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Abstract

The paper presents a new unsupervised dimen-

sionality reduction technique, called paramet-

ric t-SNE, that learns a parametric mapping be-

tween the high-dimensional data space and the

low-dimensional latent space. Parametric t-SNE

learns the parametric mapping in such a way that

the local structure of the data is preserved as

well as possible in the latent space. We evaluate

the performance of parametric t-SNE in exper-

iments on three datasets, in which we compare

it to the performance of two other unsupervised

parametric dimensionality reduction techniques.

The results of experiments illustrate the strong

performance of parametric t-SNE, in particular,

in learning settings in which the dimensionality

of the latent space is relatively low.

1 INTRODUCTION

The performance and efficiency of machine learning al-

gorithms is often hampered by the high dimensionality of

real-world datasets. Typically, the minimum number of pa-

rameters required to account for all properties of the data

(i.e., the intrinsic dimensionality) is much smaller than the

dimensionality of the data. Dimensionality reduction tech-

niques try to exploit the relatively low intrinsic dimension-

ality of many real-world datasets. They embed the high-

dimensional data in a latent space of lower dimension-

ality in such a way, that the structure of the data is re-

tained as well as possible. Over the last decade, a large

number of new non-parametric dimensionality reduction

techniques have been proposed, such as Isomap (Tenen-

baum et al., 2000), LLE (Roweis and Saul, 2000), and
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MVU (Weinberger et al., 2004). The rationale behind these

so-called manifold learners is that they attempt to retain

the local structure of the data, that is, the small pairwise

distances between the datapoints, in the latent space. The

main limitation of the non-parametric manifold learners is

that they do not provide a parametric mapping between the

high-dimensional data space and the low-dimensional la-

tent space, as a result of which the out-of-sample exten-

sion for these techniques is non-trivial. For spectral tech-

niques such as the manifold learners listed above, the out-

of-sample extension can be realized using the Nyström ap-

proximation (Bengio et al., 2004), but this leads to approx-

imation errors and can become computationally expensive.

As a result, the lack of a parametric mapping makes non-

parametric dimensionality reduction techniques less suit-

able for use in, e.g., classification or regression tasks.

Despite the recent surge in non-parametric dimensional-

ity reduction techniques, the development of new para-

metric dimensionality reduction techniques has been lim-

ited. Many parametric dimensionality reduction tech-

niques, such as PCA and NCA (Goldberger et al., 2005),

are hampered by their linear nature, which makes it dif-

ficult to successfully embed highly non-linear real-world

data in the latent space. In contrast, autoencoders (Hin-

ton and Salakhutdinov, 2006) can learn the non-linear map-

pings that are required for such embeddings, but they pri-

marily focus on maximizing the variance of the data in the

latent space, as a result of which autoencoders are less suc-

cessful in retaining the local structure of the data in the

latent space than manifold learners.

In this paper, we present a new unsupervised parametric di-

mensionality reduction technique that attempts to retain the

local data structure in the latent space. The new technique,

called parametric t-SNE, parametrizes the non-linear map-

ping between the data space and the latent space by means

of a feed-forward neural network. Similar parametrizations

have been proposed before, e.g., in NeuroScale (Lowe and

Tipping, 1996) and back-constrained GPLVMs (Lawrence

and Candela, 2006). The network is trained using a three-

stage training procedure that is inspired by the training of

autoencoders as described by Hinton and Salakhutdinov



         385

Learning a Parametric Embedding by Preserving Local Structure

(2006). The three-stage training procedure aims to circum-

vent the problems of backpropagation procedures that are

typically used to train neural networks.

The structure of the remainder of this paper is as follows.

Section 2 introduces the new unsupervised parametric di-

mensionality reduction technique, called parametric t-SNE.

The result of our experiments with parametric t-SNE on

three datasets are presented in Section 3. The results are

discussed in more detail in Section 4. Section 5 concludes

the paper and presents directions for future research.

2 PARAMETRIC T-SNE

In parametric t-SNE, the parametric mapping f : X → Y

from the data space X to the low-dimensional latent space

Y is parametrized by means of a feed-forward neural net-

work with weights W . We opt for the use of a (deep) neu-

ral network, because a neural network with sufficient hid-

den layers (with non-linear activation functions) is capable

of parametrizing arbitrarily complex non-linear functions.

The neural network is trained in such a way as to preserve

the local structure of the data in the latent space. Herein,

the cost function that is minimized in the training of the net-

work is adapted from a recently introduced non-parametric

dimensionality reduction technique, called t-SNE, that is

good at visualizing the local structure of high-dimensional

data (van der Maaten and Hinton, 2008).

The main problem of the training of deep neural networks

is that the large number of weights (for typical problems

about several millions) in the network cannot be learned

successfully using backpropagation, as backpropagation

tends to get stuck in poor local minima due to the complex

interactions between the layers in the network. In order to

circumvent this problem, we use a training procedure that

is inspired by the training of autoencoders that is based on

Restricted Boltzmann Machines (RBMs). The training pro-

cedure consists of three main stages: (1) a stack of RBMs

is trained, (2) the stack of RBMs is used to construct a pre-

trained neural network, and (3) the pretrained network is

finetuned using backpropagation as to minimize the cost

function that attempts to retain the local structure of the

data in the latent space. The training procedure of paramet-

ric t-SNE is illustrated in Figure 1. The pretraining (stage 1

and 2) and the finetuning (stage 3) of the parametric t-SNE

network are discussed separately in 2.1 and 2.2.

2.1 PRETRAINING

The pretraining of a parametric t-SNE network consists of

two stages. First, a stack of RBMs is trained. Second,

the stack of RBMs is used to construct a pretrained feed-

forward neural network. Below, we first desribe the train-

ing of an RBM (in 2.1.1). Subsequently, we turn to the

procedure that constructs the pretrained feed-forward neu-

ral network (in 2.1.2).
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Figure 1: Overview of the three-stage training procedure of

a parametric t-SNE network.

2.1.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is an undirected

probabilistic graphical model, i.e., a Markov Random

Field. The nodes of an RBM are usually Bernoulli dis-

tributed (Hinton, 2002), but if the mean field approxima-

tion is employed, the nodes may follow any exponential

family distribution (Welling et al., 2004). The structure of

an RBM is a fully connected bipartite graph, in which one

group of nodes (the visual nodes v) models the data, and

the other group of nodes (the hidden nodes h) models the

latent structure of the data.

Since an RBM is a special case of a Markov Random Field,

the joint distribution over all nodes is given by a Boltzmann

distribution that is specified by the energy function E(v, h).
The most common choice for the energy function is a linear

function of the states of the visual and hidden nodes

E(v, h) = −

∑

i,j

Wijvihj −

∑

i

bivi −

∑

j

cjhj ,

in which Wij represents the weight of the connection be-

tween node vi and hj , bi represents the bias on node vi, and

cj represents the bias on node hj . Noting that the states of

the visual nodes are conditionally independent given the

states of the hidden nodes and vice versa, it can easily be

seen1 that the linear energy function leads to conditional

1Note that p(v|h) = p(v,h)
P

v′ p(v′,h)
, and that if we omit the biases,

p(v, h) ∝ exp(hT Wv). Because vi has a value of either 0 or 1,

p(vi = 0|h) = exp(0)

exp(0)+exp(hT W )
= 1

1+exp(hT W )
.
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probabilities P (vi = 1|h) and P (hj = 1|v) that are given

by the sigmoid function of the input into a node

P (vi = 1|h) =
1

1 + exp(−
∑

j Wijhj − bi)
, (1)

P (hj = 1|v) =
1

1 + exp(−
∑

i Wijvi − cj)
. (2)

The weights W and the biases b and c of an RBM are

learned in such a way that the marginal distribution over

the visual nodes under the model, Pmodel(v), is close to the

observed data distribution Pdata(v). Specifically, the RBM

is trained as to minimize the Kullback-Leibler divergence

between the data distribution Pdata(v) and the model dis-

tribution Pmodel(v), which is identical to maximizing the

likelihood of the data under the model. The gradient of

the Kullback-Leibler divergence with respect to the weights

Wi,j is given by

δKL(Pdata||Pmodel)

δWij

= E [vihj ]Pdata
− E [vihj ]Pmodel

,

where E [·]Pmodel
represents an expected value under the

model distribution, and E [·]Pdata
represents an expected

value under the data distribution.

Although the form of the gradient is fairly simple, it

is impossible to compute the gradient, because the term

E [vihj ]Pmodel
cannot be computed analytically. Sampling

from the model distribution is also infeasible because this

would require the Markov chain to be run infinitely long. In

order to alleviate this problem, an alternative gradient has

been proposed that minimizes a slightly different objective

function that is called the contrastive divergence (Hinton,

2002). The constrastive divergence measures the tendency

of the model distribution to walk away from the data distri-

bution by KL(Pdata||Pmodel) − KL(P1||Pmodel), where

P1(v) represents the distribution over the visual nodes as

the RBM is allowed to run for one iteration (i.e., to perform

one Gibbs sweep) when initialized according to the data

distribution. The contrastive divergence can be minimized

efficiently using standard gradient descent techniques, us-

ing an approximate gradient that is given by

E [vihj ]Pdata
− E [vihj ]P1

.

The term E [vihj ]P1

is now estimated from samples that

are obtained using Gibbs sampling (note that the required

conditionals are given by Equation 1 and 2). The Markov

chain of the sampler may be initialized by clamping a data

vector onto the visual nodes, or by using the state of the

Markov chain at the previous iteration.

2.1.2 Greedy Layer-Wise Training

The greedy layer-wise training procedure that is used to

pretrain the parametric t-SNE network consists of three

steps. First, the RBM that corresponds to the first layer

is trained on the input data (as described above). Second,

the most likely values for the hidden nodes of the RBM are

inferred for each datapoint. Third, these values are used

as input data to train the RBM that corresponds to the sec-

ond layer. This process is iterated for all layers in the net-

work. The RBMs that correspond to the bottom layers of

the neural network have Bernoulli-distributed hidden units,

because this gives rise to a sigmoid activation function in

the network. The RBM that corresponds to the top layer of

the neural network uses Gaussian distributed hidden units,

because this gives rise to a linear activation function in the

network. The top layer of a neural network typically has

a linear activation function to make the outputs of the net-

work more stable.

The stack of trained RBMs is used to construct a pretrained

parametric t-SNE network. Specifically, the undirected

weights of the RBMs are untied and the biases on the vis-

ible units of the RBMs are dropped. As a result, the stack

of RBMs is transformed into a pretrained feed-forward net-

work. The resulting network forms a good initialization for

the finetuning stage that aims to preserve the local struc-

ture of the data in the latent space (Larochelle et al., 2009).

Preliminary experiments revealed that training parametric

t-SNE networks without the pretraining stage leads to an

inferior performance.

2.2 FINETUNING

In the finetuning stage, the weights of the pretrained neu-

ral network are finetuned in such a way that the network

retains the local structure of the data in the latent space.

This is done by converting the pairwise distances in both

the data space and the latent space into probabilities that

measure the similarity of two datapoints, and minimizing

the Kullback-Leibler divergence between those probabili-

ties (Hinton and Roweis, 2002, Min, 2005, van der Maaten

and Hinton, 2008). Specifically, the pairwise distances in

the data space are transformed into probabilities by center-

ing an isotropic Gaussian over each datapoint i, computing

the density of point j under this Gaussian, and renormaliz-

ing, yielding the conditional probabilities pj|i

pj|i =
exp

(

−‖xi − xj‖
2/2σ2

i

)

∑

k 6=i exp (−‖xi − xk‖2/2σ2
i )

,

The variance of the Gaussian σi is set in such a way that the

perplexity of each conditional distribution Pi is equal, and

pi|i is set to zero. The perplexity is a free parameter that

can be thought of as the number of effective neighbors. To

form a single joint distribution, the conditional probabili-

ties pj|i are symmetrized2, i.e., we set pij =
pj|i+pi|j

2n
. The

2It is also possible to compute the joint probabilities pij di-
rectly by normalizing over all pairs of datapoints in Equation 2.2,
however, such an approach gives inferior results under the pres-
ence of outliers.
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resulting joint probabilities pij measure the similarity be-

tween datapoints i and j, as a result of which (assuming

the variance of the Gaussians is relatively small) they cap-

ture the local structure of the data.

To measure the pairwise similarity of datapoints i and j in

the latent space, a symmetric distribution is centered over

each datapoint i in the latent space as well. Again, the den-

sity of all other points j under this distribution is measured,

and the result is renormalized to obtain probabilities qij

that represent the local structure of the data in the latent

space. The weights of the parametric t-SNE network are

now learned in such a way that the Kullback-Leibler diver-

gence between the joint probability distributions P and Q
is minimized, i.e., by minimizing

C = KL(P ||Q) =
∑

i 6=j

pij log
pij

qij

. (3)

The asymmetric nature of the Kullback-Leibler divergence

leads the minimization to focus on modeling large pij’s by

large qij’s. Hence, the objective function focuses on mod-

eling similar datapoints close together in the latent space,

as a result of which parametric t-SNE focuses on preserv-

ing the local structure of the data.

It may seem logical to use a Gaussian distribution to mea-

sure pairwise similarities qij in the latent space (as is done

in, e.g., (Globerson et al., 2007, Hinton, 2002, Min, 2005,

Iwata et al., 2007)), but this often leads to inferior re-

sults that are due to the crowding problem (van der Maaten

and Hinton, 2008). The crowding problem is the result of

the volume difference between high-dimensional and low-

dimensional spaces that we explain in what follows.

Let us suppose that all small pairwise distances are retained

perfectly in the low-dimensional latent space. Unless the

original data lies in a subspace with an intrinsic dimension-

ality equal to or smaller than the dimensionality of the la-

tent space, this implies that the larger pairwise distances

cannot be modeled well in the latent space. In particular,

the large pairwise distances have to be modeled as being

larger. As a result, small attractive forces emerge between

dissimilar datapoints in the latent space. The large number

of such forces cause the crowding problem, as they ‘crush’

the data representation in the latent space together, which

prevents the formation of separations between the natural

classes in the data.

The crowding problem can be alleviated by using a heavy-

tailed distribution to compute the pairwise similarities qij

in the latent space. The use of a heavy-tailed distribu-

tion allows distant points to be modeled as being (too) far

apart in the latent space, as a result of which the attrac-

tive forces that cause the crowding problem are eliminated.

Because of its theoretical relation to the Gaussian distri-

bution, we use a Student-t distribution as the heavy-tailed

distribution to measure the pairwise similarities in the la-

tent space. Denoting the mapping from the data space to

the latent space that is defined by the feed-forward neural

network as f : X → Y , this leads to the following defini-

tion of qij

qij =

(

1 + ‖f(xi|W ) − f(xj |W )‖2/α
)−α+1

2

∑

k 6=l (1 + ‖f(xk|W ) − f(xl|W )‖2/α)
−α+1

2

,

(4)

where α represents the number of degrees of freedom of

the Student-t distribution. We discuss the appropriate set-

ting of α later in this section.

The minimization of the cost function C (that uses the

above definition of qij) can be performed using backpropa-

gation, where the network is initialized using the procedure

we described in 2.1. The gradient that is required for the

finetuning is given by

δC

δW
=

δC

δf(xi|W )

δf(xi|W )

δW
,

where
δf(xi|W )

δW
is computed using standard backpropaga-

tion, and δC
δf(xi|W ) is given by

δC

δf(xi|W )
=

2α + 2

α

∑

j

(pij − qij) (f(xi|W ) − f(xj |W ))

(

1 + ‖f(xi|W ) − f(xj |W )‖2/α
)−α+1

2 .

Because the number of pij’s and qij’s grows quadratically

with the number of datapoints in the batch, the minimiza-

tion of the cost function usually has to be performed us-

ing batches of a few thousand points (using larger batches

is generally not possible because of memory constraints).

The solution is updated after each gradient computation for

a batch.

Now that we fully defined parametric t-SNE, we turn to

the question of how the number of degrees of freedom α
should be set. The Student-t distribution that is used in the

latent space may contain a large portion of the probability

mass under the distribution, because the volume of the la-

tent space Y grows exponentially with its dimensionality.

This leads to problems that may be addressed by setting

the degrees of freedom α in such a way as to correct for

the exponential growth of the volume of the latent space,

because increasing the degrees of freedom α leads to a dis-

tribution with lighter tails. In fact, the parameter α deter-

mines to what extent the latent space is ‘filled up’: lower

values of α lead to larger separations in the latent space

between the natural clusters in the data, because they give

rise to stronger repulsive forces between dissimilar data-

points in the latent space. In contrast, higher values of α
lead to smaller separations between the natural clusters in

the data, as a result of which more space is available in the

latent space to appropriately model the local structure of

the data. Below, we discuss three approaches to set the de-

grees of freedom of the Student-t distribution that is used

to measure pairwise similarities in the latent space.

1) Fixed value. The first approach is to use a fixed setting
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of α = 1, as is done by van der Maaten and Hinton (2008).

This setting is likely to be subject to the problem with the

heavy tails discussed above, as a fixed value of α does not

correct for the exponential growth of the volume of the la-

tent space (in higher dimensionalities).

2) Linear relation. As the thickness of the tail of a Student-

t distribution decreases exponentially with the degrees of

freedom α (and the volume of the latent space increases ex-

ponentially with the dimensionality of the latent space), it

seems likely that the parameter setting for degrees of free-

dom α should be linearly dependent on the dimensionality

d of the latent space. Hence, it seems reasonable to set

α = d − 1 in order to obtain a single degree of freedom in

two-dimensional latent spaces, following van der Maaten

and Hinton (2008)).

3) Learning. A possible problem of the second approach

is that the appropriate value of α does not only depend on

the dimensionality of the latent space. In fact, the most

appropriate setting of α depends on the magnitude of the

crowding problem, which in turn depends on the ratio be-

tween the intrinsic dimensionality of the data and the di-

mensionality of the latent space. For instance, if the in-

trinsic dimensionality is equal to the dimensionality of the

latent space, the crowding problem does not occur at all,

and the most appropriate value is thus α = ∞ (note that

a Student-t distribution with infinite degrees of freedom is

equal to a Gaussian distribution). As the intrinsic dimen-

sionality of the data at hand is usually unknown, the third

approach treats α as a free parameter that should be opti-

mized with respect to the cost function as well. The re-

quired gradient of the cost function C with respect to α is

given by

δC

δα
=

X

i6=j

0

B

B

@

(−α− 1)d2
ij

2α2

„

1 +
d2

ij

α

« +
1

2
log

„

1 +
d2

ij

α

«

1

C

C

A

(pij − qij) ,

where d2

ij represents ‖f(xi|W ) − f(xj |W )‖2. In the fol-

lowing section, we present experiments in which we used

three different approaches for setting α.

3 EXPERIMENTS

In order to evaluate the performance of parametric t-SNE

and to compare the three different settings for its parameter

α, we performed experiments with parametric t-SNE on

three datasets. The setup of these experiments is discussed

in 3.1. The results of the experiments are presented in 3.2.

3.1 EXPERIMENTAL SETUP

We performed experiments on three datasets: (1) the

MNIST dataset, (2) the characters dataset, and (3) the 20

newsgroups dataset. The MNIST dataset contains 70, 000

images of handwritten digits of size 28 × 28 pixels. The

dataset has a fixed division into 60, 000 training images and

held out 10, 000 test images. The characters dataset con-

sists of 40,121 grayscale images of handwritten upper-case

characters and numerals of size 90×90 pixels, of which we

used 35, 000 images as training data and the remainder as

test data. The characters dataset comprises 35 classes, viz.,

10 numeric classes and 25 alpha classes (the character ‘X’

is missing in the dataset). The 20 newsgroups dataset con-

tains 100-dimensional binary word-occurence features for

16, 242 documents gathered from 20 different newsgroups.

We used 15, 000 documents as training data, and the re-

maining documents as test data.

In our experiments, we compared parametric t-SNE with

two other unsupervised parametric techniques for dimen-

sionality reduction, viz., PCA and multilayer autoen-

coders (Hinton and Salakhutdinov, 2006). We also com-

pared parametric t-SNE to NCA (Goldberger et al., 2005),

which is a supervised linear dimensionality reduction tech-

nique. We evaluated the performance of the techniques by

means of plotting two-dimensional visualizations, measur-

ing generalization performances of nearest-neighbor classi-

fiers, and evaluating the trustworthiness (Venna and Kaski,

2006) of the low-dimensional embeddings3. In order to

make the comparison between parametric t-SNE and au-

toencoders as fair as possible, we used the same layout

for both neural networks (where it should be noted that a

parametric t-SNE network does not have the decoder part

of an autoencoder). Motivated by the experimental setup

employed by Salakhutdinov and Hinton (2007), we used

28 × 28 − 500 − 500 − 2000 − d parametric t-SNE net-

works and autoencoders in our experiments on the MNIST

dataset (where d represents the dimensionality of the latent

space). In our experiments on the characters dataset, we

used 90× 90− 500− 500− 2000− d networks. On the 20

newsgroups dataset, we used 100 − 150 − 150 − 500 − d

networks. The autoencoders were trained using the same

three-stage training approach as parametric t-SNE, but the

autoencoder is finetuned by performing backpropagation

as to minimize the sum of squared errors between the in-

put and the output of the autoencoder (see (Hinton and

Salakhutdinov, 2006) for details).

We used exactly the same procedure and parameter settings

in the pretraining of the parametric t-SNE networks and

the autoencoders. In the training of the RBMs whose hid-

den units have sigmoid activation functions (the RBMs in

the first three layers), the learning rate is set to 0.1 and the

3The trustworthiness expresses to what extent the local struc-
ture of data is retained in a low-dimensional embedding in a value
between 0 and 1. Mathematically, it is defined as T (k) = 1 −

2
nk(2n−3k−1)

Pn

i=1

P

j∈U
(k)
i

(r(i, j)− k), where r(i, j) repre-

sents the rank of the low-dimensional datapoint j according to
the pairwise distances between the low-dimensional datapoints,

and U
(k)
i represents the set of points that are among the k near-

est neighbors in the low-dimensional space but not in the high-
dimensional space (Venna and Kaski, 2006).
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weight decay is set to 0.0002. The training of the RBMs

with a linear activation function in the hidden units (the

RBMs in the fourth layer) is performed using a learning

rate of 0.01 and a weight decay of 0.0002. In the training

of all RBMs, the momentum is set to 0.5 for the first five

iterations, and to 0.9 afterwards. The RBMs are all trained

using 50 iterations of contrastive divergence with one com-

plete Gibbs sweep per iteration.

Both parametric t-SNE and the autoencoders were fine-

tuned using 30 iterations of backpropagation using conju-

gate gradients on batches of 5, 000 datapoints. The subdivi-

sion of training data into batches was fixed in order to facil-

itate the precomputation of the P matrices that are required

in parametric t-SNE. In the experiments with parametric t-

SNE, the variance σi of the Gaussian distributions was set

such that the perplexity of the conditional distributions Pi

was equal to 30. NCA was trained by running conjugate

gradients on batches of 5, 000 datapoints for 10 iterations

using conjugate gradients.

3.2 RESULTS

In Figure 2, we present the visualizations of the MNIST

dataset that were constructed by PCA, an autoencoder, and

a parametric t-SNE network (using α = 1). The visual-

izations were constructed by transforming the MNIST test

images, that were held out during training, to two dimen-

sions using the trained models. The results reveal the strong

performance of parametric t-SNE compared to PCA and

autoencoders. In particular, the PCA visualization mixes

up most of the natural classes in the data. The autoen-

coder outperforms PCA, but cannot successfully separate

the classes 4, 9, 6, and 8. In contrast, parametric t-SNE

clearly separates all classes (although the visualization con-

tains some debris that is mainly due to the presence of dis-

torted digits in the data). In Table 1, we present the gener-

alization errors of 1-nearest neighbor classifiers that were

trained on the low-dimensional representations obtained

from the three parametric dimensionality reduction tech-

niques (using three different dimensionalities for the latent

space). The generalization errors were measured on test

data that was held out during the training of both the dimen-

sionality reduction techniques and the classifiers. The cor-

responding trustworthinesseses T (12) of the embeddings

are presented in Table 2. In both tables, the best perfor-

mance in each experiment is typeset in boldface. From the

results presented in Table 1 and 2, we can make the follow-

ing two observations.

First, we observe that parametric t-SNE performs better or

on par with the other techniques in all experiments. In par-

ticular, the performance of parametric t-SNE is very strong

if the dimensionality of the latent space is not large enough

to accomodate for all properties of the data. In this case,

the heavy tails of the distribution of parametric t-SNE in

the latent space push the natural clusters in the data apart,

whereas PCA and autoencoders construct embeddings in

which these natural clusters (partially) overlap. The high

trustworthinesses of the parametric t-SNE embeddings in-

dicate that parametric t-SNE preserves the local structure

of the data in the latent space well. The results reveal

that parametric t-SNE also outperforms linear NCA, even

though NCA has the advantage of being fully supervised.

Second, we observe that it is disadvantageous to use a sin-

gle degree of freedom in the latent space if that latent space

has more than, say, two dimensions. Our results reveal that

it is better to use make the number of degrees of freedom α

linearly dependent on the dimensionality of the latent space

d, for reasons we already explained in 2.2. The results also

show that learning the appropriate number of degrees of

freedom α leads to similar results. The learned value of α

was usually slightly smaller than d−1 in our experiments.

4 DISCUSSION

From the results of our experiments, we observe that para-

metric t-SNE often outperforms two other unsupervised

parametric dimensionality reduction techniques, in partic-

ular, if the dimensionality of the latent space is relatively

low. These results are due to the main differences of para-

metric t-SNE compared to PCA and autoencoders, which

we discuss below.

The strong performance of parametric t-SNE compared to

PCA can be explained from the two main problems of PCA.

First, the linear nature of PCA is too restrictive for the tech-

nique to find appropriate embeddings for non-linear real-

world data. Second, PCA focuses primarily on retaining

large pairwise distances in the latent space (which can be

understood from its relation to classical scaling), whereas

it is more important to retain the local structure of the data

in the latent space.

The strong performance of parametric t-SNE compared

to autoencoders, especially if the latent space has a rela-

tively low dimensionality, can be understood from the fol-

lowing difference between parametric t-SNE and autoen-

coders. Parametric t-SNE aims to model the local struc-

ture of the data appropriately in the latent space, and it

attempts to create separation between the natural clusters

in the data (by means of the heavy-tailed distribution in the

latent space). In contrast, autoencoders mainly aim to max-

imize the variance of the data in the latent space, in order to

achieve low reconstruction errors. As a result of the max-

imization of the variance, autoencoders generally do not

construct low-dimensional data representations in which

the natural classes in the data are widely separated (as this

would decrease the variance of the low-dimensional data

representation, and increase the reconstruction error). The

relatively poor separation between natural classes in low-

dimensional data representations constructed by autoen-

coders leads to inferior generalization performance of near-

est neighbors classifiers compared to parametric t-SNE, in
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(a) Visualization by PCA.

 

 

(b) Visualization by an autoencoder.

 

 

(c) Visualization by parametric t-SNE.

Figure 2: Visualizations of 10, 000 digits from the MNIST dataset by parametric dimensionality reduction techniques.

MNIST Characters 20 Newsgroups

2D 10D 30D 2D 10D 30D 2D 10D 30D

PCA 78.16% 43.03% 10.78% 86.72% 60.73% 20.50% 35.99% 27.05% 28.82%

NCA 56.84% 8.84% 7.32% 72.90% 24.68% 17.95% 30.76% 26.65% 26.09%

Autoencoder 66.84% 6.33% 2.70% 82.93% 17.91% 11.11% 37.60% 29.15% 27.62%

Par. t-SNE, α = 1 9.90% 5.38% 5.41% 43.90% 26.01% 23.98% 34.30% 24.40% 24.88%

Par. t-SNE, α = d− 1 9.90% 4.58% 2.76% 43.90% 17.13% 13.55% 35.10% 25.28% 23.75%

Par. t-SNE, learned α 12.68% 4.85% 2.70% 44.78% 17.30% 14.31% 33.82% 27.21% 24.72%

Table 1: Generalization errors of 1-nearest neighbor classifiers on low-dimensional representations of the MNIST dataset,

the characters dataset, and the 20 newsgroups dataset.

particular, if the dimensionality of the latent space is rel-

atively low. Moreover, parametric t-SNE provides com-

putational advantages over autoencoders. An autoencoder

consists of an encoder part and a decoder part, whereas

parametric t-SNE only employs an encoder network. As

a result, errors have to be backpropagated through half the

number of layers in parametric t-SNE (compared to autoen-

coders), which gives it an computational advantage over

autoencoders (even though the computation of the errors is

somewhat more expensive in parametric t-SNE).

A notable advantage of autoencoders is that they provide

the capability to reconstruct the original data from its low-

dimensional representation in the latent space. In other

words, autoencoders do not only provide a parametric map-

ping from the data space to the latent space, but also the

other way around. A possible approach to address this

shortcoming is to use the decoder part of an autoencoder as

a regularizer on the parametric t-SNE network, i.e., to min-

imize a weighted sum of Equation 3 and the reconstruction

error (as is done for non-linear NCA by Salakhutdinov and

Hinton (2007)).

As the number of parameters in parametric t-SNE and

autoencoders is larger than in PCA, these techniques are

likely to be more susceptible to overfitting. However, we

did not observe overfitting effects in our experiments, prob-

ably because of the relatively large number of instances in

our training data. If parametric t-SNE or autonencoders are

trained on smaller datasets, it may be necessary to use early

stopping (Caruana et al., 2001).

The results of our experiments not only reveal the strong

performance of parametric t-SNE compared to PCA and

autoencoders, but also provide insight into the nature of

the crowding problem. In particular, the results reveal that

the severity of the crowding problem depends on the ratio

between the intrinsic dimensionality of the data and the di-

mensionality of the latent space. The number of degrees of

freedom α should thus be set accordingly. We suggested to

treat α as a parameter that has to be learned as well, and al-

though competitive, learning α does not always outperform

a setting in which α depends linearly on the dimensionality

of the latent space. Presumably, this observation is due to

the following. When α is learned, it is set in such a way as

to ‘fill up’ the latent space. This decreases the Kullback-

Leibler divergence that parametric t-SNE minimizes, be-

cause it provides more space to model the local structure of

the data appropriately (recall that the cost function focuses

on retaining local structure). Although the ‘filling up’ of

the space is advantageous for modeling the local structure

of the data (as is illustrated by the high trustworthinesses

when α is learned), it has a negative influence on the gen-

eralization performance of nearest neighbor classifiers on

the low-dimensional data representation, as it decreases the

separation between the natural clusters in the data.



         391

Learning a Parametric Embedding by Preserving Local Structure

MNIST Characters 20 Newsgroups

2D 10D 30D 2D 10D 30D 2D 10D 30D

PCA 0.744 0.991 0.998 0.735 0.971 0.994 0.634 0.847 0.953
NCA 0.721 0.968 0.971 0.721 0.935 0.957 0.633 0.705 0.728
Autoencoder 0.729 0.996 0.999 0.721 0.976 0.992 0.612 0.856 0.961

Par. t-SNE, α = 1 0.926 0.983 0.983 0.866 0.957 0.959 0.720 0.854 0.866
Par. t-SNE, α = d− 1 0.927 0.997 0.999 0.866 0.988 0.995 0.714 0.864 0.942
Par. t-SNE, learned α 0.921 0.996 0.999 0.861 0.988 0.995 0.722 0.857 0.941

Table 2: Trustworthiness T (12) of low-dimensional representations of the MNIST dataset, the characters dataset, and the

20 newsgroups dataset.

5 CONCLUSIONS

We have shown how a deep feed-forward neural network

can be trained that reduces the dimensionality of data,

while preserving its local structure. The results of our ex-

periments with parametric t-SNE on three datasets showed

thatit outperforms other unsupervised parametric dimen-

sionality reduction techniques such as autoencoders. A

Matlab implementation of parametric t-SNE is available

from http://ticc.uvt.nl/∼lvdrmaaten/tsne.

In future work, we aim to investigate parametric t-SNE net-

works that use the decoder part of an autoencoder as a reg-

ularizer. Also, we aim to investigate how parametric t-SNE

can be combined with supervised dimensionality reduction

techniques to obtain better generalization performances in

semi-supervised learning settings.
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