〉}, (1)

where each 〈xi, yi, ti, wi〉 records the spatial position,
frame number, and word index, respectively, for one inter-
est point, nv denotes the video’s total number of interest
points, w(0) signifies that we are looking at the first-level
vocabulary, and w(0)

i ∈ {1, . . . , k}.

3.2. Spatio-Temporal Neighborhood Formation

To make the next level of the vocabulary (“level-1”),
we must first generate compound descriptors. Each one
is formed from the neighborhood around a central interest
point p = 〈x, y, t, w〉. For a given space-time point, we
collect its N closest interest points, where nearness is mea-
sured by a normalized Euclidean distance on its 3d position
coordinates (i.e., a Mahalanobis distance restricted to a di-
agonal covariance matrix):

Dσ(p, q) =

(
3∑
i=1

1
σi

(p(i)− q(i))2
) 1

2

, (2)

where each σi is a weight that scales the x, y, or t dimen-
sions, and will be defined below in Section 3.4.

Let N (p) = {p, q1, . . . , qN−1} denote the N nearest
neighboring points for central point p; for each, we know
its level-0 visual word from above. Additionally, each can
be placed in one of 23 = 8 orientation bins, depending on



level 1
level 1

level 2

x

y

tlevel 1
Figure 3. Illustration of the fea-
ture / vocabulary hierarchy. The
hexagon and diamonds are level-
1 visual words composed of
level-0 words. The red ellipse
is a level-2 word composed of
level-1 words (here N = 3).

its location in time and space with respect to the central
point—to the left or right, below or above, before or after.

We form a new representation for the central interest
point by creating a matrix of size N -by-8k: the r-th row
is a cumulative histogram corresponding to the point’s first
r ranked neighbors, p, q1, . . . , qr−1, and the entries in a row
record how many of those neighbors fall into each of the
orientation bins, separated out by word type (see Figure 2).
In other words, for each neighboring point, we increment
bins according to both its orientation relative to the central
point and which level-0 word it corresponds to, and accu-
mulate these counts as we move further away from the cen-
tral point. Note that the number of columns in this matrix,
8k, reflects the number of possible word-orientation combi-
nations. This matrix of histograms is reshaped to a single
8kN -dimensional vector to yield a single level-1 descriptor
(Figure 2 depicts the matrix in 2d for presentation purposes
only). In experiments, we let N = 5, and reduce the com-
pound descriptors’ dimensionality with PCA.

Note that the orientation bins do not have a predeter-
mined scale (i.e., no outer boundaries), since the neighbors
are entered into the descriptor according to their distance
from the central point; using rank rather than fixed distances
also means that we will form similar descriptors for config-
urations that are similar aside from a scale change or in-
ternal shifts and stretching. Furthermore, the cumulative
nature of the histogram means that closer interest points
have more influence on the feature, and we can mitigate
sensitivity to exact relative ordering of the neighborhood,
as has been shown useful for related features in static im-
ages [17, 16]. By centering these neighborhoods at each in-
terest point, we also maintain translation invariance within
the clip between the neighborhoods, unlike the global grid-
based methods [15, 4, 31, 11].

3.3. A Hierarchy of Composite Vocabularies

Having formed the neighborhood descriptors, we repeat
the process using the neighborhoods themselves as the cen-
tral points, as follows. We run k-means clustering on a sam-
ple of the (reduced dimension) descriptors outlined above,
quantizing the “neighborhoods” into their own visual vo-
cabulary. This way, the appearance and layout of each level-
1 neighborhood can be succinctly represented by a word

…… …… ……

…… …… ……

Figure 4. Examples of level-1 words. The most relevant word for
the hand-clapping (top) and horse-riding (bottom) actions, as de-
termined by mutual information. (To save space, we omit some
intermediate frames). Best viewed in pdf.

w(1), and when forming the neighborhoods for the next
higher-level, we can bin them accordingly. For example,
what was a level-1 neighborhood formed as in Figure 2 be-
comes a discrete word type (say “diamond”) in the level-
2 neighborhood formation (see Figure 3). We let the po-
sition for a feature 〈x, y, t, w(`)〉 be the position where its
neighborhood originated, for all ` ≥ 1. Thus, the only dif-
ference for forming vocabularies beyond level-1 is that the
neighbors are identified according to distances between the
compound features’ central points. Example instances of
“level-1” words are shown in Figure 4.

This process continues L times to form L + 1 total vo-
cabularies. In this manner, we generate a hierarchy of com-
posite feature configuration types, each of which loosely
encodes the space-time layout of the component features.
Note that unlike a “vocabulary tree” [22], which forms a hi-
erarchical quantization of the appearance descriptor space,
our method is assembling a hierarchy of composite neigh-
borhood features, where each compound feature captures a
particular type of space-time layout. At this point, we can
map an input video’s raw features V to a set of L + 1 bag-
of-word histograms:

Hσ(V ) = {H0(V ), H1(V ), . . . ,HL(V )} (3)

where each Hi(V ) is a k-bin histogram and counts the fre-
quency with which each level-i word occurs in the set. The
subscript σ reflects that these histograms stem from a par-
ticular distance function parameterization (we return to this
point in Section 3.4). In practice, we set L = 2 (3 lev-
els); we have not experimented with larger values, simply
because the neighborhoods begin to cover most of the clips.

3.4. Discriminative Space-Time Neighborhoods

By using the nearest ranked points to form neighbor-
hoods rather than a fixed grid or cuboid, we already are gen-
erating variable-sized configurations. However, the ranking
itself depends on how we parameterize the distance in Equa-
tion 2. We will get a different set of neighbors for each
point depending on the scaling this distance applies to each
dimension (x, y, t). In a sense, the “correct” distance be-
tween interest points is not well-defined: how should one



compare pixel units to frame units? Is a gap of two pixels
bigger or smaller perceptually than a gap of two frames?
Even within the two spatial dimensions, we expect that a
non-uniform scaling may be useful. For example, it may be
better to capture a larger horizontal extent of actions in a
single neighborhood when categorizing instances of hand-
waving, but a larger vertical extent to distinguish instances
of diving. Thus, rather than pick a single distance function,
we consider those functions that yield the most informative
neighborhoods when used in a learned combination.

In order to do so, we first compose a series of M can-
didate neighborhoods using different distance functions—
meaning M different settings for each of the three σi pa-
rameters. These in turn produce a series of M feature hi-
erarchies, or ML + 1 total vocabularies.1 We use a sep-
arate kernel for each vocabulary type. Then, for each ac-
tion class, we use multiple kernel learning (MKL) to deter-
mine the weighted combination of those neighborhoods that
yields the most discriminative means of comparing video
clips. MKL algorithms seek the weights wc for some set of
component kernels Kc such that the final combined kernel
K =

∑|C|
c=1 wcKc is most aligned with the “ideal” kernel

matrix reflecting the data’s true labels [7]. Finally, the clips
are categorized according to support vector machine (SVM)
classifiers built with the learned kernels. The remainder of
this section fleshes out the above description in more detail.

To train the SVMs we employ multi-channel generalized
Gaussian kernels with the χ2 distance, following [15] and
others. These kernels sum over the distances between a set
of component histograms, appropriately scaled. The χ2 dis-
tance between any two bag-of-words histogramsHi andHj

is defined as:

χ2 (Hi, Hj) =
1
2

k∑
b=1

(
(Hi(b)−Hj(b))2

Hi(b) +Hj(b)

)
(4)

where b indexes over each of the k histogram bins.
Each example is represented by multiple histograms, and

the component comparisons are combined via the kernel:

K(Hi, Hj) =
∑
c∈C

wc exp
(
− 1
Ac
χ2(Hc

i , H
c
j )
)
, (5)

where C denotes the set of all channels, andHc
i andHc

j de-
note the two inputs’ c-th channel histograms, respectively.
The scalar Ac is the kernel’s scale parameter, and is simply
set to the mean distance between training examples along
the given feature channel.

In our case, a “channel” refers to a combination of fea-
ture type (HoG and HoF, or HoG3D), a distance function

1It is ML + 1 rather than M(L + 1) since level-0 is a traditional
vocabulary and requires no distance function to compute. Please note each
−→σ = [σ1, σ2, σ3] is a scaling on the (x, y, t) dimensions in the distance
function in Equation 2 used to rank interest points; it does not denote a
scaling factor on a grid width.

(as parameterized by σ), and a vocabulary level (ranging
from 0, . . . , L). Any choice of these three items2 yields
a single bag-of-words histogram for a video, and thus
|C| = F (ML+ 1), where F is the number of feature types
used. For the training videos, we compute all choices. We
then supply the pool of kernels to MKL to learn the scalar
weightsw1, . . . , w|C| to combine them. We use the efficient
SKMsmo method of [7].

The results from MKL provide a form of feature selec-
tion and automatic scaling among the vocabulary levels, de-
scriptor types, and neighborhood shapes. We find that while
some distance functions are eliminated by MKL’s feature
selection, those kernels with non-zero weights are typically
balanced across the different levels of the hierarchy.

Note that in this setting it would not be possible to di-
rectly learn a Mahalanobis metric for the interest points, for
two reasons: firstly, while our training videos have class la-
bels associated with them, the neighborhood features them-
selves do not have labels; secondly, we want to compose
neighborhoods based on the ranked distances from the cen-
tral point, rather than use their absolute distances.

4. Results
Our experiments demonstrate the proposed approach for

action recognition with a variety of categories. In addition
to reporting overall accuracy, we also study the empirical
tradeoffs between grid-based vs. variable-shaped neighbor-
hoods, and analyze the kinds of discriminative neighbor-
hoods selected by the algorithm.

Datasets and Implementation Details: We evaluate
our approach on two benchmark datasets for human ac-
tivity recognition: the KTH actions dataset [30], and the
UCF Sports dataset [29]. Both the labeled examples and
test video clips contain primarily a single action of inter-
est. KTH consists of 6 actions (e.g., boxing, hand-clapping,
running), each of which is performed four times by each of
25 people, for a total of 600 video clips. The UCF Sports
dataset consists of 150 videos with 10 action classes taken
from real sports broadcasts (e.g., swinging, weight-lifting,
horse-riding), with a wide range of viewpoints and scene
backgrounds. We augment the dataset with horizontally
flipped versions of each video, following [32]. See Fig-
ures 1 and 4 for example frames from a few classes.

The KTH dataset entails a 6-way multi-class recogni-
tion task, and is scored by the average recognition rate per
class. We use the standard partition, following [30]. Al-
most all reported numbers use this setup, though [9] also
report leave-one-out accuracy, while [3, 5, 21] exclusively
use leave-one-out. The UCF Sports dataset is tested in a
10-way recognition task in a leave-one-out manner, cycling
each example in as a test video one at a time, following

2For level 0, the distance function is not needed.



Approach Year Accuracy
Schüldt et al. [30] 2004 71.72%
Dollar et al. [5] 2005 81.17%
Ke et al. [12] 2005 62.96%
Nowozin et al. [23] 2007 84.72%
Fathi et al. [6] 2008 90.50%
Gilbert et al. [8] 2008 89.92%
Laptev et al. [15] 2008 91.80%
Niebles et al. [21] 2008 81.50%
Bregonzio et al. [3] 2009 93.17%
Liu et al. [18] 2009 93.80%
Gilbert et al. [9] 2009 94.50%
Our method 94.53%

Figure 5. Comparison of recognition accuracy on the KTH data.

[32, 29, 33]. As in [32], we withhold the flipped version of
the test clip from the training set.

We extract sparse Harris3D points for KTH, and perform
dense sampling followed by HoG3D feature extraction for
UCF, using code kindly provided by the authors of [15]
and [13], with the default parameter settings.3 We fix the
vocabulary size at each level to k = 300 (except level-0 in
UCF, where k = 4000), and N = 5 (see below for exper-
iments testing this parameter’s sensitivity). For MKL, we
use the SKMsmo software.4 We use L = 2 higher-level vo-
cabularies, and consider distance functions parameterized
by all combinations of 1

σi
= {1, 5, 10, 50} for KTH and

1
σ1

= {1}, 1
σ2

= 1
σ3

= {1, 10} for UCF. These values were
chosen fairly arbitrarily, with the intent of capturing scal-
ing factors of varying orders of magnitude and degrees of
precision for each, and knowing that MKL can “de-select”
features by assigning zero weight. The primary cost in com-
puting our neighborhood descriptors is finding the closest
neighbors for each interest point, which takes time quadratic
in the number of features within the clip when searched ex-
haustively (however faster implementations would be pos-
sible with k-d trees).

4.1. Action Recognition Performance

First we report overall accuracy on both datasets. KTH
is a standard benchmark for human action recognition. Fig-
ure 5 compares our results (bottom row) to those from pre-
vious work. Our method outperforms previously published
results, and at 94.53% is equal to the very best accuracy
we are aware of, due to Gilbert et al. [9]. Most classes are
almost perfectly predicted, except for running and jogging,
which are frequently confused. The recognition accuracy
using only level-0 is 93.05%, which is roughly comparable
to a similar baseline reported in [15].

Figure 6 shows our results on the UCF Sports videos. To

3http://www.irisa.fr/vista/Equipe/People/Laptev/interestpoints.html
http://lear.inrialpes.fr/people/klaeser/software

4http://www.stat.berkeley.edu/∼gobo/SKMsmo.tar, by G. Obozinski.

Approach Accuracy/Class
Our method 87.27%
Average of all kernels 84.43%
Level-0 baseline 85.49%

Figure 6. Results on the UCF Sports dataset.

our knowledge, the accuracy of our method is the best on
this dataset thus far with 87.27% per-class average recogni-
tion accuracy. Our accuracy is directly comparable to the
85.6% reported in [32], but not to other numbers on the
UCF dataset (69.2% [29], 79.3% [33]).5 Our experiments
use the version of the dataset available on the author’s web-
site [29] at the time of writing. The results clearly show
that our approach performs accurate recognition with rather
challenging, realistic actions. A direct comparison to the
level-0 baseline (using the identical interest points and fea-
tures) confirms that our higher-level neighborhood descrip-
tors add useful information. Furthermore, we see that MKL
does well in selecting the useful distance combination, im-
proving over a simple average of all candidate kernels.

4.2. Analysis of Variable-Sized Neighborhoods

Next we run experiments to support our claim that space-
time feature configurations captured at variable sizes and
shapes can offer more robust descriptions than a rigid fixed
gridding of nearby points. We compare our approach
side-by-side with our own implementation of a grid-based
feature-centered neighborhood descriptor; we model the
binning after the grids used in [9, 8], but use visual-word
based descriptors to enable the closest comparison. At each
interest point, we extract a 3cσ x 3cσ x 3cτ cube centered
at that point and consisting of 27 total uniformly sized bins,
where σ and τ denote the spatial and temporal scales of the
detected interest point, and c denotes the scaling factor. The
descriptor for the cube is a histogram of the visual words
within each cell. We compare this baseline to our own fea-
tures, for two tests: one measuring the discriminative power
of the resulting neighborhoods, and another measuring ulti-
mate recognition accuracy, both on the KTH dataset.

While our method requires choosing how many ranked
neighbors N to include per point, the grid-based descriptor
requires choosing the scaling on the cube side-lengths, c.
Thus, we evaluate the two features as a function of their
free parameter, letting c and N vary from 1 to 40, in steps
of 4 (c = 1 is as suggested in [9]).

Feature quality: Figure 7 (top) shows the results an-
alyzing the words’ discriminative power. We measure the
mutual information of all the words generated with either
method, and compute the sum of the highest-scoring five

5The exact set of videos used by each author differs, due to some ap-
parent copyright issues with a subset of the videos that the creators had to
remove from the collection.



Figure 7. Top: Distinctiveness of the neighborhood (level-1) vi-
sual words for our features and a grid-based baseline. Bottom:
Recognition results for the same two methods. Note that a single
x, y, t weight combination is used here. See text for details.

words for each of the six categories (30 total per method).
We quantify the quality of the resulting neighborhood de-
scriptors in terms of how distinctive they are for the differ-
ent actions. The figure shows this score plotted as a function
of c and N .

What we find is that both methods can achieve similar
discriminative power, but the parameter selection is much
more critical/sensitive for the grid-based features. This fits
our intuition that the appropriate neighborhood scale is dif-
ficult to set a-priori. Grid-based neighborhoods impose uni-
formity on the neighbors, which can lead to unbalanced
density between classes or omit relevant neighbors. In con-
trast, our approach yields quite stable accuracy as a func-
tion of the number of neighbors included, which we believe
is due to the fact that we encode the neighboring points
cumulatively, thus emphasizing the more distant neighbors
less. Further, the rank-based accumulation of the neighbors
means we can capture a similar density of features for dif-
ferent types of interest points.

Recognition performance: Figure 7 (bottom) shows the
results analyzing the words’ ultimate recognition accuracy,
as produced in the usual bag-of-words classifier. Each point
on the curves corresponds to an average over 100 runs, with
randomly selected train-test partitions. Again, our features
are more stable and for this metric perform better overall.

4.3. Impact of Hierarchical Vocabularies

The different vocabulary levels our method generates
capture different information, and using a combination of
levels can be more effective than using individual levels in
isolation. Figure 8 illustrates this empirically, for the UCF
Sports data. We see that kernels from all levels contribute
to the optimal learned combination.

Levels Accuracy/Class Average MKL Weight
0 85.49% 0.63 (± 0.3)
1 82.16% 0.10 (± 0.2)
2 73.30% 0.10 (± 0.2)

Figure 8. Contribution of the vocabulary levels for one x, y, t set-
ting on the UCF Sports dataset. Each level offers discriminative
power, and in combination they provide a richer representation that
can boost recognition.

4.4. Interpreting the Selected Features

Finally, we conclude by interpreting the sorts of neigh-
borhood shapes that are automatically learned by our
method. There is of course no guarantee of finding explain-
able aspects, but the goal is to get a sense of the space-time
scalings that are effective for certain actions.

In general, a high weight on a single dimension in the
distance that ranks the neighbors (i.e., low value for σi)
corresponds to a “stretching” of that dimension, or equiv-
alently, a compressing of distance along the other two.
This increases the extent of a neighborhood in the lower-
weighted dimensions. For example, with a relatively high
weight on t, the size of a feature neighborhood in terms of
x and y becomes relatively larger. When the ratio of x and
y to t is very small or large, the neighborhoods assume ex-
treme shapes which capture almost exclusively spatial infor-
mation or temporal information (neighborhoods “longer” in
the given dimension).

We observe some trends in the highly weighted kernels
found for the KTH dataset. The level-1 kernels generated
by HoF features with relatively lower weight on t are used
by more classifiers than any other kernels, suggesting that
features with larger temporal extent are often informative.
Additionally, we observe that the level-1 kernel generated
by HoF features with a lower weight on x is primarily used
to discriminate between arm-based activities, whereas the
kernel with a lower weight on t is mostly used for leg-based
activities. This indicates that wider motion/time extents are
most helpful for distinguishing between actions which are
almost identical to each other in appearance but happen at
different speeds—such as walking, jogging, and running.
On the other hand, with activities that appear different re-
gardless of speed (such as boxing, clapping, and waving),
the features clustering near the same frame in a wider hori-
zontal extent are key. Figure 9 illustrates this point.

5. Conclusions
Our main contribution is a video feature formation tech-

nique to learn class-specific vocabularies of space-time
neighborhoods. Unlike previous work, our approach allows
variable-sized neighborhoods to be selected for different ac-
tivities. Our experiments demonstrate the positive impact of
introducing compound feature-centered descriptors into the
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Figure 9. Examples of learned neighborhood feature shapes. The
configuration in the top row was weighted highly by MKL for
arm-based actions, while the one in the third row was weighted
highly for leg-based actions. The wider horizontal spatial extent
is useful for waving, but the neighborhood with a larger temporal
extent is discriminative for walking. Second and fourth rows show
contrasting (not useful) examples with low weights for the respec-
tive categories. Note that each row depicts a single neighborhood
feature. Circle sizes denote the scale of level-0 features.

already successful bag-of-words video representation. In
future work, we intend to examine how stronger supervision
at the local feature level might allow more specific discrim-
inative selection, and to evaluate alternative interest point
sampling strategies or descriptors within our framework.
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