
Learning a Nonlinear Embedding by Preserving
Class Neighbourhood Structure

Ruslan Salakhutdinov and Geoffrey Hinton

Department of Computer Science

University of Toronto

Toronto, Ontario M5S 3G4

Abstract

We show how to pretrain and fine-tune a mul-

tilayer neural network to learn a nonlinear

transformation from the input space to a low-

dimensional feature space in which K-nearest

neighbour classification performs well. We also

show how the non-linear transformation can be

improved using unlabeled data. Our method

achieves a much lower error rate than Support

Vector Machines or standard backpropagation on

a widely used version of the MNIST handwrit-

ten digit recognition task. If some of the dimen-

sions of the low-dimensional feature space are

not used for nearest neighbor classification, our

method uses these dimensions to explicitly rep-

resent transformations of the digits that do not

affect their identity.

1 Introduction

Learning a similarity measure or distance metric over the

input space
�

is an important task in machine learning. A

good similarity measure can provide insight into how high-

dimensional data is organized and it can significantly im-

prove the performance of algorithms like K-nearest neigh-

bours (KNN) that are based on computing distances [4].

For any given distance metric ✁ (e. g. Euclidean) we can

measure similarity between two input vectors ✂☎✄ , ✂✝✆✟✞ �
by computing ✁✡✠ ☛✌☞✍✂ ✄✏✎ ✑✓✒✕✔ ☛✌☞✖✂ ✆✗✎ ✑✓✒✙✘ , where ☛✌☞✍✂ ✎ ✑✓✒ is a

function ☛✡✚ �✜✛✣✢
mapping the input vectors in

�
into a

feature space
✢

and is parameterized by ✑ (see fig. 1).

As noted by [8] learning a similarity measure is closely

related to the problem of feature extraction, since for any

fixed ✁ , any feature extraction algorithm can be thought of

as learning a similarity metric. Previous work studied the

case when ✁ is Euclidean distance and ☛✌☞✍✂ ✎ ✑✓✒ is a simple

linear projection ☛✌☞✍✂ ✎ ✑✓✒✥✤✦✑ ✂ . The Euclidean distance

in the feature space is then the Mahalanobis distance in the

input space:

✁✡✠ ☛✌☞✍✂ ✄ ✒✧✔ ☛✌☞✖✂ ✆ ✒✙✘★✤ ☞✍✂ ✄✥✩ ✂ ✆ ✒✫✪☎✑✬✪☎✑ ☞✍✂ ✄✥✩ ✂ ✆ ✒ (1)

Linear discriminant analysis (LDA) learns the matrix ✑
which minimizes the ratio of within-class distances to

between-class distances. Goldberger et.al.[9] learned the

linear transformation that optimized the performance of

KNN in the resulting feature space. This differs from LDA

because it allows two members of the same class to be far

apart in the feature space so long as each member of the

class is close to K other class members. Globerson and

Roweis [8] learned the matrix ✑ such that the input vectors

from the same class mapped to a tight cluster. They showed

that their method approximates the local covariance struc-

ture of the data and is therefore not based on Gaussian as-

sumption as opposed to LDA which uses global covariance

structure. Weinberger et.al.[18] also learned ✑ with the

twin goals of making the K-nearest neighbours belong to

the same class and making examples from different classes

be separated by a large margin. They succeeded in achiev-

ing a test error rate of 1.3% on the MNIST dataset[15].

A linear transformation has a limited number of parameters

and it cannot model higher-order correlations between the

original data dimensions. In this paper, we show that a non-

linear transformation function ☛✌☞✖✂ ✎ ✑✓✒ with many more

parameters can discover low-dimensional representations

that work much better than existing linear methods pro-

vided the dataset is large enough to allow the parameters

to be estimated.

The idea of using a multilayer neural network to learn a

nonlinear function ☛✌☞✍✂ ✎ ✑✓✒ that maximizes agreement be-

tween output signals goes back to [2]. They showed that

it is possible to learn to extract depth from stereo images

of smooth, randomly textured surfaces by maximizing the

mutual information between the one-dimensional outputs

of two or more neural networks. Each network looks at a

local patch of both images and tries to extract a number that

has high mutual information with the number extracted by

networks looking at nearby stereo patches. The only prop-

erty that is coherent across space is the depth of the surface

so that is what the networks learn to extract. A similar ap-

proach has been used to extract structure that is coherent

across time [17].

W

W

W

W

W

W

W

W

500

500

500

500

2000

Learning Similarity Metric

30

2000

1

2

3

4

30

1

2

3

4

y

X Xa b

ya b

D[y ,y]a b

Figure 1: After learning a non-linear transformation from images
to 30-dimensional code vectors, the Euclidean distance between
code vectors can be used to measure the similarity between im-
ages.

Generalizing this idea to networks with multi-dimensional,

real-valued outputs is difficult because the true mutual in-

formation depends on the entropy of the output vectors and

this is hard to estimate efficiently for multi-dimensional

outputs. Approximating the entropy by the log determi-

nant of a multidimensional Gaussian works well for learn-

ing linear transformations [7], because a linear transforma-

tion cannot alter how Gaussian a distribution is. But it does

not work well for learning non-linear transformations [21]

because the optimization cheats by making the Gaussian

approximation to the entropy as bad as possible. The mu-

tual information is the difference between the individual en-

tropies and the joint entropy, so it can be made to appear

very large by learning individual output distributions that

resemble a hairball. When approximated by a Gaussian, a

large hairball has a large determinant but its true entropy is

very low because the density is concentrated into the hairs

rather than filling the space.

The structure in an iid set of image pairs can be decom-

posed into the structure in the whole iid set of individual

images, ignoring the pairings, plus the additional struc-

ture in the way they are paired. If we focus on model-

ing only the additional structure in the pairings, we can

finesse the problem of estimating the entropy of a multi-

dimensional distribution. The additional structure can be

modeled by finding a non-linear transformation of each im-

age into a low-dimensional code such that paired images

have codes that are much more similar than images that are

not paired. Adopting a probabilistic approach, we can de-

fine a probability distribution over all possible pairs of im-

ages, ✂✝✄ ✔ ✂✝✆ by using the squared distances between their

codes, ☛✌☞✍✂ ✄ ✒✕✔ ☛✌☞✖✂✝✆ ✒ :
✁ ☞✍✂ ✄ ✔ ✂ ✆ ✒ ✤ ✎ ✎ ☛✌☞✍✂✝✄ ✒ ✩ ☛✌☞✖✂✝✆ ✒ ✎ ✎ ✂✄✆☎✞✝✠✟ ✎ ✎ ☛✌☞✖✂

☎
✒ ✩ ☛✌☞✍✂

✟
✒ ✎ ✎ ✂ (2)

We can then learn the non-linear transformation by maxi-

mizing the log probability of the pairs that actually occur in

the training set. The normalizing term in Eq. 2 is quadratic

in the number of training cases rather than exponential in

the number of pixels or the number of code dimensions be-

cause we are only attempting to model the structure in the

pairings, not the structure in the individual images or the

mutual information between the code vectors.

The idea of using Eq. 2 to train a multilayer neural net-

work was originally described in [9]. They showed that

a network would extract a two-dimensional code that ex-

plicitly represented the size and orientation of a face if it

was trained on pairs of face images that had the same size

and orientation but were otherwise very different. Attempts

to extract more elaborate properties were less successful

partly because of the difficulty of training multilayer neu-

ral networks with many hidden layers, and partly because

the amount of information in the pairings of ✡ images is

less than ☛✌☞✎✍✏✡ bits per pair. This means that a very large

number of pairs is required to train a large number of pa-

rameters.

Chopra et.al. [3] have recently used a non-probabilistic ver-

sion of the same approach to learn a similarity metric for

faces that assigns high similarity to very different images of

the same person and low similarity to quite similar images

of different people. They achieve the same effect as Eq.

2 by using a carefully hand-crafted penalty function that

uses both positive (similar) and negative (dissimilar) exam-

ples. They greatly reduce the number of parameters to be

learned by using a convolutional multilayer neural network

and achieve impressive results on a face verification task.

We have recently discovered a very effective and entirely

unsupervised way of training a multi-layer, non-linear ”en-

coder” network that transforms the input data vector ✂ into

a low-dimensional feature representation ☛✌☞✍✂ ✎ ✑✓✒ that cap-

tures a lot of the structure in the input data [14]. This un-

supervised algorithm can be used as a pretraining stage to

initialize the parameter vector ✑ that defines the mapping

from input vectors to their low-dimensional representation.

After the initial pretraining, the parameters can be fine-

tuned by performing gradient descent in the Neighbour-

hood Component Analysis (NCA) objective function intro-

duced by [9]. The learning results in a non-linear trans-

formation of the input space which has been optimized to

make KNN perform well in the low-dimensional feature

space. Using this nonlinear NCA algorithm to map MNIST

digits into the 30-dimensional feature space, we achieve an

error rate of 1.08%. Support Vector Machines have a sig-

nificantly higher error rate of 1.4% on the same version of

the MNIST task [5].

In the next section we briefly review Neighborhood Com-

ponents Analysis and generalize it to its nonlinear counter-

part. In section 3, we show how one can efficiently per-

form pretraining to extract useful features from binary or

real-valued data. In section 4 we show that nonlinear NCA

significantly outperforms linear methods on the MNIST

dataset of handwritten digits. In section 5 we show how

nonlinear NCA can be regularized by adding an extra term

to the objective function. The extra term is the error in

reconstructing the data from the code. Using this regular-

izing term, we show how nonlinear NCA can benefit from

additional, unlabeled data. We further demonstrate the su-

periority of regularized nonlinear NCA when only small

fraction of the images are labeled.

2 Learning Nonlinear NCA

We are given a set of ✡ labeled training cases ☞✖✂☎✄ ✔✁� ✄ ✒ ,✂ ✤ ✄ ✔✆☎ ✔✞✝✟✝✠✝ ✔ ✡ , where ✂ ✄ ✞☛✡✌☞ , and � ✄ ✞✎✍ ✄ ✔✆☎ ✔✞✝✟✝✠✝ ✔✆✏✒✑ .
For each training vector ✂ ✄ , define the probability that point✂ selects one of its neighbours ✓ (as in [9, 13]) in the trans-

formed feature space as:

✁ ✄✧✆ ✤ ✔✖✕✘✗ ☞ ✩✚✙ ✄✧✆ ✒✄☛✛✢✜✣ ✄ ✔✖✕✘✗ ☞ ✩✚✙ ✄ ✛ ✒ ✔
✁ ✄✧✄ ✤✥✤ (3)

We focus on the Euclidean distance metric:

✙ ✄ ✆ ✤✧✦ ☛✌☞✍✂ ✄ ✎ ✑✓✒ ✩ ☛✌☞✍✂ ✆ ✎ ✑✓✒✚✦ ✂
and ☛✌☞✩★ ✎ ✑✓✒ is a multi-layer neural network parametrized

by the weight vector ✑ (see fig 1). The probability that

point
✂

belongs to class ✪ depends on the relative proximity

of all other data points that belong to class ✪ :
✁ ☞ � ✄ ✤ ✪ ✒ ✤✬✫

✆✮✭ ✯✮✰ ✣ ☎
✁ ✄✧✆ (4)

The NCA objective (as in [9]) is to maximize the expected

number of correctly classified points on the training data:

✱✳✲✵✴✷✶ ✤
✲
✫
✄ ✣✹✸ ✫✆✺✭ ✯✮✻ ✣ ✯ ✰

✁ ✄✧✆ (5)

One could alternatively maximize the sum of the log prob-

abilities of correct classification:

✱✳✼✾✽ ✤
✲
✫
✄ ✣✿✸ ☛✌☞✎✍❁❀ ✫✆✺✭ ✯ ✻ ✣ ✯ ✰

✁ ✄✧✆❃❂ (6)

When ☛✌☞✍✂ ✎ ✑✓✒ ✤ ✑ ✂ is constrained to be a linear trans-

formation, we get linear NCA. When ☛✌☞✍✂ ✎ ✑✓✒ is defined

by a multilayer, non-linear neural network, we can explore

a much richer class of transformations by backpropagating

the derivatives of the objective functions in Eq. 5 or 6 with

respect to parameter vector ✑ through the layers of the

encoder network. In our experiments, the NCA objective✱ ✲❄✴✹✶
of Eq. 5 worked slightly better than

✱ ✼✾✽
. We sus-

pect that this is because
✱ ✲✵✴✷✶

is more robust to handling

outliers.
✱ ✼✾✽

, on the other hand, would strongly penalize

configurations where a point in the feature space does not

lie close to any other member of its class. The derivatives

of Eq. 5 are given in the appendix.

h

W

Binary

Visible Data

Binary

Hidden Features

x

Figure 2: A Restricted Boltzmann Machine. The top layer repre-
sents a vector of stochastic binary features ❅ and and the bottom
layer represents a vector of stochastic binary “visible” variables❆ . When modeling real-valued visible variables, the bottom layer
is composed of linear units with Gaussian noise.

3 Pretraining

In this section we describe an unsupervised way to learn

an adaptive, multi-layer, non-linear ”encoder” network that

transforms the input data vector ✂ into its low-dimensional

feature representation ☛✌☞✍✂ ✎ ✑✓✒ . This learning is treated as a

pretraining stage that discovers good low-dimensional rep-

resentations. Subsequent fine-tuning of the weight vector

✑ is carried out using the objective function in Eq. 5

3.1 Modeling Binary Data

We model binary data (e.g. the MNIST digits) using a

Restricted Boltzmann Machine [6, 16, 11] (see fig. 2).

The “visible” stochastic binary input vector ✂ and “hidden”

stochastic binary feature vector ❇ are modeled by products

of conditional Bernoulli distributions:

✁ ☞❉❈✘❊ ✤ ✄ ✎ ✂ ✒ ✤ ❋ ☞●✓✁❊❄❍ ✫❏■ ✑
■ ❊✞❑ ■ ✒ (7)

✁ ☞▲❑ ■ ✤ ✄ ✎ ❇ ✒ ✤ ❋ ☞●✓ ■ ❍ ✫ ❊ ✑
■ ❊▼❈◆❊ ✒ (8)

where ❋ ☞P❖ ✒ ✤ ✄▼◗ ☞ ✄ ❍❙❘❯❚ ✛ ✒ is the logistic function, ✑
■ ❊ is

a symmetric interaction term between input ❱ and feature ❲ ,
and ✓ ■ , ✓✁❊ are biases. The biases are part of the overall pa-

rameter vector, ✑ . The marginal distribution over visible

vector ✂ is:

✁ ☞✖✂ ✒ ✤☛✫✞❳ ✔❨✕✘✗ ☞ ✩✚❩ ☞✖✂ ✔ ❇ ✒✫✒✄☛❬✘❭ ❪ ✔❨✕◆✗ ☞ ✩✚❩ ☞P❫ ✔✁❴ ✒ ✒ (9)

where ❩ ☞✍✂ ✔ ❇ ✒ is an energy term (i.e. a negative log prob-

ability + an unknown constant offset) given by:

❩ ☞✍✂ ✔ ❇ ✒ ✤ ✩ ✫ ■ ✓ ■ ❑ ■ ✩ ✫ ❊ ✓ ❊ ❈ ❊ ✩ ✫ ■ ❭ ❊ ❑
■ ❈ ❊ ✑ ■ ❊ (10)

The parameter updates required to perform gradient ascent

in the log-likelihood can be obtained from Eq. 9:

❵ ✑ ■ ❊ ✤✥❛◆❜ ☛ ☞ ✍ ✁ ☞✖✂ ✒
❜ ✑ ■ ❊ ✤❝❛ ☞✩❞✳❑ ■ ❈ ❊❢❡ ☞ ✄✆❣✖✄ ✩ ❞❤❑ ■ ❈ ❊✞❡✚✐❦❥ ☞♠❧ ✟ ✒

W

W

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W +ε

W

W

2

1

500

500

500

500

2000

2000

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

500

500

2000

2000

500

500

2 2

3 3

1 1

4 4

4
T

5

3
T

6

2
T

7

1
T

8

RBM

Pretraining

RBM

3

4

30

RBM

Top

RBM

3030

Fine−tuning

Encoder

Decoder

�
*NCA

✁✄✂✆☎ �✞✝✠✟☛✡

Figure 3: Left panel: Pretraining consists of learning a stack of RBM’s in which the feature activations of one RBM are treated as data
by the next RBM. Right panel: After pretraining, the RBM’s are “unrolled”. Setting

�✌☞ ✂
results in nonlinear NCA, setting

�✍☞✏✎
results in a deep multi-layer autoencoder. For

�✒✑ ✁ ✎✔✓ ✂ ✝
, the NCA objective is combined with autoencoder reconstruction error

✡
to

create regularized nonlinear NCA. The network is fine-tuned by backpropagation.

where ❛ is the learning rate, ❞ ★ ❡ ☞ ✄✆❣✖✄ denotes an expec-

tation with respect to the data distribution and ❞ ★ ❡✳✐✵❥ ☞♠❧ ✟
is an expectation with respect to the distribution defined

by the model. To circumvent the difficulty of computing❞❁★ ❡✚✐❦❥ ☞♠❧ ✟ , we use 1-step Contrastive Divergence [11]:❵ ✑
■ ❊ ✤❝❛ ☞ ❞❤❑ ■ ❈✘❊ ❡ ☞ ✄✆❣✖✄ ✩ ❞❤❑ ■ ❈✘❊ ❡✖✕ ❧ ✯ ❥✘✗ ✒ (11)

The expectation ❞ ❑ ■ ❈✘❊ ❡ ☞ ✄✆❣✖✄ defines the frequency with

which input ❱ and feature ❲ are on together when the fea-

tures are being driven by the observed data from the train-

ing set using Eq. 7. After stochastically activating the fea-

tures, Eq. 8 is used to “reconstruct” binary data. Then Eq.

7 is used again to activate the features and ❞ ❑ ■ ❈ ❊ ❡ ✕ ❧ ✯ ❥✘✗
is the corresponding frequency when the features are being

driven by the reconstructed data. The learning rule for the

biases is just a simplified version of Eq. 11.

3.2 Modeling Real-valued Data

Welling et. al. [19] introduced a class of two-layer undi-

rected graphical models that generalize Restricted Boltz-

mann Machines (RBM’s) to exponential family distribu-

tions. This allows them to model images with real-valued

pixels by using visible units that have a Gaussian distribu-

tion whose mean is determined by the hidden units:

✁ ☞▲❑ ■ ✤ ❑ ✎ ❇ ✒ ✤ ✸✙ ✂✛✚✢✜✤✣ ✔✖✕✘✗ ☞ ✩✍✥✧✦ ❚ ✆ ✣ ❚ ✜✤✣✩★✫✪✭✬ ✪✘✮ ✣ ✪✘✯✱✰✂✲✜ ✰✣ ✒ (12)

✁ ☞❉❈✘❊ ✤ ✄ ✎ ✂ ✒ ✤☛❋ ❀●✓✁❊ ❍ ✄ ■ ✑ ■ ❊ ✦ ✣✜✳✣ ❂ (13)

The marginal distribution over visible units ✂ is given by

Eq. 9. with an energy term:

❩ ☞✍✂ ✔ ❇ ✒ ✤ ✫ ■ ☞P❑ ■ ✩ ✓ ■ ✒ ✂☎✢❋ ✂■ ✩ ✫ ❊ ✓✁❊✞❈✘❊ ✩ ✫ ■ ❭ ❊ ❈◆❊✵✴
■ ❊ ❑ ■❋ ■ (14)

The gradient of the log-likelihood function is:

❜ ☛✌☞✎✍ ✁ ☞✍✂ ✒
❜ ✑

■ ❊ ✤ ❞ ❑ ■❋ ■ ❈◆❊ ❡ ☞ ✄✆❣✖✄ ✩ ❞ ❑ ■❋ ■ ❈◆❊ ❡ ✐✵❥ ☞♠❧ ✟
If we set variances ❋ ✂■ ✤ ✄

for all visible units ❱ , the param-

eter updates are the same as defined in Eq. 11.

3.3 Greedy Recursive Pretraining

After learning the first layer of hidden features we have an

undirected model that defines ✁ ☞✖✂ ✔ ❇ ✒ via a consistent pair

of conditional probabilities, ✁ ☞❉❇ ✎ ✂ ✒ and ✁ ☞✖✂ ✎ ❇ ✒ . A differ-

ent way to express what has been learned is ✁ ☞✍✂ ✎ ❇ ✒ and✁ ☞❉❇ ✒ . Unlike a standard directed model, this
✁ ☞P❇ ✒ does not

have its own separate parameters. It is a complicated, non-

factorial prior on ❇ that is defined implicitly by the weights.

This peculiar decomposition into
✁ ☞P❇ ✒ and

✁ ☞✖✂ ✎ ❇ ✒ suggests

a recursive algorithm: keep the learned
✁ ☞✖✂ ✎ ❇ ✒ but replace✁ ☞❉❇ ✒ by a better prior over ❇ .

For any approximating distribution ✶ ☞P❇ ✎ ✂ ✒ we can write:

☛✌☞✎✍ ✁ ☞✍✂ ✒✁� ✫ ❳ ✶ ☞P❇ ✎ ✂ ✒ ✠ ☛✌☞✎✍ ✁ ☞P❇ ✒ ❍ ☛ ☞ ✍ ✁ ☞✖✂ ✎ ❇ ✒ ✘
✩ ✫ ❳ ✶ ☞❉❇ ✎ ✂ ✒ ☛✌☞✎✍ ✶ ☞P❇ ✎ ✂ ✒ (15)

If we set ✶ ☞P❇ ✎ ✂ ✒ to be the true posterior distribution,✁ ☞❉❇ ✎ ✂ ✒ (Eq. 7), the bound becomes tight. By freezing

the parameter vector ✑ at the value ✑✄✂✆☎✞✝✠✟☛✡☛☞ (Eq. 7,8)

we freeze ✁ ☞✍✂ ✎ ❇ ✒ , and if we continue to use ✑ ✪✂✆☎✌✝✍✟☛✡☛☞ to

compute the distribution over ❇ given ✂ we also freeze

✶ ☞❉❇ ✎ ✂ ✔ ✑ ✪✂✆☎✞✝✠✟☛✡☛☞ ✒ . When ✁ ☞P❇ ✒ is implicitly defined by

✑✎✂✆☎✞✝✠✟☛✡☛☞ , ✶ ☞❉❇ ✎ ✂ ✔ ✑ ✪✂✆☎✞✝✠✟☛✡☛☞ ✒ is the true posterior, but when

a better distribution is learned for
✁ ☞P❇ ✒ , ✶ ☞❉❇ ✎ ✂ ✔ ✑ ✪✂✏☎✞✝✍✟☛✡☛☞ ✒ is

only an approximation to the true posterior. Nevertheless,

the loss caused by using an approximate posterior is less

than the gain caused by using a better model for
✁ ☞❉❇ ✒ , pro-

vided this better model is learned by optimizing the vari-

ational bound in Eq. 15. Maximizing this bound with ✑
frozen at ✑✎✂✆☎✌✝✍✟☛✡☛☞ is equivalent to maximizing:

✫ ❳ ✶ ☞❉❇ ✎ ✂ ✔ ✑✬✪✂✆☎✞✝✠✟☛✡☛☞ ✒ ☛✌☞✎✍ ✁ ☞P❇ ✒
This amounts to maximizing the probability of a set of ❇
vectors that are sampled with probability ✶ ☞P❇ ✎ ✂ ✔ ✑ ✪✂✏☎✞✝✍✟☛✡☛☞ ✒ ,
i.e. it amounts to treating the hidden activity vectors pro-

duced by applying ✑ ✪✂✆☎✞✝✠✟☛✡☛☞ to the real data as if they were

data for the next stage of learning.1 Provided the number

of features per layer does not decrease, [12] showed that

each extra layer increases the variational lower bound in

Eq. 15 on the log probability of data. This bound does not

apply if the layers get smaller, as they do in an encoder,

but, as shown in [14], the pretraining algorithm still works

very well as a way to initialize a subsequent stage of fine-

tuning. The pretraining finds a point that lies in a good

region of parameter space and the myopic fine-tuning then

performs a local gradient search that finds a nearby point

that is considerably better.

After learning the first layer of features, a second layer is

learned by treating the activation probabilities of the exist-

ing features, when they are being driven by real data, as the

data for the second-level binary RBM (see fig. 3). To sup-

press noise in the learning signal, we use the real-valued

activation probabilities for the visible units of every RBM,

but to prevent each hidden unit from transmitting more than

one bit of information from the data to its reconstruction,

the pretraining always uses stochastic binary values for the

hidden units.

The hidden units of the top RBM are modeled with stochas-

tic real-valued states sampled from a Gaussian whose mean

is determined by the input from that RBM’s logistic visible

1We can initialize the new model of the average conditional
posterior over ❅ by simply using the existing learned model but
with the roles of the hidden and visible units reversed. This en-
sures that our new model starts with exactly the same ✑ ✁ ❅ ✝ as our
old one.

units. This allows the low-dimensional codes to make good

use of continuous variables and also facilitates comparisons

with linear NCA. The conditional distributions are given in

Eq. 12,13, with roles of ❇ and ✂ reversed. Throughout all

of our experiments we set variances ❋ ✂❊ ✤ ✄
for all hidden

units ❲ , which simplifies learning. The parameter updates

in this case are the same as defined in Eq. 11.

This greedy, layer-by-layer training can be repeated sev-

eral times to learn a deep, hierarchical model in which each

layer of features captures strong high-order correlations be-

tween the activities of features in the layer below.

Recursive Learning of Deep Generative Model:

1. Learn the parameters ✒✔✓ of a Bernoulli or Gaussian
model.

2. Freeze the parameters of the lower-level model and use
the activation probabilities of the binary features, when
they are being driven by training data, as the data for
training the next layer of binary features.

3. Freeze the parameters ✒✖✕ that define the 2 ✗✙✘ layer of
features and use the activation probabilities of those
features as data for training the 3 ✚☛✘ layer of features.

4. Proceed recursively for as many layers as desired.

3.4 Details of the training

To speed-up the pretraining, we subdivided the MNIST

dataset into small mini-batches, each containing 100 cases,

and updated the weights after each mini-batch. Each layer

was greedily pretrained for 50 passes (epochs) through the

entire training dataset.2 For fine-tuning model parameters

using the NCA objective function we used the method of

conjugate gradients3 on larger mini-batches of 5000 with

three line searches performed for each mini-batch in each

epoch. To determine an adequate number of epochs and

avoid overfitting, we fine-tuned on a fraction of the train-

ing data and tested performance on the remaining valida-

tion data. We then repeated the fine-tuning on the entire

training dataset for 50 epochs.

We also experimented with various values for the learning

rate, momentum, and weight-decay parameters used in the

pretraining. Our results are fairly robust to variations in

these parameters and also to variations in the number of

layers and the number of units in each layer. The precise

weights found by the pretraining do not matter as long as it

finds a good region from which to start the fine-tuning.

4 Experimental Results

In this section we present experimental results for the

MNIST handwritten digit dataset. The MNIST dataset [15]

2The weights were updated using a learning rate of 0.1, mo-
mentum of 0.9, and a weight decay of

✎✜✛ ✎✳✎✤✎✣✢✥✤
weight

✤
learning

rate. The weights were initialized with small random values sam-
pled from a zero-mean normal distribution with variance 0.01.

3Code is available at
http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/

 1 3 5 7

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Nonlinear NCA 30D
Linear NCA 30D
Autoencoder 30D
PCA 30D

1

2
3

4

5
6

7

8
9

0

Linear NCA LDA PCA

Figure 4: The top left panel shows KNN results on the MNIST test set. The top right panel shows the 2-dimensional codes produced
by nonlinear NCA on the test data using a 784-500-500-2000-2 encoder. The bottom panels show the 2-dimensional codes produced by
linear NCA, Linear Discriminant Analysis, and PCA.

contains 60,000 training and 10,000 test images of ☎✁�✄✂ ☎☎�
handwritten digits. Out of 60,000 training images, 10,000

were used for validation. The original pixel intensities were

normalized to lie in the interval ✠ ✤✏✔ ✄ ✘ and had a preponder-

ance of extreme values.

We used a 28 ✂ 28 ✩ 500 ✩ 500 ✩ 2000 ✩ 30 architecture as

shown as fig. 3, similar to one used in [12]. The 30 code

units were linear and the remaining hidden units were lo-

gistic. Figure 4 shows that Nonlinear NCA, after 50 epochs

of training, achieves an error rate of 1.08%, 1.00%, 1.03%,

and 1.01% using 1,3,5, and 7 nearest neighbours. This

is compared to the best reported error rates (without us-

ing any domain-specific knowledge) of 1.6% for randomly

initialized backpropagation and 1.4% for Support Vector

Machines [5]. Linear methods such as linear NCA or

PCA are much worse than nonlinear NCA. Figure 4 (right

panel) shows the 2-dimensional codes produced by non-

linear NCA compared to linear NCA, Linear Discriminant

Analysis, and PCA.

5 Regularized Nonlinear NCA

In many application domains, a large supply of unlabeled

data is readily available but the amount of labeled data,

which can be expensive to obtain, is very limited so non-

linear NCA may suffer from overfitting.

After the pretraining stage, the individual RBM’s at each

level can be “unrolled” as shown in figure 3 to create a

deep autoencoder. If the stochastic activities of the binary

features are replaced by deterministic, real-valued proba-

bilities, we can then backpropagate through the entire net-

work to fine-tune the weights for optimal reconstruction of

the data. Training such deep autoencoders, which does not

require any labeled data, produces low-dimensional codes

that are good at reconstructing the input data vectors, and

tend to preserve class neighbourhood structure [14].

The NCA objective, that encourages codes to lie close to

other codes belonging to the same class, can be combined

with the autoencoder objective function (see fig. 3) to max-

imize: ✏✬✤✝✆ ✱ ✲✵✴✷✶ ❍ ☞ ✄ ✩ ✆ ✒ ☞ ✩ E ✒ (16)

where
✱ ✲✵✴✹✶

is defined in Eq. 5, ❩ is the reconstruction

error, and ✆ is a trade-off parameter. When the derivative

of the reconstruction error ❩ is backpropagated through

the autoencoder, it is combined, at the code level, with the

derivatives of
✱✳✲✵✴✷✶

.

 1 3 5 7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.99)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

 1 3 5 7
2

2.5

3

3.5

4

4.5

5

5.5

6

Number of Nearest Neighbours

T
es

t
E

rr
o

r
(%

)

Regularized NCA (λ=0.999)
Nonlinear NCA 30D (λ=1)
Linear NCA 30D
Autoencoder 30D (λ=0)
KNN in pixel space

1% labels 5% labels 10% labels

Figure 5: KNN on the MNIST test set when only a small fraction of class labels is available. Linear NCA and KNN in pixel space do
not take advantage of the unlabeled data.

30 20 30 20

.......

.......

.......

....... �
*NCA

✁✄✂✆☎ �✞✝✠✟☛✡

Figure 6: Left panel: The NCA objective function is only applied to the first 30
code units, but all 50 units are used for image reconstruction. Right panel: The
top row shows the reconstructed images as we vary the activation of code unit
25 from 1 to -23 with a stepsize of 4. The bottom row shows the reconstructed
images as we vary code unit 42 from 1 to -23.

This setting is particularly useful for semi-supervised

learning tasks. Consider having a set of ✡ ✟
labeled train-

ing data ☞✖✂
✟
✔✁� ✟ ✒ , where as before ✂

✟
✞ ✡ ☞ , and � ✟ ✞✍ ✄ ✔❃☎✏✔❨✝✠✝✟✝ ✔❃✏✒✑ , and a set of ✡✁� unlabeled training data ✂ � .

Let ✡ ✤ ✡ ✟ ❍ ✡✁� . The overall objective to maximize can

be written as:✱ ✤ ✆
✄
✡ ✟

✲ ✂✫ ✟ ✣✹✸ ✫
✆ ✄ ✯ ✂ ✣ ✯✮✰

✁ ✟ ✆ ❍ ☞ ✄ ✩ ✆ ✒
✄
✡

✲
✫✗ ✣✹✸ ✩✚❩ ✗

(17)

where ❩ ✗
is the reconstruction error for the input data vec-

tor ❑ ✗ . For the MNIST dataset we use the cross-entropy

error:

❩✆☎ ✤ ✩ ✫ ■ ❑ ✗■ ☛✌☞✎✍✁✝❑ ✗■ ✩ ✫ ■ ☞ ✄ ✩ ❑ ✗■ ✒ ☛✌☞✎✍ ☞ ✄ ✩ ✝❑ ✗■ ✒ (18)

where ❑ ✗■ ✞ ✠ ✤ ✔ ✄ ✘ is the intensity of pixel ❱ for the training

example ✞ , and ✝❑ ✗■ is the intensity of its reconstruction.

When the number of labeled example is small, regular-

ized nonlinear NCA performs better than nonlinear NCA

(✆ ✤ ✄
), which uses the unlabeled data for pretraining but

ignores it during the fine-tuning. It also performs better

than an autoencoder (✆ ✤ ✤), which ignores the labeled

set. To test the effect of the regularization when most of

the data is unlabeled, we randomly sampled 1%, 5% and

10% of the handwritten digits in each class and treated

them as labeled data. The remaining digits were treated

as unlabeled data. Figure 5 reveals that regularized non-

linear NCA(✆ ✤ ✤ ✝ ✟✠✟)4 outperforms both nonlinear NCA

(✆ ✤ ✄
) and an autoencoder (✆ ✤ ✤). Even when the en-

tire training set is labeled, regularized NCA still performs

slightly better.

5.1 Splitting codes into class-relevant and

class-irrelevant parts

To allow accurate reconstruction of a digit image, the code

must contain information about aspects of the image such

as its orientation, slant, size and stroke thickness that are

not relevant to its classification. These irrelevant aspects in-

evitably contribute to the Euclidean distance between codes

and harm classification. To diminish this unwanted effect,

we used 50-dimensional codes but only used the first 30

dimensions in the NCA objective function. The remaining

20 dimensions were free to code all those aspects of an im-

age that do not affect its class label but are important for

reconstruction.

Figure 6 shows how the reconstruction is affected by

changing the activity level of a single code unit. Chang-

ing a unit among the first 30 changes the class; changing a

unit among the last 20 does not. With ✆ ✤ ✤❏✝ ✟✡✟ the split

codes achieve an error rate of 1.00% 0.97% 0.98% 0.97%

4The parameter
�

was selected, using cross-validation, from
among the values ☛ ✎✜✛ ☞✢✓✘✎ ✛ ✌✔✓✛✎✜✛ ✌✍✌✢✓✘✎✜✛ ✌✍✌✎✌✑✏ .

using 1,3,5, and 7 nearest neighbours. We also computed

the 3NN error rate on the test set using only the last 20 code

units. It was 4.3%, clearly indicating that the class-relevant

information is concentrated in the first 30 units.

6 Conclusions

We have shown how to pretrain and fine-tune a deep non-

linear encoder network to learn a similarity metric over the

input space that facilitates nearest-neighbor classification.

Using the reconstruction error as a regularizer and split

codes to suppress the influence of class-irrelevant aspect

of the image, our method achieved the best reported error

rate of 1.00% on a widely used version of the MNIST hand-

written digit recognition task that does not use any domain-

specific knowledge. The regularized version of our method

can make good use of large amounts of unlabeled data, so

the classification accuracy is high even when the amount of

labeled training data is very limited. Comparison to other

recent methods for learning similarity measures [1, 10, 20]

remains to be done.

Acknowledgments
We thank Sam Roweis for many helpful discussions. This
research was supported by NSERC, CFI and OTI. GEH is
a fellow of CIAR and holds a CRC chair.

References

[1] Aharon Bar-Hillel, Tomer Hertz, Noam Shental, and
Daphna Weinshall. Learning distance functions using equiv-
alence relations. In ICML, pages 11–18. AAAI Press, 2003.

[2] S. Becker and G. E. Hinton. A self-organizing neural net-
work that discovers surfaces in random-dot stereograms.
Nature, 355(6356):161–163, 1992.

[3] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similar-
ity metric discriminatively, with application to face verifica-
tion. In IEEE Computer Vision and Pattern Recognition or
CVPR, pages I: 539–546, 2005.

[4] T. M. Cover and P. E. Hart. Nearest neighbor pattern clas-
sification. IEEE Transactions on Information Theory, IT-
13(1):21–7, January 1967.

[5] D. Decoste and B. Schölkopf. Training invariant support
vector machines. Machine Learning, 46(1/3):161, 2002.

[6] Y. Freund and D. Haussler. Unsupervised learning of distri-
butions on binary vectors using two layer networks. In Ad-
vances in Neural Information Processing Systems 4, pages
912–919, San Mateo, CA., 1992. Morgan Kaufmann.

[7] K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensional-
ity reduction for supervised learning with reproducing ker-
nel hilbert spaces. Journal of Machine Learning Research,
5:73–99, 2004.

[8] A. Globerson and S. T. Roweis. Metric learning by collaps-
ing classes. In NIPS, 2005.

[9] J. Goldberger, S. T. Roweis, G. E. Hinton, and Ruslan
Salakhutdinov. Neighbourhood components analysis. In
NIPS, 2004.

[10] Tomer Hertz, Aharon Bar-Hillel, and Daphna Weinshall.
Boosting margin based distance functions for clustering. In
ICML, 2004.

[11] G. E. Hinton. Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1711–
1800, 2002.

[12] G. E. Hinton, S. Osindero, and Y. W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computation, 18,
2006.

[13] G. E. Hinton and S. T. Roweis. Stochastic neighbor embed-
ding. In NIPS, pages 833–840. MIT Press, 2002.

[14] G. E. Hinton and R. R. Salakhutdinov. Reducing the
dimensionality of data with neural networks. Science,
313(5786):504–507, July 2006.

[15] The MNIST dataset is available at
http://yann.lecun.com/exdb/mnist/index.html.

[16] P. Smolensky. Information processing in dynamical sys-
tems: Foundations of harmony theory. In Parallel Dis-
tributed Processing: Volume 1: Foundations, pages 194–
281. MIT Press, Cambridge, 1986.

[17] J. V. Stone and N. Harper. Temporal constraints on visual
learing: a computational model. Perception, 28:1089–1104,
2002.

[18] K. Q. Weinberger, J. Blitzer, and L. K. Saul. Distance metric
learning for large margin nearest neighbor classification. In
NIPS, 2005.

[19] M. Welling, M. Rosen-Zvi, and G. E. Hinton. Exponen-
tial family harmoniums with an application to information
retrieval. In NIPS 17, pages 1481–1488, Cambridge, MA,
2005. MIT Press.

[20] Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J.
Russell. Distance metric learning with application to clus-
tering with side-information. In NIPS, pages 505–512. MIT
Press, 2002.

[21] R. S. Zemel and G. E. Hinton. Discovering and using the
single viewpoint constraint. In NIPS 3, San Mateo, CA,
1991.

Appendix
We have �✂✁☎✄✝✆ objective function of Eq. 5:

� ✁✞✄✟✆ ☞ ✁✠✡☞☛ ✓
✠✌✎✍ ✏ ✻ ☛ ✏ ✰

✑✓✒✕✔ ✁✄☎✗✖✙✘✠✁ ❆ ✡✛✚ ✒ ✝ ☎✜✘✠✁ ❆ ✌ ✚ ✒ ✝ ✖ ✕ ✝✢✤✣✦✥☛✧✡ ✑✓✒✕✔ ✁✄☎★✖✩✘✠✁ ❆ ✡ ✚ ✒ ✝ ☎✪✘✠✁ ❆ ✣ ✚ ✒ ✝ ✖ ✕ ✝
Denote ✫ ✡ ✌ ☞ ✘✠✁ ❆ ✡ ✚ ✒ ✝ ☎✬✘✠✁ ❆ ✌ ✚ ✒ ✝

, then the derivatives of� ✁✞✄✟✆ with respect to parameter vector ✒ for the ✭✯✮✱✰ training
case are ✲ � ✁✞✄✟✆✲

✒
☞

✲ � ✁☎✄✝✆✲ ✘✠✁ ❆ ✡ ✚ ✒ ✝
✲ ✘✠✁ ❆ ✡✛✚ ✒ ✝✲

✒
where✲ � ✁☎✄✝✆✲ ✘✠✁ ❆ ✡ ✚ ✒ ✝ ☞ ☎ ✢☎✳ ✠✌✎✍ ✏ ✻ ☛ ✏ ✰ ✑ ✡ ✌ ✫ ✡ ✌ ☎ ✠✌✴✍ ✏ ✻ ☛ ✏ ✰ ✑ ✡ ✌✶✵ ✠✣✦✥☛✝✡ ✑ ✡ ✣ ✫ ✡ ✣✓✷✹✸✻✺

✢☎✳ ✠✼✽✍ ✏ ✂ ☛ ✏ ✻ ✑ ✼ ✡ ✫ ✼ ✡ ☎ ✠ ✼ ✥☛✧✡ ✵ ✠✾ ✍ ✏ ✂ ☛ ✏✴✿ ✑ ✼ ✾ ✷ ✑ ✼ ✡ ✫ ✼ ✡ ✸
and ❀❂❁❂❃ ❄ ✻❆❅ ❇❉❈❀ ❇ is computed using standard backpropagation.

