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ABSTRACT

During face-to-face conversation, the speaker’s head is con-
tinually in motion. These movements serve a variety of im-
portant communicative functions. Our goal is to develop a
model of the speaker’s head movements that can be used to
generate head movements for virtual agents based on a ges-
ture annotation corpora. In this paper, we focus on the first
step of the head movement generation process: predicting
when the speaker should use head nods. We describe our
machine-learning approach that creates a head nod model
from annotated corpora of face-to-face human interaction,
relying on the linguistic features of the surface text. We
also describe the feature selection process, training process,
and the evaluation of the learned model with test data in
detail. The result shows that the model is able to predict
head nods with high precision and recall.
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1. INTRODUCTION
During face-to-face conversation, the head is constantly in
motion, especially during speaking turns [12]. These move-
ments are not random; research has identified a number of
important functions served by head movements [24] [17] [13]
[14]. Head movements provide a range of information in
addition to the verbal channel. We may nod to show our
agreement with what the other is saying, shake our heads to
express disbelief, or tilt the head upwards along with gaze
aversion when pondering something. In addition to serving
these explicit functions, head movements may also influence
the observer in more subtle ways. For example, overt head
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movements is found to be instrumental in the formation of
an observer’s affective response to the speaker [32]. Addi-
tionally, the various head movements we make during con-
versation make the interaction look more natural.

Consistent with the important role that head movements
play in human-human interaction, virtual agent systems have
incorporated head movements to realize a variety of func-
tions [1] [4] [5] [10] [20] [21] [30]. The incorporation of ap-
propriate head movements in a virtual agent has been shown
to have positive effects during human-agent interaction [27].
The goal of our work is to build a domain-independent model
of speaker’s head movements that can be used to generate
head movements for virtual agents. To use the model for
interactive virtual agents, we design it to work in real-time
and to be flexible enough to be used in different virtual agent
systems.

Often virtual humans use hand-crafted models to generate
head movements. For instance, in our previous work we
developed the Nonverbal Behavior Generator (NVBG) [21],
which is a rule-based system that analyzes the information
on the agent’s cognitive processing, such as its internal goals
and emotional state, but also analyzes the syntactic and
semantic structure of the surface text to generate a range
of nonverbal behaviors. To specify which nonverbal behav-
iors should be generated at each given context, the knowl-
edge from the psychological literature and analysis of human
nonverbal behavior corpora are used to identify the salient
factors most likely to be associated with certain nonverbal
behaviors.

As with a number of systems [1] [4] [5] [20] that generate
nonverbal behaviors for virtual humans, the NVBG work
starts with specific factors that would cause various ges-
tures to be displayed. Although the knowledge encoded in
the NVBG rules has been reused and demonstrated to be ef-
fective across a range of applications [31] [33] [18] [15], there
are limitations with this approach. One major drawback is
that the rules have to be hand-crafted. This means that the
author of the rules is required to have a broad knowledge of
the phenomena he/she wishes to model. However, as more
and more factors are added that may influence the myriad
of behaviors generated, it becomes harder to specify how all
those factors contribute to the overall outcome. Unless the
rule-author has a complete knowledge on the correlations
of the various factors, manual rule construction may suffer
from sparse coverage of the rich phenomena.
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Figure 1: Overview of the head nod prediction framework. The information in the gesture corpus is encoded
and aligned to construct the data set. The feature selection process chooses a subset of the features that
are most correlated with head nods. Using these features, probabilistic sequential models are trained and
utilized to predict whether or not a head nod should occur.

To complement the limitations of our previous rule-based
approach, we present a data-driven, automated approach
to generate speaker nonverbal behaviors, which we demon-
strate and evaluate. Specifically, the approach uses a ma-
chine learning technique (i.e. learning a hidden Markov
model [29]) to create a head nod model from annotated cor-
pora of face-to-face human interaction. Because our goal is
a flexible system that can be used in different virtual agent
systems with various approaches to natural language gener-
ation, we restrict the features used in the machine learning
to those available across different systems. Specifically, we
explore in this paper the use of features available through
shallow parsing and interpretation of the surface text and
leave for future work the exploration of deeper features.

There are several advantages with this machine learning ap-
proach. First of all, the process is automated. Having a good
understanding of the phenomena is still important, however
with this approach, it is no longer necessary for the author
of the model to have a complete knowledge of the complex
mapping between the various factors and behaviors. What
becomes more important is the process of choosing the right
features to train the model. In this work, we focus on the lin-
guistic features of the surface text when learning the model
rather than, for example, visual feedback. In other words, we
would like to use for training the same information from the
natural language generator that will be available when the
learned model is incorporated into a virtual human. Another
advantage of this approach is that it is flexible and can be
customized to learn for a specific context. For example, if we
want to learn the head nod patterns of different cultures, we
may train each model with each culture’s data. Similarly, if
we wish to learn gesture patterns with individualized styles,
we can train each model with data from specific individuals,
as done in [19]. The advantages of machine-learning ap-
proach makes it a strong alternative to rule-based approach
or a substantial enhancement when both are used.

In this paper, we describe our approach for learning to pre-
dict the speaker’s head nods from gesture corpora. Once
the patterns of when people nod are learned, we can use
the model to automatically encode a new sample with the
best features used for learning to generate the most likely

head movement for virtual agents. Although the focus in
this paper is on the initial steps of learning and evaluating
the model, the model could in turn be incorporated into a
larger system like NVBG.

The following section describes the research on head move-
ments, previous work on modeling head movements for vir-
tual agents, and the diverse approaches each system em-
ploys. We then describe our approach in detail, including the
data construction process, feature selection process, training
process, as well as the evaluation of the learned model with
test data. Figure 1 depicts the overview of the procedures
to learn the model. The results show that the model is able
to predict head nods with high precision and recall. Finally,
we discuss the results and propose future directions.

2. RELATED WORK
The functions and patterns of head movements during face-
to-face communication have been studied in various disci-
plines [13] [14] [17] [24]. Heylen [14] summarizes the func-
tions of head movements during conversations. Some in-
cluded are: to signal yes or no, enhance communicative at-
tention, anticipate an attempt to capture the floor, signal the
intention to continue, mark the contrast with the immedi-
ately preceding utterances, and mark uncertain statements
and lexical repairs. Kendon [17] describes the different con-
texts in which the head shake may be used. Head shake
is used with or without verbal utterances as a component
of negative expression, when a speaker makes a superla-
tive or intensified expression as in ‘very very old,’ when
a speaker self-corrects himself, or to express doubt about
what he is saying. In [24], McClave describes the linguistic
functions of head movements observed from the analysis of
videotaped conversations; lateral sweep or head shakes co-
occurs with concepts of inclusivity such as ‘everyone’ and
‘everything’ and intensification with lexical choices such as
‘very,’ ‘a lot,’ ‘great,’ ‘really.’ Side-to-side shakes also cor-
relate with expressions of uncertainty and lexical repairs.
During narration, head nods function as signs of affirmation
and backchannel requests to the speakers. Speakers also
predictably change the head position when discussing alter-
natives or items in a list.

Following the studies on nonverbal behaviors, many virtual
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agents model these behaviors. Some generate the behav-
iors according to the ‘conversation phenomena’ or discourse
structure. REA’s [4] verbal/nonverbal behaviors are de-
signed in terms of conversational functions. Rea employs
head nods for sending feedbacks and head toss for signalling
openness to engage in conversations. BEAT [5] generates
eyebrow flashes and beat gestures when the agent describes
a new object that is part of the rheme in the discourse struc-
ture of the utterance. Breitfuss et al. [1] developed a system
for automatic non-verbal generation in which head nod is
used as a basic gesture type for listener or is used when no
other specific gesture can be suggested.

Other virtual agents focus on generating expressive behav-
iors according to the agent’s emotional state. Mancini et al.
[23] show how complex emotion could be displayed through
head movements driven by music expressivity. They use
acoustic cues and emotions to show how musical expressiv-
ity could be transformed to behavioral expressivity. Deira
[20] is a reporter agent that generates basic head movements
(including facial expressions) at fixed intervals and but also
produces more pronounced movements as the agent’s ex-
citement rises during the report. Similarly, ERIC [30] is a
commentary agent that shows ‘idle’ gestures when no other
gestures are requested, but generates various nonverbal be-
haviors according to its emotional state.

As mentioned in the previous section, Nonverbal Behavior
Generator [21] generates behaviors given the information
about the agent’s cognitive processes but also by inferring
communicative functions from a surface text analysis. The
rules within NVBG were crafted using psychological research
on nonverbal behaviors as well as our own study of corpora
of human nonverbal behaviors. Recently, there have been
growing efforts to use corpora of nonverbal behavior more
extensively. Morency et al. [26] creates a model that pre-
dicts listener’s backchannel head nods using the speaker’s
multi-modal features (e.g. prosody, spoken words, eye gaze).
Similarly, [34] [28] [6] and [22] also uses prosodic features to
predict listener’s backchannel head nod. Busso et al. [2]
use audiovisual signals to synthesize emotional head motion
patterns. They use prosodic features and facial expressions
recorded from human speakers to build hidden Markov mod-
els for each emotional categories and use those models to
synthesize head motions. The generated head motions are il-
lustrated through an animated face. Their evaluation shows
that head motion modifies emotional perception of facial an-
imation especially in valence and activation domain. Kipp
et al. [19] perform a data-driven approach to generate hand
and arm gestures with individualized styles and introduce
the concept of ‘gesture units’ that produce more continuous
flow of movement.

Foster and Oberlander [10] also present a corpus-based gen-
eration of head and eyebrow motion for virtual agent. They
recorded and annotated a corpus of facial expressions and
head movements and used the data to synthesize facial dis-
plays on RUTH [9]. Their approach for generating the be-
haviors is similar to ours presented in this paper, however
there are several differences. First of all, although their ap-
proach is data-driven, they do not use machine learning tech-
niques to construct the model. Instead, they count the fre-
quencies of behaviors observed for the same context (i.e. fea-

ture combination) and either choose the behavior that was
most frequently observed or make a weighted choice among
all the different behaviors observed. Secondly, the features
they use are based in part on specific domain and language
tools. The utterances in the corpus are about bathroom
tile design, and one of the features they use is the user-
preference evaluation of objects being presented (e.g. which
tile shapes or designers each user prefers). Another fea-
ture used is the pitch accent information provided by their
COMIC text planner [11]. The use of features tied to specific
user information or language tool may limit the portability
of their work to other virtual agent systems. For our work,
we emphasize on the generality of the model and create a
head nod model that is domain-independent and re-usable
in other systems. To that end, we concentrate on features
that are easily obtainable across systems using various lan-
guage tools.

In the works described above, head nods for embodied agents
are either generated to realize certain communicative func-
tions the agent plans to deliver or by learning the patterns
from real human data. In the first case, head nods occur
to greet, emphasize certain points, or to express the agent’s
emotion. However, this approach may lead the agent to
look rigid or unnatural when only a few gestures are used to
deliver the communicative function that may span over sev-
eral utterances. To avoid the agent from looking too robotic,
many virtual agents add in random head movements, which
do not serve any particular functions other than to make
the agent look alive. On the other hand, behaviors gener-
ated by data-driven approach may be more natural looking.
However, majority of the systems that implement this ap-
proach model the listener’s backchannel movements, not the
speaker’s movements, or if not, use features produced by spe-
cific tools or assume natural speech input (that has already
embedded prosodic information relevant to head nods).

As mentioned above, we want to model the speaker’s head
movements and use the learned model to generate head nods
in real time for virtual agents. For this reason, we focus on
features that are readily available at the time head move-
ments are generated. In addition, we plan to make the model
portable to other systems by using features such as part of
speech tags that are easily obtainable even when using dif-
ferent language tools. Using additional information such as
pitch accents or facial expressions may greatly improve the
learning, but the natural language generator may not gen-
erate those information or they may not be available at the
time the model is used to generate nods. For this work, we
emphasize on the portability and generality of the model
and implement a minimalist approach. In the following sec-
tion, we show that even with shallow model of the surface
text, we can learn the model of speaker’s head nods with
high values of performance measures.

3. PREDICTING SPEAKER HEAD NODS
In this section, we describe our machine learning approach
for learning the speaker head nods. First we describe the
gesture corpus we used, followed by the feature selection
process. Finally, we give a detailed description on how we
trained the model and the results of the trained model.

3.1 Gesture Corpus
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Figure 2: Snapshot of the meeting setting used for
AMI meeting corpus [3].

The AMI Meeting Project is a European-funded multi disci-
plinary consortium formed to promote the research of group
interaction [3]. The AMI Meeting Corpus is a set of multi-
modal meeting records, which includes 100 meeting hours.
Each meeting consists of three or four participants placed in
a meeting-room setting with microphones, a slide projector,
electronic whiteboards, and individualized and room-view
cameras. Figure 2 shows the meeting setting from which
the corpus was created. There are two types of meetings in
the corpus: scenario meetings and non-scenario meetings. In
the scenario meetings, participants play the roles of employ-
ees in an electronics company and discuss the development
of a new television remote control. Each participant plays a
specific role (e.g. project manager, marketing expert, user
interface designer, etc.) and are provided information from
the scenario controller about when to start and finish the
meetings, what to prepare for the meetings, etc. There are
no scripts given to the participants. In the non-scenario
meetings, participants are colleagues from the same area
and have discussions on their research topics (e.g. speech re-
search colleagues discussing posterior probability methods).
Again, no script is given to the participants.

The corpus includes annotations of meeting context such
as participant IDs and topic segmentations as well as an-
notations on each participant’s transcript and movements.
Annotations of each meeting are structured in an XML for-
mat and are cross-referenced through meeting IDs, partic-
ipant IDs, and time reference. The following lists some of
the annotations with brief descriptions (not a complete list).

- Dialogue Acts: Speaker intentions such as information ex-
change, social acts, and non-intentional acts.
- Topic Segmentation: A shallow hierarchical decomposition
into subtopics (e.g. opening of meeting, chitchat).
- Named Entities: Codes for entities (people, locations, ar-
tifacts, etc.) and time durations (dates, times, durations).
- Head Gestures: Head movements of each participant.
- Hand Gestures: Hand movements of each participant.
- Movement: Abstract description of participant’s move-
ments (e.g. sit, take notes, other).
- Focus of Attention: Participant’s head orientation and eye

1 ES2003a.A ES2003a.B
2 ES2003b.A ES2003b.B ES2003b.C ES2003b.D
3 ES2008a.A ES2008a.B ES2008a.C ES2008a.D
4 ES2008b.A ES2008b.B ES2008b.C ES2008b.D
5 ES2008c.A ES2008c.B ES2008c.C
6 ES2008d.A ES2008d.B ES2008d.C ES2008d.D
7 ES2009a.A ES2009a.B ES2009a.C ES2009a.D
8 ES2009b.A ES2009b.B ES2009b.C ES2009b.D
9 ES2009c.A ES2009c.B ES2009c.C ES2009c.D
10 ES2009d.A ES2009d.B
11 IS1000a.A IS1000aB IS1000a.C IS1000a.D
12 IS1000b.A IS1000b.B IS1000b.C IS1000b.D
13 IS1001a.A IS1001a.B IS1001a.C IS1001a.D
14 IS1001b.A IS1001b.B IS1001b.C IS1001b.D
15 IS1001c.A IS1001c.B IS1001c.C
16 IS1001d.A IS1001d.B IS1001d.C IS1001d.D
17 IS1002b.A IS1002b.B IS1002b.C IS1002b.D

Table 1: List of meeting annotations [3] used for
learning. Recordings of 17 meetings were used,
which adds up to be around eight hours of anno-
tation.

Assess Elicit-Inform
Backchannel Elicit-Offer-Or-Suggestion
Inform Elicit-Assessment
Fragment Elicit-Comment-Understanding
Offer Comment-About-Understanding
Be-Positive Be-Negative
Stall Suggest
Other

Table 2: Types of dialog act labels used in the cor-
pus.

gaze.
- Words: Transcript of words spoken by each participant.

3.2 Data Alignment and Feature Selection
For this work, we used the recordings of 17 meetings, each
consisted of three to four participants, which adds up to be
around eight hours of meeting annotation. The meetings
used for learning are listed in Table 1.

One of the main features of the earlier NVBG work was its
robustness, the ability to generate behaviors even when all
that was available was the surface text and a minimal set of
information about the virtual human’s internal state. Here,
we take a similar approach; specifically, a shallow parsing is
performed to analyze the syntactic and semantic structure
of the surface string to predict head nods. Among all the
annotations included in the corpus, we used the transcript of
each speaker, the dialog acts of each utterance, and the type
of head movements observed while the utterance was spoken.
Table 2 lists the different types of dialogue acts used in the
corpus. The head types annotated in the corpus are: nod,
shake, nodshake, other, and none. Snapshots of the head
movements are shown in Figure 3. We also obtained the
part of speech tags and phrase boundaries (e.g. start/end of
verb phrases and noun phrases) by sending the utterances
through a natural language parser (Charniak Parser [8]). In
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Figure 3: Snapshots of head movements in AMI cor-
pus [3]. From the top: nod, shake, nodshake, and
other head movements.

Figure 4: Data Construction Process. From the
gesture corpus, speaker transcript, dialog act, and
head types are extracted. The transcript is sent to
the natural language parser to extract the part of
speech tags and phrase boundaries. A script auto-
matically cross-references each file to construct the
data set. This data set is encoded and transformed
into trigrams before being used to train the HMMs.

addition, we also combined the features from the nonver-
bal behavior rules used in NVBG; specifically, we looked for
keywords that are shown to be associated with head nods in
our prior work. We call those keywords key lexical entities.
Figure 4 illustrates the data construction process.

From the 17 meeting recordings we used, we collected 10,000
sentences and wrote a script to cross-reference the corre-
sponding annotation files and aligned the features at the
word level. In other words, we aligned each word with the
following:

- Part of speech tag (29 cases)
- Dialog act
- Phrase Boundaries: sentence start/end, noun phrase start,
verb phrase start
- Key lexical Entities (whether or not the word triggers NVB
rules associated with head nods)

For the particular kind of model we are training (i.e. hid-
den Markov models), adding another feature means we need
more data samples to learn the combinations of all the fea-
tures and how they affect the outcome we are trying to clas-
sify. With a limited number of data samples, we want to
keep the number of features low by eliminating uncorrelated
features (i.e. features that do not affect head nods). There-
fore, we reduced the number of features by counting the
frequency of head nods that occurred with each feature and
selected a subset of them. Table 3 lists the frequency counts
of these features (out of 2590 words with nods). Head nods
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Part of Speech Dialog Act
Interjection 427 Inform 910
Proper Noun 300 BackChannel 387
Conjunction 239 Suggest 265
Adverb 238

Phrase Boundaries NVBG Rule
sentence start 2268 key lexical entities 594
np start 493
vp start 391

Table 3: Features that most frequently co-occurred
with head nods from the gesture corpus (Out of 2590
words that co-occurred with nods). The frequency
counts are independent from each other.

Part of Speech Conjunction, Proper Noun,
Adverb, Interjection, Remainder

Dialog Act BackChannel, Inform, Suggest,
Remainder

Sentence Start y, n
Noun Phrase Start y, n
Verb Phrase Start y, n
Key Lexical Entities y, n

Table 4: Features selected for training. The features
were selected based on the results of Table 3. The
label ‘Remainder’ includes everything not falling un-
der other categories.

occurred more frequently at the beginnings of utterances
and noun/verb phrases than at the end of each. From part
of speech tags, Interjection was most correlated with head
nods, followed by Proper Nouns, Conjunctions, and Adverbs.
Dialog Act Inform most frequently co-occurred with nods
along with BackChannel and Suggest. There was also a
substantial number of nods occurring with the Key Lexical
Entities (keywords), confirming the validity of NVBG rules
associated with head nods. Based on the results described
above, the final features were selected for training. Table 4
lists the final features.

3.3 Training Process
To learn the head nod model, hidden Markov models (HMM)
[29] were trained. HMM is a statistical model that is widely
used for learning patterns where a sequence of observations
is given. Some of the applications where HMM have been
successfully used are gesture recognition, speech recognition,
and part-of-speech tagging [35] [16] [7]. For this work, the
input is a sequence of feature combinations representing each
word. The sequential property of this problem led us to use
HMMs to predict head nods.

After aligning each word of the utterances with the selected
features, we put together a sequence of three words to form
a set of trigrams, which would be used as our data set. For
each trigram, the head type was determined by the majority
vote method. For example, if more than two out of three
words co-occurred with a nod, the trigram was classified as
a nod instance, and the same applied for other head move-
ment types. To determine whether a trigram should be clas-
sified as a nod, we trained two HMMs: a ‘NOD HMM’ and

Measurement Equation Value
Accuracy (tp+tn) / (tp+fp+tn+fn) .8528
Precision tp / (tp+fp) .8249
Recall tp / (tp+fn) .8957
F-measure 2*precision*recall / .8588

(precision+recall)

Table 5: Measurements for the performance of the
learned model.

a ‘NOT NOD HMM,’ which includes trigrams with head
types other than a nod. Since the output of an HMM is a
probability that a sample is labeled with a particular clas-
sification, we feed the same trigram into both models and
compare the probabilities to determine its classification.

To train a ‘NOD HMM,’ we collected all the positive in-
stances of ‘nod’ trigrams from the entire set of trigrams.
Then, we left out 20% of the ‘nod’ trigrams as a test set,
which is used in the final evaluation step, and used the re-
maining 80% of the data for training. To determine the pa-
rameter setting of HMM (i.e. the number of hidden states)
that produces the best result, we performed a 10-fold cross-
over validation for each parameter setting. That is, we split
the remaining 80% of the data into 10 parts and used one
part as a validation set and 9 parts as a training set. After
training the model, we obtained measurements of the model.
We repeated this process 10 times and obtained an average
measurement for the given number of hidden states. By
comparing the average measurements, we then determined
the best number of hidden states. After this, we combined
all 10 parts and trained the final ‘NOD HMM’ with the cho-
sen number of hidden states. Similarly, we collected the pos-
itive instances of ‘NOT NOD’ trigrams (i.e. trigrams with
head movements other than nod) and repeated the above
steps to train a final ‘NOT NOD HMM.’ Finally, we ran the
test set (20% of the entire data left out) through the ‘NOD
HMM’ and ‘NOT NOD HMM’ and classified each sample
to have the head movement of whichever model produced a
higher probability.

3.4 Results and Discussion
To measure the performance of our learned model, we com-
puted the accuracy, precision, recall, and F-measure of the
learned model. Accuracy is the ratio of samples that were
correctly classified. Precision is the ratio between the num-
ber of actual nods in the data and the number of nods pre-
dicted by the learned model. Recall is the ratio between
the number of nods predicted by the learned model and the
number of nods in the actual data. For the F-measure, we
gave the recall and precision the same weight (F1). Table 5
summarizes the results with the equations used for comput-
ing the measurements. The results show that the model can
predict head nods with high precision, recall, and accuracy
rate with only a shallow model of the surface text (i.e. only
using the syntactic/semantic structure of the utterance and
the dialog act).

In addition to the main results presented in table 5, a second
preliminary experiment was conducted to assess which fea-
tures were more important in the model. We took out one
feature at a time and trained the HMMs with the rest of the
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Precision Recall F-score
Proper Noun 0 0 0
Adverb 0.0009 0.0061 0.0034
Verb Phrase Start 0.0613 0.0123 0.0382
Noun Phrase Start 0.066 0.0061 0.0375
Suggest 0.0695 -0.0123 0.0301
Interjection 0.0757 -0.0061 0.0363

Table 6: Changes in Precision, Recall, F-score rates
of selective features when each was taken out from
learning. The changes are computed from the re-
sults in Table 5.

features. For each case, we computed the accuracy, preci-
sion, recall and F-score and compared them to the previous
values by computing the differences in each measurements.

For many features, removing them had small trade-offs in
precision and recall rates. However, some feature extrac-
tions had more notable impact. We show these in Table
6. Specifically, Proper Noun and Adverb did not affect the
learning at all or very marginally when taken out, where
as Verb Phrase Start, Noun Phrase Start, Suggest, and In-
terjection resulted in a larger change in both precision and
f-score values when taken out from learning. Interestingly,
in the case of Verb Phrase Start and Noun Phrase Start, in
NVBG head nods were inserted in those places to make the
agent look more life-like. This second experiment suggests
two future directions in our work. It raises a need for a more
sophisticated automatic feature selection process such as the
method used by Morency et al. [26], which can investigate
the correlations of the features and head nods more thor-
oughly than a simple frequency count. Additionally, further
evaluation with human subjects is needed. For example, it
may be that the behavior looks more natural if we include
those Noun Phrase Start and Verb Phrase Start features
even though the F-score drops.

4. CONCLUSIONS AND FUTURE DIREC-

TION
In this paper we presented an approach to learning a prob-
abilistic model to predict head nods using a gesture corpus.
As mentioned above, our goal is to use the model to gener-
ate head nods for virtual agents. In this paper, we focused
on using the linguistic features of the surface text, including
the syntactic/semantic structure of the utterance and other
information that may be provided by the virtual agent’s nat-
ural language generator. We trained hidden Markov models
to predict head nods. The results show that the learned
models predict head nods with high values of precision, re-
call and F-scores. A follow-up assessment explored what
features had the most impact on head nod prediction.

This work shows that human head nods could be predicted
with high performance measures using machine learning ap-
proach even without a rich markup of surface text. Com-
pared to knowledge-intensive approach where the rule-author
needs to manually construct rules that generate head nods,
this approach does not require a complete knowledge of the
correlations of the factors that may affect head nods. In-
stead, the author may concentrate on selecting the right

features used for machine learning, which in our case was
guided by the research on head movements.

This work could be extended in several ways. Currently
we are working on detecting the emotional state from each
utterance and adding this into the feature set to investigate
whether emotional data improves the learning. Further anal-
ysis of the linguistic structure may also be performed using
additional language tools to extract features such as empha-
sis points and contrast points. In the Beat system [5], em-
phasis points are marked whenever a new incoming word is
detected by a language tool (Conexor: www.conexor.fi) and
antonyms in the utterance are detected using WordNet [25]
to mark contrast points. We can also extend the work by
learning the patterns of different head movements or other
nonverbal behaviors. Conducting evaluations with human
subjects is also necessary to investigate if the head move-
ments generated by the model are perceived to be natural.
Finally, we would also like to compare the results of this
machine learning approach with the results of our previous
rule-based approach or even combine the two approaches to
examine if it improves the quality of behaviors generated.
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