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Abstract—One of the fundamental problems in Content-Based Image Retrieval (CBIR) has been the gap between low-level visual

features and high-level semantic concepts. To narrow down this gap, relevance feedback is introduced into image retrieval. With the

user-provided information, a classifier can be learned to distinguish between positive and negative examples. However, in real-world

applications, the number of user feedbacks is usually too small compared to the dimensionality of the image space. In order to cope

with the high dimensionality, we propose a novel semisupervised method for dimensionality reduction called Maximum Margin

Projection (MMP). MMP aims at maximizing the margin between positive and negative examples at each local neighborhood.

Different from traditional dimensionality reduction algorithms such as Principal Component Analysis (PCA) and Linear Discriminant

Analysis (LDA), which effectively see only the global euclidean structure, MMP is designed for discovering the local manifold structure.

Therefore, MMP is likely to be more suitable for image retrieval, where nearest neighbor search is usually involved. After projecting the

images into a lower dimensional subspace, the relevant images get closer to the query image; thus, the retrieval performance can be

enhanced. The experimental results on Corel image database demonstrate the effectiveness of our proposed algorithm.

Index Terms—Multimedia information systems, image retrieval, relevance feedback, dimensionality reduction.

Ç

1 INTRODUCTION

CONTENT-BASED Image Retrieval (CBIR) has attracted
substantial interests in the last decade [4], [7], [12],

[15], [24], [28], [31], [34], [35]. It is motivated by the fast
growth of digital image databases, which, in turn, require
efficient search schemes. Rather than describing an image
by using text, in these systems, an image query is
described using one or more example images. The low-
level visual features (color, texture, shape, etc.,) are
automatically extracted to represent the images. However,
the low-level features may not accurately characterize the
high-level semantic concepts. To narrow down this
semantic gap, relevance feedback is introduced into CBIR
[31]. With the user-provided negative and positive feed-
backs, image retrieval can then be thought of as a
classification problem [39], [40].

In real-world image retrieval systems, the relevance
feedbacks provided by the user is often limited, typically
less than 20, whereas the dimensionality of the image space
can range from several hundreds to thousands. One of the
crucial problems encountered in applying statistical techni-
ques to image retrieval has been called the “curse of
dimensionality.” Procedures that are analytically or compu-
tationally manageable in low-dimensional spaces can be-
come completely impractical in a space of several hundreds
or thousands dimensions [14]. Thus, various techniques have
been developed for reducing the dimensionality of the
feature space, in the hope of obtaining a more manageable

problem. The most popular dimensionality reduction algo-
rithms include Principal Component Analysis (PCA) [14],
[36] and Linear Discriminant Analysis (LDA) [14], [37]. PCA
projects the data points into a lower dimensional subspace, in
which the sample variance is maximized. It computes the
eigenvectors of the sample covariance matrix and approx-
imates the original data by a linear combination of the
leading eigenvectors. For linearly embedded manifolds,
PCA is guaranteed to discover the dimensionality of the
manifold and produces a compact representation. Unlike
PCA, which is unsupervised, LDA is a supervised dimen-
sionality reduction algorithm. LDA encodes discriminatory
information by finding directions that maximize the ratio of
between-class scatter to within-class scatter. Both PCA and
LDA have widely been applied to image retrieval, face
recognition, information retrieval, and pattern recognition.
However, they are designed for discovering only the global
euclidean structure, whereas the local manifold structure is
ignored. The global statistics such as variance is often
difficult to estimate when there are no sufficient samples.

Recently, various researchers (see [30], [38], [1]) have
considered the case when the data lives on or close to a
submanifold of the ambient space. One then hopes to
estimate the geometrical and discriminant properties of the
submanifold from random points lying on this unknown
submanifold. All of these approaches try to discover the
intrinsic manifold structure. However, these methods are
nonlinear and computationally expensive. In addition, they
are defined only on the training data points, and it is
unclear how the map can be evaluated for new test points.
Therefore, they are not suitable for image retrieval. In [18], a
ranking scheme on manifold is proposed for image
retrieval. Its goal is to rank the images in the database with
respect to the intrinsic global manifold structure. It has been
shown to be superior to those approaches based on
euclidean structure. He et al. [19] applied Locality Preser-
ving Projections (LPP) [22] to find a linear approximation of
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the intrinsic data manifold. Image retrieval is then
performed in the reduced subspace by using a euclidean
metric. Most recently, a novel image retrieval method called
Augmented Relation Embedding (ARE) [27] is proposed to
learn a semantic manifold, which respects the user’s
preferences. Specifically, ARE constructs three relational
graphs: one describes the similarity relations, and the other
two encode relevant/irrelevant relations by using user-
provided relevance feedbacks. With the relational graphs
thus defined, learning a semantic manifold can be trans-
formed into solving a constrained optimization problem.

In this paper, we propose a novel method, called
Maximum Margin Projection (MMP), which focuses on
local discriminant analysis for image retrieval. Its goal is to
discover both geometrical and discriminant structures of the
data manifold. In image retrieval, the relevance feedbacks
provided by the user is often limited. Consequently, it is
difficult to accurately estimate the global geometrical
structure of the data manifold such as geodesics. Instead,
one then hopes to estimate the local statistics such as the
local covariance matrix [20], tangent space [44], etc. In our
algorithm, we first construct a nearest neighbor graph to
model the local geometrical structure of the underlying
manifold. This graph is then split into a within-class graph
and a between-class graph by using class information and
neighborhood information. The within-class graph connects
two data points if they share the same label or they are
sufficiently close to each other, whereas the between-class
graph connects data points having different labels. This way,
both of the local geometrical and discriminant structures of
the data manifold can accurately be characterized by these
two graphs. Using the notion of graph Laplacian [10], we can
then find a linear transformation matrix that maps the
images to a subspace. At each local neighborhood, the
margin between relevant and irrelevant images is max-
imized. Therefore, this linear transformation optimally
preserves the local neighborhood information and the
discriminant information.

This paper is structured as follows: In Section 2, we
provide a brief review of manifold learning techniques. The
MMP algorithm is introduced in Section 3. In Section 4, we
describe how our MMP algorithm can be applied to
relevance feedback image retrieval. The experimental
results are presented in Section 5. Finally, we provide
some concluding remarks and suggestions for future work
in Section 6.

2 MANIFOLD LEARNING TECHNIQUES

Since our algorithm is fundamentally based on manifold
learning techniques, in this section, we provide a brief
review of Locally Linear Embedding (LLE) [30], Isomap
[38], and Laplacian Eigenmaps [1], which are three of the
most popular manifold learning techniques. Let x1; � � � ;xm

be the data points sampled from an underlying submani-
fold M embedded in IRn and let yi be the one-dimensional
map of xi, i ¼ 1; � � � ;m.

2.1 Locally Linear Embedding

The basic idea of LLE is that the data points might reside on
a nonlinear submanifold, but it might be reasonable to
assume that each local neighborhood is linear. Thus, we can

characterize the local geometry of these patches by linear
coefficients that reconstruct each data point from its

neighbors. Specifically, we first construct a k nearest
neighbor graph G with weight matrix W . Reconstructing
errors are measured by the following cost function [30]:

�ðW Þ ¼
X

m

i¼1

xi �
X

m

j¼1

Wijxj

�

�

�

�

�

�

�

�

�

�

2

;

which adds up the squared distances between all the data
points and their reconstructions. Note that Wij vanishes for

distant data points. See [30] for finding a W that minimizes
�ðWÞ. Consider the problem of mapping the original data
points to a line so that each data point on the line can be

represented as a linear combination of its neighbors with
the coefficients Wij. Let y ¼ ðy1; y2; � � � ; ymÞ

T be such a map.
A reasonable criterion for choosing a “good” map is to

minimize the following cost function [30]:

�ðyÞ ¼
X

m

i¼1

�

yi �
X

m

j¼1

Wijyj

�2

:

This cost function, like the previous one, is based on locally
linear reconstruction errors, but here, we fix the weightsWij

while optimizing the coordinates yi. It can be shown that
the optimal embedding y is given by the minimum

eigenvalue solution to the following eigenvalue problem:

ðI �WÞT ðI �WÞy ¼ �y;

where I is an m�m identity matrix.

2.2 Isomap

Let dM be the geodesic distance measure on M and let d be
the standard euclidean distance measure in IRn. Isomap

aims at finding a euclidean embedding such that euclidean
distances in IRn can provide a good approximation to the

geodesic distances on M. That is,

fopt ¼ argmin
f

X

i;j

�

dMðxi;xjÞ � d fðxiÞ; fðxjÞ
� ��2

: ð1Þ

In real-life data sets, the underlying manifold M is often
unknown and, hence, the geodesic distance measure is also

unknown. In order to discover the intrinsic geometrical
structure of M, we first construct a k nearest neighbor

graph G over all data points to model the local geometry.
Once the graph is constructed, the geodesic distances
dMði; jÞ between all pairs of points on the manifold M
can be estimated by computing their shortest path distances
dGði; jÞ on the graph G. The procedure is given as follows:
Initialize dGðxi;xjÞ ¼ dðxi;xjÞ if xi and xj are linked by an

edge; otherwise, dGðxi;xjÞ ¼ 1. Then, for each value of
l ¼ 1; 2; � � � ;m, in turn, replace all entries dGðxi;xjÞ by

minfdGðxi;xjÞ; dGðxi;xlÞ þ dGðxl;xjÞg. The matrix of final
values DG ¼ fdGðxi;xjÞg will contain the shortest path
distances between all pairs of points in G. This procedure is

named the Floyd-Warshall algorithm [11]. More efficient
algorithms that exploit the sparse structure of the neighbor-

hood graph can be found in [16]. Let DY denote the matrix
of euclidean distances in the reduced subspace, that is,
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fdY ði; jÞ ¼ kyi � yjkg. Thus, Isomap aims at minimizing the
following cost function:

k�ðDGÞ � �ðDY ÞkL2 ;

where the � operator converts distances to inner
products, which uniquely characterize the geometry of
the data in a form that supports efficient optimization
[38]. Specifically, �ðDÞ ¼ �HSH=2, where Sij ¼ D2

ij, and
H ¼ I � 1

m ee
T , e ¼ ð1; 1; � � � ; 1ÞT . It can be shown that the

optimal embedding y ¼ ðy1; � � � ; ymÞ is given by the top
eigenvector of the matrix �ðDGÞ.

2.3 Laplacian Eigenmap

The Laplacian Eigenmap is based on spectral graph theory
[10]. Given a k nearest neighbor graph Gwith weight matrix
W , the optimal maps can be obtained by solving the
following minimization problem:

min
y

X

m

i;j¼1

ðyi � yjÞ
2Wij ¼ y

TLy;

where L ¼ D�W is the graph Laplacian [10], and
Dii ¼

P

j Wij. The objective function with our choice of
weights Wij incurs a heavy penalty if neighboring points xi

and xj are mapped far apart. Therefore, minimizing it is an
attempt to ensure that if xi and xj are “close,” then yi and yj
are close as well. The weight matrix W can be defined as
follows:

Wij ¼
1; if xi is among the k-nearest neighbors of xj

or xj is among the k-nearest neighbors of xi;
0; otherwise:

8

<

:

ð2Þ

The optimal embedding y is given by the minimum
eigenvalue solution of the following generalized eigenvalue
problem:

Ly ¼ �Dy: ð3Þ

All the above-mentioned manifold learning algorithms
are nonlinear and computationally expensive. In addition,
they are defined only on the training data points and
therefore cannot directly be applied to supervised learning
problems. To overcome this limitation, some methods for
out-of-sample extension have been proposed [3], [33].
Bengio et al. proposed a unified framework for extending
LLE, Isomap, and Laplacian Eigenmap [3]. This framework
is based on seeing these algorithms as learning eigenfunc-
tions of a data-dependent kernel. The Nyström formula is
used to obtain an embedding for a new data point.
Sindhwani et al. proposed a semisupervised learning
algorithm, which constructs a family of data-dependent
norms on Reproducing Kernel Hilbert Spaces (RKHS) [33].
Explicit formulas are derived for the corresponding new
kernels. The kernels thus support out-of-sample extension.

2.4 Linear Techniques

Recently, several linear manifold learning algorithms have
been proposed and applied to image retrieval such as LPP
[19] and ARE [27]. In particular, the ARE approach has been
shown to be superior to LPP [27]. In addition, it would be
interesting to note that both ARE and LPP are fundamentally

based on Laplacian Eigenmaps and can be thought of as its

linear variants.
Out of the state-of-the-art linear manifold learning

algorithms, ARE is the most relevant to our algorithm.

ARE performs the relevance feedback image retrieval by

using three graphs, that is, the similarity relational graph on

the whole image database and two feedback relational

graphs, which incorporate the user-provided positive and

negative examples. The objective function of ARE is given

as follows:

Maximize JðV Þ ¼
X

i;j

kV T
xi � V T

xjk
2 WN

ij � �WP
ij

� �

subject to
X

i;j

kV T
xi � V T

xjk
2WS

ij ¼ 1;

ð4Þ

where V is the transformation matrix. The matrix WN

describes the positively similar relations, and WP describes

the dissimilar relations. WS is the weight matrix of the

nearest neighbor graph constructed over all the data points.

See [27] for the details.
In the following, we list the similarities and major

differences between ARE and our algorithm:

1. Both ARE and our algorithm are graph-based
approaches for learning a linear approximation to
the intrinsic data manifold. Both of themmake use of
both labeled and unlabeled data. Moreover, both of
them can be obtained by solving a generalized
eigenvector problem.

2. In the ARE algorithm, the labeled and unlabeled
images are considered equally important during the
course of finding the optimal projection. In fact,
even though we assign different weights to the
labeled and unlabeled images, the eigenvector
solution to ARE remains the same. However, it
might be more reasonable for the algorithm to
differentiate labeled and unlabeled images by
assigning higher weights to the labeled images,
especially when only limited labeled images are
available, whereas the unlabeled images are abun-
dant. Our algorithm overcomes this problem by
formulating two different objective functions.

Some other linear manifold learning techniques can be

found in [5], [8], [21].

3 MAXIMUM MARGIN PROJECTION

In this section, we introduce our MMP algorithm, which

respects both discriminant and geometrical structures in the

data. We begin with a description of the linear dimension-

ality reduction problem.

3.1 The Linear Dimensionality Reduction Problem

The generic problem of linear dimensionality reduction is

explained as follows: Given a set x1; � � � ;xm in IRn, find a

transformation matrix A ¼ ða1; � � � ; adÞ that maps these

m points to a set of points y1; � � � ;ym in IRd ðd � nÞ such

that yi “represents” xi, where yi ¼ AT
xi.
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3.2 The Maximum-Margin Objective Function for
Dimensionality Reduction

As we have previously described, naturally occurring data
may be generated by structured systems with possibly
much fewer degrees of freedom than what the ambient
dimension would suggest. Thus, we consider the case when
the data lives on or close to a submanifold of the ambient
space. In this paper, we consider the particular question of
maximizing a local margin between relevant and irrelevant
images.

Givenm data points fx1;x2; � � � ;xmg � IRn sampled from
the underlying submanifold M, suppose that the first
l points are labeled, and the rest m� l points are unlabeled.
In image retrieval, the labeled images include the original
query image and the images with user’s relevance feedback.
The problem of image retrieval concerns ranking the
unlabeled images according to their relevance to the
original query image. In order to model the local geome-
trical structure of M, we first construct a nearest neighbor
graph G. For each data point xi, we find its k nearest
neighbors and put an edge between xi and its neighbors.
LetNðxiÞ ¼ fx1

i ; � � � ;x
k
i g be the set of its k nearest neighbors.

Thus, the weight matrix of G can be defined as follows:

Wij ¼
1; if xi 2 NðxjÞ or xj 2 NðxiÞ;
0; otherwise:

�

ð5Þ

The nearest neighbor graph G with weight matrix W
characterizes the local geometry of the data manifold. It has
frequently been used in manifold-based learning techniques
such as [1], [38], [30], [22]. However, this graph fails to
discover the discriminant structure in the data.

In order to discover both geometrical and discriminant
structures of the data manifold, we construct two graphs,
that is, within-class graph Gw and between-class graph Gb. Let
lðxiÞ be the class label of xi, either relevant or not. For each
data point xi, the set NðxiÞ can naturally be split into two
subsets: NbðxiÞ and NwðxiÞ. NbðxiÞ contains the neighbors
having different labels, and NwðxiÞ contains the rest of the
neighbors. Note that some of the images in Nw may not
have labels. However, there is reason to suspect that these
images are likely to be related to xi if they are sufficiently
close to xi. Specifically,

NbðxiÞ ¼ fxj
i jlðx

j
iÞ 6¼ lðxiÞ; 1 � j � kg;

NwðxiÞ ¼ NðxiÞ �NbðxiÞ:

Clearly, NbðxiÞ \NwðxiÞ ¼ ;, and NbðxiÞ [NwðxiÞ ¼ NðxiÞ.
Let Ww and Wb be the weight matrices of Gw and Gb,
respectively. We define the following:

Wb;ij ¼
1; if xi 2 NbðxjÞ or xj 2 NbðxiÞ;
0; otherwise:

�

ð6Þ

Ww;ij ¼

�; if xi and xj share the same label;
1; if xi or xj is unlabeled

but xi 2 NwðxjÞ or xj 2 NwðxiÞ;
0; otherwise:

8

>

>

<

>

>

:

ð7Þ

When two images share the same label, it is with high
confidence that they share the same semantics. Therefore,
the value of � should relatively be large. In our experiments,

� is empirically set to be 50, and the number of nearest

neighbors k is set to be 5.
Now, consider the problem of mapping the within-class

graph and between-class graph to a line so that connected

points of Gw stay as close together as possible, whereas

connected points of Gb stay as distant as possible. Let

y ¼ ðy1; y2; � � � ; ymÞ
T be such a map. A reasonable criterion

for choosing a “good” map is to optimize two objective

functions

min
X

ij

ðyi � yjÞ
2Ww;ij; ð8Þ

max
X

ij

ðyi � yjÞ
2Wb;ij; ð9Þ

under appropriate constraints. The objective function (8) on

the within-class graph incurs a heavy penalty if neighboring

points xi and xj are mapped far apart, whereas they are

actually in the same class. Likewise, the objective function

(9) on the between-class graph incurs a heavy penalty if

neighboring points xi and xj are mapped close together,

whereas they actually belong to different classes. Therefore,

minimizing (8) is an attempt to ensure that if xi and xj are

close and share the same label, then yi and yj are close as

well. In addition, maximizing (9) is an attempt to ensure

that if xi and xj are close but have different labels, then yi
and yj are far apart. The learning procedure is illustrated in

Fig. 1.

3.3 Optimal Linear Embedding

In this section,wedescribe ourMMPalgorithm,which solves

the objective functions (8) and (9). Let X ¼ ðx1;x2; � � � ;xmÞ.
Suppose a is a projection vector, that is, yT ¼ a

TX, where

X ¼ ðx1; � � � ;xmÞ is a n�m matrix. Following some simple

algebraic steps, the objective function (8) can be reduced to

1

2

X

ij

ðyi � yjÞ
2Ww;ij

¼
1

2

X

ij

a
T
xi � a

T
xj

� �2
Ww;ij

¼
X

i

a
T
xiDw;iix

T
i a�

X

ij

a
T
xiWw;ijx

T
j a

¼ a
TXDwX

T
a� a

TXWwX
T
a;

whereDw is a diagonal matrix, and its entries are column (or
row, since Ww is symmetric) sum of Ww, Dw;ii ¼

P

j Ww;ij.

Similarly, the objective function (9) can be reduced to

1

2

X

ij

ðyi � yjÞ
2Wb;ij

¼
1

2

X

ij

a
T
xi � a

T
xj

� �2
Wb;ij

¼ a
TXðDb �WbÞX

T
a

¼ a
TXLbX

T
a;

where Db is a diagonal matrix. Its entries are column (or

row, since Wb is symmetric) sum of Wb, Db;ii ¼
P

j Wb;ij.

Lb ¼ Db �Wb is the Laplacian matrix of Gb.
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Note that the matrix Dw provides a natural measure on
the data points. If Dw;ii is large, then it implies that the class
containing xi has a high density around xi. Therefore, the
bigger the value of Dw;ii is, the more “important” xi

becomes. Therefore, we impose a constraint as follows:

y
TDwy ¼ 1 ) a

TXDwX
T
a ¼ 1:

Thus, the objective function (8) becomes the following:

min
a

1� a
TXWwX

T
a: ð10Þ

Equivalently,

max
a

a
TXWwX

T
a: ð11Þ

In addition, the objective function (9) can be rewritten as
follows:

max
a

a
TXLbX

T
a: ð12Þ

Finally, the optimization problem reduces to finding

arg max
a

aT XDwXT a¼1

a
TX �Lb þ ð1� �ÞWwð ÞXT

a; ð13Þ

where � is a suitable constant, and 0 � � � 1. In our
experiments, � is empirically set to be 0.5. The projection
vector a that maximizes (13) is given by the maximum
eigenvalue solution to the generalized eigenvalue problem:

X �Lb þ ð1� �ÞWwð ÞXT
a ¼ �XDwX

T
a: ð14Þ

Let the column vector a1; a2; � � � ; ad be the solutions of (14)
ordered according to their eigenvalues �1 > � � � > �d. Thus,
the embedding is given as follows:

xi ! yi ¼ AT
xi;

A ¼ ða1; a2; � � � ; adÞ;

where yi is a d-dimensional vector, and A is an n� d matrix.
Note that if the number of samples (m) is less than the

number of features (n), then rankðXÞ � m. Consequently,

rankðXDwX
T Þ � m and

rankðXð�Lb þ ð1� �ÞWwÞX
T Þ � m:

The fact that XDwX
T and Xð�Lb þ ð1� �ÞWwÞXT are

n� nmatrices implies that both of them are singular. In this

case, one may first apply PCA to remove the components
corresponding to zero eigenvalues.

Our algorithm also shares some common properties with
some recent work on combing classification and metric
learning such as Distance-Function Alignment (DAlign) [42]
and Spectral Kernel Learning (SKL) [25]. DAlign first con-
structs a data similarity matrix by using some initial kernels
(for example, Gaussian kernels or polynomial kernels). It
then incorporates contextual information into the kernel
and finds a distance metric, which is consistent to the new
kernel. SKL is built on the principles of kernel target
alignment and unsupervised kernel design [13]. It learns a
new kernel by assessing the relationship between the new
kernel and a target kernel induced by the given labels. All of
these methods can be used to learn a similarity function. In
addition, all of them can be thought of as semisupervised
learning algorithms, since they make use of both labeled
and unlabeled data points. In the following, we list the
major differences between them:

1. Both DAlign and SKL aim at learning a kernel and
distance metric, whereas our algorithm aims at
learning representations for the data points. With
the new representations, one can apply the standard
classification or clustering techniques in the new
representation space. Both DAlign and SKL fail to
provide new representations of the data points.

2. Both DAlign and SKL try to discover the global
geometrical structure in the data. They first generate
a gram matrix (similarity matrix) characterizing the
similarity between any pairs of data points. Unlike
them, our algorithm is motivated by discovering the
local manifold structure. Therefore, we construct a
sparse nearest neighbor graph to model the local
geometry.

3. The objective functions are different. Both DAlign and
SKL are based on the kernel alignment principle [13]
and optimize the alignment to the target kernel (or
target distance function), whereas our algorithm is
based on the maximum margin principle. Specifi-
cally, if two points are sufficiently close or share the
same label, then their maps should also be suffi-
ciently close. In addition, if two points have different
labels, then their maps should be far apart.

3.4 Complexity Analysis

The complexity of MMP is dominated by three parts:
k nearest neighbor search, matrix multiplication, and
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classes is maximized.



solving a generalized eigenvector problem. Consider
m data points in n-dimensional space. For the k nearest
neighbor search, the complexity is Oððnþ kÞm2Þ. nm2

stands for the complexity of computing the distances
between any two data points. km2 stands for the complex-
ity of finding the k nearest neighbors for all the data
points. The complexities for calculating the matrices
Xð�Lb þ ð1� �ÞWwÞXT and XDwX

T are Oðm2nþmn2Þ
and Oðmn2Þ, respectively. The third part is solving a
generalized eigenvector problem Aa ¼ �Ba, where A and
B are n� n matrices. To solve this generalized eigenvector
problem, we need first to compute the Singular Value
Decomposition (SVD) of the matrix B. The complexity of
SVD is Oðn3Þ. Then, to project the data points into a
d-dimensional subspace, we need to compute the first
d smallest eigenvectors of an n� n matrix, whose
complexity is Oðdn2Þ. Thus, the total complexity of the
generalized eigenvector problem is Oððnþ dÞn2Þ. There-
fore, the time complexity of the MMP algorithm is
Oððnþ kÞm2 þ ðmþ nþ dÞn2Þ. Since k � m and d � n,
the complexity of MMP is determined by the number of
data points and the number of features.

4 CONTENT-BASED IMAGE RETRIEVAL USING

MAXIMUM MARGIN PROJECTION

In this section, we describe how MMP can be applied to
CBIR. In particular, we consider relevance-feedback-driven
image retrieval.

4.1 Low-Level Image Representation

Low-level image representation is a crucial problem in
CBIR. General visual features include color, texture, shape,
etc. Color and texture features are the most extensively used
visual features in CBIR. Compared with color and texture
features, shape features are usually described after images
have been segmented into regions or objects. Since robust
and accurate image segmentation is difficult to achieve, the
use of shape features for image retrieval has been limited to
special applications where objects or regions are readily
available.

In this work, We combine a 64-dimensional color
histogram and a 64-dimensional Color Texture Moment
(CTM) [43] to represent the images. The color histogram is
calculated using 4 � 4 � 4 bins in HSV space. CTM, which
was proposed by Yu et al. [43], integrates the color and
texture characteristics of the image in a compact form. CTM
adopts local Fourier transform as a texture representation
scheme and derives eight characteristic maps for describing
different aspects of co-occurrence relations of image pixels
in each channel of the (SVcosH, SVsinH, and V) color space.
Then, CTM calculates the first and second moments of these
maps as a representation of the natural color image pixel
distribution. See [43] for details.

In fact, if the low-level visual features are accurate
enough, that is, if the euclidean distances in the low-level
feature space can accurately reflect the semantic relation-
ship between images, then one can simply perform nearest
neighbor search in the low-level feature space, and the
retrieval performance can be guaranteed. Unfortunately,
there is no strong connection between low-level visual

features and high-level semantic concepts based on the
state-of-the-art computer vision techniques. Thus, one has
to resort to user interactions to discover the semantic
structure in the data.

4.2 Relevance Feedback Image Retrieval

Relevance feedback is one of the most important techniques
for narrowing down the gap between low-level visual
features and high-level semantic concepts [31]. Tradition-
ally, the user’s relevance feedbacks are used to update the
query vector or adjust the weighting of different dimen-
sions. This process can be viewed as an online learning
process in which the image retrieval system acts as a
learner, whereas the user acts as a teacher. The typical
retrieval process is outlined as follows:

1. The user submits a query image example to the
system. The system ranks the images in the database
according to some predefined distance metric and
presents to the user the top ranked images.

2. The user provides his relevance feedbacks to
the system by labeling images as “relevant” or
“irrelevant.”

3. The system uses the user-provided information to
rerank the images in the database and returns the
top images to the user. Repeat step 2 until the user is
satisfied.

Here, we describe how the user’s relevance feedbacks can
be used to update the within-class and between-class graphs
for discovering the semantic and geometrical structure of the
image database. At the beginning of the retrieval, the user
submits a query image q. The images in the database are
ranked according to their euclidean distances to q, and the
top images are presented to the user. The user is then
required to mark the top returned images as “relevant” or
“irrelevant.” Naturally, we can divide the images into two
classes. Let lðxÞ denote the label of image x. Thus, lðxiÞ ¼ 1 if
xi is relevant to q, and lðxiÞ ¼ �1 if xi is irrelevant to q.
Based on these relevance feedbacks, we can construct the
within-class and between-class graphs as described in
Section 3. Note that the nearest neighbor graph G can be
constructed offline. At the beginning of the retrieval, there
are no relevance feedbacks available. Thus, by our defini-
tion, the within-class graph is simply G, whereas the
between-class graph is an empty graph. Consequently,
Ww ¼ W , Wb ¼ 0, Dw ¼ D, and the optimization problem
(13) reduces to

arg max
a

aT XDXT a¼1

a
TXWXT

a: ð15Þ

In addition, the corresponding generalized eigenvector
problem becomes

XWXT
a ¼ �XDXT

a: ð16Þ

Clearly, in this case, MMP reduces to LLP [22], [19]. During
each iteration of relevance feedback, we only need to
update the within-class and between-class graphs accord-
ing to (6) and (7). By applying our MMP algorithm, we can
then project the images into a lower dimensional subspace,
in which semantically related images tend to be close to
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each other. Let A be the transformation matrix; that is,
x
0
i ¼ AT

xi, and q
0 ¼ AT

q. The distance between x
0
i and q

0

can be computed as follows:

distðx0
i;q

0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0
i � q0ÞT ðx0

i � q0Þ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � qÞTAAT ðxi � qÞ

q

:

When MMP is applied, one needs to estimate the optimal
dimensionality of the subspace. It would be important to
note that our MMP algorithm is intrinsically a graph
embedding algorithm. It is closely related to Laplacian
Eigenmaps [1], LLP [22], spectral clustering [29], and
Normalized Cut [32]. All of these algorithms are funda-
mentally based on spectral graph embedding and partition-
ing [10]. Previous studies have shown that when there are
c classes, the optimal dimensionality should be close to c

[23], [29]. Therefore, when there is no prior knowledge
about the dimensionality and a brute-force search is
infeasible, one can simply keep two dimensions, consider-
ing that there are two classes (relevant or not) for image
retrieval. This theoretical result is strengthened by our
experiments. See Fig. 5 for details.

In many situations, the number of images in the database
can extremely be large, which makes the computation of
our algorithm infeasible. In order to reduce the computa-
tional complexity, we do not take all the images in the
database to construct the within-class and between-class
graphs. Instead, we only take the top 300 images at the
previous retrieval iteration, plus the labeled images, to find
the optimal projection.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our
proposed algorithm on a large image database. We begin
with a description of the image database.

5.1 Experimental Design

The image database that we used consists of 7,900 images of
79 semantic categories from the COREL data set. It is a large
and heterogeneous image set. Each image is represented as
a 128-dimensional vector, as described in Section 4.1.

To exhibit the advantages of using our algorithm, we
need a reliable way of evaluating the retrieval performance
and the comparisons with other algorithms. We list different
aspects of the experimental design in the following.

5.1.1 Evaluation Metrics

We use precision-scope curve and precision rate [26] to
evaluate the effectiveness of the image retrieval algorithms.
The scope is specified by the number N of top-ranked
images presented to the user. The precision is the ratio of
the number of relevant images presented to the user to the
scope N . The precision-scope curve describes the precision
with various scopes and thus gives the overall performance
evaluation of the algorithms. On the other hand, the
precision rate emphasizes the precision at a particular
value of scope. In general, it is appropriate to present
20 images on a screen. Putting more images on a screen

might affect the quality of the presented images. Therefore,
the precision at the top 20 ðN ¼ 20Þ is especially important.

In a real image retrieval system, a query image is usually
not in the image database. To simulate such an environ-
ment, we use fivefold cross validation to evaluate the
algorithms. More precisely, we divide the whole image
database into five subsets of equal size. Thus, there are
20 images per category in each subset. At each run of cross
validation, one subset is selected as the query set, and the
other four subsets are used as the database for retrieval. The
precision-scope curve and precision rate are computed by
averaging the results from the fivefold cross validation.

5.1.2 Automatic Relevance Feedback Scheme

We designed an automatic feedback scheme to model the
retrieval process. For each submitted query, our system
retrieves and ranks the images in the database. The top
10 ranked images were selected as the feedback images, and
their label information (relevant or irrelevant) is used for
reranking. Note that the images that have been selected at
previous iterations are excluded from later selections. For
each query, the automatic relevance feedback mechanism is
performed for four iterations.

It is important to note that the automatic relevance
feedback scheme used here is different from the ones
described in [19], [27]. In [19], [27], the top four relevant and
irrelevant images were selected as the feedback images.
However, this may not be practical. In real-world image
retrieval systems, it is possible that most of the top-ranked
images are relevant (or irrelevant). Thus, it is difficult for
the user to find both four relevant images and four
irrelevant images. It is more reasonable for the users to
provide feedback information only on the first screen shot
(10 or 20 images).

5.1.3 Compared Algorithms

To demonstrate the effectiveness of our proposed image
retrieval algorithm (MMP), we compare it with two state-of-
the-art algorithms, that is, ARE [27] and Support Vector
Machine (SVM), and a canonical algorithm, that is, LDA.
Both MMP and ARE take the manifold structure into
account and try to learn a subspace in which the euclidean
distances can better reflect the semantic structure of the
images. LDA is a canonical supervised dimensionality
reduction algorithm. It projects the images into a one-
dimensional space, in which the euclidean distances are
used to rerank the images.

ARE performs the relevance feedback image retrieval by
using three graphs, that is, the similarity-relational graph on
the whole image database and two feedback-relational
graphs that incorporate the user provided positive and
negative examples. In the comparison experiments reported
in [27], ARE is superior to the Incremental LLP approach
[19]. A crucial problem in ARE is how we can determine the
dimensionality of the subspace. In our experiments, we
iterate all the dimensions and select the dimension with
respect to the best performance. For both ARE and MMP,
the euclidean distances in the reduced subspace are used
for ranking the images in the database.

SVM implements the idea of mapping input data into a
high-dimensional feature space, where a maximal margin
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hyperplane is constructed [41]. Previous work has demon-
strated that SVM can significantly improve retrieval
performance [9], [24], [40]. The labeled images (query
image and feedback images) fxi; yig are used to learn a
classification function by SVM. The LIBSVM software [6]
was used in our system to solve the SVM optimization
problem. Leave-one-out cross validation on the training
images is applied to select the parameters in SVM. The RBF
kernel is used in SVM.

5.2 Image Retrieval Performance

In the real world, it is not practical to require the user to
provide many rounds of feedbacks. The retrieval perfor-
mance after the first two rounds of feedbacks (especially the
first round) is the most important. Fig. 2 shows the
precision at the top 20 after the first round of feedbacks
for all the 79 categories. The baseline curve describes the
initial retrieval result without feedback information. Speci-
fically, at the beginning of retrieval, the euclidean distances
in the original 128-dimensional space are used to rank the
images in the database. After the user provides relevance
feedbacks, the ARE, SVM, LDA, and MMP algorithms are
then applied to rerank the images in the database. The
detailed results are also shown in Table 1. As can be seen,
the retrieval performance of these algorithms varies with
different categories. There are some easy categories, on
which all the algorithms perform well, and some hard
categories, on which all the algorithms perform poorly.
Since the features that we used in our experiments are color
and texture features, those categories containing images
with similar colors and textures (for example, category 24 in
Fig. 2b) get very good retrieval performance, whereas those
categories containing images with different colors and
textures (for example, category 25 in Fig. 2c) get poor

retrieval performance. Among all the 79 categories, our
MMP approach performs the best on 62 categories. For the
remaining 17 categories, SVM performs the best on 14 of
them, LDA performs the best on two of them, and ARE
performs best on one of them.

Fig. 3 shows the average precision-scope curves of the
different algorithms for the first two feedback iterations.
Our MMP algorithm outperforms the other four algorithms
on the entire scope. The performances of SVM and LDA are
very close to each other. ARE performs better than SVM and
LDA only when the scope is less than 15. Both SVM and
LDA consistently outperform ARE at the second round of
feedbacks. All of these four algorithms MMP, SVM, LDA,
and ARE are significantly better than the baseline, which
indicates that the user-provided relevance feedbacks are
very helpful in improving the retrieval performance. By
iteratively adding the user’s feedbacks, the corresponding
precisions (at the top 10, top 20, and top 50) of the
algorithms are, respectively, shown in Fig. 4. As can be
seen, our MMP algorithm performs the best, especially at
the first round of relevance feedback. As the number of
feedbacks increases, the performance difference between
MMP and SVM gets smaller.

The actual computational time of different algorithms is
given in Table 2. All of these four algorithms can respond to
the user’s query very fast, that is, within 0.1 s. Our MMP
algorithm is as fast as ARE and slightly slower than SVM.
LDA is the fastest. All of the experiments were performed
on a Pentium IV 3.20-GHz Windows XP machine with a
2-Gbyte memory. In order to measure the significance of the
improvement obtained by our algorithm, we did a t-test on
the precision at the top 20 of the different algorithms, as
shown in Table 3. For the comparison between our
algorithm and SVM, ARE, LDA, and the baseline method,
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Fig. 2. (a) Precision at the top 20 returns of the four algorithms after the first feedback iteration. Our MMP algorithm is the best for almost all the

categories. (b), (c), and (d) Sample images from categories 24, 25, and 30, respectively.
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TABLE 1
Precision at the Top 20 Returns of the Four Algorithms after the First Feedback Iteration (mean� std-dev%)

Fig. 3. The average precision-scope curves of different algorithms for the first two feedback iterations. The MMP algorithm performs the best on the

entire scope. (a) Feedback iteration 1. (b) Feedback iteration 2.



the P values are 1e�9, 1e�21, 1e�12, and 1e�28, respec-
tively. All of these tests show that the improvement of our
proposed method over the other methods are significant.

5.3 Embedding Dimensions

Unlike SVM, the ARE and MMP algorithms are subspace
learning algorithms. For ARE and MMP, there is a problem
on how the dimensionality of the subspace can be
determined. Fig. 5 shows the retrieval performance of
ARE with different numbers of dimensions. Each curve
corresponds to an iteration. It is interesting to see that our
MMP algorithm always gets the best performance with two
dimensions. For the ARE algorithm, the best performance is
obtained with 20 	 40 dimensions. In practice, it is more
difficult for ARE to estimate the optimal dimensionality.

5.4 Model Selection

Model selection is a crucial problem in most of the learning
problems. In some situations, the learning performance may
drastically vary with different choices of the parameters,
and we have to apply some model selection methods (such
as Cross Validation and Bootstrapping [17]) for estimating
the generalization error. In this section, we evaluate the
performance of our algorithm with different values of the
parameters.

In our MMP algorithm, there are three parameters: k, �,
and �. k is the number of nearest neighbors. The
parameter � controls the weight between a within-class
graph and a between-class graph. The parameter � controls
the weight between labeled and unlabeled images. In our
previous experiments, we empirically set them as k ¼ 5,
� ¼ 0:5, and � ¼ 50. Fig. 6 shows the performance of our
algorithm (P@10, P@20, and P@30) after the first round of

feedbacks with respect to different values of these three
parameters. As can be seen, our algorithm is not sensitive to
� and �. For the value of k, since our algorithm tries to
discover the local geometrical and discriminant structures of
the data space, it is usually set to a small number, which is
typically less than 10.

5.5 Visualization of Semantics

In the previous sections, we have presented some quanti-
tative results of our algorithm. In this section, we give a
visual example to demonstrate how our algorithm works
during the retrieval process. It would be important to note
that the original idea of this experimental scheme for
visualizing semantics comes from [27].

Since our MMP algorithm is essentially a dimensionality
reduction algorithm, we can project the images into a
2D plane for visualization. Fig. 7 shows the embedding
results for two queries, that is, firework and horse. The two
query images are presented at the top of the figure. Each
query has three embedding plots, and each plot corresponds
to an iteration. The two plots on the first row demonstrate
the initial embedding results. Since initially, there are no
feedbacks, we apply PCA for 2D embedding. After the
relevance feedbacks are provided, our MMP algorithm is
applied for 2D embedding. The embedding plots on the
second and third rows correspond to the first and second
rounds of relevance feedback. On the left-hand side of each
plot, we present the labeled relevant images (denoted by Fþ)
and irrelevant images (denoted by F�). Due to space
limitations, we show at most four images for the relevant
(irrelevant) set. In each plot, the star point stands for the
query image. The dark gray points stand for the images
relevant to the query image, and the light gray points stand
for the images irrelevant to the query image. The large dark
gray and large light gray points, respectively, denote the
relevant and irrelevant feedbacks that will be returned to the
system (or, in practice, the user) for labeling. The region
centered at the query image is zoomed-in to give a better
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Fig. 4. Precisions at the (a) top 10 (P@10), (b) top 20 (P@20), and (c) top 50 (P@50) of the three algorithms. As can be seen, our MMP algorithm

performs the best, especially at the first round of relevance feedback.

TABLE 2
Average Runtime of Different Algorithms

for Processing One Query

TABLE 3
P Values of the T-Tests on P@20 of Different Algorithms

Note that, P-value indicates that the difference is significant.



view of the 100 nearest neighbors of the query image. As can
be seen, as the relevance feedbacks are provided, the
relevant images (dark gray points) progressively gather
together around the query image, whereas the irrelevant
images (light gray points) go far from the query image. For
the visualization of the ARE algorithm, the reader is referred
to [27].

6 CONCLUSION AND FUTURE WORK

This paper presents a novel manifold learning algorithm,
called MMP, for image retrieval. In the first step, we
construct a between-class nearest neighbor graph and a
within-class nearest neighbor graph to model both geome-
trical and discriminant structures in the data. The standard
spectral technique is then used to find an optimal projection,
which respects the graph structure. This way, the euclidean
distances in the reduced subspace can reflect the semantic
structure in the data to some extent. In comparison with two
state-of-the-art methods, that is, ARE and SVM, the experi-
mental results validate that the new method achieves a
significantly higher precision for image retrieval. Our
proposed MMP algorithm performs especially good at the
first round of relevance feedback (10 feedbacks). As more
feedbacks are provided, the performance difference between
MMP and SVM gets smaller. Both MMP, SVM, and ARE
significantly outperform the baseline, which indicates that
relevance feedback is important for image retrieval.

Several questions remain to be investigated in our future
work:

1. There are currently two directions for relevance
feedback image retrieval. One is classification based
(for example, SVM), and the other is metric learning
based (for example, ARE and MMP). It remains
unclear which direction is more promising. In
general, metric-learning-based approaches are more
flexible, since they can be thought of as data
preprocessing, and the other learning techniques
may be applied in the new metric space. On the
other hand, with a sufficient number of training
samples, the classification-based approaches may be
able to find an optimal boundary between relevant
and irrelevant images and thus may outperform
metric-learning-based approaches. In the machine
learning community, recently, there has been a lot of
interest in geometrically motivated approaches to
data classification in high-dimensional spaces [2].
These approaches can be thought of as a combina-
tion of metric learning and classification. A more
systematic investigation of these approaches for
image retrieval needs to be carried out.

2. In this paper, we consider the image retrieval
problem on a small, static, and closed-domain image
data. A much more challenging domain is the World
Wide Web (WWW). When it comes to searching
WWW images, it is possible to collect a large amount
of user click information. This information can then
be used as training data to perform pseudorelevance
feedback by applying our techniques.
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Fig. 5. (a) The performance of MMP versus the dimensionality. MMP always achieves the best performance at dimensionality 2. This property shows

that MMP does not suffer from the problem of dimensionality estimation. (b) The performance of ARE versus the dimensionality. The best

performances at different feedback iterations appear at different dimensions, which makes it hard to estimate the optimal dimensionality in practice.

Fig. 6. Model selection for MMP: retrieval precision versus different values of the parameters k, �, and �.



3. It would be very interesting to explore different
ways of constructing the image graph to model the
semantic structure in the data. There is no reason to
believe that the nearest neighbor graph is the only or
the most natural choice. For example, for Web image
search, it may be more natural to use the hyperlink
information to construct the graph.
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